Datasheet TEA2019 Datasheet (SGS Thomson Microelectronics)

Page 1
POWER SUPPLY CONTROLCIRCUIT
.
DIRECT DRIVE OF THE EXTERNAL SWITCHING TRANSISTOR
.
POSITIVE AND NEGATIVE OUTPUT CUR­RENTSUP TO0.5A
.
CURRENT LIMITATION
.
TRANSFORMER DEMAGNETIZATION AND POWER TRANSISTOR SATURATION SENS­ING
.
FULL OVERLOAD AND SHORT-CIRCUIT PROTECTION
.
PROPORTIONALBASECURRENT DRIVING
.
LOW STANDBY CURRENT BEFORE START­ING (1.6mA)
.
SYNCHRONIZATION CAPABILITY WITH IN­TERNAL PLL
.
THERMAL PROTECTION
TEA2019
CURRENTMODE SWITCHING
Due to its current mode regulation, the TEA2019 facilitates design of power supplies with following features:
.
High stability regulationloop.
.
Automatic input voltage feed-forward in dis­continuousmode fly-back.
.
Automaticpulse-by-pulsecurrentlimitation. Typical applications: VideoDisplayUnits, TV sets, typewriters, micro-computers and industrial appli­cations. For more details, see application noteAN406/0591.
DESCRIPTION
The TEA2019isan 14-pinDIP low costintegrated circuit designed for the control of switch mode power supplies. Ithasthe same basic functionsas the TEA2018Abut with synchronization capability by internal PLL. It is particularly suitable for appli­cations where oscillator synchronization is re­quired.
PINCONNECTIONS
OUTPUT
AUXILIARY OUTPUT SUPPLY
POSITIVE SUPPLY VOLTAGE
SATURATION SENSING
DEMAGNETIZATION SENSING
ERROR AMPLIFIER NON-INVERTING INPUT
SYNCHRONIZATION INPUT
1 2 3 4 5 6 7
DIP 14
(Plastic package)
ORDER CODE :TEA2019
14 13 12 11 10
NEGATIVE SUPPLY (OUTPUTSTAGE) SUBSTRATE I SAMPLE (NEGATIVE)
C
GROUND OSCILLATOR CAPACITOR OSCILLATOR REFERENCE CURRENT
9 8
PLL OUTPUT
2019-01.EPS
August 1992
1/7
Page 2
TEA2019
BLOCK DIAGRAM
23
AUX
V
= 2.4V
REF
V
Undervoltage
C
I
RECOPY
Output 1
200ms
DELAY
1
14
Substrate VI
Q
CC
V
S
5
I
01.V
SWITCH
CC
V
”good”
CC
V
PHASE
LOCKED
8
PLL Out
Bias
Sensing
Demagnetization
Pulse
Sampling
LOOP
7
Sync.
S
&
OSCILLATOR
V
9 Rt
CC
FLIP
10 Ct
FLOP
80%
Q
R
&
1
LIMITATION
DUTY CYCLE
r
o
t
a
THERMAL
SHUT-DOWN
r
a
p
m
o
3.2V
C
x50
6
Feed-back
-1V VOLTAGE
LIMITATION
V
REF
4
CE
11 13
Ground MonitoringV
12
SENSE
TEA2019
2019-02.EPS
ABSOLUTEMAXIMUM RATINGS
Symbol Parameter Value Unit
+
V
CC
V
(aux) –
V
CC
I
(peak) Peak Output Current (duty cycle < 5%) ± 1A
O
I
I
T
T
oper
T
stg
2/7
Positive Supply Voltage 15 V Auxiliary Output Supply Voltage 15 V Negative Supply Voltage – 5 V
Input Current Pins 4-5 ± 5mA Junction Temperature 150 °C
j
Operating Ambient Temperature Range – 20, + 70 °C Storage Temperature Range – 40, + 150 °C
2019-01.TBL
Page 3
TEA2019
THERMALDATA
Symbol Parameter Value Unit
R
th (j-a)
ELECTRICALOPERATING CHARACTERISTICS
=+25oC, potentialsreferenced to ground(unless otherwise specified)
T
amb
Symbol Parameter Min. Typ. Max. Unit
+
V
CC
V
CC
V
CC(start)
V
CC(stop)
+
V
CC
I
CC(sb)
V
th (Ic)
R
(Ic)
I
S
τ
max
A
V
+
I
I
V
(REF)
V
(REF)
T
T
OSC
f
OSC
T
f
OSC
V
CC
t
on(min)
Junction-ambient Thermal Resistance 80 °C/W
Positive Supply Voltage 6.6 8 15 V Negative Supply Voltage –1 –3 –5 V Minimum positive supply voltage required for starting (V Minimum positive voltage below which device stops operating (V Hysteresis on V Standby Supply Current Before Starting [V
+
Threshold 0.7 1.1 1.6 V
CC
+
<V
CC
+
rising) 6 6.6 V
CC
] 1 1.6 mA
CC(start)
+
falling) 4.2 4.9 5.6 V
CC
Current Limitation Threshold Voltage (pin 12) –1100 –1000 –880 mV Collector Current Sensing Input Resistance 1000 Demagnetization Sensing Threshold 75 100 125 mV Demagnetization Sensing Input Current (pin 5 grounded) 1 µA Maximum Duty Cycle 70 80 % Error Amplifier Gain 50 Error Amplifier Input Current (non-inverting input) (pin 6) 2 µA Internal Reference Voltage 2.3 2.4 2.5 V
