1. Total resistance of one side in bridge configuration
2. Typical current limitation value
DS(on)
(1)
I
OUT
9A
(2)
VCC
36 V
VN771KP-E
Quad smart power solid state relay
for complete H-bridge configurations
■ ECOPACK
■ Automotive Grade: compliance with AEC
®
: lead free and RoHS compliant
guidelines
■ Suited as low voltage bridge
■ Linear current limitation
■ Very low standby power dissipation
■ Short circuit protected
■ Status flag diagnostic (open drain)
■ Integrated clamping circuits
■ Undervoltage protection
■ ESD protection
Description
The VN771KP-E is a device formed by three
monolithic chips housed in a standard SO-28
package: a double high side and two low side
switches. Both the double high side and low side
switches are made using STMicroelectronics
VIPower
Table 1.Device summary
™
M0-3 Technology.
SO-28
This device is suitable to drive a DC motor in a
bridge configuration as well as to be used as a
quad switch for any low voltage application.
The dual high side switches have built-in thermal
shutdown to protect the chips from over
temperature and current limiter blocks to protect
the device from short circuit. Status output is
provided to indicate open load in off and on-state
and over temperature.
The low side switches are two OMNIFET II types
(fully auto protected Power MOSFET in VIPower
™
technology). They have built-in thermal shutdown,
linear current limitation and overvoltage clamping.
Fault feedback for thermal intervention can be
detected by monitoring the voltage at the input
pin.
16, 17 SOURCE 4 Source of switch 4 (low-side switch)
20, 21 SOURCE 2 Source of switch 2 (high-side switch)
22, 23 SOURCE 1 Source of switch 1 (high-side switch)
26, 27 SOURCE 3 Source of switch 3 (low-side switch)
Figure 2.Connection diagram
Doc ID 018896 Rev 17/34
Page 8
Electrical specificationsVN771KP-E
2 Electrical specifications
2.1 Thermal data
Table 3.Thermal data
Symbol Parameter
R
thj-case
R
thj-case
R
thj-amb
Thermal resistance junction-case (high side switch) 20
Thermal resistance junction-case (low side switch) 20
Thermal resistance junction-ambient (with 6 cm2 of Cu heat sink) See Figure 49
2.2 Absolute maximum ratings
Table 4.Dual high side switch
Symbol Parameter Value Unit
V
DC supply voltage 41 V
CC
-V
-I
GND
I
OUT
-I
OUT
I
I
STAT
V
ESD
Reverse DC supply voltage -0.3 V
CC
DC reverse ground pin current -200 mA
DC output current Internally limited A
Reverse DC output current -6 A
DC input current ±10 mA
IN
DC status current ±10 mA
Electrostatic discharge (human body model:
R = 1.5KΩ; C = 100pF)
– Input
– Status
– Output
CC
–V
4000
4000
5000
5000
Value max
(°C/W)
V
V
V
V
P
T
T
Table 5.Low side switch
Power dissipation (TC =25°C) 6 W
tot
Junction operating temperature Internally limited °C
T
j
Case operating temperature -40 to 150 °C
c
Storage temperature -55 to 150 °C
stg
Symbol Parameter Value Unit
V
Drain source voltage (V
DS
Input voltage Internally clamped V
V
IN
I
Input current ± 20 mA
IN
= 0V) Internally clamped V
IN
8/34Doc ID 018896 Rev 1
Page 9
VN771KP-EElectrical specifications
Table 5.Low side switch (continued)
Symbol Parameter Value Unit
R
Minimum input series impedance 10 Ω
IN MIN
I
Drain current Internally limited A
D
Reverse DC output current -15 A
R
Electrostatic discharge (R = 1.5 KΩ, C = 100 pF) 4000 V
Electrostatic discharge on output pin only (human
body model: R = 330 Ω, C = 150 pF)
5000 V
V
ESD1
V
ESD2
I
P
T
T
Power dissipation (TC = 25 °C) 6 W
tot
Operating junction temperature Internally limited °C
T
j
Case operating temperature Internally limited °C
c
Storage temperature -55 to 150 °C
stg
2.3 Electrical characteristics for dual high side switch
8V < VCC< 36 V; -40 °C < Tj < 150 °C, unless otherwise specified.
