Artesyn ATCA-9405 Installation

Page 1

ATCA-9405

Installation and Use
P/N: 6806800M71G May 2014
Page 2
©
Copyright 2014 Artesyn Embedded Technologies, Inc.
All rights reserved.
Trademarks
Intel® is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries. Java™ and all other Java-based marks are trademarks or registered trademarks of Oracle America, Inc. in the U.S. and other countries. Microsoft®, Windows® and Windows Me® are registered trademarks of Microsoft Corporation; and Windows XP™ is a trademark of
Microsoft Corporation. PICMG®, CompactPCI®, AdvancedTCA™ and the PICMG, CompactPCI and AdvancedTCA logos are registered trademarks of the PCI
Industrial Computer Manufacturers Group. UNIX® is a registered trademark of The Open Group in the United States and other countries.
Notice
While reasonable efforts have been made to assure the accuracy of this document, Artesyn assumes no liability resulting from any omissions in this document, or from the use of the information obtained therein. Artesyn reserves the right to revise this document and to make changes from time to time in the content hereof without obligation of Artesyn to notify any person of such revision or changes.
Electronic versions of this material may be read online, downloaded for personal use, or referenced in another document as a URL to an Artesyn website. The text itself may not be published commercially in print or electronic form, edited, translated, or otherwise altered without the permission of Artesyn.
It is possible that this publication may contain reference to or information about Artesyn products (machines and programs), programming, or services that are not available in your country. Such references or information must not be construed to mean that Artesyn intends to announce such Artesyn products, programming, or services in your country.
Limited and Restricted Rights Legend
If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the following notice shall apply unless otherwise agreed to in writing by Artesyn.
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data clause at DFARS 252.227-7013 (Nov. 1995) and of the Rights in Noncommercial Computer Software and Documentation clause at DFARS 252.227-7014 (Jun. 1995).
Contact Address
Artesyn Embedded Technologies Artesyn Embedded Technologies Marketing Communications 2900 S. Diablo Way, Suite 190 Tempe, Arizona 85282
Lilienthalstr. 17-19 85579 Neubiberg/Munich Germany
Page 3

Regulatory Agency Warnings & Notices

The Artesyn ATCA-9405 meets the requirements set forth by the Federal Communications Commission (FCC) in Title 47 of the Code of Federal Regulations. The following information is provided as required by this agency.
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
FCC Rules and Regulations – Part 15
This equipment has been tested and found to comply with the limits for a Class A Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.
Making changes or modifications to the ATCA-9405 hardware without the explicit consent of
Artesyn could invalidate the user’s authority to operate this equipment.
EMC Compliance
The electromagnetic compatibility (EMC) tests used an ATCA-9405 model that includes a front panel assembly from Artesyn.
ATCA-9405 Installation and Use (6806800M71G)
3
Page 4
Regulatory Agency Warnings & Notices
GR-1089-CORE STANDARD
The intra-building port(s) of the equipment or subassembly is suitable for connection to intra-
building or unexposed wiring or cabling only. The intra-building port(s) of the equipment or subassembly MUST NOT be metallically connected to interfaces that connect to the OSP or its wiring. These interfaces are designed for use as intra-building interfaces only (Type 2 or Type 4 ports as described in GR-1089-CORE, Issue 4) and require isolation from the exposed OSP cabling. The addition of Primary Protectors is not sufficient protection in order to connect these interfaces metallically to OSP wiring.
4
ATCA-9405 Installation and Use (6806800M71G)
Page 5

Contents

Contents
Regulatory Agency Warnings & Notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
About this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Components and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3 Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.1 Regulatory Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.2 RoHS Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6 Product Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Electrostatic Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 ATCA-9405 Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.1 Switch Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1.1 FPGA and CPLD/IPMC Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Safety Critical Hot Spots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.3 Connector Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.3.1 Face Plate Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.3.2 On-board Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.3.3 Back Panel Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.4 Debugging Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.4.1 IPMC Debug Console Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.4.2 COP Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.4.3 EJTAG Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4 ATCA-9405 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.1 Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.2 Environmental Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.3 Hot Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
ATCA-9405 Installation and Use (6806800M71G)
5
Page 6
Contents
Contents
Contents
2.5 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.5.1 Technical Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.5.2 Product Repair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3 Packet Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 CN6880 Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 System Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.1 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2 Memory Socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.3 Memory Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.4 Thermal Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 Octeon U-Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.1 NVRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.2 Network Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 SerDes Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7 PCI Express Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.8 Ethernet Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.8.1 Front Panel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.8.2 Base and Fabric Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.9 Interlaken Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.10 USB Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.11 UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.12 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.13 JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.14 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.14.1 Packet Processor Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.15 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.16 Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4 Service Processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 P2020 Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6
ATCA-9405 Installation and Use (6806800M71G)
Page 7
Contents
4.3 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Main Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.1 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.2 Memory Socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.3 Memory Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.4 Persistent Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.5 Thermal Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 SP U-Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5.1 Environment Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5.2 Passing Parameter Set to the Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.3 Dynamic Variables Set During the Boot Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.4 Variables for Controlling the Boot Progress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.5 Firmware Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.6 Application/OS Boot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.6.1 Default Boot Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.7 Memory/Address Map Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.7.1 Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.7 SerDes Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.8 PCI Express Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.9 Ethernet Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.9.1 Front Panel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.9.2 Base and Fabric Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.10 SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.10.1 Boot Flash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.10.2 Boot Flash Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.11 USB Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.11.1 USB Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.11.2 e-USB Flash Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.12 UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.13 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.13.1 Real Time Clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.14 JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.15 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.15.1 Service Processor Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.16 Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
ATCA-9405 Installation and Use (6806800M71G)
7
Page 8
Contents
Contents
Contents
5 Ethernet Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Ethernet Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.1 Port Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.2 Two-Wire Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.3 Switch Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.4 PHY Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Base Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Fabric Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Update Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.6 Serial Redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6 Service Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Port Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
6.3 Hot Plug Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.1 Serial Hot Plug Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4 I2C Slave Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
6.5 JTAG Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.6 Lane Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
7 Mezzanine Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8 Intelligent Peripheral Management Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.3 Firmware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
8.4 HPM.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.4.1 FPGA Firmware Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.4.2 Payload Firmware Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
8.4.3 IPMC Firmware Upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.4.4 Manual Rollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8
ATCA-9405 Installation and Use (6806800M71G)
Page 9
Contents
8.4.5 Retrieving Versioning Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.5 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
8.5.1 Firmware Progress, OS Boot, and Boot Error Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.5.2 Boot Bank Supervision Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.5.3 POST Results Sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5.4 Power Good Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5.5 Power Interface Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.5.6 Reset Cause Sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.5.7 Presence Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.5.8 Voltage and Temperature Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.6 POST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.7 FRU Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.7.1 MAC Address FRU OEM records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
8.8 Reset and Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.9 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.10 U-Boot Boot Configuration Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.11 Asynchronous Event Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.12 Serial Line Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.13 Built-in Terminal Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.13.1 Evaluating the Version of the Telnet Server Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.13.2 Establishing a Telnet Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.14 Fail Safe Logic and Watchdog Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.14.1 SP BMC Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.15 Payload Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
8.16 Payload Boot Bank Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.17 Settable Graceful Shutdown Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.18 FPGA Health Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.19 Local System Event Log (SEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.20 IPMI Hardware Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.21 Artesyn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OEM Command Set 148
8.21.1 Set Serial Output Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.21.2 Get Serial Output Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.21.3 Set Feature Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
8.21.4 Get Feature Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
ATCA-9405 Installation and Use (6806800M71G)
9
Page 10
Contents
Contents
Contents
A Related Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
A.1 Artesyn Embedded Technologies - Embedded Computing Documentation . . . . . . . . . . . . . . . 155
Safety Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
Sicherheitshinweise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
10
ATCA-9405 Installation and Use (6806800M71G)
Page 11
List of Tables
Table 1-1 Regulatory Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 1-2 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 2-1 Circuit Board Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 2-2 Faceplate Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 2-3 Settings for Switch SW1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 2-4 Settings for Switch SW2 (for debugging only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 2-5 Settings for Switch SW3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 2-6 Settings for Switch SW4 (for debugging only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 2-7 USB Connector Pin-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 2-8 Ethernet Connector Pin-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 2-9 Serial Console Connector Pin-out (Cisco Style) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 2-10 eUSB Drive Connector Pin-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 2-11 Zone 1 Connector P10 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 2-12 Zone 2 Connector P20 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 2-13 Zone 2 Connector P23 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 2-14 Zone 3 Connector P30 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 2-15 Zone 3 Connector P31 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 2-16 Zone 3 Connector P32 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 2-17 Debugging Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 2-18 IPMC Debug Console Header Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 2-19 COP Header Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 2-20 EJTAG Header Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 2-21 Typical Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 2-22 Environmental Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 2-23 Critical Temperature Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 3-1 DDR3 Speed Grades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 3-2 CN6880 Memory Module Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 3-3 CN6880 Preferred Memory Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 3-4 CN6880 SerDes Configuration (Interlaken Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 3-5 CN6880 I2C Bus Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 3-6 Packet Processor Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 4-1 P2020 DDR3 Speed Grades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 4-2 P2020 Memory Module Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 4-3 P2020 Preferred Memory Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 4-4 Dynamic Variables Set During the Boot Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 4-5 Variables for Controlling the Boot Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
ATCA-9405 Installation and Use (6806800M71G)
11
Page 12
List of Tables
Table 4-6 Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Table 4-7 P2020 SerDes Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 4-8 P2020 eTSEC Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 4-9 P2020 SPI Chip Select Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 4-10 P2020 Boot Flash Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 4-11 P2020 I2C Bus Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 4-12 Service Processor Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 5-1 Data Plane, Control Plane, and Other Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
Table 5-2 Switch Port Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 5-3 Gigabit Ethernet PHY Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 5-4 10G Ethernet PHY Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Table 6-1 PEX8608 Port Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
Table 6-2 Lane Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
Table 8-1 HPM.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
Table 8-2 ATCA-9405 Specific Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
Table 8-3 Status Sensor's Sensor Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
Table 8-4 Voltage and Temperature Sensor Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
Table 8-5 FRU Information and SEL at EEPROM Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
Table 8-6 Artesyn ECC MAC Address Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
Table 8-7 Artesyn ECC MAC Address Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
Table 8-8 Interface Type Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
Table 8-9 Power Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
Table 8-10 IPMC Boot Parameter Storage Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
Table 8-11 TS Channel Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
Table 8-12 Artesyn OEM Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148
Table 8-13 Set Serial Output Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148
Table 8-14 Serial Output Selector Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Table 8-15 Get Serial Output Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Table 8-16 Set Feature Configuration Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
Table 8-17 Feature Selector Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
Table 8-18 Get Feature Configuration Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
Table A-1 Artesyn Embedded Technologies - Embedded Computing Publications . . . . . . . . . . . . . .155
12
ATCA-9405 Installation and Use (6806800M71G)
Page 13
List of Figures
Figure 1-1 General System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 1-2 Declaration of Conformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 1-3 Serial Number and Product ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 2-1 Faceplate Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 2-2 Switch Location with Heat Sink SW1 and SW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 2-3 Switch Location with Heat Sink SW3 and SW4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 2-4 Location of the Hot Spots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 2-5 Location of On-board Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 2-6 Location of AdvancedTCA Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 2-7 P10 Backplane Connector Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 2-8 Air Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 3-1 Packet Processor Unit Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 4-1 Service Processor Unit Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 5-1 Ethernet Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 5-2 Fabric Interface Mode 1x 1000Base-KX (PICMG3.1 Option 1) . . . . . . . . . . . . . . . . . 97
Figure 5-3 Fabric Interface Mode 1x 10GBase-KX4 (PICMG3.1 Option 9) . . . . . . . . . . . . . . . . . 97
Figure 5-4 Fabric Interface Mode 4x 10GBase-KR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 5-5 Fabric Interface Mode 1x 40GBase-KR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 5-6 Update Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 5-7 Serial Redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 6-1 PEX8608 Serial Hot Plug Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 6-2 PEX8608 Lane Status LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 7-1 Block Diagram with TCAM Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 7-2 Block Diagram with PCI-Express Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 8-1 ATCA-9405 IPMC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 8-2 Firmware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 8-3 FPGA Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 8-4 IPMC Boot Parameter Storage Configuration Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 8-5 IPMC Serial Line Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 8-6 Payload Boot Bank Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
ATCA-9405 Installation and Use (6806800M71G)
13
Page 14
List of Figures
14
ATCA-9405 Installation and Use (6806800M71G)
Page 15

About this Manual

Overview of Contents

This manual is divided into the following chapters and appendix:
Chapter 1, Introduction, on page 21, provides an overview of the ATCA-9405 board.
Chapter 2, Setup, on page 31, describes the ATCA-9405 board dimensions, power
requirements, environmental requirements, how to insert and remove the board, troubleshooting and so on.
Chapter 3, Packet Processor, on page 59, provides an overview of the CN6880 Processor and
its units.
Chapter 4, Service Processor, on page 71, provides an overview of the P2020 Processor and
its units.
Chapter 5, Ethernet Infrastructure, on page 89, describes the ethernet switch, base
interface, fabric interface, update channel interface, and the serial redirection.
Chapter 6, Service Infrastructure, on page 101, describes the PCI express switch, hot plug
support, I2C slave interface, JTAG support, and lane status.
Chapter 7, Mezzanine Module, on page 107, provides an overview.
Chapter 8, Intelligent Peripheral Management Controller, on page 111, provides a functional
overview, firmware architecture, HPM.1 components, Sensors, and so on.
Appendix A, Related Documentation, on page 155, lists the documents that you can refer.
Safety Notes on page 157, provides the safety measures to be taken while handling the
board.
Sicherheitshinweise on page 161, provides the German translation of the Safety Notes.
ATCA-9405 Installation and Use (6806800M71G)
15
Page 16

