ABB ACS 600, ACS 800 Users Manual

ACS 600, ACS 800
User’s Manual
This manual includes
•Safety
• Functional Description
• Parameters
• Fault Tracing
• Technical Data
ACA 635 IGBT Supply Sections
260 to 4728 kVA
ACS 800-17 Line-side Converter
120 to 1385 kVA
ACS 600 MultiDrive Manuals (Air-cooled Units, English Originals)
GENERAL MANUALS
*Safety and Product Information EN 63982229
• Complete general Safety Instructions
• Technical data for DSU and TSU supplies and Drive Sections: ratings, power losses, dimensions, weights, fuses etc.
*System Description EN 63700151
• General description of ACS 600 MultiDrive
*Hardware Manual EN 63700118
• General Safety Instructions
• Hardware description of the Drive Section
• Cable selection
• ACS 600 MultiDrive mechanical and electrical installation
• Hardware commissioning of the Drive Section
• Preventive maintenance of ACS 600 MultiDrive
ACS 600 MultiDrive Control Electronics LED Indicators
EN 64289721
• LED descriptions
**Modules Product Catalogue EN 64104268
• Supply Unit components
• Drive Unit components
• Dynamic Braking Units
•DriveWare information
• Dimensional drawings
• Single line diagrams
• Auxiliary power consumption
• Master component tables
**Modules Installation Manual EN 64119010
• Cabinet assembly
• Wiring
**Grounding and Cabling of the Drive System EN 61201998
• Grounding and cabling principles of a variable speed drive system
**EMC Compliant Installation and Configuration for a Power Drive System EN 61348280
* Included with cabinet-assembled systems only ** Included in Modules deliveries only
SUPPLY SECTION MANUALS (depending on the supply type one of these manuals is included in the delivery)
Diode Supply Sections User’s Manual (DSU) EN 61451544
• DSU specific Safety Instructions
• DSU hardware and software descriptions
• DSU commissioning
• Earth fault protection options
Thyristor Supply Sections User’s Manual (TSU) EN 64170597
• TSU operation basics
• TSU firmware description
• TSU program parameters
• TSU commissioning
IGBT Supply Sections User’s Manual EN 64013700
• ISU specific Safety Instructions
• Main components of ISU
• ISU ratings
• ISU power losses
• ISU dimensions and weights
• ISU fuses
• ISU program parameters
• Earth fault protection options
FIRMWARE MANUALS FOR DRIVE APPLICATION PROGRAMS (appropriate manual is included in the delivery)
System EN 63700177
• Commissioning of the System Application Program
• Control Panel use
• Software description
• Parameters of the System Application Program
• Fault tracing
•Terms
Application Program Template EN 63700185
• Commissioning of the Drive Section
• Control Panel use
• Software description
• Parameters
• Fault tracing
•Terms
Standard EN 61201441
• Control Panel use
• Standard application macros with external control connection diagrams
• Parameters of the Standard Application Program
• Fault tracing
• Fieldbus control Note: a separate Start-up Guide is attached
Crane Drive EN 3BSE 011179
• Commissioning of the Crane Drive Application Program
• Control Panel use
• Crane program description
• Parameters of the Crane Drive Application Program
• Fault tracing
CONTROL SECTION MANUALS (delivered with optional Control Section)
Advant Controller 80 User’s Manual EN 64116487
• AC 80 hardware and connections
• AC 80 software
• Programming
• Diagnostics
Advant Controller 80 Reference Manual PC Elements EN 64021737
• Description of PC and DB elements
Advant Controller 80 Reference Manual TC Elements EN 64331868
• Description of TC elements
BRAKING SECTION MANUAL (delivered with optional Braking Section)
ACA 621/622 Braking Sections User’s Manual EN 64243811
• Installation, Start-up, Fault tracing,Technical data
• Dimensional drawings
MANUALS FOR OPTIONAL EQUIPMENT (delivered with optional equipment)
Fieldbus Adapters, I/O Extension Modules, Braking Choppers etc.
• Installation
• Programming
• Fault tracing
• Technical data
ACA 635 IGBT Supply Sections
260 to 4728 kVA
ACS 800-17 Line-side Converter
120 to 1385 kVA
User’s Manual
This manual concerns the ACS 600 MultiDrive supply sections (ACA 635) equipped with an IGBT Supply Unit and ACS 800-17 drives.
2003 ABB Oy. All Rights Reserved.
3BFE 64013700 REV D
EN
EFFECTIVE: 07.07.2003
Safety Instructions
Overview
Installation and Maintenance Safety
The complete safety instructions for the ACA 6xx in Safety and Product Information (EN code: 63982229) and for the ACS800-17 in Hardware Manual (EN code: 64638505) must be followed when installing,
operating and servicing the drives. Study the complete safety instructions carefully.
These safety instructions are intended for all who work on the ACA 6xx or the ACS 800-17. Ignoring these instructions can cause physical injury or death.
WARNING! All electrical installation and maintenance work on the drive should be carried out by qualified electricians.
Any installation work must be done with power off, and power is not to be reconnected unless the installation work is complete. Dangerous residual voltages remain in the capacitors when the disconnecting device is opened. Wait for 5 minutes after switching off the supply before starting work. Always ensure by measuring that the voltage between the terminals UDC+ and UDC- and the frame is close to 0 V and that the supply has been switched off before performing any work on the equipment or making main circuit connections.
If the main circuit of the inverter unit is live, the motor terminals are also live even if the motor is not running!
Open switch fuses of all parallel connected inverters before doing installation or maintenance work on any of them. These switch fuses are not included in the the ACS 800-17.
When joining shipping splits, check the cable connections at the shipping split joints before switching on the supply voltage.
If the auxiliary voltage circuit of the drive is powered from an external power supply, opening the disconnecting device does not remove all voltages. Control voltages of 115/230 VAC may be present in the digital inputs or outputs even though the inverter unit is not powered. Before starting work, check which circuits remain live after opening of the disconnecting device by referring to the circuit diagrams for your particular delivery. Ensure by measuring that the part of the cabinet you are working on is not live.
ACA 635 IGBT Supply Sections, ACS800-17 iii
Safety Instructions
The control boards of the converter unit may be at the main circuit potential. Dangerous voltages may be present between the control boards and the frame of the converter unit, when the main circuit voltage is on. It is critical that the measuring instruments, such as an oscilloscope, are used with caution and safety as a high priority. The fault tracing instructions give special mention of cases in which measurements may be performed on the control boards, also indicating the measuring method to be used.
Live parts on the inside of doors are protected against direct contact. Special safety attention shall be paid when handling shrouds made of sheet metal.
Do not make any voltage withstand tests on any part of the unit while the unit is connected. Disconnect motor cables before making any measurements on motors or motor cables.
WARNING! Close switch fuses of all parallel connected inverters before starting the drive.
Automatic Resets
Do not open the drive section switch fuses when the inverter is running.
Do not use Prevention of Unexpected Start for stopping the drive when the inverter is running. Give a Stop command instead.
CAUTION! Fans may continue to rotate for a while after the
disconnection of the electrical supply.
CAUTION! Some parts like heatsinks of power semiconductors and toroidal cores on motor cables inside the cabinet remain hot for a while after the disconnection of the electrical supply.
WARNING! If an external source for start command is selected and it is ON, the drive will start immediately after fault reset.
iv ACA 635 IGBT Supply Sections, ACS800-17
Dedicated Transformer
Safety Instructions
WARNING! Frame size R11i and above must be supplied with a transformer dedicated to drives and motors or equipment of equal or higher power, or with a transformer equipped with two secondary windings, one of which is dedicated to drives and motors. Resonances might occur if there is capacitive load (e.g. lighting, PC, PLC, small power factor compensation capacitors) in the same network with the drive. The resonance current might damage some unit in the network.
