GE Sensing FGA311 Operating Manual

GE
Sensing
FGA311
Panametrics In Situ Flue Gas Oxygen Analyzer
User’s Manual
910-160C1 March 2006
The FGA 311 In Situ Flue Gas Analyzer is a GE Panametrics product. GE Panametrics has joined other GE high-technology sensing businesses under a new name—GE Industrial, Sensing.
March 2006
Warranty Each instrument manufactured by GE Infrastructure Sensing, Inc. is
warranted to be free from defects in material and workmanship. Liability under this warranty is limited to restoring the instrument to normal operation or replacing the instrument, at the sole discretion of GE Infrastructure Sensing, Inc. Fuses and batteries are specifically excluded from any liability. This warranty is effective from the date of delivery to the original purchaser. If GE Infrastructure Sensing, Inc. determines that the equipment was defective, the warranty period is:
one year for general electronic failures of the instrument
one year for mechanical failures of the sensor
If GE Infrastructure Sensing, Inc. determines that the equipment was damaged by misuse, improper installation, the use of unauthorized replacement parts, or operating conditions outside the guidelines specified by GE Infrastructure Sensing, Inc., the repairs are not covered under this warranty.
The warranties set forth herein are exclusive and are in lieu of all other warranties whether statutory, express or implied (including warranties of merchantability and fitness for a particular purpose, and warranties arising from course of dealing or usage or trade).
Return Policy If a GE Infrastructure Sensing, Inc. instrument malfunctions within the
warranty period, the following procedure must be completed:
1. Notify GE Infrastructure Sensing, Inc., giving full details of the
problem, and provide the model number and serial number of the instrument. If the nature of the problem indicates the need for factory service, GE Infrastructure Sensing, Inc. will issue a RETURN AUTHORIZATION number (RA), and shipping instructions for the return of the instrument to a service center will be provided.
2. If GE Infrastructure Sensing, Inc. instructs you to send your
instrument to a service center, it must be shipped prepaid to the authorized repair station indicated in the shipping instructions.
3. Upon receipt, GE Infrastructure Sensing, Inc. will evaluate the
instrument to determine the cause of the malfunction.
Then, one of the following courses of action will then be taken:
If the damage is covered under the terms of the warranty, the
instrument will be repaired at no cost to the owner and returned.
If GE Infrastructure Sensing, Inc. determines that the damage is not
covered under the terms of the warranty, or if the warranty has expired, an estimate for the cost of the repairs at standard rates will be provided. Upon receipt of the owner’s approval to proceed, the instrument will be repaired and returned.
iii
March 2006
Table of Contents
Chapter 1: General Information
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Principles of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
The Oxygen Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
The Heater Control Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Chapter 2: Installation
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Unpacking the Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Line Power Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Selecting the Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Mounting the Analyzer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Wiring the Analyzer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Wiring the Line Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Wiring the Control Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Factory Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Reference Air and Calibration Gas Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Chapter 3: Operation and Programming
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Preventing Common Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Powering Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Taking Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Data Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Menu Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Programming Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Programming with Manual Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Description of Switches and LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Manual Programming Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Programming from a Computer Terminal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
RS232 Serial Port Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
The OPTS Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
Trim Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
Extra Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Chapter 4: Calibration
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Recommended Calibration Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Measuring the Calibration Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
The Calibration Gas System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Calibrating the Oxygen Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Calibrating with the Manual Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Calibrating with a PC Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Resume Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
v
March 2006
Table of Contents (cont.)
Chapter 5: Troubleshooting
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Troubleshooting Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Sensor/Heater Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Temperature Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
ER2 Error Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
ER3 Error Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
ER4 Error Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Output Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
All Outputs Inactive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
No RS232 Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Oxygen Reading Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
ER1 Error Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Oxygen Percentage Always Reads 20.93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Oxygen Percentage Unchanged for more than 15 Minutes . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Oxygen Reading Lower Than Expected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Oxygen Reading Higher Than Expected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Chapter 6: Service and Maintenance
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Probe Tip Replacement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Cover Removal and Reinstallation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Fuse Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Sensor/Heater Sub-Assembly Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Removing the Sensor/Heater Sub-Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Installing the Sensor/Heater Sub-Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
Printed Circuit Board Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
Removing the Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
Installing the Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
EPROM Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
Spare Parts List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
Chapter 7: Specifications
Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Physical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Appendix A: The Nernst Equation
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
Equilibrium Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
The FGA 311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
vi
March 2006
Table of Contents (cont.)
Appendix B: FGA 311 Drawings
Appendix C: CE Mark Compliance
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
EMC Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
LVD Directive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
Appendix D: Data Records
General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-1
User Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1
Test and Calibration Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-2
Service Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-3
vii