Abbreviations

This document uses the following abbreviations:
Abbreviation Definition
ATCA Advanced Telecom Computing Architecture
BIOS Basic Input/Output System
CPLD Complex Programmable Logic Device
DDR Dual Data Rate
DDR3 Double Data Rate 3
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
DXAUI Double Data Rate XAUI
ECC Error Correction Code
About this Manual
About this Manual
EEPROM Electrically Erasable Programmable Read Only Memory
EHCI Enhanced Host Controller Interface
EMC Electro-magnetic Compatibility
ESD Electro-static Discharge
FRU Field Replaceable Unit
GPIO General Purpose Input/Output
I/O Input/Output
2
C Inter Integrated-Circuit Bus (2-wire serial bus and protocol)
I
IMC Integrated Memory Controller
IPMB Intelligent Platform Management Bus
IPMC Intelligent Platform Management Controller
IPMI Intelligent Platform Management Interface
JTAG Joint Test Action Group (test interface for digital logic circuits)
L2 Level 2
LCCB Line Card Clock Building Block
LED Light Emitting Diode
16
ATCA-9405 Installation and Use (6806800M71G)
Page 17
Abbreviation Definition
LPC Low Pin Count
MAC Medium Access Controller
MMC Module Management Controller
MTBF Mean Time Between Failures
NEBS Network Equipment Building System
NVRAM Non-volatile Random Access Memory
OEM Original Equipment Manufacturer
OOS Out-of-service
PCB Printed Circuit Board
PCIe PCI-Express
PHY Physical layer device (for Ethernet)
About this Manual
PICMG PCI Industrial Computer Manufacturers Group
PLL Phase Locked Loop
POST Power-on Self Test
RoHS Restriction of Hazardous Substances
RTC Real-Time Clock
RTM Rear Transition Module
Rx Receive line (of a duplex serial communication interface)
RXAUI Reduced XAUI
SDR Sensor Data Record
SDRAM Synchronous Dynamic Random Access Memory
SECDED Single Error Correction Double Error Detection
SELV Safety Extra Low Voltage
SerDes Serializer/Deserializer
SGMII Serial Gigabit Media Independent Interface
SMP Symmetric Multi-Processors
SPD Serial Presence Detect
TCAM Ternary Content Addressable Memory
ATCA-9405 Installation and Use (6806800M71G)
17
Page 18
Abbreviation Definition
TCP Transmission Control Protocol
Tx Transmit line (of a duplex serial communication interface)
UART Universal Asynchronous Receiver-Transmitter
USB Universal Serial Bus
UTMI USB 2.0 Transceiver Macrocell Interface
XAUI 10 Gigabit Attachment Unit Interface
XLAUI 40 Gigabit Attachment Unit Interface

Conventions

The following table describes the conventions used throughout this manual.
About this Manual
About this Manual
Notation Description
0x00000000 Typical notation for hexadecimal numbers (digits are
0 through F), for example used for addresses and offsets
0b0000 Same for binary numbers (digits are 0 and 1)
bold Used to emphasize a word Screen Used for on-screen output and code related elements
or commands in body text
Courier + Bold Used to characterize user input and to separate it
from system output
Reference Used for references and for table and figure
descriptions
File > Exit Notation for selecting a submenu
<text> Notation for variables and keys
[text] Notation for software buttons to click on the screen
and parameter description
... Repeated item for example node 1, node 2, ..., node
12
18
ATCA-9405 Installation and Use (6806800M71G)
Page 19
Notation Description
About this Manual
. . .
.. Ranges, for example: 0..4 means one of the integers
| Logical OR
Omission of information from example/command that is not necessary at the time being
0,1,2,3, and 4 (used in registers)
Indicates a hazardous situation which, if not avoided, could result in death or serious injury
Indicates a hazardous situation which, if not avoided, may result in minor or moderate injury
Indicates a property damage message
No danger encountered. Pay attention to important information

Summary of Changes

This manual has been revised and replaces all prior editions.
Part Number Publication Date Description
6806800M71A September 2011 Preliminary copy
6806800M71B November 2011 DA version
6806800M71C June, 2012 EA version
ATCA-9405 Installation and Use (6806800M71G)
19
Page 20
About this Manual
About this Manual
Part Number Publication Date Description
6806800M71D December, 2012 GA version
6806800M71E May, 2013 Updated Table 2-21, Establishing a Telnet Session on page
142, and IPMI command examples in Set Serial Output
Command on page 148.
6806800M71F November, 2013 Updated Chapter 8, Establishing a Telnet Session, on page
142, Figure 1-1 on page 23, Table 4-12 on page 87, Figure 5-1, Table 5-2 on page 92, Table 5-4 on page 95, Chapter 5, Fabric Interface, on page 96 and Figure 7-1.
6806800M71G May, 2014 Re- branded to Artesyn template.
20
ATCA-9405 Installation and Use (6806800M71G)
Page 21

Introduction

1.1 Overview

The ATCA-9405 is an Advanced Telecom Computing Architecture (AdvancedTCA®, ATCA®) blade based on two Cavium OCTEON II CN6880 Multi-Core MIPS64 Packet Processors and the dual-core Freescale P2020 Service Processor.
The MIPS64 processor cores can be configured for up to 32-way SMP LINUX support, run Cavium Simple Executives, and run fast path packet processing software for time critical applications. The ATCA-9405 supports for up to 162 Gigabit Ethernet (GbE) I/O bandwidth and a redundant 40GbE fabric. It allows the design of compact application systems for the upcoming new IP data infrastructure.The ATCA-9405 represents a performance and throughput increase over previous generations.
The dual-core Free scale QorIQ™ P2020 processor is used for basic board setup, general board management, and Ethernet switch management. The management processor has local mass storage support for uboot and user code. The boot code for the OCTEON II packet processors is provided via the management processor. The dual-core processor is used to offload other blade functions in order to maximize the packet processing capability, including managing Layer 2 and 3 switching/routing functions on the local Ethernet switch.
Chapter 1
This blade is targeted at security and packet-processing applications in the wireless and transport market segments. These markets include dataplane packet-processor, security co­processor, video compression, and pattern matching.
The ATCA-9405 complies with the SCOPE recommended profile for central office ATCA systems, PICMG® 3.0 ATCA mechanical specifications, E-keying, and Hot Swap.
ATCA-9405 Installation and Use (6806800M71G)
21
Page 22

1.2 Components and Features

The ATCA-9405 hardware components and its features are:
Single-slot ATCA form factor
Two Cavium OCTEON II CN6880 Multi-Core MIPS64 Packet Processors each with memory
support up to 64 GB DDR3
Dual Core Free scale P2020 Service Processor for blade management with up to 8 GB DDR3
Memory
Marvell 98CX8234 32-port Ethernet switch connecting all rear I/O, backplane I/O and
Packet Processors with L2 and L3 switch management software.
Dual 1G/10G/40G Ethernet fabric interface
Dual 1G Ethernet base interface
Support for Wind River PNE 4.x OS, Cavium SDK, and 6WIND 6WINDGate
Introduction
22
ATCA-9405 Installation and Use (6806800M71G)
Page 23

1.3 Functional Overview

The following block diagram provides a functional overview of the ATCA-9405.
Figure 1-1 General System Block Diagram
Introduction
ATCA-9405 Installation and Use (6806800M71G)
23
Page 24

1.4 Additional Information

This section lists the regulatory certifications of ATCA-9405 hardware and briefly discusses the terminology and notation conventions used in this manual.
Mean time between failures (MTBF) has been calculated at 439,924 hours using the Telcordia SR-332, Issue 1 (Reliability Prediction for Electronic Equipment), method 2 at 30°C.

1.4.1 Regulatory Compliance

The ATCA-9405 has been tested to comply with various standards:
Table 1-1 Regulatory Compliance
Item Description
Introduction
Designed to comply with NEBS, Level 3
Designed to comply with ETSI ETSI Storage, EN 300 019-1-1, Class 1.2 equipment, Not
Telcordia GR-63-CORE, NEBS Physical Protection
Telcordia GR-1089-CORE, Electromagnetic Compatibility and Electrical Safety – Generic Criteria for Network Telecommunications Equipment. Equipment Type 2
Temperature Controlled Storage Locations
ETSI Transportation, EN 300 019-1-2, Class 2.3 equipment, Public Transportation
ETSI Operation, EN 300 019-1-3, Class 3.1(E) equipment, Temperature Controlled Locations
ETSI EN 300 132-2 Environmental Engineering (EE); Power supply interface at the input to telecommunications equipment; Part 2: Operated by direct current (dc)
ETSI ETS 300 753, Equipment Engineering (EE); Acoustic noise emitted by telecommunications equipment
24
ATCA-9405 Installation and Use (6806800M71G)
Page 25
Introduction
Table 1-1 Regulatory Compliance (continued)
Item Description
EMC ETSI EN 300 386 Electromagnetic compatibility and Radio
spectrum Matters (ERM); telecommunication network equipment; ElectroMagnetic Compatibility (EMC) requirements, Telecommunication equipment room (attended)
CFR 47 FCC Part 15 Subpart B, Class A (US); FCC Part 15 - Radio Frequency Devices; Subpart B: Unintentional Radiators
AS/NZS CISPR 22 (Australia/New Zealand), Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment
VCCI Class A (Japan), Voluntary Control Council for Interference by Information Technology Equipment
CISPR 22 Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement
Safety Certified to UL/CSA 60950-1, EN 60950-1 and IEC 60950-1 CB
RoHS/WEEE compliance DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND
Interoperability Designed to operate within a CP-TA B.4 system environment at
ATCA-9405 Installation and Use (6806800M71G)
CISPR 24 Information technology equipment – Immunity characteristics – Limits and methods of measurement
Scheme
Safety of information technology equipment, including electrical business equipment
OF THE COUNCIL on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)
DIRECTIVE 2002/96/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on waste electrical and electronic equipment (WEEE)
full performance
25
Page 26

1.4.2 RoHS Compliance

The ATCA-9405 is compliant with the European Union’s RoHS (Restriction of use of Hazardous Substances) directive created to limit harm to the environment and human health by restricting the use of harmful substances in electrical and electronic equipment. Effective July 1, 2006, RoHS restricts the use of six substances: cadmium (Cd), mercury (Hg), hexavalent chromium (Cr (VI)), polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs), and lead (Pb). Configurations that are RoHS compliant are built with lead-free solder.
Introduction
26
ATCA-9405 Installation and Use (6806800M71G)
Page 27
Figure 1-2 Declaration of Conformity
Introduction
ATCA-9405 Installation and Use (6806800M71G)
27
Page 28

1.4.3 Notation

Active low signals
An active low signal is indicated with an asterisk # after the signal name.

1.5 Ordering Information

Table 1-2 Ordering Information
Part Number Product Description
ATCA-9405B-32GB ATCA-9405 - 2X CN6880-1.2GHZ, 2X 16GB DDR3 MEMORY ON FOUR
LOCAL MEMORY CONTROLLERS - 1X P2020 WITH 2GB MEMORY - 16GB FLASH - BBS - SWITCH MGMT SW
Introduction
ATCA-9405B-64GB On customer request
ARTM-9405B-16X10GE ARTM-9405 - 8X10G (SFP+) and 2x40G (QSFP)
SM-BBS-WR-ATCA-9405 Basic Blade Services software and L2 & L3 switch management software
based on Wind River PNE4.x Linux. (CD Media only)
RJ45-DSUB-ATCA7140 RJ-45 DSUB cable for the ATCA-7140, 7150, 7350, 736X
28
ATCA-9405 Installation and Use (6806800M71G)
Page 29

1.6 Product Identification

Figure 1-3 Serial Number and Product ID
Introduction
On R1.0 prototypes, only the Serial Number label is available.
ATCA-9405 Installation and Use (6806800M71G)
29
Page 30
Introduction
30
ATCA-9405 Installation and Use (6806800M71G)
Page 31

Setup

2.1 Overview

This chapter describes the physical layout of the board, the setup process, and how to check for proper operation once the board has been installed. This chapter also includes troubleshooting, service, and warranty information.