Reference Voltage Temperature Drift 10
–4
Oscillator Free-running Period ( R = 59k, C = 1.5nF) 60 65 70 µs Oscillator Frequency Drift with Temperature (V
Oscillator Frequency Drift with V
+
CC
(+ 8V < V
+
= + 8V) 0.05 %/°C
CC
+
< + 14V) 0.5 %/V
CC
Minimum Conducting Time (Ct= 1nF) 2 µs
2019-02.TBL
V/°C
2019-03.TBL
SYNCHRONIZATION INPUT (pin 7)
Symbol Parameter Min. Typ. Max. Unit
V
R
Peak to Peak Sawtooth Voltage 0.5 2.5 V
7pp
Input Impedance 20 k
(7)
PLL CHARACTERISTICS (see Test Circuit)
Symbol Parameter Min. Typ. Max. Unit
Frequency Sensitivity 100 Hz/µA
T Capture Range (T
T
SYN max-TOSC
=64µsTyp.) T
OSC
OSC-TSYN min
5.5
4.5
8 8
SATURATION SENSING(pin 4)
Symbol Parameter Min. Typ. Max. Unit
V
I
Input Threshold 3.2 V
(4)
Input Current (V4> 3.2V) 50 µA
(4)
Input Internal Resistance 1 k
RECOMMENDED OPERATING CONDITIONS
Symbol Parameter Min. Typ. Max. Unit
+
V
V
F
Positive Supply Voltage 8 V
CC
Negative Supply Voltage 3 V
CC
Output Current 0.5 A
I
O
Operating Frequency 30 kHz
oper
µs µs
2019-04.TBL
2019-05.TBL
2019-06.TBL
2019-07.TBL
3/7
Page 4
TEA2019
TYPICALCIRCUIT
V66V5
10k
10nF
22nF
5
8 9 10 11 12 13 14
56k
3.3nF
59k
1%
1.5nF
V10
AS1
8.2k
10nF
22nF
3.9k
GENERALDESCRIPTION
(see applicationnote AN406/0591) OperatingPrinciples (Figure 1)
On every period, the beginning of the conduction time of the transistor is triggered by the fall of the oscillatorsaw-toothwhich acts as clocksignal.The periodT T
osc
(T
osc
isgiven by :
osc
0.69 Ct(Rt+2000)
in seconds,Ctin Farad, Rtin )
The end of the conduction time is determinedby a signalissuedfromcomparingthefollowingsignals. a) the s awtooth waveform representing the
collector current of the switching transistor, sampledacross the emitter shunt resistor.
b) the output of the erroramplifier.
V3
470
22nF
4.7µF
31427
TEA2019
100
47nF
V12 V14
Figure1 : Current ModeControl
FLIP-FLOP
S
R
COMPARATOR
V
REF
ERROR AMPLIFIER
ERROR
SIGNAL
OSCILLATOR
I SENSE
C
10
RAMP
GENERATOR
IC
0V
-1V
4.7µF
2019-03.EPS
V
i
OUTPUT
FILTER
I
C
Q
Re
LOAD
Base Drive
Fast turn-on On each period, a current pulse ensures fast transistorswitch-on. This pulse performs also the t
on(min)
functionat
the beginningof the conduction.
Proportionalbase drive In order to save power, the positivebase current after the starting pulse becomes an image of the collectorcurrent.
I
C
The ratio
4/7
is programmed as follows(Figure 2).
I
B
I
R
C
B
=
I
R
B
E
OSCILLATOR SAWTOOTH
I (sample)
C
FLIP-FLOP OUTPUT
t
Error Signal
t
t
2019-05.EPS / 2019-04.EPS
Page 5
TEA2019
Efficientand fast switch-off When the positive base drive is removed, 1s (typically) will elapse before the application of negative current therefore allowing a safe and rapid collector current fall.
Safety Functions
Overload & short-circuitprotection When the voltage applied to pin 12 exceeds the current limitation thershold voltage [V
th(Ic)
outputflip-flopis reset andthetransistoristurned off. The shunt resistor R
must be calculated so as
e
to obtain the current limitation threshold on pin 12 at the maximum allowable collectorcurrent.
Figure2
R
B
TEA2019
12
1
I
B
R
e
], the
I
C
Demagnetizationsensing This function disablesany new conduction cycle of the transistoras long as the core is not com­pletelydemagnetized. Whennot used, pin 5 mustbe grounded.
t
on(max)
Outside the regulation area and in the absence of current limitation, the maximum conduction time is set at about 70% of theperiod.
t
on(min)
A minimum conducting time is ensured during each period (see Figure 2).