Chapter 1

General Information

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Principles of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
The Oxygen Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
The Heater Control Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
March 2006

Introduction The FGA 311 In Situ Flue Gas Oxygen Transmitter monitors the

combustion efficiency of a boiler or furnace by measuring the percentage of oxygen in the flue gases. This self-contained instrument is installed so that its zirconium oxide oxygen sensor is located directly in the stream of the flue gases. The measurements may be recorded via the built-in 4-20 mA output or transmitted to a computer terminal via the built-in RS232 interface.
The FGA 311 is available with either the standard weatherproof enclosure or the optional explosion-proof enclosure, as shown in Figure 1-1 on page 1-2. However, the operation and the internal components are the same for both configurations.
The FGA 311 consists of the following sub-assemblies:
An aluminum enclosure, which includes a breather port, the unit’s
mounting threads, a calibration gas connection and a reference air connection. In addition, the enclosure houses the printed circuit board and provides two ports for electrical conduit or cable glands.
All of the electrical components, including the replaceable fuse,
are mounted on the printed circuit board (PCB). All electrical connections for the line power, 4-20 mA recorder output and RS232 interface are made to the PCB.
A probe assembly that extends into the flue gas stream.
A heater sub-assembly that maintains the oxygen sensor at the
proper operating temperature for efficient operation.
A zirconium oxide oxygen sensor to measure the percentage of
oxygen in the flue gases.
A filter assembly that protects the oxygen sensor from particulates
in the flue gas stream.
The FGA 311 has been designed to permit troubleshooting, maintenance and adjustment of the instrument without removing the unit from the flue.
General Information 1-1
March 2006
Standard
(Weatherproof)
Explosion-Proof
(Flameproof)
Side Views
Flame Arrestor
R
I
S
R
O
V
U
S
T
T
E
N
S
I
O
N
N
D
E
S
I
G
R
E
N
E
U
O
S
A
P
E
N
D
O
N
O
T
O
P
E
N
E
L
W
I
H
End Views
N
O
D
N
E
P
H
I
W
L
E
N
E
P
O
T
O
A
S
O
U
E
N
E
R
G
I
S
E
D
N
O
I
S
N
E
T
S
U
V
O
R
S
I
R
Flame Arrestors
Figure 1-1: The FGA 311 Enclosures
1-2 General Information
March 2006

Principles of Operation In an ideal combustion process, a precise ratio of air to fuel is burned

efficiently to yield only heat, water vapor, and carbon dioxide. However, because of burner aging, imperfect air to fuel mixtures, variable firing rates and/or inaccurate ignition timing, this situation rarely happens.
A sure sign of a less than ideal combustion process is the presence of excess oxygen in the flue gases. The level of this excess oxygen is easily monitored with the FGA 311 In Situ Flue Gas Oxygen Transmitter, and the information can then be used to make the necessary adjustments to improve the efficiency of the combustion process. The following two major components are included in the FGA 311 analyzer:
a zirconium oxide oxygen sensor
a loop-controlled heater circuit
These components are described in the sections that follow.

The Oxygen Sensor The inside and outside of the zirconium oxide oxygen sensor are

coated with a porous platinum catalyst, forming two electrodes. Flue gases flow past the outside of the sensor, while atmospheric air circulates freely on the inside of the sensor. The atmospheric air is used as the reference gas for the oxygen measurements. See the oxygen sensor sub-assembly shown in Figure 1-2 below.
At the normal operating temperature (650° to 1100°C) of the sensor, the oxygen molecules in the atmospheric reference air (20.93% oxygen) are electrochemically reduced at the inner electrode. The resulting oxygen ions seek an equilibrium with the lower oxygen concentration on the sample gas side of the sensor, by migrating through the porous ceramic toward the outer electrode.
Packing ScrewSleeveO-Ring
O-Ring Packing Oxygen Cell
Figure 1-2: The FGA 311 Oxygen Sensor
General Information 1-3
March 2006
The Oxygen Sensor (cont.)
At the outer electrode, the oxygen ions give up their extra electrons and revert to oxygen molecules, before being swept away by the flue gas stream. This exchange of electrons at the electrodes generates a voltage gradient across the sensor. See Figure 1-3 below.
The lower the concentration of oxygen in the flue gases, the greater the rate of ion migration through the ceramic and the higher the resulting voltage gradient across the sensor. In fact, the sensor’s voltage output rises logarithmically as the percentage of oxygen in the flue gases decreases. This enables the FGA 311 to accurately measure very small levels of oxygen in the flue gases.
Oxygen ions migrate through the Zirconium Oxide
from Inside to Outside
O
2
O
O
2
2
O
2
O
2
From Outside
Electrode
When O concentration in sample gas falls, cell voltage rises with increased O migration rate.
Volts
2
O
2
Zirconium Oxide Ceramic
with Lattice Imperfections
From Inside Electrode
2
Figure 1-3: Oxygen Migration Through the Sensor
1-4 General Information
March 2006