2.2 Electrostatic Discharge

Before you begin the setup process, remember that the electrostatic discharge (ESD) can easily damage the components on the ATCA-9405 hardware. Electronic devices, especially those with programmable parts, are susceptible to ESD, which can result in operational failure. Unless you ground yourself properly, static charges can accumulate in your body and cause ESD damage when you touch the board.
Chapter 2
Use proper static protection and handle ATCA-9405 boards only when absolutely necessary. Always wear a wriststrap to ground your body before touching a board. Keep your body grounded while handling the board. Hold the board by its edges—do not touch any components or circuits. When the board is not in an enclosure, store it in a static-shielding bag.
To ground yourself, wear a grounding wriststrap. Simply placing the board on top of a static­shielding bag does not provide any protection—place it on a grounded dissipative mat. Do not place the board on metal or other conductive surfaces.
ATCA-9405 Installation and Use (6806800M71G)
31
Page 32

2.3 ATCA-9405 Circuit Board

The ATCA-9405 circuit board is an ATCA blade assembly and complies with the PICMG 3.0 ATCA mechanical specification. It uses a 16-layer printed circuit board with the following dimensions:
Table 2-1 Circuit Board Dimensions
Width Depth Height Weight (typical)
Setup
12.687 in. (322.25 mm)
This is the typical weight for the ATCA-9405. Board weight varies slightly per configuration; contact Technical Support if you require a specific configuration weight.
11.024 in. (280.01 mm)
< .84 in. (<21.33 mm)
8.38 lb. (3.80 kg)
The Figure 2-1 on page 32, shows the face plate layout for ATCA-9405 board.
Figure 2-1 Faceplate Layout
The face plate of the blade provides the following interfaces and control elements.
Table 2-2 Faceplate Interfaces
Processor Interfaces / Control Elements
Packet Processor One Serial Console port for Packet Processor 1 (only for maintenance
purposes) One Serial Console port for Packet Processor 2 (only for maintenance
purposes) One 10/100/1000Base-T Ethernet port shared for both Packet
Processors (only for maintenance purposes)
32
Service Processor One USB port (only for maintenance purposes)
One Serial Console port (only for maintenance purposes) One 10/100/1000Base-T Ethernet port (only for maintenance purposes)
ATCA-9405 Installation and Use (6806800M71G)
Page 33
Table 2-2 Faceplate Interfaces (continued)
Processor Interfaces / Control Elements
IPMC Out of Service (OOS) LED
In Service (IS) LED Attention (ATN) LED Hot Swap (H/S) LED Recessed Reset Button
For these interfaces, the maximum cable length should not exceed more than 3m.
Setup

2.3.1 Switch Settings

All mechanical switches are OFF in their default configuration. Switch OFF means high level for the connected signal and switch ON means low level for the connected signal.
ATCA-9405 Installation and Use (6806800M71G)
33
Page 34
Setup
The switches are placed on component side 1. The Figure 2-2 on page 34, shows the switch locations on the board.
Figure 2-2 Switch Location with Heat Sink SW1 and SW2
34
ATCA-9405 Installation and Use (6806800M71G)
Page 35
Figure 2-3 Switch Location with Heat Sink SW3 and SW4
Setup
2.3.1.1 FPGA and CPLD/IPMC Switches
The switch settings are described in Table 2-3 on page 35.
Table 2-3 Settings for Switch SW1
Switch Description Default
SW1-1 IPMI Boot Select
OFF = SPI Boot Flash is selected by IPMC ON = SPI Boot Flash is selected by SW1-2
SW1-2 Manual Boot Select
OFF = Default SPI Boot Flash selected ON = Recovery SPI Boot Flash selected
ATCA-9405 Installation and Use (6806800M71G)
OFF Default or Recovery SPI Boot Flash
is selected by IPMC
OFF Default SPI Boot Flash is used
35
Page 36
Table 2-3 Settings for Switch SW1 (continued)
Switch Description Default
SW1-3 Debug Header Boot Select
This switch overrides selection done via SW1-1 and SW1-2.
OFF = Boot from SPI Boot Flash (TSOP devices)
ON = Boot from SPI Debug Header
SW1-4 Reserved OFF Do not change
OFF Boot from TSOP SPI Flash
Table 2-4 Settings for Switch SW2 (for debugging only)
Switch Description Default
SW2-1 Reserved OFF Do not change
SW2-2 Reserved OFF Do not change
Setup
SW2-3 Reserved OFF Do not change
SW2-4 Reserved OFF Do not change
Table 2-5 Settings for Switch SW3
Switch Description Default
SW3-1 Enable E10-USB Emulator for H8S
OFF = Disabled ON = Enabled
SW3-2 Enable H8S Programming via Debug Console
OFF = Disabled ON = Enabled
SW3-3 Manual Payload Power Enable for Blade
OFF = IPMI controlled power enable for blade ON = Manual power enable for blade
SW3-4 Manual Payload Power Enable for RTM
OFF = IPMI controlled power enable for RTM ON = Manual power enable for RTM
OFF E10-USB Emulator disabled
OFF H8S programming disabled
OFF IPMI controlled power enabled
OFF IPMI controlled power enabled
36
ATCA-9405 Installation and Use (6806800M71G)
Page 37
Table 2-6 Settings for Switch SW4 (for debugging only)
Switch Description Default
Setup
SW4-1 Manual Power Enable for Packet Processor 1
OFF = SP controlled PP1 power enable ON = Manual PP1 power enable
SW4-2 Manual Power Enable for Packet Processor 2
OFF = SP controlled PP2 power enable ON = Manual PP2 power enable
SW4-3 (dual
function)
SW4-4 IPMC Console Output Selection
IPMC Watchdog Enable (SW3-3 = OFF) OFF = Watchdog enabled ON = Watchdog disabled
Reserved (SW3-3 = ON) OFF Do not change
OFF = IPMC console output via debug connector
ON = IPMC console output via front panel connector
OFF Software controlled (SP) power
enable for PP1
OFF Software controlled (SP) power
enable for PP2
OFF IPMC Watchdog Enabled
OFF IPMC Console Output via
debugging header
ATCA-9405 Installation and Use (6806800M71G)
37
Page 38

2.3.2 Safety Critical Hot Spots

The following figure shows the critical hot spots on the ATCA-9405 board.
Figure 2-4 Location of the Hot Spots
Setup
38
Temperature Spot 2 (on 48V DC/DC Converter) = 100°C (max) exact location: in the geometric middle of the heat spreader
Temperature Spot 1 (on Power Entry
Module) = 110°C (max) exact location: on top of upper transformer housing
ATCA-9405 Installation and Use (6806800M71G)
Page 39

2.3.3 Connector Pin Assignment

2.3.3.1 Face Plate Connectors
Refer Figure 2-1 for the face plate layout.
2.3.3.1.1 USB Port
One standard USB Type-A connector for access to the USB interface of the Service Processor is available at the face plate.
Table 2-7 USB Connector Pin-out
Pin Signal
1 VCC_USB
2D-
Setup
3D+
4GND
2.3.3.1.2 Ethernet Ports
Two shielded RJ45 connectors with integrated transformers for 10/100/1000Base-T Ethernet are available at the front panel.
Table 2-8 Ethernet Connector Pin-out
Pin Signal
1 BI_DA+
2 BI_DA-
3 BI_DB+
4 BI_DC+
5 BI_DC-
6 BI_DB-
7 BI_DD+
8 BI_DD-
ATCA-9405 Installation and Use (6806800M71G)
39
Page 40
2.3.3.1.3 Serial Console Ports
Three shielded RJ45 connectors (with Cisco style pin-out) for serial consoles are available at the front panel.
Table 2-9 Serial Console Connector Pin-out (Cisco Style)
Pin Signal
1RTS#
2NC
3 TXD
4GND
5GND
6 RXD
7NC
Setup
8CTS#
40
ATCA-9405 Installation and Use (6806800M71G)
Page 41
2.3.3.2 On-board Connectors
The following figure shows the location of eUSB Drive Connector (P6) on ATCA-9405.
Figure 2-5 Location of On-board Connectors
Setup
ATCA-9405 Installation and Use (6806800M71G)
P6
41
Page 42
2.3.3.2.1 eUSB Drive Connector
ATCA-9405 provides one 2x5 pin header and a mounting hole for eUSB drives like Smart Modular Z-U130.
Table 2-10 eUSB Drive Connector Pin-out
Pin Signal
1VCC
2NC
3D-
4NC
5D+
6NC
7GND
Setup
8NC
9KEY
10 NC
42
ATCA-9405 Installation and Use (6806800M71G)
Page 43
2.3.3.3 Back Panel Connectors
2.3.3.3.1 Overview
The AdvancedTCA backplane connectors reside in three zones, 1 to 3 as specified by the AdvancedTCA standard and are called P10, P20 and 23, and P30, P31, and 32. The pinouts of all these connectors are given in this section.
Figure 2-6 Location of AdvancedTCA Connectors
Setup
ATCA-9405 Installation and Use (6806800M71G)
43
Page 44
2.3.3.3.2 Zone 1 Connector
The Zone 1 connector is used to deliver power from the ATCA back plane to the ATCA-9405 baseboard. The pin out for this connector is defined by the ATCA specifications. The ATCA-9405 does not implement Metallic Test or Ringing Generator Circuitry and therefore does not use pins 17 through 24.
Figure 2-7 P10 Backplane Connector Pinout
Setup
44
Table 2-11 Zone 1 Connector P10 Pin Assignment
Contact Destination Description
1 - 4 Reserved Reserved
5 IPMC ISC PC0 Hardware Address Bit 0
6 IPMC ISC PC1 Hardware Address Bit 1
7 IPMC ISC PC2 Hardware Address Bit 2
8 IPMC ISC PC3 Hardware Address Bit 3
9 IPMC ISC PD4 Hardware Address Bit 4
10 IPMC ISC PD5 Hardware Address Bit 5
11 IPMC ISC PD6 Hardware Address Bit 6
12 IPMC ISC PD7 Hardware Address Bit 7
ATCA-9405 Installation and Use (6806800M71G)
Page 45
Table 2-11 Zone 1 Connector P10 Pin Assignment (continued)
Contact Destination Description
13 IPMC IMC PD0 IPMB Clock Port A
14 IPMC IMC PD1 IPMB Data Port A
15 IPMC ISC PC5 IPMB Clock Port B
16 IPMC ISC PC4 IPMB Data Port A
17-24 Not used Not used
25 Shelf Ground Shelf Ground
26 Logic Ground Logic Ground
27 Power Building Block Enable B
28 Power Building Block Voltage Return A
29 Power Building Block Voltage Return B
30 Power Building Block Early -48V A
Setup
31 Power Building Block Early -48V B
32 Power Building Block Enable A
33 Power Building Block -48V A
34 Power Building Block -48V A
2.3.3.3.3 Zone 2 Connector
The ATCA specifications define five identical connectors for the Zone 2 data transport. These connectors are referred to as Free Board connectors and are assigned reference designators P20 through P24 as per the ATCA specifications.
The ATCA-9405 is a node board and uses only two of the five connectors P20 and P23. P20 is used to support clock synchronization interface and update channels and P23 is used to support the base and fabric channels.
ATCA-9405 Installation and Use (6806800M71G)
45
Page 46
Setup
Tyco HM-Zd Plus connectors are used to support 40 Gigabit Ethernet through backplane.
Table 2-12 Zone 2 Connector P20 Pin Assignment
Row Interface a b c d e f g h
1 CLK CLK1A+ CLK1A- CLK1B+ CLK1B - CLK2A+ CLK2A- CLK2B+ CLK2B-
2 Update
Channel
3 UC_TX2+ UC_TX2- UC_RX2+ UC_RX2- UC_TX3+ UC_TX3- UC_RX3+ UC_RX3-
4 UC_TX0+ UC_TX0- UC_RX0+ UC_RX0- UC_TX1+ UC_TX1- UC_RX1+ UC_RX1+
5Fabric
Channel 15
6NCNCNCNCNCNCNCNC
7Fabric
Channel 14
8NCNCNCNCNCNCNCNC
9Fabric
Channel 13
10 NC NC NC NC NC NC NC NC
NC NC NC NC CLK3A+ CLK3A- CLK3B+ CLK3B-
NC NC NC NC NC NC NC NC
NC NC NC NC NC NC NC NC
NC NC NC NC NC NC NC NC
46
Table 2-13 Zone 2 Connector P23 Pin Assignment
Row Interface a b c d e f g h
1Fabric
Channel 2
2 FC2_TX0+ FC2_TX0- FC2_RX0+ FC2_RX0-FC2_TX1+FC2_TX1- FC2_RX1+ FC2_RX1-
3Fabric
Channel 1
4 FC1_TX0+ FC1_TX0- FC1_RX0+ FC1_RX0-FC1_TX1+FC1_TX1- FC1_RX1+ FC1_RX1-
5Base
Channel 1
6Base
Channel 2
7NA NC NC NC NC NC NC NC NC
8NA NC NC NC NC NC NC NC NC
9NA NC NC NC NC NC NC NC NC
10 NA NC NC NC NC NC NC NC NC
FC2_TX2+ FC2_TX2- FC2_RX2+ FC2_RX2-FC2_TX3+FC2_TX3- FC2_RX3+ FC2_RX3-
FC1_TX2+ FC1_TX2- FC1_RX2+ FC1_RX2-FC1_TX3+FC1_TX3- FC1_RX3+ FC1_RX3-
BC1_DA+ BC1_DA- BC1_DB+ BC1_DB - BC1_DC+BC1_DC- BC1_DD+ BC1_DD-
BC2_DA+ BC2_DA- BC2_DB+ BC2_DB - BC2_DC+BC2_DC- BC2_DD+ BC2_DD-
ATCA-9405 Installation and Use (6806800M71G)
Page 47
2.3.3.3.4 Zone 3 Connector
ATCA-9405 provides three connectors P30, P31, and P32 for connection to the RTM.
Table 2-14 Zone 3 Connector P30 Pin Assignments
Setup
Table 2-15 Zone 3 Connector P31 Pin Assignments
ATCA-9405 Installation and Use (6806800M71G)
47
Page 48
Table 2-16 Zone 3 Connector P32 Pin Assignments