Medium voltage network
Supply transformer
Neighbouring network
Low voltage
Other load than
drives and motors
Medium voltage network
Other load than
drives and motors
or
Low voltage
Other drives and motors
Motors
Other drives
Supply transformer
Drive
Low voltage
Drive
ACA 635 IGBT Supply Sections, ACS800-17 v
Safety Instructions
vi ACA 635 IGBT Supply Sections, ACS800-17
Table of Contents
ACS 600 MultiDrive Manuals (Air-cooled Units, English Originals)
Safety Instructions
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Installation and Maintenance Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Automatic Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Dedicated Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents
Update Notice for ACA 635 IGBT Supply Sections 260 to 4728 kVA ACS 800-17 Line-side Converter 120 to 1385 kVA
ACS 800-17 Line-side Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Chapter 1 - About this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Chapter 2 - Operation Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Chapter 3 - Hardware Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Chapter 8 - Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Appendix A - Technical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Appendix B Circuit Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Chapter 1 – About this Manual
What this Chapter Contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Intended Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Parameter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
To which Products this Manual Applies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
ISU-related Information in Other Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Chapter 2 – Operation Basics
Operation of ISU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Main Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Voltage and Current Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
DC Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Spectrum of the Voltage DIstortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Spectrum of the Line Current Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 3 – Hardware Description
Main Components of a Drive with ISU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
ACA 635 IGBT Supply Sections User’s Manual vii
Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Auxiliary Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Incoming Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Filter Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
IGBT Supply Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Main Circuit Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Basic Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Parallel Connected Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Braking Chopper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Chapter 4 – Commissioning the Supply Section with ISU
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Installation Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Checks with No Voltage Connected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Connecting Voltage to Auxiliary Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Checks with Voltage Connected to Auxiliary Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Connecting Voltage to IGBT Supply Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Starting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Checks with ISU Supply Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Controlling the ISU with an Overriding System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Fieldbus Adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
On-load Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 5 – Earth Fault Protection
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Floating Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Insulation Monitoring Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
System-earthed Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Chapter 6 – Firmware Description
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Control Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Identification Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Starting Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Start by the Starting Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Start via Fieldbus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Missing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Control Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DC Voltage Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Reactive Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
viii ACA 635 IGBT Supply Sections User’s Manual
Chapter 7 – Fault Tracing
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Fault Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Fault Resetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Fault History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Fault and Warning Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
What to Do in Case of an Earth Fault Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Chapter 8 – Parameters
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1 Actual Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2 Actual Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
3 Actual Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
4 Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
7 Control Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
8 Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
9 Fault Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
11 Reference Selects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
13 Analogue Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
14 Digital Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
15 Analogue Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
16 System Control Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
18 LED Panel Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
19 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Trend Monitoring with Drive Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Sending a value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
19 Data Storage Parameter Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
21 Start/Stop Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
23 DC Bus Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
24 Reactive Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
30 Fault Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
51 Communication Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
70 DDCS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
71 DriveBus Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
90, 91 Data Set Receive Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
92, 93 Data Set Transmit Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
98 Option Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
99 Start-up Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Appendix A – Technical Data
Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ratings 380...690 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Dimensions and Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
ACA 635 IGBT Supply Sections User’s Manual ix
Input Power Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Ambient Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
IGBT Supply Section AC Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
IGBT Supply Unit DC Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Power Cable Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Tightening Torque. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
IGBT Supply Sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Drive Control Unit NDCU-51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
NIOC Board Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
NIOC Board Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Drive Control Unit RDCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Motor Control and I/O board RMIO-01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
RMIO board specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Applicable Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
CE Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Compliance with the EMC Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Machinery Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Appendix B – Circuit Diagrams
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
x ACA 635 IGBT Supply Sections User’s Manual
Update Notice for
ACA 635 IGBT Supply Sections 260 to 4728 kVA
ACS 800-17 Line-side Converter 120 to 1385 kVA
The notice concerns The translation (DE revision C) of the ACA 635 IGBT Supply Sections
260 to 4728 kVA, ACS 800-17 Line-side Converter 120 to 1385 kVA User’s Manual: code 3BFE 64495062
The notice is in use from 28.07.2003
The notice contains Updates to the REV C translation.
ACS 800-17 Line-side Converter
Chapter 1 - About this Manual
Chapter 2 - Operation Basics
CHANGED: ACS/ACC 617 line-side converter has been replaced by
the ACS 800-17 line-side converter.
Page 1-2, User Interface CHANGED: The user interface of the IGBT Supply Unit is a CDP 312 Control Panel or a PC, which is equipped with a DDCS board and DriveWindow.
Page 2-3 CHANGED: Voltage and current distortion
Spectrum of the Voltage Distortion
2
1,5
1
0,5
0
THD 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191
Update notice 1
Update Notice
Spectrum of the Current Distortion
4
3,5
3
2,5
2
1,5
1
0,5
0
THD 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191
Chapter 3 - Hardware Description
Current THD [%]
Page 3-2, Incoming Unit CHANGED: Frames R6i to R9i: switch fuse (including AC fuses) and main contactor. Frames R11i and above: air circuit breaker.
Page 3-3 CHANGED: Current and voltage distortion
Current Distortion (up to 200th) Generated by the Supply Unit at
PCC (Point of Common Coupling)
5
4.5 4
3.5 3
2.5 2
1.5 1
0.5 0
0 102030405060708090100
Rsc (Short-circuit Ratio) at PCC
2 Update notice
Voltage THD [%]
Update Notice
Voltage Distortion (up to 200th) Generated by the Supply Unit at
PCC (Point of Common Coupling)
5
4
3
2
1
0
0 102030405060708090100
Rsc (Short-circuit Ratio) at PCC
Page 3-5 Basic Configuration CHANGED: The hardware of the IGBT supply unit is similar to the hardware of the
ACS 600 MultiDrive inverter. One NAMC/RMIO board controls the converter module. It is located inside the Drive Control Unit (NDCU/ RDCU) box. The supply section is equipped with an LCL filter, DC fuses and AC fuses/switch fuse OESA. AC fuses are used with a breaker and a switch fuse is used with a contactor.
ISUICU
OESA
FIU
Converter Module
AC fuses DC fuses
~
=
Charging circuit
230/115 V
NAMC/
RMIO
NDCU/RDCU
ACU
Update notice 3
Update Notice
Chapter 8 - Parameters
Page 8-2 CHANGED:
Code Parameter Range/Unit Description Integer Scaling
1 ACTUAL
SIGNALS
1.19 AI1 [V]
0...10 Non-scaled value of analogue input AI1. See Par. 13.01 AI1 HIGH VALUE and 13.02 AI1 LOW VALUE.
10000 = 10 V or 20 mA
Page 8-4 CHANGED: The software version (Parameters 4.01 and 4.03) is expressed as
follows:
Character noExample Meaning
1 I I = Input bridge software 2 X Product: X= ISU 3 X Software type:
A = application software (Parameter 4.03) 4 G Control board: G = NAMC-51, R = RMIO 5 to 8 6000 Software version number: 6000 = NAMC-51,
7000 = RMIO
Page 8-9 ADDED:
Code Parameter T
13 ANALOGUE
INPUTS
13.12 MINIMUM AI1
Default Alternative
y p e
I0 V (1) 0 V
Settings
( ) Fieldbus Equivalent
(2) -10 V
Description Integer
Scaling
This value corresponds to the minimum reference from analogue input AI1.
4 Update notice
Page 8-22 CHANGED:
Update Notice
Code Parameter
70 DDCS
CONTROL
70.20 CH3 HW CONNECTION
T
Default Alternative
y p e
B
STAR This parameter is used for
Settings
( ) Fieldbus Equivalent
(0) RING Regeneration enabled. Select
(1) STAR Regeneration disabled.
Description Integer
enabling or disabling regeneration of channel CH3 optical transmitter. In regeneration mode any message received by the channel is echoed back.
RING if the CH3 channels on the NAMC boards / RDCO modules are connected to a ring configuration.
Select STAR with a star configuration such as DriveWindow (PC) – NDBU­95 optical branching unit(s) – NAMC board / RDCO module (RMIO board).
Scaling
1=1
Page 8-23 CHANGED: D SET 10 VAL 1 denotes the receive address of data set 10 value 1.
Page 8-24 CHANGED: D SET 11 VAL 1 denotes the transmit address of data set 11 value 1.
Update notice 5
Update Notice
Appendix A ­Technical Data
Page A-9 ADDED: Drive Control Unit RDCU has been added to the manual. The RDCU unit replaces the NDCU-51 unit. The Drive Control Unit RDCU containing an RMIO-01 board is shown in the pictures below.