The Heater Control Circuit

The oxygen sensor temperature in the FGA 311 is maintained by a heater, which is part of a complex temperature control loop. This circuit constantly monitors the oxygen sensor temperature, compares it to the set point temperature (700°C), and turns the heater ON or OFF accordingly. The specific type of control circuit used is called a Proportional Integral Derivative (PID) loop, because of the three adjustable parameters involved:
Proportional Band: Because the system cannot respond
instantaneously to temperature changes, the actual temperature of the oxygen sensor oscillates about the set point. In general, increasing the proportional band reduces the magnitude of these temperature oscillations.
Integral Action: A consequence of increasing the proportional
band is the introduction of an offset between the set point and the control point. The integral portion of the control loop acts to move the control point back toward the set point within a specified period of time. Thus, decreasing this integration time reduces the offset more quickly.
Derivative Action: The derivative portion of the control loop
applies a corrective signal based on the rate at which the actual temperature is approaching the set point. In effect, the derivative action reduces overshoot by counteracting the control signal produced by the proportional and integral parameters.
The heater control circuit is configured at the factory for optimum performance. Because of the strong interaction between the three parameters involved, properly setting up the PID loop is a very complex matter. As a result, randomly changing the P, I and/or O parameters can seriously degrade the performance of the FGA 311.
IMPORTANT: Always contact the factory before attempting to
change the default P, I and/or O values.
General Information 1-5

Chapter 2

Installation

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Unpacking the Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Line Power Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Selecting the Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Mounting the Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Wiring the Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Reference Air and Calibration Gas Lines. . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
March 2006

Introduction This chapter gives directions for the proper installation and wiring of

the FGA 311. The following specific topics are included:

unpacking the unit

selecting the site
mounting the analyzer
wiring the analyzer
!WARNING!
To ensure safe operation of the FGA 311, it must be
installed and operated as described in this manual. In
addition, be sure to follow all applicable local safety codes
and regulations for installing electrical equipment.
Unpacking the Unit Remove the analyzer from its shipping container and make sure that
all items on the packing slip have been received. If anything is missing, contact the factory immediately. The analyzer, as shown in Figure 2-1 below, is shipped fully assembled and ready to install.
3/4" NPT
6"
Enclosure
6
6
5
5
4
4123
123
3/4" NPT
Caution!
When unpacking the analyzer, be careful not to damage
the probe. It is covered with a porous ceramic filter that
will easily crack if it is knocked against a hard surface.
PC Board
Calibration Gas Inlet
1-1/2" NPT
26-1/4"
Heater
19"
Probe
Sensor
Figure 2-1: The FGA 311 In Situ Flue Gas Analyzer
1-1/4"
Installation 2-1
March 2006

Line Power Requirements Each FGA 311 analyzer is factory-configured for the proper line

voltage, as specified at the time of purchase. The available options include the following:
Japan = 100 VAC
U.S.A. = 110/120 VAC
Europe = 220 VAC
Australia = 240 VAC.
Caution!
To change the line voltage to the unit, contact the factory
for instructions. DO NOT make such a change without first
obtaining proper instructions.