2.3.4 Debugging Headers

Setup
The following debugging headers are provided on the ATCA-9405. Please note that debugging headers are only used internally and may be removed later for cost reduction reasons. For more information regarding location and usage of debugging headers, please contact sales/marketing team.
Table 2-17 Debugging Header
Location Type Description
JP1 16-pin Header, 1.27mm pitch P2020 debugging header
MSRCID signals and second serial console port (UART1 interface)
JP2 8-pin Header, 1.27mm pitch P2020 Boot Flash header
JP3 3-pin Header, 2.54mm pitch IPMC debug console
JP5 16-pin Header, 1.27mm pitch E10A-USB Emulator header for IPMC
P47 16-pin Header, 1.27mm pitch Packet Processor 1 debugging header
EJTAG support and second serial console port (UART1 interface)
P57 16-pin Header, 1.27mm pitch Packet Processor 2 debugging header
EJTAG support and second serial console port (UART1 interface)
48
ATCA-9405 Installation and Use (6806800M71G)
Page 49
Table 2-17 Debugging Header (continued)
Location Type Description
P7 16-pin Header, 1.27mm pitch P2020 COP interface
P8 16-pin Header, 1.27mm pitch Management and Payload Power JTAG interface
2.3.4.1 IPMC Debug Console Header
A three pin header is provided to access IPMC debug console. The pin assignment is shown below.
Table 2-18 IPMC Debug Console Header Pin Assignment
Pin Signal
1GND
3 IPMC_TXD
Setup
4 IPMC_RXD
2.3.4.2 COP Header
A 16-pin header is provided for access to P2020 COP interface. The pin assignment is shown below.
Table 2-19 COP Header Pin Assignment
Pin Signal
1 TDO
2QACK
3 TDI
4TRST#
5RUNSTOP
6 Target Power
7TCK
8 CKSTP_IN#
ATCA-9405 Installation and Use (6806800M71G)
49
Page 50
Table 2-19 COP Header Pin Assignment (continued)
Pin Signal
9TMS
10 NC
11 SRESET#
12 GND
13 HRESET#
14 KEY
15 CKSTP_OUT#
16 GND
2.3.4.3 EJTAG Header
Setup
A separate 16-pin header is provided to access each Packet Processor EJTAG interface. The pin assignment is shown below.
Table 2-20 EJTAG Header Pin Assignment
Pin Signal
1TRST#
2 UART1_RXD
3 TDI
4 UART1_TXD
5 TDO
6GND
7TMS
8GND
9TCK
10 NC
11 RESET#
12 KEY
50
ATCA-9405 Installation and Use (6806800M71G)
Page 51
Table 2-20 EJTAG Header Pin Assignment (continued)
Pin Signal
13 NC
14 Target Power
15 NC
16 NC
The standard EJTAG connector has only 14 pins, thus do not connect to pin 15 and 16.
Setup

2.4 ATCA-9405 Setup

Following items are required to setup and check the operation of the ATCA-9405:
ATCA chassis and power supply
Console cables for EIA-232 ports (Cisco style pin out)
Computer terminal
Save the antistatic bag and box for future shipping or storage.
ATCA-9405 Installation and Use (6806800M71G)
51
Page 52

2.4.1 Power Requirements

Make sure that the blade is used in an ATCA shelf connected to -60 VDC up to -48 VDC, according to Telecommunication Network Voltage (TNV-2). A TNV-2 circuit is a circuit whose normal operating voltages exceed the limits for a safety-extra-low-voltage (SELV) under normal operating conditions, and which is not subject to over-voltages from telecommunication networks.
Table 2-21 Typical Power Requirements
Configuration Power
Dual CN6880 running at 1.2GHz with 16GB DDR3 memory each, P2020 running at 1.0GHz with 2GB DDR3 memory, 16GB USB Flash Drive, Linux booted on P2020, Ethernet Switch fully initialized, Cavium Octeon RiscCore Stress test running on all 64 CN6880 cores, board running at room temperature.
Dual CN6880 running at 1.0 GHz with 16GB DDR3 memory each, P2020 running at 1.0GHz with 2GB DDR3 memory, 16GB USB Flash Drive, Linux booted on P2020, Ethernet Switch fully initialized, Cavium Octeon RiscCore Stress test running on all 64 CN6880 cores, board running at room temperature.
Dual CN6880 running at 800 MHz with 16GB DDR3 memory each, P2020 running at 1.0GHz with 2GB DDR3 memory, 16GB USB Flash Drive, Linux booted on P2020, Ethernet Switch fully initialized, Cavium Octeon RiscCore Stress test running on all 64 CN6880 cores, board running at room temperature.
Setup
235 W
215 W
195 W
52
ARTM-9405B-16X10GE (maximum Power consumption) 36 W
Rated Voltage Exception in the US and Canada
Operating Voltage Exception in the US and Canada
-48 VDC to -60 VDC
-48 VDC
-39 VDC to -72 VDC
-39 VDC to -60 VDC
The exact power requirements for the ATCA-9405 circuit board depends upon the specific configuration of the board, including the CPU frequency and amount of memory installed on the board.
ATCA-9405 Installation and Use (6806800M71G)
Page 53

2.4.2 Environmental Considerations

As with any printed circuit board, make sure that the air flow to the board is adequate. Chassis constraints and other factors greatly affect the air flow rate. The environmental requirements are as follows:
Table 2-22 Environmental Requirements
Requirement Operating Non-Operating
Setup
Temperature +5 ºC (+41 °F) to +40 ºC (+104 °F)
(normal operation) according to NEBS Standard GR-63-CORE
-5 ºC (+23 °F) to +55 ºC (+131 °F) (exceptional operation) according to NEBS Standard GR-63-CORE
Airflow The blade is designed to operate in a
chassis that provides 35 CFM across the blade for the stated temperature range
Temperature change
Relative humidity 5% to 90% non-condensing according to
Vibration 1 g from 5 to 100 Hz and back to 5 Hz at
Shock Half-sine, 11 m/Sec, 30 mSec/sec2 Blade level packaging
+/- 0.5 ºC/min according to NEBS Standard GR-63-CORE
Artesyn Embedded Technologies­internal environmental
requirements
a rate of 0.1 octave/minute
-40 ºC (-40 °F) to +70 ºC (+158 °F) (may be further limited by installed accessories)
-
+/- 0.5 ºC/min
5% to 95% non-condensing according to Artesyn Embedded
Technologies-internal environmental requirements
5-20 Hz at 0.1 g2/Hz 20-200 Hz at -3.0 dB/octave Random 20-200 Hz at -3 m/Sec2
Half-sine, 6 mSec at 180 m/Sec2
Free fall 1,200 mm/all edges and corners
ATCA-9405 Installation and Use (6806800M71G)
1.0 m (packaged) 100 mm (unpacked)
53
Page 54
Figure 2-8 Air Flow Graph
Setup
During the safety qualification of this blade, the following on-board locations were identified as critical with regards to the maximum temperature during blade operation. To guarantee proper blade operation and to ensure safety, you have to make sure that the temperatures at the locations specified in the following table are not exceeded. If not stated otherwise, the temperatures should be measured by placing a sensor exactly at the given locations.
Table 2-23 Critical Temperature Limits
Maximum Case or Junction
Component Thermal Design Power
Cavium CN6880 PP1 72 W Tj = 101°C
Cavium CN6880 PP2 72 W Tj = 101°C
DDR3 DIMM Modules 6.9 W Tc = 85°C
PCI-Express Switch 2.9 W Tj = 110°C
Ethernet Switch 33.5 W Tj = 115°C
Temperature
If you integrate the blade in your own system, contact your local sales representative for further safety information.
54
ATCA-9405 Installation and Use (6806800M71G)
Page 55

2.4.3 Hot Swap

The ATCA-9405 can be Hot Swapped, as defined in the ATCA specification. This section describes how to insert and extract an ATCA-9405 module in a typical ATCA system. (These procedures assume the system is using a shelf manager.)
The ATCA-9405 Rear Transition Module (RTM) has its own Hot Swap LED and switch, and it can be Hot Swapped in/out independently of the face plate. If the face plate is not present, then the RTM will not be powered. If the face plate is Hot Swapped out, the blue LED of the RTM illuminates. In either case, the RTM can be safely removed.
Personal Injury or Product Damage
Setup
The product is supplied by a TNV-2 voltage. This voltage is considered hazardous. Make sure that the external power supply meets the relevant safety standards.
Make sure that TNV-2 is separated from dangerous voltages (mains) through double or reinforced insulation.
Inserting a board
1. Insert the ATCA-9405 into an available slot.
2. Push the face plate handle (tab).
The blue Hot Swap LED on the front panel (see Figure 2-1) flashes a long blink to indicate that the board insertion is in progress and the system management software is activating the slot. Then the blue LED turns off, indicating the insertion process is complete, and payload power is present.
ATCA-9405 Installation and Use (6806800M71G)
55
Page 56
Removing a board
1. Pull out the handle (tab) on the ATCA-9405 front panel at one click. A short blink indicates that the board is requesting permission for extraction.
2. Remove the board when the blue LED on the front panel is on (no payload power).
Do not remove the ATCA-9405 while the blue LED is blinking.

2.5 Troubleshooting

In case of difficulty, use the following checklist:
Setup
Check that the ATCA-9405 circuit board is seated firmly in the carrier
Check that the system is not overheating
Check the cables and connectors to be certain that they are secure
Check that your terminal is connected to a console port

2.5.1 Technical Support

If you need help in resolving a problem with your ATCA-9405, visit
www.artesyn.com/computing. Keep the following information ready:
ATCA-9405 serial number identification, see Figure "Serial Number and Product ID" on
page 29.
Version and part number of the operating system (if applicable)
Whether your board has been customized for options such as a higher processor speed or
additional memory
License agreements (if applicable)
56
ATCA-9405 Installation and Use (6806800M71G)
Page 57

2.5.2 Product Repair

If you plan to return the board to Artesyn Embedded Technologies for service, visit
www.artesyn.com/computing to obtain a Return Merchandise Authorization (RMA) number.
List the items that you are returning and the board serial number, plus your purchase order number and billing information if your ATCA-9405 hardware is out of warranty. Contact our Test and Repair Services Department for any warranty questions. If you return the board, be sure to enclose it in an antistatic bag, such as the one in which it was originally shipped.
Put the RMA number on the outside of the package so that we can handle your problem efficiently. Our service department cannot accept material received without an RMA number.
Setup
ATCA-9405 Installation and Use (6806800M71G)
57
Page 58
Setup
58
ATCA-9405 Installation and Use (6806800M71G)
Page 59

Packet Processor

3.1 Overview

Two independent Packet Processor Units are implemented on ATCA-9405. Each unit includes the Packet Processor with DDR3 memory, boot flash, Ethernet interfaces, USB interfaces, serial interfaces, power supply, and the connections to the blade infrastructure. The main functions of the Packet Processor unit are illustrated in the Figure 3-1 on page 59.
Figure 3-1 Packet Processor Unit Overview
Chapter 3
ATCA-9405 Installation and Use (6806800M71G)
59
Page 60
The functions specified in the following sections are applicable for both the Packet Processor Units.

3.2 CN6880 Processor

ATCA-9405 design is based on Cavium OCTEON II CN6880 Multi-Core MIPS64 Processors. The CN68XX family is targeted for high-performance, high-throughput, service-rich applications in secure datacenter, mobile internet, and borderless enterprise applications.
The CN68XX family includes six software and pin-compatible processors, with 16 to 32 cnMIPS64 v2 cores, over 85 application acceleration engines, and real time Power Optimizer features.
Packet Processor
High-bandwidth connectivity based on the latest standards-based SERDES I/Os including PCIe Gen2, XAUI, DXAUI, RXAUI, SGMII, and Interlaken enables throughputs up to 40 Gbps using a single chip or scaling to over 100 Gbps using multiple chips.
Using up to four DDR3 controllers, a 4 MB L2 Cache, and complete application acceleration, including packet processing, Encryption/Decryption, Deep Packet Inspection (RegEx), Compression/decompression, De-duplication, RAID, and Multi-core scaling, the CN68XX offers both the highest compute as well as the highest throughput processing and services.
Note that the 1.5 GHz version of the processor may not be used on ATCA-9405 because of thermal and electrical limitations. Tradeoff with regard to core count and memory size is needed to enable usage of 1.5 GHz processor.