Interface for CDP312 Control Panel
X20
X34
X21
X31
X22
X23
X25
X26
X27
X32
X33
X68 X57
6 Update notice
Update Notice
Update notice 7
Update Notice
External control cable connections (non-US) to the RMIO board for the ACS 800 Standard Application Program (Factory Macro) are shown below. For external control connections of other application macros and programs, see the appropriate Firmware Manual.
Terminal block size:
cables 0.3 to 3.3 mm2 (22 to 12 AWG)
Tightening torque:
0.2 to 0.4 Nm (2 to 4 lbf in.)
1)
Only effective if par. 10.03 is set to REQUEST by the user.
2)
0 = open, 1 = closed
DI4 Ramp times according to 0 parameters 22.02 and 22.03 1 parameters 22.04 and 22.05
3)
See par. group 12 CONSTANT
SPEEDS.
DI5 DI6 Operation 0 0 Set speed through AI1 1 0 Constant speed 1 0 1 Constant speed 2 1 1 Constant speed 3
4)
See parameter 21.09 START INTRL
FUNC.
rpm
A
Fault
X20 1 VREF- Reference voltage -10 VDC, 2 GND
1 kohm <
RL< 10 kohm
X21 1 VREF+ Reference voltage 10 VDC, 2GND
1 kohm <
RL< 10 kohm
3 AI1+ Speed reference 0(2) ... 10 V,
> 200 kohm
4AI1-
R
in
5 AI2+ By default, not in use. 0(4) ... 20 mA,
= 100 ohm
6AI2-
R
in
7 AI3+ By default, not in use. 0(4) ... 20 mA,
= 100 ohm
8AI3­9 AO1+ Motor speed 0(4)...20 mA 0...motor nom. 10 AO1­11 AO2+ Output current 0(4)...20 mA 0...motor 12 AO2-
R
in
speed, R
< 700 ohm
L
nom. current, R
< 700 ohm
L
=
=
X22 1DI1 Stop/Start 2 DI2 Forward/Reverse
1)
3 DI3 Not in use 4 DI4 Acceleration & deceleration select 5 DI5 Constant speed select 6 DI6 Constant speed select
3)
3)
2)
7 +24V +24 VDC max. 100 mA 8 +24V 9 DGND Digital ground 10 DGND Digital ground 11 DIIL Start interlock (0 = stop)
4)
X23 1 +24V Auxiliary voltage output, non-isolated, 2GND
24 VDC 250 mA
X25 1 RO11 Relay output 1: ready 2RO12 3RO13 X26 1 RO21 Relay output 2: running 2RO22 3RO23 X27 1 RO31 Relay output 3: fault (-1) 2RO32 3RO33
External control cable connections (US) to the RMIO board for the
8 Update notice
Terminal block size:
cables 0.3 to 3.3 mm
2
(22 to 12 AWG)
Tightening torque:
0.2 to 0.4 Nm (2 to 4 lbf in.)
1)
Only effective if par. 10.03 is set to REQUEST by the user.
2)
0 = open, 1 = closed DI4 Ramp times according to 0 parameters 22.02 and 22.03 1 parameters 22.04 and 22.05
3)
See par. group 12 CONSTANT
SPEEDS. DI5 DI6 Operation 0 0 Set speed through AI1 1 0 Constant speed 1 0 1 Constant speed 2 1 1 Constant speed 3
4)
See parameter 21.09 START INTRL
FUNC.
Update Notice
ACS800 Standard Application Program (Factory Macro US version, +N665) are shown below. For external control connections of other application macros and programs, see the appropriate Firmware Manual.
X20 1 VREF- Reference voltage -10 VDC,
RL< 10 kohm
RL< 10 kohm
> 200 kohm
= 100 ohm
= 100 ohm
< 700 ohm
L
< 700 ohm
L
1)
=
=
2)
3)
3)
4)
rpm
A
Fault
2 GND
1kohm<
X21 1 VREF+ Reference voltage 10 VDC, 2GND
1kohm<
3 AI1+ Speed reference 0(2) ... 10 V, 4AI1-
R
in
5 AI2+ By default, not in use. 0(4) ... 20 mA, 6AI2-
R
in
7 AI3+ By default, not in use. 0(4) ... 20 mA, 8AI3-
R
in
9 AO1+ Motor speed 0(4)...20 mA 0...motor nom. 10 AO1-
speed, R
11 AO2+ Output current 0(4)...20 mA 0...motor 12 AO2-
nom. current, R
X22 1DI1 Start () 2 DI2 Stop ( ) 3 DI3 Forward/Reverse 4 DI4 Acceleration & deceleration select 5 DI5 Constant speed select 6 DI6 Constant speed select 7 +24V +24 VDC max. 100 mA 8+24V 9 DGND Digital ground 10 DGND Digital ground 11 DIIL Start interlock (0 = stop) X23 1 +24V Auxiliary voltage output, non-isolated, 2GND
24 VDC 250 mA
X25 1 RO11 Relay output 1: ready 2RO12 3RO13 X26 1 RO21 Relay output 2: running 2RO22 3RO23 X27 1 RO31 Relay output 3: fault (-1) 2RO32 3RO33
Update notice 9
Update Notice
RMIO Board Specifications
Analogue inputs With Standard Application Program two programmable differential current inputs
(0 mA / 4 mA ... 20 mA, R input (-10 V / 0 V / 2 V ... +10 V, R
The analogue inputs are galvanically isolated as a group.
Isolation Test voltage: 500 VAC, 1 min Max. common mode voltage between the channels: ±15 VDC Common mode rejection ratio: > Resolution: 0.025% (12 bit) for the -10 V ... +10 V input. 0.5% (11 bit) for the 0 ... +10
V and 0 ... 20 mA inputs. Inaccuracy: ± 0.5% (Full Scale Range) at 25 °C. Temperature coefficient: ± 100 ppm/
°C, max.
Constant voltage output Voltage: +10 VDC, 0, -10 VDC ± 0.5% (Full Scale Range) at 25 °C. Temperature
coefficient: ± 100 ppm/°C (± 56 ppm/°F) max
Maximum load: 10 mA Applicable potentiometer: 1 kohm to 10 kohm
Auxiliary power output Voltage: 24 VDC ± 10%, short circuit proof
Maximum current: 250 mA (without any optional modules inserted onto slots 1 and
2)
Analogue outputs Two programmable current outputs: 0 (4) to 20 mA, R
Resolution: 0.1% (10 bit) Inaccuracy: ± 1% (Full Scale Range) at 25 °C (77 °F). Temperature coefficient:
± 200 ppm/°C (± 111 ppm/°F) max.
Digital inputs With Standard Application Program six programmable digital inputs (common ground:
24 VDC, -15% to +20%) and a start interlock input. Group isolated, can be divided in two isolated groups (see Isolation and grounding diagram below).
Thermistor input: 5 mA, < 1.5 kohm “1” (normal temperature), > 4 kohm “0” (high temperature), open circuit “0” (high temperature).
Internal supply for digital inputs (+24 VDC): short circuit proof. An external 24 VDC supply can be used instead of the internal supply.
Isolation test voltage: 500 VAC, 1 min Logical thresholds: < 8 VDC “0”, > 12 VDC “1” Input current: DI1 to DI 5: 10 mA, DI6: 5 mA Filtering time constant: 1ms
Relay outputs Three programmable relay outputs
Switching capacity: 8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDC Minimum continuous current: 5 mA rms at 24 VDC Maximum continuous current: 2 A rms Isolation test voltage: 4 kVAC, 1 minute
DDCS fibre optic link With optional communication adapter module RDCO. Protocol: DDCS (ABB
Distributed Drives Communication System)
The RMIO board as well as the optional modules attachable to the board fulfil the Protective Extra Low Voltage (PELV) requirements stated in EN 50178.