Selecting the Site Environmental and installation factors should already have been

discussed with a GE Sensing applications engineer or field sales person before the FGA 311 arrives.The analyzer must be installed either in a furnace or boiler wall or in a flue duct. Ideally, the end of the probe assembly should extend approximately 1 ft (30.5 cm) into the flue gas stream. Also, the analyzer should be positioned so that the probe holes are on the downstream side of the probe (see Figure 2-2 on page 2-4).
For furnaces, locate the analyzer close to the combustion zone,
typically within the radiant section and always before the convection section. Make sure that the probe’s maximum operating temperature is not exceeded and that the probe is not situated in a non-homogeneous flue gas mixture.
IMPORTANT: If the ambient temperature in the vicinity of the probe
can exceed 650°C (1202°F), a high temperature probe assembly is required.
For boilers, locate the analyzer downstream of the heat exchanger
and just before the economizer air heater, if one is installed. The analyzer should not be placed downstream of any air heater, because of possible air leaks that can cause inaccurate readings.
In general, the sample point should be an area of high turbulence, which will ensure a good homogeneous mixture of the flue gases. Conditions to be avoided would include air leaks upstream of the sample point and dead spaces in the vicinity of the sample point.
2-2 Installation
March 2006

Mounting the Analyzer The FGA 311 has integral male 1-1/2” NPT mounting threads. This

permits a flange to be threaded onto the analyzer, and the resulting assembly is then bolted to a mating flange on the furnace/boiler wall or flue duct.
Note: For installations where the FGA 311 may be exposed to water
or other fluids, install the unit with the breather (see Figure 2-2 on page 2-4) facing downward.
Do not use any thread sealant during the installation. Upon heating, Teflon tape will melt and other sealants may emit gases that interfere with the oxygen readings.
Carefully follow the instructions on page 2-5 to mount the FGA 311 In Situ Flue Gas Oxygen Transmitter. The unit may be mounted in either a horizontal or vertical orientation.
IMPORTANT: Direct mounting of the FGA 311 into a threaded hole
using its mounting threads is not recommended. Always use a mounting flange.
To prepare the installation site for mounting the analyzer, complete the following preliminary steps:
1. Fasten a short section of pipe having at least a 2” inside diameter
into the process wall.
IMPORTANT: Make sure that the pipe is long enough to permit
installation of the flange mounting hardware and that the flange is oriented with its bolt holes straddling the vertical and horizontal center lines.
2. Weld a mating flange onto the end of the pipe, as shown in
Figure 2-2 on page 2-4.
Note: Standard available factory options include 3”-300 lb ANSI,
4”-150 lb ANSI and DN80 PN16 mounting flanges. A separate mating flange can also be supplied with the unit.
Installation 2-3
March 2006
GAS
FLOW
Input Scoop
GAS
Holes
Holes
FLOW
Standard Probe
Mounting Wall
Cable Gland
Calibration
1m, 1.5m & 2m Probes
90°
2" Min.
Hardware
Flanges
Gas Line
Gasket
FG311
Cable Gland
Control Cable
Power Cable
Reference
Air Line
Breather
Figure 2-2: Flange Mounting the FGA 311
2-4 Installation
March 2006
Mounting the Analyzer (cont.)
Before mounting the FGA 311 analyzer assembly onto the mating flange, mark the enclosure in line with the probe holes. Then, complete the following steps:
IMPORTANT: The probe holes must be positioned on the
downstream side of the probe. See Figure 2-2 on page 2-4 for the proper orientation.
1. Slide the gasket over the probe assembly and up against the
mounting flange on the analyzer.
Note: Be sure to use a suitable high temperature gasket for this
application.
2. Orient the analyzer so the probe holes are properly positioned on
the downstream side of the probe, and slide the probe through the hole in the mounting wall until the two flanges meet.
3. Secure the analyzer in place by fitting bolts into the matching
flange mounting holes and fastening the bolts with nuts and washers. Make sure that the gasket is properly positioned between the two flanges.
This completes the mounting of the FGA 311. The required external connections are discussed in the following sections.
Installation 2-5
March 2006