Table 6.Power outputs (for each channel)
Symbol Parameter Test conditions Min Typ Max Unit
Operating
(1)
V
CC
supply voltage
Undervoltage
(1)
V
USD
V
R
I
I
L(off1)
I
L(off2)
shutdown
Overvoltage
(1)
OV
shutdown
On-state
ON
resistance
(1)
Supply current
S
Off-state output
current
Off-state output
current
=2A; Tj =25°C
I
OUT
I
=2A; VCC >8V
OUT
Off-state; VCC = 13 V; VIN =V
Off-state; V
= 13V; VIN =V
CC
Tj =25°C
On-state; V
=V
V
IN
VIN =0V; V
= 13 V;
CC
=0V; VCC = 36 V; Tj= 125 °C 0 -50 µA
OUT
= 3.5 V -75 -0 µA
OUT
OUT
OUT
=0V
=0V;
5.5 13 36 V
3 4 5.5 V
36 --V
--
12
12
-
5
60
120
40
25
7
mΩ
mΩ
µA
µA
mA
I
L(off3
I
L(off4)
1. For device.
Off-state output
)
current
Off-state output
current
=V
V
IN
Tj = 125°C
=V
V
IN
Tj = 25 °C
=0V; VCC = 13 V;
OUT
=0V; VCC = 13 V;
OUT
--5 µA
--3 µA
Doc ID 018896 Rev 19/34
Page 10
Electrical specificationsVN771KP-E
Table 7.Switching (for each channel) (VCC= 13V)
Symbol Parameter Test conditions Min Typ Max Unit
R
=6.5Ω from VIN rising edge
t
Turn-on delay time
d(on)
t
d(off)
/dt
dV
OUT
dV
/dt
OUT
Table 8.Logic input (for each channel)
Turn-off delay time
Turn-on voltage
(on)
slope
Turn-off voltage
(off)
slope
Symbol Parameter Test conditions Min Typ Max Unit
V
Input low level --1.25 V
IL
I
Low level input current VIN = 1.25 V 1 --µA
IL
VIH Input high level 3.25 --V
L
to V
R
edge to V
RL = 6.5 Ω from V
to V
RL =6.5 Ω from V
to V
= 1.3 V
OUT
= 6.5 Ω from VIN falling
L
OUT
OUT
= 11.7 V
OUT
= 10.4 V
= 1.3 V
OUT
OUT
= 1.3 V
= 11.7 V
-30 -µs
-30 -µs
See relative
-
See relative
-
diagram
diagram
-V/µs
-V/µs
IIH High level input current VIN = 3.25 V --10 µA
V
I(hyst)
V
Table 9.Status pin (for each channel)
Input hysteresis voltage 0.5 --V
Input clamp voltage
ICL
IIN = 1 mA
= -1 mA
I
IN
6.8
6
-0.7
8 V
V
Symbol Parameter Test conditions Min Typ Max Unit
V
STAT
I
LSTAT
C
V
Table 10.Protections (for each channel)
Status low output
voltage
I
STAT
Status leakage current Normal operation; V
Status pin input
STAT
capacitance
Status clamp voltage
SCL
Normal operation; V
I
STAT
I
STAT
= 1.6 mA --0.5 V
= 5 V --10 µA
STAT
= 5 V --100 pF
STAT
= 1 mA
= -1 mA
6.8
6
-0.7
8V
V
Symbol Parameter Test conditions Min Typ Max Unit
T
T
T
Shutdown temperature 150 175 200 °C
TSD
Reset temperature 135 --°C
R
Thermal hysteresis 7 15 -°C
hyst
10/34Doc ID 018896 Rev 1
Page 11
VN771KP-EElectrical specifications
Table 10.Protections (for each channel) (continued)
Symbol Parameter Test conditions Min Typ Max Unit
t
V
demag
SDL
I
Status delay in
overload conditions
Current limitation Tj = 125 °C
lim
Turn-off output clamp
voltage
>T
T
j
TSD
5.5 V < VCC <36V
=2A; L=6mH VCC-41 VCC-48 VCC-55 V
I
OUT
--20 µs
6
8.5
915
15
15
A
A
A
Note:To ensure long term reliability under heavy overload or short circuit conditions, protection
and related diagnostic signals must be used together with a proper software strategy. If the
device is subjected to abnormal conditions, this software must limit the duration and number
of activation cycles.