= 100 ohm) and one programmable differential voltage
in
> 200 kohm).
in
60 dB at 50 Hz
< 700 ohm
L
10 Update notice
Update Notice
Page A-12 CHANGED:
EN 61800-3: 1996, Amendment A11: 2000 (IEC 61800-3). EMC product standard including specific test method
Page A-13, Second Environment CHANGED:
The ACA 635 supply sections comply with the EMC Directive in industrial low-voltage network, and IT networks (unearthed mains) with the following provisions. For ACS800-17 units, refer to ACS800-17 Hardware Manual (EN code 64638505).
1. The motor and control cables are selected as specified in the
Hardware Manual.
2. The drive is installed according to the instructions given in the
Hardware Manual.
3. Maximum cable length is 100 metres.
WARNING! The drive may cause radio interference if used in a residential or domestic environment. The user is required to take measures to prevent interference, in addition to the requirements for CE compliance listed above, if necessary.
Note: It is not allowed to use EMC filters on an unearthed mains supply network, unless the filters are able to withstand the unearthed network. (EMC filters are used to minimise the RFI emission of the unit.)
Note: With cables longer than 100 metres, the ACA 635 supply sections comply with the EMC Directive in restricted distribution mode when the installation is described in an EMC plan (a template is available from the local ABB representative).
Table A-1 The EMC cabinet option is marked in the type code as follows. 0 = No EMC cabinet, 1 = EMC cabinet (does not include RFI filters)
ACS 600 Type
ACA 635
Character no. Options ACA635xxxxxxxxxxxx...
16
Type Code
0,1
Update notice 11
Update Notice
Appendix B Circuit Diagrams
Page B-4 ADDED: Circuit diagram including the Drive Control Unit RDCU
12 Update notice
Chapter 1 – About this Manual
What this Chapter Contains
Intended Audience
Parameter Setting
To which Products this Manual Applies
Contents
This chapter describes the intended audience and contents of this manual. It contains a table referring to tasks described in other manuals.
This manual is intended for people who plan the installation, commission, use and service the drive equipped with an IGBT supply. Read the manual before working on the drive. You are expected to know the fundamentals of electricity, wiring, electrical components and electrical schematic symbols.
The parameters of the IGBT Supply Unit (ISU) Program listed in this manual need not be set in a normal start-up procedure or in normal use. However, the ISU parameters can be viewed and
changed using the Control Panel.
This manual applies to the ACA 635 supply sections and ACS 800-17 drives which contain the IGBT Supply Unit.
The control program of the IGBT Supply Unit is described in the following chapters: Chapter 6 – Firmware Description, Chapter 7 –
Fault Tracing and Chapter 8 – Parameters.
Safety Instructions contain installation and maintenance safety
instructions.
Chapter 2 – Operation Basics describes the operation of the IGBT
Supply Unit.
Chapter 3 – Hardware Description describes the hardware of the
ACA 635 supply sections including descriptions of the LCL filter and the IGBT supply unit which are parts of the ACS 800-17 as well.
Chapter 4 – Commissioning the Supply Section with ISU describes the
commissioning of a supply section that is equipped with the IGBT Supply Unit (ISU).
Chapter 5 – Earth Fault Protection describes the earth fault protection
solutions available for a drive equipped with an IGBT supply unit.
Appendix A – Technical Data contains technical data for the ACA 635
giving information on ratings, fuses, cooling requirements, power losses etc.
ACA 635 IGBT Supply Sections User’s Manual 1-1
Chapter 1 – About this Manual
ISU-related Information in Other Manuals
Task See
Appendix B – Circuit Diagrams contains some example circuit
diagrams of the ACA 635.
Mechanical and Electrical Installation of the Drive
Installation of Optional Modules and DriveWindow
Preventive Maintenance
Technical Data for the ACS 800-17
Associating ISU with DriveWindow
ACS 600 MultiDrive Hardware Manual (EN code: 63700118) or ACS800-17 Hardware Manual (EN code: 64638505)
ACS800-17 Hardware Manual (EN code: 64638505)
DriveWindow Start-up Guide (EN code: 36458585) When associating DriveWindow 1.3 and 1.4 with the ISU proceed as follows:
System Configuration Messages What to do
Error: Encountered target ‘ISU600-xxxx-x’ is unknown. Do you wish to associate it?
Associate ‘ISU600-xxxx-x’ With Choose ACS600 MultiDrive
Do you wish association ‘ISU600-xxxx-x’ = ACS600 MultiDrive be permanent?
Click OK.
from the list.
Click Yes.
User Interface Firmware Manual (for System, Standard or Crane Drive Application Program)
The user interface of the IGBT Supply Unit is a CDP 312 Control Panel or a PC, which is equipped with a DDCS board and DriveWindow.
1-2 ACA 635 IGBT Supply Sections User’s Manual
Chapter 2 – Operation Basics
Operation of ISU
Main Circuit Diagram
Supply network
I
U
The ISU is a four-quadrant switching-mode converter, i.e., the power flow through the converter is reversible. The AC current of the ISU is sinusoidal at a unity power factor. As a default, the ISU controls the DC link voltage to the peak value of the line-to-line voltage. The DC voltage reference can be set also higher by a parameter.
A diagram of the main circuit of the IGBT supply is shown below.
Control and Gate Drivers
Common DC bus
I
dc
LCL Filter
U
c
Control
Converter
The control and modulation is based on the Direct Torque Control (DTC) method typically used in ACS 600 motor control. Two line currents and DC link voltage are measured and used for the control. The control boards are similar to the boards of the inverter.
ACA 635 IGBT Supply Sections, ACS800-17 2-1
Chapter 2 – Operation Basics
Voltage and Current Waveforms
The high frequency switching and high du/dt slightly distorts the voltage waveform at the input of the converter. The depth of the voltage notches depends on the ratio of network inductance to total line inductance (network + LCL filter inductance).
Typical line current (i
(A, V)
1200
u
800
i
U
400
0
02468101214161820222426283032343638
-400
-800
) and voltage (uUV) waveforms are shown below.
U
UV
t (ms)
-1200
DC Current A typical DC current (i
(A)
500
450
400
350
300
250
200
150
100
50
0
100 102 104 106 108 110 112 114 116 118
i
dc
) waveform is shown below.
dc
t (ms)
2-2 ACA 635 IGBT Supply Sections, ACS800-17
Chapter 2 – Operation Basics
Distortion
Spectrum of the Voltage
DIstortion
IGBT supply unit does not generate characteristic current/voltage overtones llike a traditional 6- or 12-pulse bridge does, because of the sinusoidal waveform of the line current. The Total Harmonic Distortion (THD) in voltage depends slightly on the Short Circuit Ratio in the Point of Common Coupling (PCC), refer to Appendix A – Technical Data.
A typical spectrum of the voltage distortion at the output of the transformer is shown below. Each harmonic is presented as a percentage of the fundamental voltage. n denotes the ordinal number of the harmonic.
2
1,5
1
0,5
Spectrum of the Line
Current Distortion
0
THD 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191
A typical spectrum of the line current distortion is shown below. Each harmonic is presented as a percentage of the fundamental current. n denotes the ordinal number of the harmonic.
4
3,5
3
2,5
2
1,5
1
0,5
0
THD 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191
ACA 635 IGBT Supply Sections, ACS800-17 2-3
Chapter 2 – Operation Basics
2-4 ACA 635 IGBT Supply Sections, ACS800-17
Chapter 3 – Hardware Description
Main Components of a Drive with ISU
Auxiliary Control Unit
ACU
NDCU/RDCU
NAMC, NIOC / RMIO
ACT PAR FUNC DRIVE
ENTER
LOC
REF
RESET
DIN rail
REM
DIN rail
X2
24 V
~
=
230/115 VAC
The main components of a drive equipped with an IGBT supply unit are shown below. Two drive sections are drawn in the diagram, in reality the number of them varies. The control panels are optional. This chapter describes the supply section.
Supply Section
Incoming Unit
ICU
Filter Unit and
FIU
charging resistor
with IGBT supply
IGBT Supply Unit
Supply
Unit
Braking Sections
Braking Unit (optional)
Common DC Bus
Chopper
Resistor
Drive Sections
Inverter
ACT PAR FUNC DRIVE
ENTER
LOC
REF
RESET
REM
Inverter
ACT PAR FUNC DRIVE
ENTER
LOC
REF
RESET
REM
AC
Supply Section
The supply section consists of the units listed below:
Auxiliary Control Unit (ACU)
Incoming Unit (ICU)
Filter Unit (FIU)
IGBT Supply Unit (ISU).