3.3 Cache

The CN6880 includes 37 KB of L1 instruction cache and 32 KB of L1 data cache with parity protection and single-bit error correction for each core. The L1 caches are part of the processor core and run at full core clock frequency. Additionally, 4 MB L2 cache is shared between all processor cores. The L2 cache is 16-way set-associative with a 128 byte cache block, write-back and SECDED ECC support for both the on-chip data and tags.
60
ATCA-9405 Installation and Use (6806800M71G)
Page 61

3.4 System Memory

3.4.1 Memory Interface

All four CN6880 memory controllers are used on ATCA-9405. Each memory controller provides a 72-bit (64-bit data plus 8-bit for ECC) wide DDR3 interface channel that connects with a single DDR3 DIMM socket.
Two physical memory banks (chip select signals) are implemented per DIMM socket to allow use of single-rank and dual-rank DIMM modules. The use of quad-rank DIMM modules is not supported by the memory controller.
Each DDR3 memory channel runs at data rates from 600 MHz to 1333 MHz providing a total bandwidth of up to 10.6 GBps per memory channel. The DDR3 speeds supported by CN6880 are listed in the table below.
Packet Processor
Table 3-1 DDR3 Speed Grades
Standard Name
DDR3-800 100 MHz 10 ns 400 MHz 800 Million PC3-6400 6400 MBps
DDR3-1066 133 MHz 7.5 ns 533 MHz 1066 Million PC3-8500 8533 MBps
DDR3-1333 166 MHz 6 ns 667 MHz 1333 Million PC3-10600 10667 MBps
Memory Clock
Cycle Time

3.4.2 Memory Socket

Four VLP DDR3 DIMM sockets (one DIMM socket per memory channel) are provided to install in the shelf DIMM modules. The socket is keyed for DDR3 DIMM modules using 1.5V supply voltage.
ATCA-9405 Installation and Use (6806800M71G)
I/O Bus Clock
Data Transfer Per Second
Module Name
Peak Transfer Rate
61
Page 62

3.4.3 Memory Modules

ATCA-9405 requires VLP DDR3 DIMM modules in order to fit within the maximum component height profile of an ATCA blade. Installed module height must not exceed 21.33 mm above PCB surface.
The CN6880 DIMM module requirements are listed below.
Table 3-2 CN6880 Memory Module Requirements
Characteristics Value
Form Factor 240 pin Very Low Profile (VLP) DIMM
Memory Technology DDR3-1333 (PC3-10600)
DIMM Organization Single-rank or dual-rank
Device Organization x8 or x16 organized
Packet Processor
Registered DIMM
Memory Size 2 GB, 4 GB, 8 GB
Bus Width 64-bit data
8-bit ECC
Supply Voltage +1.5V
DIMMs with x4 memory devices are not supported by the memory controller.
The three preferred DIMM modules for CN6880 are listed in the table below, which provides up to 32 GB of DDR3 main memory per Packet Processor Unit.
Table 3-3 CN6880 Preferred Memory Modules
Characteristics 2 GB DIMM 4 GB DIMM 8 GB DIMM
Vendor Smart Modular Smart Modular Smart Modular
Device SG572568EMR069P2SG SG5721288EMR069P2SD SG5721G8EMR069P2SA
Size 2 GB 4 GB 8 GB
Type DDR3-1333 DDR3-1333 DDR3-1333
CAS latency 9-9-9 9-9-9 9-9-9
62
ATCA-9405 Installation and Use (6806800M71G)
Page 63
Packet Processor
Table 3-3 CN6880 Preferred Memory Modules (continued)
Characteristics 2 GB DIMM 4 GB DIMM 8 GB DIMM
Organization 18*128Mx8 (1Gb die) 18*256Mx8 (2Gb die) 18*512Mx8 (4Gb die)
Number of Ranks 2 2 2
Package 240-pin VLP Registered DIMM with ECC
Oracle Number 9706802A83 9706802A73 9706802A20

3.4.4 Thermal Sensor

Majority of DDR3 Registered DIMMs contain a Thermal Sensor on DIMM (TSOD) and its output is tied to EVENT# pin187 on the DIMM. This signal is an active low signal and is used by the DIMM to notify the Processor or system management device that its thermal sensor has crossed a thermal threshold. The four thermal sensors are readable by CN6880 and by the IPMC. The EVENT# interrupts are connected to CN6880 (which is responsible for interrupt routing) GPIO pins.

3.5 Octeon U-Boot

The two Octeon-II packet processors on the ATCA-9405 do not have a boot flash device. They are started using the oct-remote-boot command from the Octeon SDK via the PCI bus from the Freescale P2020 service processor.
Both Packet Processor Units are not powered when payload power is enabled by the IPMC. The Packet Processor Units remain in power-off state until enabled by the Service Processor.
The CN6880 processors are hardware strapped for PCI Express (PCIe) Remote Boot Mode. After power up or reset the processor cores remain in idle state until they are booted via PCIe interface by the Service Processor.

3.5.1 NVRAM

U-Boot for the Octeon processors does not use an EEPROM to store its environment parameters. Instead, the configuration parameters for U-Boot are transferred together with the boot image from the service processor.
ATCA-9405 Installation and Use (6806800M71G)
63
Page 64
Application specific parameters can be kept on the service processor. It is not possible to save environment parameter changes within U-Boot as the saveenv command does not work.

3.5.2 Network Interfaces

The following network interfaces are available in U-Boot:
octmgmt0 (front-panel management interface)
octeth0 (1000BaseX interface to switch)
octeth4 (DXAUI interface 0 to switch)
octeth5 (DXAUI interface 1 to switch)

3.6 SerDes Configuration

Packets and control information can flow from the CN6880 via any of the SGMII, XAUI, DXAUI, RXAUI, Interlaken, or PCIe interfaces. Internally CN6880 supports five SerDes quad-lane modules (QLMs) for a total of 20 SERDES lanes.
Packet Processor
64
For the default configuration of ATCA-9405 (where the Packet Processors are interconnected via Interlaken Interface), one PCI Express, one Interlaken, two DXAUI and two RXAUI interfaces are provided.
Note that ATCA-9405-ILK-MODULE must be assembled on this version.
The corresponding QLM mode strapping is listed in the table below. The QLM reference clock must be configured according to the IO interface standard used.
Table 3-4 CN6880 SerDes Configuration (Interlaken Mode)
QLM Supported Interfaces Configuration
QLM0 XAUI, RXAUI, SGMII RXAUI
156.25 MHz
QLM1 PCI-Express, Interlaken Interlaken
156.25 MHz
QLM2 PCI-Express, Interlaken XAUI,
DXAUI, SGMII
DXAUI
156.25 MHz
ATCA-9405 Installation and Use (6806800M71G)
Page 65
Table 3-4 CN6880 SerDes Configuration (Interlaken Mode) (continued)
QLM Supported Interfaces Configuration
QLM3 PCI-Express XAUI, SGMII PCI Express Gen 1
QLM4 PCI Express XAUI, DXAUI, SGMII DXAUI

3.7 PCI Express Interface

CN6880 integrates two PCIe Interfaces that are compliant with the PCIe Base Specification Revision 2.0. They are configured at boot time to act as either root complex or endpoint. The PHY of the PCIe interface supports transmission rate of up to 5.0 Gbps per lane. The two interfaces can be configured as one single or two independent ports with x1, x2, x4, or x8 link widths.
Packet Processor
100 MHz
156.25 MHz
On ATCA-9405, PCIe Interface 0 (using QLM3 SerDes module) is configured to x1 link width and is connected to the PLX PEX8608 switch. For more details regarding PCIe infrastructure, refer to Service Infrastructure on page 101.
PCIe Interface 1 is not used on ATCA-9405.

3.8 Ethernet Interface

The CN6880 provides a number of integrated on-chip Ethernet controllers and supports various interfaces standards. The CN6880 family can implement up to:
16 SGMII/1000BASE-X SerDes interfaces through up to 4 four-port (four-lane) packet
interfaces. A full-duplex port consists of four external pins, a differential output pair and a differential input pair. CN6880 couples logic that implements the SGMII and/or 1000BASE­X protocols on SerDes lanes with a 10/100/1000 802.3 MAC.
Five XAUI SerDes interfaces in up to 4 four-lane packet interfaces. Each interface consists
of 16 external pins in total, four differential output pairs plus four differential input pairs. CN6880 couples logic that implements the XAUI, reduced XAUI (RXAUI) or double data rate XAUI (DXAUI) interface/protocols on SerDes lanes with an IEEE 802.3-2005 MAC.
ATCA-9405 Installation and Use (6806800M71G)
65
Page 66
In addition, CN6880 provides a 10/100/1000 Ethernet MAC-to -PHY interface supporting either an MII MAC or an RGMIII MAC. The MII links are fully compliant with the IEEE 802.3 specifications, and the RGMII links are fully compliant with the HP RGMII 1.3 specifications.
On ATCA-9405 two DXAUI, two RXAUI, and one RGMII interface are implemented.

3.8.1 Front Panel Interface

The RGMII interface is connected to a 10/100/1000Base-T port at the front panel. The physical interface is implemented using Marvell 88E1512 Single Port Gigabit Ethernet Transceiver and an RJ45 connector with integrated magnetics.

3.8.2 Base and Fabric Interface

The SGMII interface (using QLM0 SerDes module) is connected to the Ethernet Switch and provides a Gigabit Ethernet interface to the control plane (Base Interface).
Packet Processor
The two DXAUI interfaces (using QLM2 and QLM4 SerDes module) are connected to the Ethernet Switch and provide a 2x20G Ethernet interface to the data plane (Fabric Interface).
The two RXAUI interfaces (using QLM0 SerDes module) are connected to the Ethernet Switch and provide a 20 Gigabit Ethernet interface to the data plane (FI).

3.9 Interlaken Interface

The Interlaken interface unit provides a narrow, high-speed, channelized packet interface using the scalable Interlaken protocol. It conforms to the Interlaken Protocol Definition V1.2 and the Interlaken Look-Aside Protocol Definition V1.1. Interlaken combines the channelization, programmable burst sizes, and per-channel backpressure features of the SPI4.2 protocol with the long-reach and reduced pin count of the XAUI protocol, and it offers the ability to tailor the design to the interface capacity of the application.
The Interlaken interface unit supports SerDes lanes running at up to 6.25 Gbps, two links/interfaces, and x8, x4, x2, and x1 configurations. On ATCA-9405 the Interlaken interface (using QLM1 SerDes module) is used for interconnection between the two Packet Processors (when ATCA-9405-ILK-MODULE is assembled).
66
ATCA-9405 Installation and Use (6806800M71G)
Page 67

3.10 USB Interface

The CN6880 USB subsystem contains an EHCI host controller, an OHCI host controller, and two physical USB ports. The USB interface is with USB specification, Revision 1.1 and supports high­speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operation. For more information refer to the Cavium OCTEON II Hardware Reference Manual.
The USB interface 1 is not used on ATCA-9405.
An assembly option (footprint for a high speed USB switch type FSUSB31K8X) to allow connection of USB Interface 0 toward ARTM is available. If you require this, then contact the sales/marketing team.

3.11 UART Interface

Packet Processor
The CN6880 provides a dual UART compatible with the PC16550D. Both interfaces consist of four wires RXD, TXD, RTS, and CTS. The interfaces run in full duplex mode and the baud rates are software programmable.
The first interface COM0 is connected to the Glue Logic FPGA that routes the interface to either the front panel connector or to the Terminal server. The connection to the front panel console connector is implemented via RS-232 transceiver. All four signals (RXD, TXD, RTS, and CTS) are connected to an RJ45 connector using Cisco DTE pin out assignment. Serial port parameters for the front panel interface are 9600 baud, 8 data bits, no parity bit, and 1 stop bit.
When serial port COM0 is routed to the Terminal Server for console redirection into the base network, only TXD and RXD signals are used. IPMC can control serial port routing. Serial port parameters for this interface are 9600 baud, 8 data bits, no parity bit, and 1 stop bit. For more information, see Serial Line Selection on page 139.
The second interface COM1 (only signals TXD and RXD) is connected to a standard 16-pin header for debugging purposes.
ATCA-9405 Installation and Use (6806800M71G)
67
Page 68

3.12 I2C Interface

The CN6880 has 2 two-wire serial interfaces (TWSI) that provide multi-master and master­slave I2C mode support. TWSI interface 0 is connected to the four DIMM modules for SPD detection. TWSI interface 1 is connected to the external EEPROM and to the Glue Logic FPGA for access to internal status and control registers.
Table 3-5 CN6880 I2C Bus Assignment
Address TWSI Component Function
0xA0 0 NA DIMM1 Memory Module SPD PROM
0xA2 0 NA DIMM2 Memory Module SPD PROM
0xA4 0 NA DIMM3 Memory Module SPD PROM
0xA6 0 NA DIMM4 Memory Module SPD PROM
0xA0 1 24LC128 U-Boot Parameter Storage EEPROM
Packet Processor
0xFE 1 NA Glue Logic FPGA

3.13 JTAG Interface

The IEEE 1149.1 compliant JTAG boundary scan interface of CN6880 is connected to an onboard 16-pin header to support a processor emulator for board debug. The additional signals for MIPS EJTAG support according to EJTAG Specification Revision 5.0 are supported. For connector pin out details, refer to Connector Pin Assignment.

3.14 Interrupts

Each Packet Processor is responsible for handling of interrupts that are generated within its own domain.