Table 11.Openload detection (for each channel)
Symbol Parameter Test conditions Min Typ Max Unit
I
Openload on-state detection threshold VIN = 5 V 50 100 200 mA
OL
t
DOL(on)
V
OL
Openload on-state detection delay I
Openload off-state voltage detection
threshold
= 0 A --200 µs
OUT
= 0 V 1.5 2.5 3.5 V
V
IN
t
DOL(off)
Openload detection delay at turn-off --1000 µs
2.4 Electrical characteristics for low side switches
-40 °C < Tj < 150 °C, unless otherwise specified.
Table 12.Off-state
Symbol Parameter Test conditions Min Typ Max Unit
V
Drain source clamp voltage VIN =0V; ID = 7 A 40 45 55 V
CLAMP
V
CLTH
V
I
INTH
Drain source clamp
threshold voltage
Input threshold voltage VDS =VIN; ID = 1 mA 0.5 -2.5 V
Supply current from input pin VDS =0V; VIN = 5 V -100 150 µA
Figure 4.Open-load status timing (with external pull-up)
Figure 5.Over temperature status timing
Doc ID 018896 Rev 115/34
Page 16
Electrical specificationsVN771KP-E
2.6 Electrical characterization for dual high side switch
Figure 6.Off-state output currentFigure 7.Input clamp voltage
Figure 8.High level input currentFigure 9.Input high level voltage
Figure 10. Input low level voltageFigure 11.Input hysteresis voltage
16/34Doc ID 018896 Rev 1
Page 17
VN771KP-EElectrical specifications
Figure 12. Overvoltage shutdownFigure 13. I
LIM
vs T
case
Figure 14. Turn-on voltage slopeFigure 15. Turn-off voltage slope
Figure 16. On-state resistance vs T
case
Doc ID 018896 Rev 117/34
Figure 17. On-state resistance vs V
CC
Page 18
Electrical specificationsVN771KP-E
Figure 18. Status leakage currentFigure 19. Status low output voltage
Figure 20. Openload on-state detection
threshold
Figure 22. Status clamp voltage
Figure 21. Openload off-state voltage
detection threshold
18/34Doc ID 018896 Rev 1
Page 19
VN771KP-EElectrical specifications
2.7 Electrical characterization for low side switches
Figure 23. Static drain source on resistanceFigure 24. Derating curve
Figure 25. TransconductanceFigure 26. Transfer characteristics
Figure 27. Turn-on current slope (Vin=5V)Figure 28. Turn-on current slope (Vin=3.5V)
Doc ID 018896 Rev 119/34
Page 20
Electrical specificationsVN771KP-E
Figure 29. Input voltage vs input chargeFigure 30. Capacitance variations
Figure 31. Switching time resistive load
(V
=5V)
in
Figure 32. Switching time resistive load
(Rg=10Ohm)
Figure 33. Output characteristicsFigure 34. Step response current limit
20/34Doc ID 018896 Rev 1
Page 21
VN771KP-EElectrical specifications
Figure 35. Source drain diode forward
characteristics
v
Figure 37. Static drain source on resistance vs
input voltage (I
=7A)
d
Figure 36. Static drian source on resistance vs
I
d
Figure 38. Static drain source on resistance vs
input voltage
Figure 39. Normalized input threshold voltage
vs temperature
Doc ID 018896 Rev 121/34
Figure 40. Normalized on resistance vs
temperature
Page 22
Electrical specificationsVN771KP-E
Figure 41. Turn-off drain source voltage slope
(V
=3.5V)
in
Figure 43. Current limit vs junction
temperature
Figure 42. Turn-off drain source voltage slope
(Vin=5V)
22/34Doc ID 018896 Rev 1
Page 23
VN771KP-EApplication recommendations
3 Application recommendations
Figure 44. Application diagram bridge drivers
Most motor bridge drivers use a reverse battery protection diode (D) inside the supply rail.