ACA 635 IGBT Supply Sections 3-1
Chapter 3 – Hardware Description
Auxiliary Control Unit The following components are located in the Auxiliary Control Unit:
Drive Control Unit (NDCU), which includes an Application and Motor Controller (NAMC) Board and a standard I/O (NIOC) Board; or Drive Control Unit (RDCU), which includes a Motor Controller and standard I/O Board (RMIO).
Optical Branching Unit (NPBU) with parallel connected IGBT Supply Units (frames 2 or 4 times R11i and R12i). NPBU is connected between NAMC/RMIO and NINT boards (inside the converter module).
Control voltage supply (fuses and transformer)
On/off switch on the cabinet door and relays
Optional CDP 312 Control Panel and NLMD-01 Monitoring Display
Optional voltage and current meters
Control wiring and relays
Auxiliary voltage filter for sensitive equipment (I
= 17 A, 230/115 V)
N
Optional emergency and earth fault protection components
Other options (fieldbus adapter modules, man/machine interfaces etc.)
Incoming Unit The following components are located in the Incoming Unit:
Terminals for the input power (AC supply) connection
Frames R6i to R9i: switch fuse (including AC fuses) and main contactor. Frames R11i and above: air circuit breaker.
Optional earthing switch
Charging fuses and contactor
Current transformer of optional ammeters
Filter Unit The following components are located in the Filter Unit:
LCL filter
Cooling fan for filter
Charging resistors
AC fuses (frames R11i and above)
LCL Filters An LCL filter suppresses voltage and current distortion across a wide
frequency range.
3-2 ACA 635 IGBT Supply Sections
Chapter 3 – Hardware Description
Short-circuit ratio (Rsc) describes the strength of the supply network. The diagrams below show the estimated voltage and current distortion as a function of short-circuit ratio.
The short-circuit ratio can be calculated as shown in chapter Appendix A – Technical Data / Harmonic Distortion.
Please note that the curves are merely a visualisation of the effect of the LCL filter and supply network characteristics on the distortion, not a specification.
Current Distortion (up to 200th) Generated by the Supply Unit at
PCC (Point of Common Coupling)
5
4.5 4
3.5 3
2.5 2
1.5
Current THD [%]
1
0.5 0
0 102030405060708090100
Rsc (Short-circuit Ratio) at PCC
Voltage Distortion (up to 200th) Generated by the Supply Unit at
PCC (Point of Common Coupling)
5
4
3
2
Voltage THD [%]
1
0
0 102030405060708090100
Rsc (Short-circuit Ratio) at PCC
ACA 635 IGBT Supply Sections 3-3
Chapter 3 – Hardware Description
IGBT Supply Unit The IGBT Supply Unit includes the parts listed below:
Converter The converter consists of an IGBT bridge which forms controlled dc
Converter (ACN 634 xxxx)
Converter cooling fans
DC fuses
the following control boards inside the converter:
- Thick-film Hybrid Board (NRED) in 690 V units only for limiting the maximum voltage
- Power Supply Board (NPOW)
- Main Circuit Interface Board (NINT)
- Control Distribution Board (NXPP) in frame sizes R10i to 4 x R12i
- Gate Driver Power Supply Board (NGPS) in frame sizes R12i and up for supplying power to NGDR boards
- Gate Driver Board (NGDR)
voltage from the supply network ac voltage. The bridge is capable of delivering braking energy back to the network.
Frame Size A converter (ACN 634 xxxx) consists of
R6i to R9i one converter module
~
=
R11i to R12i three phase modules (ACN 644 xxxx) = one converter
~
2 x R11i, 2 x R12i two times three phase modules (ACN 644 xxxx) = two phase
module blocks one converter
No. 1
4 x R11i, 4 x R12i four times three phase modules (ACN 644 xxxx) = four phase
module blocks one converter
No. 1
~
~
=
=
No. 2
No. 2
=
~
No. 3
~
~
=
=
~
=
=
No. 4
3-4 ACA 635 IGBT Supply Sections
Chapter 3 – Hardware Description
Main Circuit Construction
The converter consists of six insulated gate bipolar transistors (IGBT) with free wheeling diodes and DC capacitors. Frames R8i and R9i are equipped with parallel connected IGBTs for each phase located on three power plates. Frame size R11i includes six power plates and frame size R12i nine power plates.
Configurations
The sections below describe possible configurations of ISU modules.
Basic Configuration The hardware of the IGBT supply unit is similar to the hardware of the
ACS 600 MultiDrive inverter. One NAMC/RMIO board controls the converter module. It is located inside the Drive Control Unit (NDCU/ RDCU) box. The supply section is equipped with an LCL filter, DC fuses and AC-fuses/switch fuse OESA. AC fuses are used with a breaker and a switch fuse is used with a contactor.
ISUICU
OESA
FIU
Converter Module
AC fuses DC fuses
~
Parallel Connected
Modules
=
Charging circuit
230/115 V
NAMC/
RMIO
NDCU/RDCU
ACU
Parallel connected IGBT supply converter module configuration is similar to parallel connected inverter module configuration of the ACS 600 MultiDrive. One NAMC/RMIO board controls all parallel connected modules. Each module is equipped with an LCL filter and AC and DC fuses. If one module fails, it can be disconnected by removing the fuses on both sides of it. The whole supply has a common disconnecting device. Full redundancy is not possible. The modules cannot supply the DC link separately, with independent NAMC/RMIO boards.
ACA 635 IGBT Supply Sections 3-5
Chapter 3 – Hardware Description
NDCU/RDCU
NAMC/ RMIO
NPBU
~
=
~
=
~
=
~
=
ICU
Braking Chopper A braking chopper can be connected in parallel with an IGBT supply
unit. The configuration is beneficial when the braking is continuous and the drive is not allowed to stop if the supply network trips for a short time.
FIU
ISU
~
=
Braking Resistor
3-6 ACA 635 IGBT Supply Sections
Braking Chopper
Chapter 4 – Commissioning the Supply Section with ISU
Overview
This chapter describes the commissioning of a supply section that is equipped with the IGBT Supply Unit (ISU).
WARNING! Only qualified electricians are allowed to commission the drive. The Safety Instructions on the first pages of this manual must be followed. Ignoring the safety instructions can cause injury or death.
Installation Checklist
The installation must be checked before commissioning the supply section. This table refers to the more detailed instruction.
Action Information
Check that the mechanical and electrical installation of the frequency converter is inspected and OK.
Ensure that the insulation resistance of the assembly is checked according to instructions given in the Hardware Manual.
Ensure that the surroundings and inside of the cabinet are free from dust and loose objects (like cable trimmings and other waste left from the installation).
See ACS 600 MultiDrive Hardware
Manual (EN code: 63700118) or ACS800-17 Hardware Manual (EN code: 64638505). Refer to Installation Checklist and Insulation Checks.
After the start, the cooling air fans may suck nearby loose objects into the unit. This might cause failure and damage the unit.
ACA 635 IGBT Supply Sections, ACS800-17 4-1
Chapter 4 – Commissioning the Supply Section with ISU
Checks with No Voltage Connected
This table is a commissioning checklist for the supply section with no voltage connected.
Action Information
WARNING! Ensure that the disconnector of the supply transformer is locked to open
position, i.e. no voltage is, or can be connected to the drive inadvertently. Check also by measuring that there actually is no voltage connected.
1. Air Circuit Breaker, Relays, Switches
If the supply section is equipped with an air circuit breaker, check the current trip levels of the air circuit breaker.
Check the settings of the relays for the emergency stop circuit.
Check the settings of the time relays.
Check the settings of other relays.
Check the settings of the breakers/switches of the auxiliary circuits.
The trip levels have been preset at the factory. In most applications there is no need to change these settings.
See the circuit diagrams delivered with the device.
See the circuit diagrams delivered with the device.
See the circuit diagrams delivered with the device.
See the circuit diagrams delivered with the device.