Supply voltage monitoring TheTEA2019willstopoperatingifVCC+onPin3 fallsbelow the thresholdlevel V
I
C
0
I
B
t
on(min)
0
COLLECTOR CURRENT
BIAS CURRENT
I
B
CC(stop)
t
R
B
I
C
R
e
t
.
I
C
StartingProcess (Figure 3) Prior to starting, a low current is drawn from the
high voltage source through a high value resistor. This current charges the power supply storage capacitorof the device. No output pulses are available before the voltage on pin 3 hasreachedthe threshold level [V
+
rising].
V
CC
CC(start)
During this time the TEA2019 draws only 1mA (typically). When the voltage on pin 3 reaches this thresholdbase drive pulses appear. The energy drawn by these pulses tends to dis­charge the power supply storage capacitor. How­ever a hysteresisof about 1.1V (typically)(V
CC
isimplemented to avoid the device from stopping.
Figure3 : Normal TEA2019 Start up Sequence
V
CC
V
CC (start)
,
6V
4.9V
V
CC
V
CC (stop)
)
t
5/7
2019-06.EPS
2019-07.EPS
Page 6
TEA2019
The TEA2019 has some additional capabilities comparedto the TEA2018A:
The oscillatorchargecurrentits suppliedthrough aninternalcurrentgenerator,programmedexter­nally - instead of using an external charging resistor. The sawtooth so obtainedis linear.
The oscillator can be synchronized through an internal PLL circuit. This feature provides syn­chronization between the external sync pulse and the end of the switching transistor current. The sync pulse can be for example the fly-back pulse of a TV horizontal sweep circuit. As indi­cated in the application diagram, this pulse is applied first to a R.C. network to obtain a low voltagesawtooth and then to pin 7 of the circuit. The PLL output (pin 8) supplies a correction current to pin 9 through an external resistor,so as to maintain the oscillator at the correct fre­quency(referto applicationnoteAN406/0591for detailedinformation).
In theTEA2019,the powersupply ofthepositive output stage is separated from the main power supply, so that it can be supplied from a lower
TYPICALAPPLICATION
voltagein orderto reducetheI.C. powerdissipa­tion. For low power applications, the circuit can be normally supplied by connecting pins 2 and 3 together.
In order to protectthesubstrate(pin13)from the parasitic voltage peaks produced by negative output current peaks at pin 14, the substrate (pin 13) is internally separatedfrom the negative supply (pin 14). They must be externally con­nectedtogether.
The switching transistor saturation voltage can be monitored at pin 4. To achieve this, a high voltage diode must be connected between the collector of the switching transistor and pin 4. Also a resistor must be connectedfrom pin 4 to
+
(see application diagram). This arrange-
V
CC
ment is useful when the chosen value of base current is very low and as a consequence the saturationvoltagewillbehigh.In thisevent,when V
increases above 2.5V,the base current
CE(sat)
isinterruptedbeforethenormalendof theperiod. Remark: the TEA2019can also operate without this protection.
4 x 1N4007
0.1
µF
RF Filter
2 x 12mH
µF
0.1
0.5A
Mains
Input
.
P
=60W
MAX
.
Free-runningFrequency : 15kHz
.
155V
VAC≤ 250V
RMS
47µF 385V
82k
47nF
C2
33nF
3.9k
Sync. Pulse
RMS
10k
1.8k
7
8
3.3nF
1N4148
18
µF
10
10k
65
TEA2019
910
56k
56kΩ
1.5nF
22nF
10k
4113
1N41483.9
120k
470µF
10
21
12
13 14
4.7
.
Outputs: 120V ± 3%,0.4A
1W
BYT11-100
3 x 1N4001
3.3
100
10µF
BYT
11-100
BUV 46A
24V ±3%, 0.5A
.
VCEMonitoring
n3
1k
3W
BYT11-1000
0.47
n0
2.2nF
680 3W
BYT11-800
100
F
µ
160V
n1
BYT11-800
n2
Primary Ground SecondaryGround
470 40V
120V
0.4A
24V
0.5A
µF
2019-08.EPS
6/7
Page 7
PACKAGE MECHANICALDATA
14 PINS- PLASTICDIP
I
a1
TEA2019
b1
E
Dimensions
L
Z
b
14 8
17
Be
e3
D
Z
F
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
a1 0.51 0.020
B 1.39 1.65 0.055 0.065
b 0.5 0.020
b1 0.25 0.010
D 20 0.787 E 8.5 0.335
e 2.54 0.100
e3 15.24 0.600
F 7.1 0.280
i 5.1 0.201
L 3.3 0.130
Z 1.27 2.54 0.050 0.100
PM-DIP14.EPS
DIP14.TBL
Information furnishedis believed to be accurateand reliable. However, SGS-THOMSON Microelectronicsassumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third partieswhich may result from its use. Nolicence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previouslysupplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
1994 SGS-THOMSON Microelectronics - All Rights Reserved
Purchase of I
2
I
C Patent. Rights to use these components in a I2C system, is granted provided that the system conforms to
Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
2
C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips
2
the I
C Standard Specifications as defined by Philips.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
7/7
Loading...