Fairchild Semiconductor MM74HCU04MX, MM74HCU04N, MM74HCU04SJ, MM74HCU04SJX, MM74HCU04CW Datasheet

...
September 1983 Revised February 1999
MM74HCU04 Hex Inverter
© 1999 Fairchild Semiconductor Corporation DS005296.prf www.fairchildsemi.com
MM74HCU04 Hex Inverter
General Description
The MM74HCU04 inverters utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low p ower con sumpti on of standa rd CMOS integrated circuits.
The MM74HCU04 is an unbuffered inverter. It has high noise immunity and the ability to drive 15 LS-TTL loads. The 74HCU logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs
are protected from damage due to static discharge by inter­nal diode clamps to V
CC
and ground.
Features
Typical propagation delay: 7 ns
Fanout of 15 LS-TTL loads
Quiescent power consumption: 10 µA maximum at room
temperat ure
Low input current: 1 µA maximum
Ordering Code:
Devices also availab le in Tape and Reel. Specify by appending th e s uffix let t er “X” to the ordering cod e.
Connection Diagram
Pin Assignments f or DIP, SOIC, SOP and TSSOP
Top View
Schematic Diagram
Order Number Package Number Package Description
MM74HCU04M M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150” Narrow MM74HCU04SJ M14D 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide MM74HCU04MTC MTC14 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide MM74HCU04N N14A 14-Lead Plastic Dual-In-Lead Package (PDIP), JEDEC MS-001, 0.300” Wide
www.fairchildsemi.com 2
MM74HCU04
Absolute Maximum Ratings(Note 1)
(Note 2)
Recommended Operating Conditions
Note 1: Absolute Maximum Ratings are those values beyond which dam-
age to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temper ature dera ting — plas tic “N” packa ge:
12 mW/°C from 65 °C to 85°C.
DC Electrical Characteristics (Note 4)
Note 4: For a power supply of 5V ±1 0% the worst c ase ou tput volta ges (VOH, and VOL) occur for HC at 4.5V. Thus the 4. 5V valu es shoul d be use d when
designing with this supply. Worst case V
IH
and VIL occur at V
CC
= 5.5V and 4.5V res pectively. (The VIH value at 5.5V is 3.85V.) The worst case leakage c ur-
rent (I
IN
, ICC, and IOZ) occur for CMOS at the higher voltage and so th e 6. 0V values should be used.
Supply Voltage (VCC) 0.5 to +7.0V DC Input Voltage (V
IN
) 1.5 to V
CC
+1.5V
DC Output Voltage (V
OUT
) 0.5 to V
CC
+0.5V
Clamp Diode Current (I
IK
, IOK) ±20 mA
DC Output Current, per pin (I
OUT
) ±25 mA
DC V
CC
or GND Current, per pin (ICC) ±50 mA
Storage Temperature Range (T
STG
) 65°C to +150°C
Power Dissipation (P
D
) (Note 3) 600 mW S.O. Package only 500 mW
Lead Temperature (T
L
) (Soldering 10 seconds) 260°C
Min Max Units
Supply Voltage (V
CC
)26V
DC Input or Output Voltage 0 V
CC
V
(V
IN
, V
OUT
)
Operating Temperature Range (T
A
) 40 +85 °C
Symbol Parameter Conditions
V
CC
TA = 25°CTA = −40 to 85°CTA = −55 to 125°C
Units
Typ Guaranteed Limits
V
IH
Minimum HIGH Level 2.0V 1.7 1.7 1.7 V Input Voltage 4.5V 3.6 3.6 3.6 V
6.0V 4.8 4.8 4.8 V
V
IL
Maximum LOW Level 2.0V 0.3 0.3 0.3 V Input Voltage 4.5V 0.8 0.8 0.8 V
6.0V 1.1 1.1 1.1 V
V
OH
Minimum HIGH Level V
IN
= V
IL
Output Voltage |I
OUT
| 20 µA 2.0V 2.0 1.8 1.8 1.8 V
4.5V 4.5 4.0 4.0 4.0 V
6.0V 6.0 5.5 5.5 5.5 V
V
IN
= GND
|I
OUT
| 4.0 mA 4.5V 4.2 3.98 3.84 3.7 V
|I
OUT
| 5.2 mA 6.0V 5.7 5.48 5.34 5.2 V
V
OL
Maximum LOW Level V
IN
= V
IH
Output Voltage |I
OUT
| 20 µA 2.0V 0 0.2 0 .2 0.2 V
4.5V 0 0.5 0.5 0.5 V
6.0V 0 0.5 0.5 0.5 V
V
IN
= V
CC
|I
OUT
| 6.0 mA 4.5V 0.2 0.26 0.33 0.4 V
|I
OUT
| 7.8 mA 6.0V 0.2 0.26 0.33 0.4 V
I
IN
Maximum Input V
IN
= VCC or GND 6.0V ±0.1 ±1.0 ±1.0 µA
Current
I
CC
Maximum Quiescent V
IN
= VCC or GND 6.0V 2.0 20 40 µA
Supply Current I
OUT
= 0 µA
Loading...
+ 4 hidden pages