Direct current and alternating currentGround connection
Protective ground connection
A terminal which must be connected
to ground prior to establishing any
other connections.
Symbols for certain types of information
Proline Promass O 100
A grounded terminal which, as far as
the operator is concerned, is
grounded via a grounding system.
Equipotential connection
A connection that has to be connected
to the plant grounding system: This
may be a potential equalization line
or a star grounding system depending
on national or company codes of
practice.
SymbolMeaning
Permitted
Procedures, processes or actions that are permitted.
Preferred
Procedures, processes or actions that are preferred.
Forbidden
Procedures, processes or actions that are forbidden.
Tip
Indicates additional information.
Reference to documentation
Reference to page
Reference to graphic
Visual inspection
Symbols in graphics
SymbolMeaningSymbolMeaning
1, 2, 3,...Item numbers
A, B, C, ...ViewsA-A, B-B, C-C, ... Sections
Hazardous area
Series of steps
Safe area (non-hazardous area)
Flow direction
4Endress+Hauser
Proline Promass O 100
123
Function and system design
Measuring principle
The measuring principle is based on the controlled generation of Coriolis forces. These forces are
always present in a system when both translational and rotational movements are superimposed.
Fc = 2 · ∆m (ν · ω)
Fc = Coriolis force
∆m = moving mass
ω = rotational velocity
ν = radial velocity in rotating or oscillating system
The amplitude of the Coriolis force depends on the moving mass ∆m, its velocity ν in the system and
thus on the mass flow. Instead of a constant rotational velocity ω, the sensor uses oscillation.
In the sensor, two parallel measuring tubes containing flowing fluid oscillate in antiphase, acting like
a tuning fork. The Coriolis forces produced at the measuring tubes cause a phase shift in the tube
oscillations (see illustration):
• At zero flow (when the fluid is at a standstill) the two tubes oscillate in phase (1).
• Mass flow causes deceleration of the oscillation at the inlet of the tubes (2) and acceleration at the
outlet (3).
Measuring system
A0016771
The phase difference (A-B) increases with increasing mass flow. Electrodynamic sensors register the
tube oscillations at the inlet and outlet. System balance is ensured by the antiphase oscillation of the
two measuring tubes. The measuring principle operates independently of temperature, pressure,
viscosity, conductivity and flow profile.
Density measurement
The measuring tube is continuously excited at its resonance frequency. A change in the mass and
thus the density of the oscillating system (comprising measuring tube and fluid) results in a
corresponding, automatic adjustment in the oscillation frequency. Resonance frequency is thus a
function of medium density. The microprocessor utilizes this relationship to obtain a density signal.
Volume measurement
Together with the measured mass flow, this is used to calculate the volume flow.
Temperature measurement
The temperature of the measuring tube is determined in order to calculate the compensation factor
due to temperature effects. This signal corresponds to the process temperature and is also available
as an output signal.
The device consists of a transmitter and a sensor. If a device with Modbus RS485 intrinsically safe is
ordered, the Safety Barrier Promass 100 is part of the scope of supply and must be implemented to
operate the device.
The device is available as a compact version:
The transmitter and sensor form a mechanical unit.
• Additionally for device version with local display:
Via Web browser (e.g. Microsoft Internet Explorer)
• Also for device version with 4-20 mA HART, pulse/frequency/switch
output:
Via Web browser (e.g. Microsoft Internet Explorer)
• Also for device version with EtherNet/IP output:
– Via Web browser (e.g. Microsoft Internet Explorer)
– Via Add-on Profile Level 3 for automation system from Rockwell
Automation
– Via Electronic Data Sheet (EDS)
• Also for device version with PROFINET output:
– Via Web browser (e.g. Microsoft Internet Explorer)
– Via device master file (GSD)
Proline Promass O 100
Sensor
Promass O
Safety Barrier Promass 100
• For use at high pressures
• Simultaneous measurement of flow, volume flow, density and
temperature (multivariable)
– Process connections: 25Cr Duplex (Super Duplex) 1.4410 (F53)
• Dual-channel safety barrier for installation in non-hazardous locations
or zone 2/div. 2:
– Channel 1: DC 24 V power supply
– Channel 2: Modbus RS485
• In addition to current, voltage and power limitation, it offers galvanic
isolation of circuits for explosion protection.