Check that all breakers/switches of the auxiliary circuits are open.
2. Supply Tripping Circuit
Check the operation of the supply transformer tripping option.
3. Auxiliary Control Voltage Transformer
Check the wirings to the primary and secondary side terminals of the auxiliary control voltage transformer.
This is an optional feature. See the circuit diagrams delivered with the device.
See the circuit diagrams delivered with the device for the correspondence between the wirings and the voltage levels.
4-2 ACA 635 IGBT Supply Sections, ACS800-17
Chapter 4 – Commissioning the Supply Section with ISU
Connecting Voltage to Auxiliary Circuits
WARNING! When voltage is connected to the input terminals of the supply section, the voltage will also be connected to the auxiliary control unit and to auxiliary circuits
- also to the ones wired to drive sections.
Make sure that it is safe to connect voltage to the input terminals. Ensure that while the voltage is connected:
• Nobody is working with the unit or circuits that are wired from outside into the cabinets.
• The cabinet doors are closed.
Disconnect the 230 VAC cables that lead from the terminal blocks to the outside of the equipment and have not yet been checked, and the connections which may not yet have been completed.
Make sure that the main contactor/air circuit breaker cannot inadvertently be closed by remote control, e.g. by temporarily opening some connection in its control circuit.
This table describes how to connect voltage to the supply section input terminals and to the Auxiliary Control Unit (ACU) for the first time.
Action Information
Be ready to trip the main breaker of the supply transformer in case anything abnormal occurs.
Ensure that all cabinet doors are closed.
Close the main breaker of the supply transformer.
Close the main disconnecting switch of the supply section.
Close the main disconnecting switch of the auxiliary circuit.
ACA 635 IGBT Supply Sections, ACS800-17 4-3
Chapter 4 – Commissioning the Supply Section with ISU
Checks with Voltage Connected to Auxiliary Circuits
This table is a commissioning checklist for the supply section with voltage connected to the input terminals, and Auxiliary Control Unit (ACU).
Action Information
WARNING! This section includes instructions for checking/measuring circuits under
voltage. Only a qualified person is allowed to do the work. An appropriate and approved measuring instrument must be used.
IF IN DOUBT, DO NOT PROCEED!
Ensure the actions described in section Connecting Voltage
to Auxiliary Circuits are completed.
Measure phase voltages by using the switch and meter on the cabinet door.
Check the secondary side voltage of the auxiliary voltage transformer. Close the protection switch on the secondary side.
Close the breakers of the auxiliary circuits one by one. Check each circuit by
• measuring for correct voltage at terminal blocks
This is an optional feature. If included, see the circuit diagrams delivered with the device.
See the circuit diagrams delivered with the device.
Note: The cooling fans of the IGBT supply unit will start after the main contactor is closed.
• checking the operation of the devices connected to the circuit.
Check the connection from all external auxiliary voltage sources (e.g. from an Uninterrupted Power Supply, UPS) to the auxiliary control unit.
This is an optional feature. If included, see the circuit diagrams delivered with the device.
4-4 ACA 635 IGBT Supply Sections, ACS800-17
Chapter 4 – Commissioning the Supply Section with ISU
Connecting Voltage to IGBT Supply Unit
This table describes how to connect voltage to the IGBT supply unit and the DC busbars for the first time.
Action Information
WARNING! When connecting voltage to the IGBT supply unit, the DC busbars will
become live, as will all the inverters connected to the DC busbars.
Make sure that it is safe to connect voltage to the IGBT supply unit. Ensure that:
• Nobody is working with the unit or circuits that are wired from outside into the cabinets.
• All cabinet doors are closed.
1. First Voltage Switch-on for the IGBT Supply Unit
If the supply section is equipped with an air circuit breaker, set the air circuit breaker current settings to 50% of the on­load values.
Ensure that all cabinet doors are closed.
Be ready to trip the main breaker of the supply transformer if anything abnormal occurs.
It is recommended to set relatively low current values at the first voltage switch­on.
Close the main disconnecting switch of the supply section. Close the main contactor / air circuit breaker of the supply section.
2. Air Circuit Breaker Current Settings
Increase the air circuit breaker current settings to the on­load values.
ACA 635 IGBT Supply Sections, ACS800-17 4-5
Chapter 4 – Commissioning the Supply Section with ISU
Starting
This procedure instructs how to start the IGBT supply unit.
Action Information
WARNING! When starting the IGBT supply unit, the DC busbars will become live, as
will all the inverters connected to the DC busbars.
Make sure that it is safe to start the IGBT supply unit. Ensure that:
• Nobody is working with the unit or circuits that are wired from outside into the cabinets.
• All cabinet doors are closed.
• The covers of the motor terminal boxes are on.
Ensure the actions described in subsections Checks with No
Voltage Connected and Checks with Voltage Connected to Auxiliary Circuits are completed.
Be ready to trip the main breaker of the supply transformer if anything abnormal occurs.
Close the main disconnecting switch of the auxiliary circuit.
Close the main disconnecting switch of the supply section.
Start the ISU:
• reset the starting logic by the RESET button on the cabinet door
• turn the starting switch on the cabinet door from position 0 to 1 and
• turn the starting switch to the START position and release it.
4-6 ACA 635 IGBT Supply Sections, ACS800-17
Chapter 4 – Commissioning the Supply Section with ISU
Checks with ISU Supply Started
This table is a list of checks to be done after the IGBT supply unit is started and the DC busbars are live.
Action Information
WARNING! This section includes instructions for checking/measuring circuits under
voltage. Only a qualified person is allowed to do the work. An appropriate and approved measuring instrument must be used.
IF IN DOUBT, DO NOT PROCEED!
1. Basic Checks
Check that the cooling fan in the supply section rotates freely in the right direction, and the air flows upwards.
FLOATING NETWORK (IT NETWORK)
1. Earth Fault Protection Based on an Insulation Monitoring Device
Check the setting of Parameter 30.04 EXT EARTH FAULT, and the connection to DI4.
Check the tuning of the insulation monitoring device for the earth fault protection (Bender).
The insulation monitoring device is tuned at the factory. If further tuning is required, see the IRDH265 Operating Manual by Bender (code: TGH1249).
A paper sheet set on the lower gratings stays. Fan runs noiselessly.
This is an optional feature (IRDH265-x). If included, see the circuit diagrams delivered with the device. For information on the protection principle, see Chapter 5 – Earth Fault Protection and the IRDH265 Operating Manual by Bender (code: TGH1249).
SYSTEM EARTHED NETWORK (TN NETWORK)
1. Earth Fault Protection Based on Internal Current Measurement
Check the setting of Parameter 30.02 EARTH FAULT.
Parameters
The parameters of the ISU need not be set in a normal start-up procedure or in normal use.
This is a programmable feature. For information on the protection principle, see Chapter 5 – Earth Fault Protection.
ACA 635 IGBT Supply Sections, ACS800-17 4-7
Chapter 4 – Commissioning the Supply Section with ISU
Controlling the ISU with an Overriding System
This procedure instructs how to control or monitor the IGBT supply unit from an overriding system by using data sets 1 and 2 or 10 to 33 with DDCS and DriveBus communication protocols.
The communication works via fibre optic cables connected to channels CH0 to CH3 on the NAMC board. When the RMIO board is used, channels CH0 to CH3 are provided by the DDCS communication option module (RDCO) which is inserted into the optional module slot marked “DDCS” on the RMIO board.
Action Parameter
Set this parameter to MCW if the ISU will be controlled with an overriding system. Set to I/O if the ISU is only monitored.
Set this parameter to FBA DSET1 or FBDSET 10 depending on what datasets the overriding system uses.
Connect the fibre optic cables to channel CH0.
Set the node address and communication mode for channel CH0 as follows:
Controller Node Address Par. 71.01 CH0
DDCS DriveBus Module-
Bus
APC2 1 - - NO AC70 - - 17...125 NO AC80 - 1...12 17...125 YES FCI (CI810A) - - 17...125 NO
DRIVEBUS MODE
98.01 COMMAND SEL
98.02 COMM MODULE
70.01 CH0 NODE ADDR
71.01 CH0 DRIVEBUS MODE
Note: Setting of Par. 71.01 is valid after the next power-up.