Wiring the Analyzer Connect the power and control signal wiring as described below and

as shown in Figure 2-3 on page 2-7, which shows the printed circuit board mounted within the open FGA 311 enclosure. The necessary connectors are supplied with the unit, and they are plugged into the mating connectors on the printed circuit board prior to shipment. DO NOT power up the unit until instructed to do so!
ATTENTION EUROPEAN CUSTOMERS!
In order to meet CE Mark requirements, all electrical cables
must be installed as described in Appendix C, CE Mark
Compliance.
Wiring the Line Power Use one of the 3/4” NPT connections on the enclosure for installation
of the power cable gland or conduit. The FGA 311 has been preset at the factory for the line voltage specified at the time of purchase. Never connect a different line voltage to the unit without first obtaining instructions from the factory.
!WARNING!
Improper connection of the power line or connection to the
wrong voltage may result in an electrical hazard.
Note: For compliance with the European Union’s Low Voltage
Directive (73/23/EEC), this unit requires an external power disconnect device such as a switch or circuit breaker. The disconnect device must be marked as such, clearly visible, directly accessible, and located within 1.8 m (6 ft) of the FGA 311.
The FGA 311 is designed to comply with the LVD Directive per the requirements of EN 61010 with the following exception: The 230 VAC unit passes with a test voltage of 1,800 VAC. (Refer to Table D.10 of Annex D in EN 61010.)
Connect the line power to terminal block TB1, as shown in Figure 2-3 on page 2-7, by completing the following steps:
1. Connect the
2. Connect the
LINE (black) lead to pin #1 on TB1.
NEUTRAL (white) lead to pin #2 on TB1.
3. Connect the
GROUND (green) lead to the earth ground screw inside
the enclosure.
Proceed to the next section to wire the control signals.
2-6 Installation
March 2006
Heater Connections
J3 Terminal Block
Pin
1 2 3
Description
Heater No Connection Heater
NOTE: These connections are made
at the factory.
U15
+
C1
1
E4
TB2
MODE
CAL
S3
ADJ
S1
S2
TB1 Power*
Terminal Block
Description
Pin
1
Line
Neutral
2
Power Voltage Options
Factory Installed
Power Jumpers Fuse
115V W1,W3,W4,W5 1/2A
W2,W6230V 1/4A
*Ground wire goes to
earth gnd connection.
6
7
8
2
3
C1
+
C2
U5
1
3
9
2
1
R
U
V
0 1 E
4 3 R
1
FAULT
10E85
2
1
S
S
D
D
W4
W6 W5
E6
J2
4
E11 E12
S D
E9
25
3 S D
J1
W2
1
703-1216
T1
TB1
E3
1
W3
J3
C16
F1
3
L1
4
C15
U18
5 S D
E7
E2
E1
E5
3
1
5
4
W1
RT1
C14
1
2
Fuse
RS232 Analog Output
TB2 Terminal Block
Pin Description
1Return 2 Receive 3Send 4 4-20 mA Out– 5 4-20 mA Out+
RS232
Thermocouple and Sensor
J2 Terminal Block
Pin
1
Thermocouple +
2
Thermocouple –
3
Zirconium Oxide Oxygen Sensor + Zirconium Oxide Oxygen Sensor –
4
Description
Future Use (CJC+)5
NOTES:
1. PC Board may be oriented differently, depending on how the unit is installed.
Future Use (CJC–)6
NOTE: These connections are made
at the factory.
2. J1 is reserved for future use.
(Shown with sensor/heater assembly and cable removed for clarity.)
Figure 2-3: Connections to the FGA 311 PC Board
Installation 2-7
March 2006
Wiring the Control Signals Use the remaining 3/4” NPT port on the FGA 311 enclosure for
connecting the control cable gland or conduit. For cable runs of less than 5 m (16.4 ft), standard twisted pair cable may used for these connections. However, shielded cable should be used for longer cable lengths and/or for CE Mark compliance.
IMPORTANT: This symbol indicates Caution - risk of electric
shock:
The control signal connections are made to the printed circuit board on terminal block TB2, as shown in Figure 2-3 on page 2-7. To make the necessary connections, complete the following steps:
1. Connect the RS232 serial port leads to TB2 as follows:
Note: The serial port connection should be made with a GE Sensing
#704-668 cable assembly or its equivalent. To assemble an equivalent cable, refer to Figure B-6 in Appendix B of this manual.
a. Connect the
Ground lead (the green wire from pin #5 of the
DB9 connector on the PC) to pin #1.
b. Connect the
Receive lead (the red wire from pin #2 of the DB9
connector on the PC) to pin #2.
c. Connect the
Transmit lead (the white wire from pin #3 of the
DB9 connector on the PC) to pin #3.
2. Connect the 4-20 mA analog output leads to TB2 as follows:
a. Connect the 4-20 mA b. Connect the 4-20 mA
Return (-) lead to pin #4.
Signal (+) lead to pin #5.
Proceed to the next section for a description of the internal, factory­installed wiring.
2-8 Installation
March 2006
Factory Connections In addition to the user connections described above, the following
connections are made at the factory to terminal blocks J2 and J3.
Thermocouple connections to J2 on pins #1 (+) and #2 (-).
Oxygen sensor connections to J2 on pins #3 (+) and #4 (-).
Heater connections to J3 on pins #1 and #3.
For reference purposes only, these factory connections are shown in Figure 2-3 on page 2-7.