• Easy top-hat rail mounting (DIN 35 mm) for installation in control
A0016763
cabinets
6Endress+Hauser
Proline Promass O 100
23
7
8
6
9
10
11
4
1
5
Equipment architecture
A0016779
1Possibilities for integrating measuring devices into a system
1Automation system (e.g. PLC)
2EtherNet/IP
3PROFIBUS DP
4Modbus RS485
54-20 mA HART, pulse/frequency/switch output
6Safety Barrier Promass 100
7Modbus RS485 intrinsically safe
8Non-hazardous area
9Non-hazardous area and Zone 2/Div. 2
10 Intrinsically safe area and Zone 1/Div. 1
SafetyIT security
We only provide a warranty if the device is installed and used as described in the Operating
Instructions. The device is equipped with security mechanisms to protect it against any inadvertent
changes to the device settings.
IT security measures in line with operators' security standards and designed to provide additional
protection for the device and device data transfer must be implemented by the operators themselves.
Endress+Hauser7
Input
Measured variableDirect measured variables
• Mass flow
• Density
• Temperature
Calculated measured variables
• Volume flow
• Corrected volume flow
• Reference density
Measuring rangeMeasuring ranges for liquids
Proline Promass O 100
DNMeasuring range full scale values
[mm][in][kg/h][lb/min]
8030 to 1800000 to 6615
10040 to 3500000 to 12860
15060 to 8000000 to 29400
min(F)
to
max(F)
Measuring ranges for gases
The full scale values depend on the density of the gas and can be calculated with the formula below:
max(G)
ρ
G
max(G)
max(F)
max(G)
=
<
· ρG : x
max(F)
Maximum full scale value for gas [kg/h]
Maximum full scale value for liquid [kg/h]
max(F)
[mm][in][kg/m3]
803110
1004130
1506200
can never be greater than
max(G)
Gas density in [kg/m³] at operating conditions
DNx
max(F)
To calculate the measuring range, use the Applicator sizing tool → 75
Calculation example for gas
• Sensor: Promass O, DN 80
• Gas: Air with a density of 60.3 kg/m³ (at 20 °C and 50 bar)
• Measuring range (liquid): 180000 kg/h
• x = 130 kg/m³ (for Promass O, DN 80)
Maximum possible full scale value:
Flow rates above the preset full scale value are not overridden by the electronics unit, with the result
that the totalizer values are registered correctly.
8Endress+Hauser
Proline Promass O 100
Input signalExternal measured values
To increase the accuracy of certain measured variables or to calculate the corrected volume flow for
gases, the automation system can continuously write different measured values to the measuring
device:
• Operating pressure to increase accuracy (Endress+Hauser recommends the use of a pressure
measuring device for absolute pressure, e.g. Cerabar M or Cerabar S)
• Medium temperature to increase accuracy (e.g. iTEMP)
• Reference density for calculating the corrected volume flow for gases
Various pressure transmitters and temperature measuring devices can be ordered from Endress
+Hauser: see "Accessories" section → 76
It is recommended to read in external measured values to calculate the following measured variables:
• Mass flow
• Corrected volume flow
HART protocol
The measured values are written from the automation system to the measuring device via the HART
protocol. The pressure transmitter must support the following protocol-specific functions:
• HART protocol
• Burst mode
Digital communication
The measured values can be written from the automation system to the measuring via:
• PROFIBUS DP
• Modbus RS485
• EtherNet/IP
• PROFINET
Output
Output signalCurrent output
Current output4-20 mA HART (active)
Maximum output values• DC 24 V (no flow)
Load0 to 700 Ω
Resolution0.38 µA
DampingAdjustable: 0.07 to 999 s
Assignable measured
variables
Pulse/frequency/switch output
FunctionCan be set to pulse, frequency or switch output
VersionPassive, open collector
Maximum input values• DC 30 V
Voltage dropFor 25 mA: ≤ DC 2 V
Pulse output
• 22.5 mA
• Mass flow
• Volume flow
• Corrected volume flow
• Density
• Reference density
• Temperature
The range of options increases if the measuring device has one or more
application packages.
• 25 mA
Endress+Hauser9
Pulse widthAdjustable: 0.05 to 2000 ms
Maximum pulse rate10000 Impulse/s
Pulse valueAdjustable
Assignable measured
variables
Frequency output
Output frequencyAdjustable: 0 to 10000 Hz
DampingAdjustable: 0 to 999 s
Pulse/pause ratio1:1
Assignable measured
variables
Switch output
Switching behaviorBinary, conductive or non-conductive
Switching delayAdjustable: 0 to 100 s
Number of switching
cycles
Assignable functions• Off
• Mass flow
• Volume flow
• Corrected volume flow
• Mass flow
• Volume flow
• Corrected volume flow
• Density
• Reference density
• Temperature
The range of options increases if the measuring device has one or more
application packages.