This diode prevents a reverse current flow back to V
in case the bridge becomes
BATT
disabled via the logic inputs while motor inductance still carries energy. In order to prevent a
hazardous overvoltage at circuit supply terminal (V
), a blocking capacitor (C) is needed to
CC
limit the voltage overshoot. As basic orientation, 50 µF per 1 A load current is
recommended. As an alternative, a Zener protection (Z) is also suitable.
Even if a reverse polarity diode is not present, it is recommended to use a capacitor or
Zener at V
because a similar problem appears in case the supply terminal of the module
CC
has intermittent electrical contact to the battery or gets disconnected while the motor is
operating.
Doc ID 018896 Rev 123/34
Page 24
Application recommendationsVN771KP-E
Figure 45. Recommended motor operation
24/34Doc ID 018896 Rev 1
Page 25
VN771KP-EApplication recommendations
Figure 46. Waveforms
Doc ID 018896 Rev 125/34
Page 26
Thermal data VN771KP-E
4 Thermal data
4.1 SO-28 thermal data
Figure 47. SO-28 PC board
Note:Layout condition of Rth and Zth measurements (PCB FR4 area = 58mm x 58mm, PCB
thickness = 2mm, Cu thickness = 35µm, Copper areas: from minimum pad layout to 6cm
Figure 48. Chipset configuration
LOW SIDE
CHIP
R
thAB
HIGH SIDE
CHIP
R
thAC
LOW SIDE
CHIP
channel 1,2
channel 3
R
thB
R
R
thA
thBC
channel 4
R
thC
Figure 49. Auto and mutual Rthj-amb vs PCB copper area in open box free air
condition
(a)
2
).
26/34Doc ID 018896 Rev 1
Page 27
VN771KP-EThermal data
4.2 Thermal calculation in clockwise and anti-clockwise
operation in steady state mode
Table 19.Thermal calculation in clockwise and anti-clockwise operation in steady state mode
HS1 HS2 LS
On Off Off On
Off On On Off
LS
3
4
P
P
dHS1
dHS2
x R
R
thHSLS
x R
R
thHSLS
T
jHS12
thHS
thHS
+ P
+ T
+ P
+ T
amb
amb
dLS4
dLS3
x
x
P
P
dHS1
dHS2
x R
x R
x R
thLSLS
x R
T
jLS3
thHSLS
thHSLS
thLS
+ T
+ T
+ P
amb
+ P
amb
dLS4
dLS3
T
jLS4
P
x R
dHS1
R
thLS
P
dHS2
x R
R
thLSLS
thHSLS
+ T
thHSLS
+ T
+ P
amb
+ P
amb
dLS4
dLS3
4.2.1 Thermal resistances definition
Values according to the PCB heatsink area.
R
= R
thHS
in on-state)
R
= R
thLS
R
thHSLS
high side and low side chips
R
thLSLS
= R
4.2.2 Thermal calculation in transient mode
T
= Z
jHS12
T
= Z
jLS3
T
= Z
jLS4
thHS1
thLS3
= R
thHS
thHSLS
thHSLS
= R
= R
thHS1LS4
thLS3LS4
x P
x P
x P
= high side chip thermal resistance junction to ambient (HS1 or HS2
thHS2
= low side chip thermal resistance junction to ambient
thLS4
= R
thHS2LS3
= mutual thermal resistance junction to ambient between
= mutual thermal resistance junction to ambient between low side chips
(b)
dHS12
dHS12
dHS12
+ Z
+ Z
+ Z
thHSLS
thLS
thLSLS
x (P
x P
x P
dLS3
dLS3
dLS3
+ Z
+ P
thLSLS
+ Z
dLS4
thLS
) + T
x P
x P
amb
dLS4
dLS4
+ T
+ T
amb
amb
x
x
4.2.3 Single pulse thermal impedance definition
Values according to the PCB heatsink area.