Check that the communication is working.
Set the delay time for a communication fault indication. 70.04 CH0 TIMEOUT
Select the action upon a communication fault on channel
70.05 CH0 COMM LOSS CTRL
CH0.
Select RING, if channels CH0 are connected in a ring. The
70.19 DDCS CH0 HW CONN default setting STAR is typically used with DDCS branching units NDBU-85/95.
If a PC is used for control/monitoring, set the node address
70.15 CH3 NODE ADDR for channel CH3. Addresses 1...75 and 126...254 are allowable. The rest of the addresses are reserved for branching units NDBU-85/95 (see NDBU-85/95 User’s Manual, code: 64285513).
Note: If the channels CH3 of several supply units have been connected in a ring or in a star (via a branching unit), give each converter a unique node address. The new address becomes valid only on the next NAMC board power-on.
4-8 ACA 635 IGBT Supply Sections, ACS800-17
Chapter 4 – Commissioning the Supply Section with ISU
Action Parameter
Select RING, if channels CH3 have been connected in a ring. The default setting STAR is typically used with DDCS branching units NDBU-85/95.
Select the addresses for the data to be received from the overriding system and for the data to be transmitted to the overriding system. Note the different updating intervals.
Test the functions with received and transmitted data.
Fieldbus Adapters
Action Parameter
Set the communication with these parametes. See the appropriate fieldbus adapter manual.
On-load Checks
This table is a commissioning checklist for the loaded supply section.
Action Information
70.20 CH3 HW CONNECTION
Groups 90 and 91 DATASET RECEIVE ADDRESSES Groups 92 and 93 DATASET TRANSMIT ADDRESSES
Group 51 COMMUNICATION MODULE
Check the correct operation of the current meters.
Check the correct operation of the emergency-stop circuits.
This is an optional feature. See the circuit diagrams delivered with the device.
This is an optional feature. See the circuit diagrams delivered with the device.
ACA 635 IGBT Supply Sections, ACS800-17 4-9
Chapter 4 – Commissioning the Supply Section with ISU
4-10 ACA 635 IGBT Supply Sections, ACS800-17
Chapter 5 – Earth Fault Protection
Overview
Floating Network
Insulation Monitoring
Diagram This diagram shows earth fault protection implemented with an
Device
This chapter contains descriptions of the earth fault protection solutions available for a drive equipped with an IGBT supply unit. The settings required at the start-up are given in Chapter 4 – Commissioning the
Supply Section with ISU.
This section describes the earth fault protection principle in a floating network.
insulation monitoring device.
L1 L2 L3
Transformer Supply Unit
~
DC Busbar
Inverter Units
=
BENDER Insulation Monitoring Device
=
=
~
M
3~
IL > 0, Leakage Current
~
M 3~
Description The monitoring device is connected between the unearthed system
and the equipotential bonding conductor (PE).
A pulsating AC measuring voltage is superimposed on the system (measuring principle Adaptive Measuring Pulse, AMP is developed by BENDER, patent pending). The measuring pulse consists of positive and negative pulses of the same amplitude. The period depends on the respective leakage capacitances and the insulation resistance of the system to be monitored.
The setting of the response values and other parameters can be carried out via the function keys. The parameters are indicated on the display and they are stored in a non-volatile memory after setting.
ACA 635 IGBT Supply Sections 5-1
Chapter 5 – Earth Fault Protection
With Bender’s insulation monitoring device it is possible to set up two response values: ALARM1 and ALARM2. Both values have an own alarm LED, which illuminates if reading is below these selected response values.
In Case of an Earth Fault An earth fault closes the measuring circuit. An electronic evaluation
circuit calculates the insulation resistance which is indicated on an LC display or an external ohmmeter after the response time.
The alarm actions depend on the electric connection: for example ALARM1 can be wired to give a warning, and ALARM2 can be wired to trip the device.
Further Information Further information about the insulation monitoring device is available
in IRDH265 Operating Manual (code TGH1249) published by the manufacturer, BENDER companies.
System-earthed Network
Diagram This diagram shows earth fault protection implemented with internal
Description The line current unbalance is calculated from measured currents I
In a system-earthed network, the neutral point of the supply transformer is earthed solidly. This section describes an internal earth fault protection principle in a system-earthed network.
current transducers in the ACA 635.
L1 L2 L3
Transformer
IGBT Supply Unit
~
Inverter Units
DC Busbar
=
and I
=
IL > 0, Leakage Current
.
w
~
M
3~
=
~
M
3~
, IV
U
In Case of an Earth Fault In normal operation the current sum is zero. An earth fault leads to an
unbalance in the 3-phase system and therefore to a current sum different from zero. If the current unbalance exceeds the limit set in Par. 30.03 EARTH FAULT LEVEL, an alarm is given or the device is tripped.
5-2 ACA 635 IGBT Supply Sections
Chapter 6 – Firmware Description
Overview
Control Principle
This chapter describes the IGBT supply unit control program. Note:
The parameters listed in this chapter need not be set in normal use. They are mentioned for explaining the control principle only.
The following symbols are used:
1.10
113.05
, 11.11
Actual signal or parameter (see Chapter 8 – Parameters).
Parameter above 100. These parameters are not visible to the user unless the passcode is entered for the Parameter Lock in Parameter 16.03 PASS CODE. These parameters are not allowed to be changed without ABB’s permission.
The fundamental theory of line converter operation can be represented by an equivalent circuit with an AC choke and vector diagrams (below), where
____ motoring _ _ _ generating
U
network voltage vector
1
U
line converter voltage vector
2
AC choke voltage vector
U
L
ψ
“network flux” vector
1
ψ
“line converter flux” vector
2
“AC choke flux” vector
ψ
L
δ power transfer angle.
U
2gen
jωL
U
1
I
U
2
jωLi = U
U
1
I
δ
I
gen
ACA 635 IGBT Supply Unit Program 6-1
L
U
2
ψ
1
ψ
L
ψ
2
Chapter 6 – Firmware Description
The primary function of the ISU is to control the power transfer between the network and the DC link. The purpose of the AC choke (represented by reactance X = jωL) is to smooth the line current and to act as an energy storage for the switch-mode supply. Power transfer equation between the network and the ISU is presented below:
UU
P =
21
δ
sin
X
Real power is being transferred only if an angle difference exists between the two voltage vectors. Reactive power transfer equation is presented below:
Q =
U
2
1
X
UU
21
δ
cos
X
For the desirable magnitude and the direction of the power and reactive power flow, the length of the converter voltage vector and its phase angle δ (with respect to the line voltage vector) must be controlled. The DC voltage is controlled by keeping the power (energy) equilibrium between the line and the drives in the DC link constant. The sign of the angle determines the direction of the power flow.
The output AC voltage is controlled by setting the length of the flux reference to correspond to the desired output voltage level producing cosfii = 1.0.
The ISU control needs measurements of the DC link voltage and two line currents. The “stator flux” (integral of the voltage vector of the ISU) is calculated by integrating the voltage vector used to generate the output voltage of the ISU. This is due to the fact that the existing voltage in the network can be thought to be generated by a rotating magnetic flux encircled by coils. Each of these coils is one of the line voltage phases. The voltage in the coils can be expressed by the formula below:
ψ
d
=
U
dt
The virtual torque generated by the ISU is calculated as a cross product of flux and current vectors:
IxTψ=
Power can also be expressed as a product of torque and angular velocity:
P ωT=
6-2 ACA 635 IGBT Supply Unit Program
Chapter 6 – Firmware Description
If the network frequency is constant, power is directly proportional to the torque. By controlling torque, power transferred between the ISU and the network can be set to a value that keeps the DC link voltage constant. These basic facts enable the use of the DTC method which relies on control of flux and torque.
The main difference between DTC and conventional PWM is that the torque is controlled at the same time level as power switches (25 ms). There is no separate voltage and frequency controlled PWM modulator. All selections of the switches are based on the electromagnetic state of the ISU. This kind of control method can be realised only by using a high speed signal processing technology. The digital signal processor Motorola 56xxx is used in the ACS 600 product family to achieve sufficient speed.