Reference Air and Calibration Gas Lines

During normal operation, the FGA 311 requires a constant supply of a reference air for the zirconium oxide oxygen sensor. The recommended gas for this purpose is instrument air (containing
20.93% oxygen) at a flow rate of 20-50 cc/min. Connect this gas supply, with 1/4” tubing, to the 1/4” compression fitting provided. Refer to Figure 2-4 on page 2-10 for the location of this connector.
Also, a separate gas supply is required for calibration of the instrument. This line should be connected, with 1/4” tubing, to the remaining 1/4” compression fitting on the FGA 311. See Figure 2-4 on page 2-10 for the location of this connector.
Note: The calibration gas port must remain capped, if no permanent
plumbing is attached. See Chapter 4, Calibration, for a discussion of the recommended calibration gases and procedures.
In addition to the basic reference air and calibration gas lines, a variety of ancillary equipment is recommended. A typical system that will ensure efficient and reliable operation of the FGA 311 is illustrated in Figure 2-4 on page 2-10.
Installation 2-9
March 2006
Valve
Flowmeter
Calibration Gas Inlet
Gauge
Tee
Valve
Valve
Calibration Gas Supply
Reference Air Inlet
Flowmeter
Gauge
Valve
Tee
Reference Air Supply
Figure 2-4: A Typical FGA 311 System
2-10 Installation

Chapter 3

Operation and Programming

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Preventing Common Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Powering Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Taking Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Data Records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Menu Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Programming Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Programming with Manual Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Programming from a Computer Terminal . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
March 2006

Introduction Since the FGA 311 In Situ Flue Gas Oxygen Transmitter is a

monitoring device, operation of the installed analyzer is simple. Once it has been properly installed and set up, it will simply begin taking readings. However, the analyzer should be allowed to warm up for at least one hour (three hours if possible) prior to use. See Chapter 2, Installation, if all of the required installation requirements have not yet been completed.
Calibration of the unit should be checked once or twice a week for the first month of operation and once every 2-3 months thereafter. See Chapter 4, Calibration, for the correct procedures.
!WARNING!
To ensure safe operation of the FGA 311, it must be
installed and operated as described in this manual. In
addition, be sure to follow all applicable local safety codes
and regulations for installing electrical equipment

Preventing Common Problems

Because of the extreme conditions in monitoring flue gases and the complexity of the FGA 311’s measurement techniques, some simple precautions should be taken with the instrument. Failure to observe these basic procedures can lead to operational difficulties. Compliance with the following instructions will help to eliminate such common problems:
Do not use pipe thread compounds on any part of the FGA 311.
Many pipe thread compounds emit combustible vapors that may cause inaccurate readings.
Do not handle the sensor assembly any more than is absolutely
necessary. Although some scratches on the platinum electrode can be tolerated, rubbing the coating should be avoided. Also, the transfer of skin oils to the electrode can cause erroneous readings.
Scrubbing the sensor while washing it or washing a hot sensor can
damage or destroy it. Clean the sensor only by rinsing it with clean water, after the sensor has cooled.
Installing a cold probe assembly into a hot flue gas stream can
cause damage to the filter and/or sensor. Always allow the probe assembly to gradually heat up to normal operating temperature, before subjecting it to hot flue gases.
If any problems not covered in this manual are encountered, contact a GE Sensing representative for assistance.
Operation and Programming 3-1
March 2006