Unlimited
• On
• Diagnostic behavior
• Limit value
– Mass flow
– Volume flow
– Corrected volume flow
– Density
– Reference density
– Temperature
– Totalizer 1-3
• Flow direction monitoring
• Status
– Partially filled pipe detection
– Low flow cut off
The range of options increases if the measuring device has one or more
application packages.
Proline Promass O 100
PROFIBUS DP
Signal encodingNRZ code
Data transfer9.6 kBaud…12 MBaud
Modbus RS485
Physical interfaceIn accordance with EIA/TIA-485-A standard
Terminating resistor• For device version used in non-hazardous areas or Zone 2/Div. 2: integrated
and can be activated via DIP switches on the transmitter electronics module
• For device version used in intrinsically safe areas: integrated and can be
activated via DIP switches on the Safety Barrier Promass 100
10Endress+Hauser
Proline Promass O 100
EtherNet/IP
StandardsIn accordance with IEEE 802.3
PROFINET
StandardsIn accordance with IEEE 802.3
Signal on alarm
Depending on the interface, failure information is displayed as follows:
Current output
4-20 mA
Failure modeChoose from:
• 4 to 20 mA in accordance with NAMUR recommendation NE 43
• 4 to 20 mA in accordance with US
• Min. value: 3.59 mA
• Max. value: 22.5 mA
• Freely definable value between: 3.59 to 22.5 mA
• Actual value
• Last valid value
HART
Device diagnosticsDevice condition can be read out via HART Command 48
Pulse/frequency/switch output
Pulse output
Failure modeChoose from:
• Actual value
• No pulses
Frequency output
Failure modeChoose from:
• Actual value
• 0 Hz
• Defined value: 0 to 12500 Hz
Switch output
Failure modeChoose from:
• Current status
• Open
• Closed
PROFIBUS DP
Status and alarm
messages
Diagnostics in accordance with PROFIBUS PA Profile 3.02
Modbus RS485
Failure modeChoose from:
• NaN value instead of current value
• Last valid value
Endress+Hauser11
Proline Promass O 100
EtherNet/IP
Device diagnosticsDevice condition can be read out in Input Assembly
PROFINET
Device diagnosticsIn accordance with "Application Layer protocol for decentral device periphery and
distributed automation", version 2.3
Local display
Plain text displayWith information on cause and remedial measures
BacklightRed backlighting indicates a device error.
Status signal as per NAMUR recommendation NE 107
Operating tool
• Via digital communication:
– HART protocol
– PROFIBUS DP
– Modbus RS485
– EtherNet/IP
– PROFINET
• Via service interface
• Via Web server
Ex connection data
Plain text displayWith information on cause and remedial measures
Additional information on remote operation → 66
Web browser
Plain text displayWith information on cause and remedial measures
Light emitting diodes (LED)
Status informationStatus indicated by various light emitting diodes
The following information is displayed depending on the device version:
• Supply voltage active
• Data transmission active
• Device alarm/error has occurred
• EtherNet/IP network available
• EtherNet/IP connection established
• PROFINET network available
• PROFINET connection established
• PROFINET blinking feature
These values only apply for the following device version:
Order code for "Output", option M "Modbus RS485", for use in intrinsically safe areas
12Endress+Hauser
Proline Promass O 100
Safety Barrier Promass 100
Safety-related values
Terminal numbers
Supply voltageSignal transmission
2 (L-)1 (L+)26 (A)27 (B)
U
nom
U
= AC 260 V
max
= DC 24 V
U
nom
U
= AC 260 V
max
= DC 5 V
Intrinsically safe values
Terminal numbers
Supply voltageSignal transmission
20 (L-)10 (L+)62 (A)72 (B)
Uo = 16.24 V
Io = 623 mA
Po = 2.45 W
With IIB
1)
: Lo = 92.8 µH, Co = 0.433 μF, Lo/Ro = 14.6 μH/Ω
1)
: Lo= 372 µH, Co = 2.57 μF, Lo/Ro = 58.3 μH/Ω
With IIC
For an overview and for information on the interdependencies between the gas group - sensor - nominal
diameter, see the "Safety Instructions" (XA) document for the measuring device
Low flow cut off
Galvanic isolation
1)The gas group depends on the sensor and nominal diameter.
Transmitter
Intrinsically safe values
Order code for
"Approval"
• Option BM: ATEX II2G + IECEx Z1 Ex ia, II2D Ex tb
• System units
– Mass flow
– Mass
– Volume flow
– Volume
– Corrected volume flow
– Corrected volume
– Density
– Reference density
– Temperature
– Pressure
• Concentration application package
– Coefficients A0 to A4
– Coefficients B1 to B3