3.14.1 Packet Processor Interrupts

The CN6880 includes a central interrupt unit that allows centralized collection of internal and external interrupts as well as interrupt selection and distribution to the cores and to the integrated PCI Express controllers.
68
ATCA-9405 Installation and Use (6806800M71G)
Page 69
Packet Processor
Up to 16 GPIO pins are provided by the CN6880 to connect external interrupts with the central interrupt unit. Each GPIO pin can be programmed to be a level-sensitive interrupt pin or an edge-triggered interrupt pin.
All interrupt sources from the packet processor domains are directly connected to the GPIO[5:1] inputs of the associated Packet Processor.
The following table lists all interrupt sources of the packet processor domains and how the interrupts are routed on the board:
Table 3-6 Packet Processor Interrupts
Interrupt Source Interrupt Name Usage IRQ Line
PP1 PP1_DDR0_EVENT_N DIMM1 Thermal Event PP1_GPIO2
PP1_DDR1_EVENT_N DIMM2 Thermal Event PP1_GPIO3
PP1_DDR2_EVENT_N DIMM3 Thermal Event PP1_GPIO4
PP2 PP2_DDR0_EVENT_N DIMM1 Thermal Event PP2_GPIO2

3.15 Power Supply

ATCA-9405 supports software controlled power-down and power-on sequence for the two Packet Processor units as described in Hot Plug Support on page 102.
PP1_DDR3_EVENT_N DIMM4 Thermal Event PP1_GPIO5
PP1_ETH_INT_N 88E1512 PHY Interrupt PP1_GPIO1
PP2_DDR1_EVENT_N DIMM2 Thermal Event PP2_GPIO3
PP2_DDR2_EVENT_N DIMM3 Thermal Event PP2_GPIO4
PP2_DDR3_EVENT_N DIMM4 Thermal Event PP2_GPIO5
PP2_ETH_INT_N 88E1512 PHY Interrupt PP2_GPIO1
ATCA-9405 Installation and Use (6806800M71G)
69
Page 70

3.16 Cooling

A passive heat sink is mounted on top of the CN6880 package. The heat sink is designed to withstand shock and vibration tests according to the environmental conditions. The heat sink keeps the processor die temperature below the maximum rating of 125°C under any conditions listed in Environmental Considerations on page 53.
Packet Processor
70
ATCA-9405 Installation and Use (6806800M71G)
Page 71

Service Processor

4.1 Overview

The Service Processor (SP) functional unit is in charge of blade and RTM infrastructure. This includes management and control of the two CN6880 Packet Processors, the 98CX8234 Ethernet Switch, the PEX8608 PCI e Switch, and the RTM. The SP also takes the root complex role for the complete PCIe infrastructure on the blade and RTM. The main functions of the SP are shown in the Figure 4-1 on page 71.
Figure 4-1 Service Processor Unit Overview
Chapter 4
ATCA-9405 Installation and Use (6806800M71G)
71
Page 72

4.2 P2020 Processor

A Freescale P2020 QorIQ Communication Processor is used on ATCA-9405 as the onboard SP. The processor is manufactured in 45nm process technology and combines dual Power Architecture™ e500v2 processor cores with system logic required for networking, wireless infrastructure, and telecommunications applications.
The P2020 is available with three speed grades running at 800 MHz, 1000 MHz, and 1200 MHz core clock frequency. All speed grades are supported, the default speed grade on ATCA-9405 is 1.0GHz. Additionally, the board is prepared to support all three speed grades of P2010 single core derivative.

4.3 Cache

The P2020 includes 32 KB of L1 instruction cache and 32 KB of L1 data cache with parity protection for each core. L1 caches can be locked entirely or on a per-line basis, with separate locking for instructions and data. The 512 KB L2 cache is common to both processors and has full ECC protection on 64-bit boundary and supports instruction caching, data caching, or both modes. The L1 and L2 caches are part of the P2020 core complex and run at full core clock frequency.
Service Processor

4.4 Main Memory

4.4.1 Memory Interface

The P2020 memory controller on ATCA-9405 is configured for DDR3 SDRAM mode. The controller provides a 72-bit (64-bit data plus 8-bit for ECC) wide DDR3 interface (channel) that connects the P2020 with a single DDR3 DIMM socket.
Two physical memory banks (chip select signals) are implemented on DIMM socket to allow use of single-rank and dual-rank DIMM modules.
72
ATCA-9405 Installation and Use (6806800M71G)
Page 73
Service Processor
The DDR3 memory interface runs at a maximum frequency of 400 MHz providing a total bandwidth of 6.4 GBps. The fastest supported DDR3 speed is DDR3-800 (PC3-6400).
Table 4-1 P2020 DDR3 Speed Grades
Standard Name
DDR3-800 100 MHz 10 ns 400 MHz 800 Million PC3-6400 6400 MBps
DDR3-1066 133 MHz 7.5 ns 533 MHz 1066 Million PC3-8500 8533 MBps
DDR3-1333 166 MHz 6 ns 667 MHz 133 Million PC3-10600 10667 MBps
Memory Clock Cycle Time

4.4.2 Memory Socket

A Very Low Profile (VLP) DDR3 DIMM socket is provided to install of-the-shelf DIMM modules. The socket is keyed for DDR3 DIMM modules using 1.5V supply voltage.

4.4.3 Memory Modules

ATCA-9405 requires VLP DDR3 DIMM modules in order to fit within the maximum component height profile of an ATCA blade. Installed module height must not exceed 21.33 mm above PCB surface.
Table 4-2 P2020 Memory Module Requirements
Characteristics Value
Form Factor 240 pin Very Low Profile (VLP) DIMM
I/O Bus Clock
Data Transfers per second
Module Name
Peak Transfer Rates
Memory Technology DDR3-800 (PC3-6400)
Registered DIMM
DIMM Organization Single-rank or dual-rank
Device Organization x8 or x16 organized
Memory Size 2 GB, 4 GB, 8 GB
Bus Width 64-bit data
8-bit ECC
Supply Voltage +1.5V
ATCA-9405 Installation and Use (6806800M71G)
73
Page 74
Service Processor
DIMMs with x4 memory devices are not supported by the memory controller.
Default main memory size is 2 GB using one Smart Modular SG572568EMR069P2SG DIMM module. The three preferred DIMM modules for P2020 are listed in the table below, providing up to 8 GB of DDR3 main memory.
Table 4-3 P2020 Preferred Memory Modules
Characteristics 2 GB DIMM 4 GB DIMM 8 GB DIMM
Vendor Smart Modular Smart Modular Smart Modular
Device SG572568EMR069P2SG SG5721288EMR069P2SD SG5721G8EMR069P2SA
Size 2 GB 4 GB 8 GB
Type DDR3-1333 DDR3-1333 DDR3-1333
CAS latency 9-9-9 9-9-9 9-9-9
Organization 18*128Mx8 (1Gb die) 18*256Mx8 (2Gb die) 18*512Mx8 (4Gb die)
Number of Ranks 2 2 2
Package 240-pin VLP Registered DIMM with ECC
Oracle Number 9706802A83 9706802A73 9706802A20

4.4.4 Persistent Memory

The P2020 offers both hardware and software options to support persistent main memory. The persistent memory is an array of random access memory that preserves its contents during a warm/soft reset. Persistent memory is a necessary prerequisite for performing post mortem analysis of log data after reset and reboot of the payload CPU.
For persistent memory support on ATCA-9405, a dedicated register is implemented in the Glue Logic FPGA to enable or disable persistent memory by software. If persistent memory is enabled, the contents of the main memory stay unchanged after any applied reset, except power-up reset.
After reset is released and the board is booted, the application must check the persistent memory bit in FPGA and (if set) initialize the main memory but keep persistent memory area untouched.
74
ATCA-9405 Installation and Use (6806800M71G)
Page 75

4.4.5 Thermal Sensor

Majority of DDR3 Registered DIMMs contain a Thermal Sensor on DIMM (TSOD) and its output is tied to EVENT# pin187 on the DIMM. This signal is an active low signal and is used by the DIMM to notify the Processor or system management device that its thermal sensor has crossed a thermal threshold. The thermal sensor is readable by P2020 and by the IPMC. The EVENT# interrupt is connected to the FPGA (which is responsible for interrupt routing).

4.5 SP U-Boot

After power up or reset, the following necessary steps are taken by P2020 processor:
boot from active SPI Boot Flash
initialize PCIe infrastructure
initialize network infrastructure
Service Processor
power-up Packet Processors
initialize PCIe interfaces of Packet Processors
boot Packet Processors via PCIe

4.5.1 Environment Variables

U-Boot uses environment variables to both control the behaviour of various U-Boot components and to report information to user applications.
The working set of the U-Boot environment variables is stored in memory and can be accessed using the setenv and getenv commands. The values of environment variables can be:
The content of the NVRAM (an I2C EEPROM), or (if the NVRAMs CRC is invalid) a set of
compiled-in defaults.
The content of the IPMI boot parameter storage
Dynamic variables set during the boot-up phase
Variables set by the user via the U-Boot shell.
ATCA-9405 Installation and Use (6806800M71G)
75
Page 76
The above listing basically describes the order of precedence, that is a variable stored in the NVRAM can potentially be overridden, modified, or deleted by a variable of the same name stored in the IPMI boot parameter storage, and later on by dynamic variables declared during the boot process or by the user from the shell prompt.
Although the saveenv command stores the complete set of variables currently being used into the NVRAM, the actual setting of these variables might not become valid because they are overridden by the other entities.
Note that the U-Boot does not synchronize the NVRAM storage and the IPMI boot parameter storage by itself.
If the NVRAMs CRC is invalid, the NVRAM is initialized with the blade's default values immediately after detecting the bad CRC (before reading additional values from the IPMC).

4.5.2 Passing Parameter Set to the Operating System

Service Processor
An operating system making use of environment variables should only rely on the RAM copy of the parameter set.
U-Boot passes its current parameters via the firmware device tree. It generates a node /u- boot-env, containing a node for each environment variable. This is done by the bootm command as the final step before executing the OS image. Under Linux, these parameters appear under the directory /proc/dev-tree/u-boot-env.

4.5.3 Dynamic Variables Set During the Boot Phase

This section lists the variables that are set during the boot phase.
Table 4-4 Dynamic Variables Set During the Boot Phase
Variable Name Description
boottime The time (UNIX time) when the blade has started. If this variable is set
to "-1" then the RTC does not run at startup
physical_slot The physical slot number where the blade is mounted
logical_slot The logical slot number where the blade is mounted
bootbank The physical boot bank number from which the blade has started (0 or
1)
76
ATCA-9405 Installation and Use (6806800M71G)
Page 77
Service Processor
Table 4-4 Dynamic Variables Set During the Boot Phase (continued)
Variable Name Description
shelf_id The first byte of the shelf identifier as read from the shelf manager
shelf_location Two bytes encoding the logical slot number and the 1st byte of the shelf
ID, each octet separated by a colon
dhcp_clid The DHCP client ID (option 61) used in DHCP discover
uboot_version The U-Boot firmware version (in the format V<x>.<y>.<z>).
ethaddr eth1addr eth2addr
fpga_version Version of Glue Logic FPGA
The Ethernet MAC addresses for the local network interfaces

4.5.4 Variables for Controlling the Boot Progress

Table 4-5 Variables for Controlling the Boot Progress
Variable Name Default Description
bmc_wd_timeout undefined Configures the IPMI watchdog time-out for booting
the OS in seconds. Setting it to -1 (default) disables the IPMI watchdog.
ethdefault undefined The default network interface to be configured. If
set, the ethact variable is initially assiged to the value of this parameter.
bootcmd run $ramboot A sequence of commands executed to boot the
operating system (via auto boot or the boot command)
bootargs undefined Arguments for the operating system (that is, the
linux kernel command line or the vxWorks boot parameters).
bootdelay 10 Delay in seconds before the automatic boot
serverip undefined The IP address of the boot server
ATCA-9405 Installation and Use (6806800M71G)
sequence starts. A value of "-1" disables autoboot
77
Page 78
Table 4-5 Variables for Controlling the Boot Progress (continued)
Variable Name Default Description
ipaddr undefined The IP address used for network communication
gatewayip undefined The default gateway IP
pram 0 This is a decimal value encoding a memory size in

4.5.5 Firmware Update

The command firmware is used to show the versions of various components and to upgrade some of them.
Service Processor
kilobytes (1024 bytes). The specified amount of memory is reserved at the end of physical memory and will not be overwritten by U-Boot. This memory will also be retained over reset.
The size of usable memory is reported in the variable "pram_size".
The show command displays version information
The update command requires a valid firmware image in memory. It supports the
following component:
U-Boot for P2020
The tool always programs the standby image and after successful update, activates it to be used at the next reboot. It also activates the failsafe logic. It is in the responsibility of the end-user to deactivate the fail-safe logic once the boot sequence is successful. The fail-safe logic can be deactivated via IPMI using the OEM command set feature configuration as described in Set Feature Configuration on page 151.
Programming a firmware image requires that the image is present as .fri file. The firmware update command will verify that the contents of the fri-file are suitable to be programmed into the selected device.