Z
= high side chip thermal impedance junction to ambient
thHS
Z
thLS
Z
thHSLS
= Z
thLS3
= Z
thHS12LS3
= Z
= low side chip thermal impedance junction to ambient
thLS4
= Z
thHS12LS4
= mutual thermal impedance junction to ambient between
high side and low side chips
Z
thLSLS
= Z
thLS3LS4
= mutual thermal impedance junction to ambient between low side chips
4.2.4 Pulse calculation formula
Z
THδ
where δ = tP/T
a. See definitions in Section 5.3 on page 31.
b. Calculation is valid in any dynamic operating condition. Pd values set by user.
RTHδ Z
THtp
1 δ–()+⋅=
Doc ID 018896 Rev 127/34
Page 28
Thermal data VN771KP-E
Figure 50. SO-28 HSD thermal impedance junction ambient single pulse
Figure 51. SO-28 LSD thermal impedance junction ambient single pulse
28/34Doc ID 018896 Rev 1
Page 29
VN771KP-EThermal data
Figure 52. Thermal fitting model of an H-bridge in SO-28
Table 20.Thermal parameters
(1)
Area/island (cm2) Footprint 1 2 6
R1 = R6 (°C/W) 1.5
R2 (°C/W) 2.6
R12 = R17 (°C/W) 2.6
R3 = R13 = R 18 (°C/W) 15.5
R4 = R14 = R19 (°C/W) 10.5
R5 = R15 = R20 (°C/W) 62.28 52.28 44.28 32.28
R7 = R8 = R9 = R10 (°C/W) 150
R11 = R16 (°C/W) 1
C1 = C5 (W.s/°C) 0.00035
C2 = C7 = C11 (W.s/°C) 0.024
C3 = C8 = C 12 (W.s/°C) 0.2
C4 = C9 = C13 (W.s/°C) 1.6 1.61 1.7 3.25
C6 = C10 (W.s/°C) 0.0009
1. The blank space means that the value is the same as the previous one.
Doc ID 018896 Rev 129/34
Page 30
Package characteristics VN771KP-E
5 Package characteristics
5.1 ECOPACK
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK
®
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
5.2 SO-28 mechanical data
Figure 53. SO-28 package outline
Table 21.SO-28 mechanical data
mm inch
DIM
Min. Typ Max. Min. Typ. Max.
A 2.65 0.104
a1 0.1 0.3 0.004 0.012
b 0.35 0.49 0.013 0.019
b1 0.23 0.32 0.009 0.012
C 0.5 0.020
c1 45° (typ.)
D 17.7 18.1 0.697 0.713
E 10 10.65 0.393 0.419
30/34Doc ID 018896 Rev 1
Page 31
VN771KP-EPackage characteristics
Table 21.SO-28 mechanical data (continued)
mm inch
DIM
Min. Typ Max. Min. Typ. Max.
e 1.27 0.050
e3 16.51 0.650
F 7.4 7.6 0.291 0.299
L 0.4 1.27 0.016 0.050
S 8° (max.)
5.3 SO-28 tube shipment
Figure 54. Tube dimensions (no suffix)
Doc ID 018896 Rev 131/34
Page 32
Package characteristics VN771KP-E
5.4 Tape and reel shipment
Figure 55. Tape and reel dimensions (suffix “13TR”)
32/34Doc ID 018896 Rev 1
Page 33
VN771KP-ERevision history
6 Revision history
Table 22.Document revision history
Date Revision Changes
01-Jun-20111 Initial release.
Doc ID 018896 Rev 133/34
Page 34
VN771KP-E
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.