Powering Up Before powering up the unit, start the flow of reference air. Be sure

that the reference air source is connected to the correct port, as shown in Figure 2-4 on page 2-9. As stated in Chapter 2, Installation, the recommended reference air is instrument air (20.93% oxygen) at a flow rate of 20-50 cc/min.
Note: The zirconium oxide oxygen sensor can not provide accurate
readings without a known oxygen percentage on the reference side of the cell. Allow the reference air to flow for at least five minutes prior to operation.
Power may now be applied to the unit. Since the FGA 311 does not have its own power switch, the main disconnect must be used to power the analyzer on. Simply place this switch in the ON position, and allow the analyzer to warm up for at least one hour (three hours if possible) before taking any readings.
Note: For compliance with the European Union’s Low Voltage
Directive (73/23/EEC), this unit requires an external power disconnect device such as a switch or circuit breaker. The disconnect device must be marked as such, clearly visible, directly accessible, and located within 1.8 m (6 ft) of the FGA 311.
The FGA 311 is designed to comply with the LVD Directive per the requirements of EN 61010 with the following exception: The 230 VAC unit passes with a test voltage of 1,800 VAC. (Refer to Table D.10 of Annex D in EN 61010.)
The red fault light (DS4) and one of the green oxygen range indicators (DS1, DS2 or DS3) on the printed circuit board will blink until the FGA 311 has reached its normal operating temperature of 700°C. Then, the fault light will go out and the range indicator will glow steadily.
3-2 Operation and Programming
March 2006

Taking Measurements After the FGA 311 has warmed up, the voltage output of the

zirconium oxide oxygen sensor will vary logarithmically with the oxygen concentration in the flue gases, according to the Nernst equation (see Appendix A, The Nernst Equation, for details):
20.93
EmV()48.274
In Equation 3-1 above, “E” is the voltage in millivolts generated by the sensor at an operating temperature of 700°C.
The built-in thermocouple temperature sensor in the FGA 311 automatically adjusts the constant used in the Nernst equation to reflect the precise actual temperature of the oxygen sensor. In addition, the non-linear output voltage signal generated by the oxygen sensor is internally converted into a linear 4-20 mA output current signal, which is sent to pins 4 and 5 of terminal block TB2. The 4-20 mA current range corresponds to a flue gas oxygen range of 0% to the programmed O
ammeter or a recording device to these terminals, the oxygen content of the flue gases may be continuously monitored.
range (5, 10 or 25%). By connecting a digital
2
-------------
log=
%O
2
(3-1)

Data Records Appendix D, Data Records, at the back of this manual provides

several tables for entering all of the relevant data pertaining to the installation and programming of the FGA 311. Be sure to maintain the accuracy of this data on a regular basis. In the event of problems with the unit, the data records may provide valuable information to assist in the troubleshooting procedure.

Menu Map A complete menu map of the FGA 311’s built-in software is shown in

Figure 3-3 on page 3-22. Refer to this figure as needed to supplement the step-by-step programming instructions that follow.

Programming Options The following two methods for programming the FGA 311 In Situ

Flue Gas Oxygen Transmitter may be used to navigate through the User Program:
manual switches, which are located inside the enclosure, on the
analyzer’s printed circuit board
a terminal or computer, utilizing the unit’s built-in RS232 serial
interface
Note: The entire
programming switches.
EXTRA menu is not accessible via the manual
Operation and Programming 3-3
March 2006

Programming with Manual Switches

CAL S3
MODE
9
8
7
6
5
4
Manual programming of the FGA 311 is accomplished with a series of switches and LEDs located on the printed circuit board. These components, which are shown in Figure 3-1 below, may be accessed by removing the cover from the FGA 311.
Although the menu map shown in Figure 3-3 on page 3-22 does apply to both the manual programming mode and the RS232 programming mode, some of the programming options are not available via the manual switches. Specifically, the entire EXTRA menu can not accessed via the PC board switches.
6
78
W2
W1
T1
TB1
E3
1
W3
C14
J3
C16
F1
3
L1
4
C15
U18
E7
E2
E1
E5
3
1
5
RT1
1
2
DS5
0
1
2
3
TB2
S1
5 10
E8
1
FAULT
4 S D
25
E9
2
3
1
C
U15
+
C2
1
U5
+
C1
1
CAL
S3
TB2
MODE
ADJ
9
2
1
R
U
V
E4
0 1 E
4 3 R
1
S1
FAULT
10E85
25
3
2
1
S
S
S
D
D
D
S2
34
W4
W6 W5
E6
J2
4
E11 E12
S D
E9
1
J1
703-1216
5 S D
1
2
3
S
S
S
D
D
S2
D
ADJ
Figure 3-1: Circuit Board Switches and LEDs
3-4 Operation and Programming
Loading...
+ 82 hidden pages