4.5.6 Application/OS Boot

The default boot device of the ATCA-9405 is the internal USB disk.
78
ATCA-9405 Installation and Use (6806800M71G)
Page 79
4.5.6.1 Default Boot Sequences
Various default boot sequences are stored in environment variables. These variables can be executed as script using the run command (for example, run nfsboot).
4.5.6.1.1 Disk (bootcmd)
This is the default boot operation (bootcmd). The boot command is run usbboot
4.5.6.1.2 TFTP/NFS (nfsboot)
Load the kernel $bootfile via TFTP from the nfs server $serverip, path $rootpath, and boot it using $serverip$rootpath as nfsroot, and $netdev as linux network device.
The boot command is run nfsboot
Netdev value is eth0 for front panel connector MGT ETH
Service Processor

4.5.7 Memory/Address Map Initialization

4.5.7.1 Address Map
U-Boot configures the P2020 address map via local access windows (LAWs) and MMU mapping entries (TLBs) as described in the following table:
Table 4-6 Address Map
Device Physical Address Range Virtual Start Address Note
DDR3 0x0.0000.0000
0x0.xxxx.xxxx
PCI1 Memory 0xc.0000.0000 0x8000.0000 1GB Non-prefetchable
PCI1 I/O 0xf.ffc0.0000 0xffc0.0000 256KB I/O space
FPGA 0xf.ef00.0000 0xef00.0000 128 bytes FPGA register
P2020 CCSR 0xf.ffe0.0000 0xffe0.0000 P2020 CCSR space
0x0000.0000 2GB or 4GB DDR3
memory
set
ATCA-9405 Installation and Use (6806800M71G)
79
Page 80

4.6 Local Bus

The P2020 includes an Enhanced Local Bus Controller (eLBC). The main component of the eLBC is its memory controller, which provides a seamless 16-bit interface to many types of memory devices and peripherals. The memory controller is responsible for controlling eight memory banks (chip selects) shared by a general-purpose chip select machine (GPCM), an FCM, and up to three UPM machines. The eLBC offers a multiplexed 16-bit address and data bus operating at up to 83 MHz. Data checking and protection features, such as parity support and write protection are included.
The eLBC supports ratios of 4, 8, and 16 between the faster internal CCB clock and slower external bus clock. The selected divider for ATCA-9405 is 16, resulting in a local bus frequency of 31 MHz at a platform frequency of 500 MHz (1000 MHz processor).
The eLBC provides one GPCM, one FCM, and three UPMs for the local bus to allow the implementation of memory systems with very specific timing requirements. The GPCM provides interfacing for simpler, lower-performance memories, and memory-mapped devices. It has inherently lower performance because it does not support bursting. For this reason, GPCM-controlled banks are used primarily for boot-loading from NVRAM or NOR Flash, and access to low-performance memory-mapped peripherals.
Service Processor
On ATCA-9405, the GPCM provides the local bus interface to the FPGA. The FCM and UPM controllers are not used. The FPGA is connected to chip select LCS3# and configured as 8-bit device.
Contact sales/marketing team, if you require a detailed CPLD and FPGA specification.

4.7 SerDes Configuration

The P2020 provides four SerDes blocks that support the SGMII, serial RapidIO, and PCIe high­speed I/O interface standards. Each SerDes can be mapped to one of the different IO interfaces depending on power-on reset (POR) configuration.
80
ATCA-9405 Installation and Use (6806800M71G)
Page 81
Service Processor
Two SGMII and one PCIe interface are needed for ATCA-9405. The corresponding SerDes configuration is listed in the table below. The SerDes reference clock for this configuration must be 100 MHz.
Table 4-7 P2020 SerDes Configuration
Reset Configuration Value SerDes Configuration
cfg_IO_ports[0:3] 1110 SerDes Lane 0: PCI Express 1 (x1, 2.5 Gbps)
SerDes Lane 1: PCI Express 2 (x1, 2.5 Gbps) - not used SerDes Lane 2: SGMII eTSEC2 (x1, 1.25 Gbps) SerDes Lane 3: SGMII eTSEC3 (x1, 1.25 Gbps)
cfg_sgmii2 0 eTSEC2 operates in SGMII mode
cfg_sgmii3 0 eTSEC3 operates in SGMII mode
SerDes Lane 1 is not used on ATCA-9405, so it is left unconnected.

4.8 PCI Express Interface

The P2020 supports three PCIe interfaces that are compliant with the PCIe Base Specification Revision 1.0a. They are configued at boot time to act as either root complex or endpoint. The PHY of the PCIe interface operates at a transmission rate of 2.5 Gbps (data rate of 2 Gbps) per lane. The ports can be configured for x1, x2, or x4 link widths.
On ATCA-9405, PCIe Port 1 (SerDes Lane 0) is configured to x1 link width and is connected to the PLX PEX8608 switch. P2020 acts as root complex and is responsible for blade control and monitoring as well as PCIe hot plug handling. The remaining two PCIe Ports are not used.
For more details regarding PCIe infrastructure and hot plug handling, refer to Service
Infrastructure on page 101.
ATCA-9405 Installation and Use (6806800M71G)
81
Page 82

4.9 Ethernet Interface

The P2020 has three on-chip enhanced three-speed Ethernet controllers (eTSECs). The eTSECs incorporate a media access control (MAC) sub layer that supports 10/100/1000 Mbps Ethernet/802.3 networks with SGMII, GMII, RGMII, MII, RMII, TBI, and RTBI physical interfaces, as well as 8-bit or 16-bit FIFO interfaces that bypass the Ethernet MAC.
The eTSECs include 2 KB receive and 10 KB transmit FIFOs and DMA functions, support for programmable CRC generation and checking, RMON statistics, jumbo frames, TCP/IP acceleration and QoS features, VLAN insertion and deletion and MAC address recognition.
On ATCA-9405, eTSEC1 is configured to RGMII mode while eTSEC2 and eTSEC3 are configured to SGMII mode. The corresponding strapping is listed in the table below.
Table 4-8 P2020 eTSEC Configuration
Reset Configuration Value eTSEC Configuration
Service Processor
cfg_tsec_reduce cfg_tsec1_prtcl[0:1]
cfg_sgmii2 0 eTSEC2 operates in SGMII mode
cfg_sgmii3 0 eTSEC3 operates in SGMII mode
0 10

4.9.1 Front Panel Interface

P2020 eTSEC1 interface is connected to a 10/100/1000Base-T port at the front panel. The physical interface is implemented using Marvell 88E1512 Single Port Gigabit Ethernet Transceiver (connected to the P2020 in RGMII mode) and an RJ45 connector with integrated magnetics.

4.9.2 Base and Fabric Interface

The eTSEC2 and TSEC3 interfaces are connected to the Ethernet Switch and provide a Gigabit Ethernet interface to both the control plane (base interface) and the data plane (fabric interface). The two eTSECs are configured for SGMII mode and are directly connected to the Ethernet Switch.
eTSEC1 operates in RGMII mode
82
ATCA-9405 Installation and Use (6806800M71G)
Page 83

4.10 SPI Interface

The P2020 includes a full duplex four-wire SPI interface. The SPI interface can support up to four separate SPI devices. The P2020 SPI interface connects to the SPI Boot Flashes, to the Telecom DPLL and to the Terminal Server. The following table shows the P2020 chip select assignments for the SPI interface.
Table 4-9 P2020 SPI Chip Select Assignment
SPI Chip Select Value
CS0# SPI Boot Flash 1 (default)
CS1# SPI Boot Flash 2 (backup)
CS2# Telecom DPLL
CS3# Terminal Server
Service Processor

4.10.1 Boot Flash

Two SPI Flash devices are provided as P2020 boot devices.
Hardware write protection signal WP# of SPI Flash is pulled down permanently to enable the hardware protection built in the SPI Flash. Individual Boot Flash sector write protection must be implemented via software mechanism according to SPI Flash specification.

4.10.2 Boot Flash Selection

For crisis recovery, Boot Flash 1 (default) and Boot Flash 2 (recovery) can be exchanged under IPMC software control through logic implemented in the FPGA.
ATCA-9405 Installation and Use (6806800M71G)
83
Page 84
Service Processor
By default, the P2020 boots from Boot Flash 1. An IPMI OEM command can be used to send a message to the IPMC to change the boot device. The IPMC provides an IPMI sensor to control the signal BOOT_SELECT. If the BOOT_SELECT signal is set high, the payload processor boots from Boot Flash 2 after reset.
Table 4-10 P2020 Boot Flash Selection
SW1-3 Boot from
debug header
OFF OFF - LOW Selected
OFF OFF - HIGH Selected
OFF ON ON - Selected
OFF ON OFF - Selected
ON - - - Selected
SW1-1 IPMC or manual
boot selection

4.11 USB Interface

The P2020 provides an USB 2.0 compliant controller which can be configured to operate as a stand-alone host or stand-alone device. The controller is enhanced host controller interface (EHCI) compatible and supports high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operation. The USB interface requires an external PHY with a UTMI+ low pin count interface.
The USB PHY is configured as host controller and connects to an USB hub in order to provide multiple USB ports. A high-speed USB 2.0 hub controller is used. The device offers two downstream ports supporting high-speed, full-speed, and low-speed operation.
The hub provides fully integrated USB termination and pull-up/pull-down resistors, over current protection and power supply for the USB ports. USB port 1 is connected to an USB connector at the front panel. USB port 2 is connected to an on-board eUSB Flash Drive.
SW1-2 Manual SPI
Flash selection
IPMC BOOT_ SELECT
SPI Flash 0 (Default)
SPI Flash 1 (Recovery)
Debug Header

4.11.1 USB Connector

One standard USB type A connector is provided at the face plate for USB access to the SP. For connector pin out details, refer to USB Port on page 39.
84
ATCA-9405 Installation and Use (6806800M71G)
Page 85

4.11.2 e-USB Flash Drive

ATCA-9405 provides a factory option for eUSB Flash Drives. The Flash Drive can be used for local mass storage, persistent user data storage or booting of operating system and user images. A low profile 2mm eUSB header on the board is connected to the P2020 to support eUSB modules from various vendors.
The default assembly SG9ED52M1GG4NEMR from Smart Modular Technology provides 16 GB of User Flash memory. The module provides sustained read speeds of up to 35 MBps and writes up to 23 MBps. For connector pin-out and footprint, refer to Table "eUSB Drive Connector Pin-
out" on page 42.

4.12 UART Interface

The P2020 provides a dual UART compatible with 16450 and the PC16550D. Both interfaces consist of four wires RXD, TXD, RTS, and CTS. The interfaces run in full duplex mode and the baud rates are software programmable.
Service Processor
The first interface COM0 is connected to the FPGA that is able to route the interface to either the front panel connector and/or to the Terminal server. The connection to the front panel console connector is implemented via RS-232 transceiver. All four signals (RXD, TXD, RTS, and CTS) are connected to an RJ45 connector. For connector pin out, refer to Serial Console Ports. Serial port parameters for the front panel interface are 9600 baud, 8 data bits, no parity bit, and 1 stop bit.
When serial port COM0 is routed to the Terminal Server for console redirection into the base network, only TXD and RXD signals are used. Serial port parameters for this interface are 9600 baud, 8 data bits, no parity bit, and 1 stop bit.
The second interface COM1 (only signals TXD and RXD) is connected to a standard 16-pin header for debugging purposes.

4.13 I2C Interface

The P2020 includes a dual I2C controller with open-drain two-wire interfaces that provides multi-master and master-slave I2C mode support.
ATCA-9405 Installation and Use (6806800M71G)
85
Page 86
I2C bus 1 is used to connect to a boot sequencer memory and the SPD PROM device of the DDR3 memory module. The boot sequencer can be optionally used for initialization of the P2020.
I2C bus 2 is connected to an onboard RTC (DS1337).
Table 4-11 P2020 I2C Bus Assignment
Address Bus Component Function
0xA0 1 AT24C64C Boot Sequencer ROM
0xA2 1 SPD DIMM Module SPD PROM
0xD0 2 DS1337U+ Real Time Clock

4.13.1 Real Time Clock (RTC)

The blade provides an I2C™-bus-compatible real-time clock type DS1337 from Maxim. This device contains a real-time clock/calendar and 31 bytes of static random access memory (SRAM). The real-time clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The end of the month date is automatically adjusted for months with fewer than 31 days, including corrections for leap year up to the year 2100. The clock operates in either the 24hr or 12hr format with an AM/PM indicator. A battery socket is provided on the board to backup the RTC power supply.
Service Processor

4.14 JTAG Interface

The IEEE 1149.1 compliant JTAG boundary scan interface of the P2020 is connected to an onboard 16-pin COP header to support a processor emulator for board debug. For connector pin out details, refer to Connector Pin Assignment.

4.15 Interrupts

The Service Processor is responsible for handling of infrastructure related interrupts.
86
ATCA-9405 Installation and Use (6806800M71G)
Page 87

4.15.1 Service Processor Interrupts

The P2020 provides a programmable interrupt controller with up to twelve interrupt request inputs with programmable polarity and sense of each signal. Only interrupt inputs IRQ[6:0] are used on ATCA-9405.
The following table lists all interrupt sources of the Service Processor domain and how the interrupts are routed on the board.
Table 4-12 Service Processor Interrupts
Interrupt Source Interrupt Name Comments IRQ Line
Service Processor
P2020 SP_INT_OUT# Persistent Memory
PEX8608 PEX_INTA_N IRQ[6:0]
88X2241 FAB_CH1_LASI[3:0]_N Link Alarm Status for
ACS8525 LCCB_INTREQ_N IRQ[6:0]
98CX8234 SW_INT[3:0]_N IRQ[6:0]
88E1322 BASE_PHY_INT_N IRQ[6:0]
88E1512 SP_ETH_INT_N IRQ[6:0]

4.16 Cooling

A passive heat sink is mounted on top of the P2020 package. The heat sink is designed to withstand shock and vibration tests according to the environmental considerations. The heat sink keeps the processor die temperature below the maximum rating of 125°C under any conditions listed in Environmental Considerations on page 53.
IRQ[6:0]
Interrupt (IRQ_OUT#)
SP_DIMM_EVENT_N DIMM Thermal Event IRQ[6:0]
SP_RTC_IRQ_N Real Time Clock Interrupt IRQ[6:0]
PEX_FATA_ERR_N IRQ[6:0]
IRQ[6:0]
Fabric Channel 1
FAB_CH2_LASI[3:0]_N Link Alarm Status for
Fabric Channel 2
IRQ[6:0]
ATCA-9405 Installation and Use (6806800M71G)
87
Page 88
Service Processor
88
ATCA-9405 Installation and Use (6806800M71G)
Page 89

Ethernet Infrastructure

5.1 Overview

The Ethernet infrastructure on ATCA-9405 provides switching between any on-board Ethernet port, the ATCA base and fabric interface, and the Ethernet ports provided through RTM. Separate networks for control and data planes are implemented using VLAN and port based filters, inside the Ethernet switch device.
Table 5-1 Data Plane, Control Plane, and Other Interfaces
Data Plane (DP) Control Plane (CP) Others
Chapter 5
40 GbE connection to redundant Fabric Interface
60 GbE connection to each Packet Processor (PP)
1 GbE connection to Service Processor (SP)
160 GbE connection to RTM Dual 1 GbE connection to RTM
20 GbE connection to Update Channel
1 GbE connection to redundant base interface
1 GbE connection to each Packet Processor (PP)
1 GbE connection to Service Processor (SP)
1 GbE connection from each Packet Processor (PP) to Face Plate
1 GbE connection from Service Processor (SP) to Face Plate
ATCA-9405 Installation and Use (6806800M71G)
89
Page 90
Figure 5-1 Ethernet Infrastructure
Ethernet Infrastructure
90
Double data rate XAUI (DXAUI) is 20Gbps interface between Marvell Switch and Cavium CPU, using four SerDes lanes running at 6.25Gbps.
ATCA-9405 Installation and Use (6806800M71G)
Page 91

5.2 Ethernet Switch

The Ethernet switching device used on ATCA-9405 is Marvell 98CX8234, a highly integrated 32-Port 10 Gigabit Ethernet L2+ Packet Processor with 40 Gigabit Ethernet Uplinks.
The 98CX8234 is a member of the Prestera®-CX family that addresses bandwidth demand, high density 10G solutions, and support for future 40G upgradability. The device is a packet processor that is managed with an external CPU connected through PCI Express interface. The device supports wide and flexible configuration of network interfaces from 1 GbE to 40 GbE ports.
The ports can operate in Serial Gigabit Media Independent Interface (SGMII), 10 Gigabit Attachment Unit Interface(XAUI), Reduced 10 Gigabit Attachment Unit Interface (RXAUI), or 40 Gigabit Attachment Unit Interface (XLAUI) Ethernet interface mode. The device has large on-chip memory to support full wire speed L2, L3, and L4 filter performance.
Ethernet Infrastructure
ATCA-9405 Installation and Use (6806800M71G)
91
Page 92

5.2.1 Port Configuration

Table 5-2 lists all 98CX8234 ports by number, the device to which the port is connected, and
the connection type utilized.
Table 5-2 Switch Port Assignment
Ethernet Infrastructure
Port Group
0 0 XP0 Packet Processor 2, QLM2,
SerDes Pair Port Destination Interface Type PHY
1
2 XP2 Packet Processor 2, QLM4,
3
4 XRP4 Service Processor 1G, SGMII
5 XRP5 Packet Processor 2 1G, SGMII-RGMII 88E1512
6 XRP6 Packet Processor 2, QLM0,
7 XRP7 10G, RXAUI
8-11 XLG10 Fabric Channel 2 - Data Plane 1000Base-BX (1G)
Data Plane
Data Plane
Data Plane
20G, DXAUI
20G, DXAUI
10G, RXAUI
88X2241 10GBase-KX4 (10G) 10GBase-KR (10G) 10GBase-KR4 (40G)
92
ATCA-9405 Installation and Use (6806800M71G)
Page 93
Table 5-2 Switch Port Assignment (continued)
Ethernet Infrastructure
Port Group
1 16 XP16 Packet Processor 1, QLM4,
2 32 XPR32 Serial Redirection 1G, SGMII 88E1512
SerDes Pair Port Destination Interface Type PHY
20G, DXAUI
17
18 XP18 Packet Processor 1, QLM2,
19
20 XRP20 Packet Processor 1 1G, SGMII-RGMII 88E1512
21 XRP21 Packet Processor 1+2 Front
22 XRP22 Packet Processor 1, QLM0,
23 XRP23 10G, RXAUI
24-27 XLG26 Fabric Channel 1 - Data Plane 1000Base-BX (1G)
33 XRP33 Service Processor 1G, SGMII
34 XRP34 Base Channel 1 - Control Plane 1G, SGMII 88E1322
35 XRP35 Base Channel 2 - Control Plane 1G, SGMII 88E1322
Data Plane
20G, DXAUI
Data Plane
1G, SGMII 88E1512
Ethernet
10G, RXAUI
Data Plane
88X2241 10GBase-KX4 (10G) 10GBase-KR (10G) 10GBase-KR4 (40G)
36 XRP36 RTM Uplink 1G, SGMII SFP
37 XRP37 RTM Uplink 1G, SGMII SFP
38 XP38 Update Channel - Data Plane 20G, DXAUI
39
40-43 XLG42 RTM Uplink, Data Plane, PHY#3 4x RXAUI (10G)
ATCA-9405 Installation and Use (6806800M71G)
NLP10142 1x XLG (40G)
93
Page 94
Table 5-2 Switch Port Assignment (continued)
Ethernet Infrastructure
Port Group
3
SerDes Pair Port Destination Interface Type PHY
48 XRP48 RTM Uplink, Data Plane, PHY#0 10G, RXAUI NLP10142
49 XRP49 10G, RXAUI
50 XRP50 10G, RXAUI
51 XRP51 10G, RXAUI
52 XRP52 RTM Uplink, Data Plane, PHY#1 10G, RXAUI NLP10142
53 XRP53 10G, RXAUI
54 XRP54 10G, RXAUI
55 XRP55 10G, RXAUI
56-59 XLG58 RTM Uplink, Data Plane, PHY#2 4x RXAUI (10G)

5.2.2 Two-Wire Serial Interface

The 98CX8234 includes a two-wire serial interface (TWSI) for each of the four port groups of the switch. The TWSI supports master/slave transactions and multi master environments (clock synchronization, interface arbitration). The primary use of the TWSI interface is for switch initialization after reset, when the TWSI operates as a master for serial ROM initialization of the switch. On ATCA-9405, the TWSI interface is not used and switch is fully configured via Switch Management Interface.
NLP10142 1x XLG (40G)

5.2.3 Switch Management Interface

The 98CX8234 provides four PCI Express interfaces for setup, configuration, maintenance, and management by the external SP. Each PCI Express interface is associated to one of the four port groups of the switch. The PCI Express interfaces are connected to PEX8608 PCI Express Switch, as listed in Table 6-1.
94
ATCA-9405 Installation and Use (6806800M71G)
Page 95

5.2.4 PHY Management Interface

The 98CX8234 includes three separate serial management interfaces (SMI) for management access to the switch and attached PHY devices. The SMI interface usage and PHY device connection are listed in Table 5-3.
The Switch contains four, IEEE 802.3 clause 22 compliant, Master SMI Interfaces (MSMI) for managing external Gigabit Ethernet PHY devices. Each MSMI is associated to one of the four port groups of the switch. This allows the SP to configure the PHY devices and read back PHY status information via read/write access through 98CX8234.
Table 5-3 Gigabit Ethernet PHY Management Interface
Used Interface Connected PHY Comment PHY Address
MSMI 0 Not used
MSMI 1 88E1512 Packet Processor 1+2 Front Ethernet 0x00
Ethernet Infrastructure
MSMI 2 88E1512 Serial Redirection 0x00
SFP SFP Module 1 on ARTM 0x01
SFP SFP Module 2 on ARTM 0x02
88E1322 Base Channel 1 0x11
Base Channel 2 0x13
MSMI 3 Not used
The Switch contains four port groups, Master SMI Interfaces (MSMI) and IEEE 802.3 clause 45 compliant for managing external 10 Gigabit Ethernet PHY devices that are connected to the XAUI ports. Each XSMI is associated to one of the four port groups of the switch.
Table 5-4 10G Ethernet PHY Management Interface
Used Interface Connected PHY Comment PHY Address
MXSMI 0 88X2241 Fabric Channel 2 - Data Plane 0x00
MXSMI 1 88X2241 Fabric Channel 1 - Data Plane 0x00
MXSMI 2 NLP10142 RTM Uplink, Data Plane, PHY#3 0x00 - 0x03
ATCA-9405 Installation and Use (6806800M71G)
95
Page 96
Table 5-4 10G Ethernet PHY Management Interface (continued)
Used Interface Connected PHY Comment PHY Address
MXSMI 3 NLP10142 RTM Uplink, Data Plane, PHY#0 0x00 - 0x03
NLP10142 RTM Uplink, Data Plane, PHY#1 0x04 – 0x07
NLP10142 RTM Uplink, Data Plane, PHY#2 0x08 – 0x0B
The four Slave SMI Interfaces (CPU_SMI) for host access to all address mapped entities in the Switch are not used on ATCA-9405. The PCI Express interface is used instead.

5.3 Base Interface

The redundant (dual) ATCA base interface is provided by the Ethernet Switch. The physical 1000Base-T interface (according to PICMG3.0) is implemented using one Marvell 88E1322 Integrated 10/100/1000 Dual Gigabit Ethernet Transceiver.
Ethernet Infrastructure
Two SGMII lanes of the Ethernet Switch are connected to the PHY device. Basic Ethernet PHY configuration after power-up is done using hardware strapping options. After power-up the PHY is managed by the Switch via MII interface.

5.4 Fabric Interface

The redundant (dual) ATCA fabric interface is provided by the Ethernet Switch. The physical interface is implemented using two Marvell 88X2241 10Gbps Quad Channel Transceivers.
The two 88X2241 Transceivers provide eight ports (4 ports each) that are directly connected to Zone 2 connector P23 row 4+3 (Fabric Channel 1, Port 0-3) and connector P23 row 2+1 (Fabric Channel 2, Port 0-3).
The 88X2241 devices are connected to the Ethernet Switch using ports XLG10 and XLG26. For more information, refer Ethernet Switch on page 91.
Configuration of the 88X2241 device is done via its MDIO/MDC interface which is connected to the Ethernet Switch. Fabric Channel 1 Transceiver is connected to MXSMI1 (XLG26) interface. Fabric Channel 2 Transceiver is connected to MXSMI0 (XLG10) interface.
96
ATCA-9405 Installation and Use (6806800M71G)
Page 97
Ethernet Infrastructure
The following Ethernet interconnection options are supported by ATCA-9405.
Figure 5-2 Fabric Interface Mode 1x 1000Base-KX (PICMG3.1 Option 1)
Figure 5-3 Fabric Interface Mode 1x 10GBase-KX4 (PICMG3.1 Option 9)
ATCA-9405 Installation and Use (6806800M71G)
97
Page 98
Figure 5-4 Fabric Interface Mode 4x 10GBase-KR
Ethernet Infrastructure
98
Figure 5-5 Fabric Interface Mode 1x 40GBase-KR4
ATCA-9405 Installation and Use (6806800M71G)
Page 99

5.5 Update Channel

The Update Channel Interface is provided by the Ethernet Switch and is physically implemented using one DXAUI port. The DXAUI port is directly connected to Zone 2 connector P20 row 4 (Update Channel Port 0-1) and connector P20 row 3 (Update Channel Port 2-3). E-Keying for the Update Channel is guaranteed via 98CX8234 Ethernet Switch, which disables its ports after power-up reset and enables individual ports only by configuration.
Figure 5-6 Update Channel
Ethernet Infrastructure

5.6 Serial Redirection

Terminal Server is implemented to provide serial redirection into base network for serial consoles of SP and both Packet Processors. The Terminal Server functionality is implemented using routing logic implemented in the Glue Logic FPGA plus an additional Microcontroller.
The Microcontroller converts the incoming UART ports from Glue Logic FPGA into an Ethernet interface, which is connected to the Ethernet Switch. For the connection between Microcontroller and Switch, Marvell 88E1512, Gigabit Ethernet Transceiver in 100Base-T mode is used.
ATCA-9405 Installation and Use (6806800M71G)
99
Page 100
Ethernet Infrastructure
The Ethernet Switch is configured at power up via serial EEPROM (refer Two-Wire Serial Interface
on page 94) and therefore supports immediate serial redirection after power up.
Figure 5-7 Serial Redirection
100
ATCA-9405 Installation and Use (6806800M71G)
Loading...