Identification Routine
The ISU adapts itself to the supply network and no data concerning the network conditions is to be set. The converter rating plate data is downloaded in the software package.
When the ISU is connected to the network for the first time, an identification routine must be completed. The identification routine is executed each time after the NAMC/RMIO board is powered and the line-side converter is started provided that Parameter 99.08 AUTO LINE ID RUN is set to YES.
The identification routine can be executed manually also after the next start (without power up of the NAMC/RMIO board) by setting the Parameter 99.07 LINE SIDE ID RUN to YES and pressing the Control Panel Start key. This can be done if there is doubt that the automatic identification routine has failed, or an automatic routine is not desirable as it takes approximately 5 seconds and requires that the line-side converter is not loaded.
During ID Run voltage level in the supply network is estimated based on DC voltage measurement. The value is indicated by Parameter 2.07 DC REF INITIALIZ. If If the value of Parameter 2.07 DC REF INITIALIZ is within allowed limits (see Par. 9.11 bit 9 NET VOLTAGE fault), the procedure goes on further to define the frequency of the network (50 Hz or 60 Hz) and the phase order.
ACA 635 IGBT Supply Unit Program 6-3
Chapter 6 – Firmware Description
The parameters concerning the identification routine are presented below.
Code Parameter Unit Description
99.07 LINE SIDE ID RUN Manual identification run
99.08 AUTO LINE ID RUN Automatic identification run after power up of the NAMC/RMIO board and next start
2.07 DC REF INITIALIZ V Nominal DC reference
Fault
9.11 bit 9 NET VOLT FLT Supply voltage is not valid
Charging
Synchronization
When the control has received a start command, the charging contactor is closed. When the DC link voltage is high enough, the main contactor/breaker is closed and the charging contactor is opened. This procedure is controlled by the NAMC board via NIOC board digital outputs RO1 and RO3 (or by the RMIO board via digital outputs RO1 and RO3).
If the charging is not completed, i.e. the DC link voltage has not exceeded the value of Parameter 30.12 DC UNDERVOLT TRIP or the charging current is not below 5% of I
10s/60s
, a fault bit is set (Parameter
9.11 SUPPLY FAULT WORD bit 0 CHARGING FLT).
The ISU is synchronized to the network by three-phase short-circuits. On the basis of the short-circuit current, the ISU can identify the phase order of the supply network and the starting point for the flux/voltage vector. The phase order of the supply can be changed without performing the identification routine again.
The synchronization can also be done without phase order check by setting Parameter 99.06 FAST SYNC to YES.
If a synchronization trial fails, the ISU makes up to 9 additional trials if the supply has not been disconnected. One reason for a failed synchronization is too low a short-circuit current due to the high impedance of the network.
The synchronization parameters are listed below.
Code Parameter Unit Description
99.06 FAST SYNC One short-circuit pulse is used.
Fault
9.02 SUPPLY PHASE Synchronization failed, phase(s) missing.
9.11 SYNCHRO FLT Synchronization failed, short-circuit current
below limit.
6-4 ACA 635 IGBT Supply Unit Program
Chapter 6 – Firmware Description
Starting Sequence
MAIN CTRL WORD
MAIN CTRL WORD
7.01
7.01
During the charging procedure the main contactor is closed, and after the synchronization routine is completed, the modulator is started and the ISU runs normally.
A simplified block diagram of the modulator starting (from starting switch on the cabinet door or via fieldbus) is presented below. For description of the starting procedure, see the next pages.
MCW = (0)
I/O = (1)
(0)
(1)
(0)
(1)
(0)
(1)
SWITCH
&
> 1
MAIN STATUS WORD
8.01
bit 8
bit 0
DI2
bit 3
COMMAND SEL
98.01
&
ACA 635 IGBT Supply Unit Program 6-5
Chapter 6 – Firmware Description
Start by the Starting
Switch
On/off switch
On/off from relay via
1. digital input DI2
2.
Charging contactor
3.
Main contactor
Synchronization
4, 5, 6
Modulating
7.
By default, the ISU control commands (ON/OFF) are given by the starting switch on the cabinet door which is wired to digital input DI2. The starting sequence is as follows:
2.5 s
0.5 s
Step Function
1. ISU control receives the ON command (DI2 rising edge) from the starting switch.
2. ISU control logic closes the charging contactor control circuit (RO1).
3. ISU control logic closes the main contactor and cooling fan control circuit (RO3).
4. ISU control logic receives the “main contactor on” acknowledgement (DI3).
5. ISU control logic receives the “cooling air fan in operation” acknowledgement (DI1).
6. ISU synchronizes itself to the supply network in case DC voltage is OK (charging is completed successfully).
7. ISU control starts modulation and opens the charging contactor control circuit (RO1). The inverter units can be started.
6-6 ACA 635 IGBT Supply Unit Program
Chapter 6 – Firmware Description
Start via Fieldbus To enable the fieldbus control Parameter 98.01 COMMAND SEL must
be set to MCW. The DC bus can be charged and the modulator started separately via fieldbus. The DC bus can be charged in two ways:
1. by rising edge of Parameter 7.01 MAIN CTRL WORD bit 0 and simultaneous high level of digital input DI2 (starting switch on the cabinet door in position 1).
High level of digital input DI2
Parameter 7.01 MAIN CTRL WORD bit 0 (starts charging)
Charging contactor
Main contactor
Parameter 7.01 MAIN CTRL WORD bit 0 = 1
Digital input DI2 (starts charging)
Charging contactor
Main contactor
2.5 s
0.5 s
2. by rising edge of digital input DI2 (from starting switch) and simultaneous high level of Parameter 7.01 MAIN CTRL WORD bit 0.
2.5 s
0.5 s
The modulator is started by high level of Parameter 7.01 MAIN CTRL WORD bit 3, and stopped by low level of bit 3. The modulator can be started only after the charging of the DC bus is completed.
Parameter 7.01 MAIN CTRL WORD bit 3
Synchronization
Modulation
ACA 635 IGBT Supply Unit Program 6-7
Chapter 6 – Firmware Description
Stop
Missing Phase
A stop signal from the on/off switch on the cabinet door disables the modulator and opens the main contactor. The modulator can be stopped also from the key on the Control Panel and from DriveWindow in local mode, and from an overriding system in remote mode. These functions do not open the main contactor.
When the modulator is stopped in local mode or by an overriding system, the ISU moves to 6-pulse diode bridge mode.
There is no direct AC voltage measurement in the ISU. The lost supply voltage is identified with current and DC voltage measurement.
When the ISU detects that the current has been below 0.64 percent of
I
10s/60s
for 1.5 milliseconds, an alarm (Parameter 9.12 SUPPLY ALARM WORD bit 10 NET LOST) is generated. The ISU tries to resynchronize as long as the DC voltage is greater than the value of Parameter 30.12 DC UNDERVOLT TRIP. The resynchronizing checks are made at 20 ms intervals. If the voltage in the DC link falls below the limit defined by Par. 30.12 DC UNDERVOLT TRIP, the ISU will open the main contactor/breaker and a fault (Parameter 9.11 bit 14 DC UNDERVOLT) is generated.
Code Parameters Unit Description
30.12 DC UNDERVOLT TRIP V Undervoltage tripping limit
Alarm
9.12 bit 10 NET LOST Supply lost alarm
Fault
9.11 bit 14 DC UNDERVOLT Undervoltage tripping
6-8 ACA 635 IGBT Supply Unit Program
Chapter 6 – Firmware Description
Control Diagram
Hysteresis
Torque ref.
Flux ref.
A block diagram of the measurements and principle of the ISU control
program is shown below. S1, S2 and S3 denote the power switches.
Direct torque and flux
hysteresis control
Actual flux
Actual value calculation
Reactive power control
DC voltage control
Switching frequency control
Actual
torque
Torque bits
Flux bits
Control bits
ASICs
Optimal switching logic
DC voltage
S1, S2, S3
Current
S1, S1, S3
Supply network
Controllers
Reactive power reference
Switching frequency reference
DC voltage reference
The control includes two main controllers:
torque and flux hysteresis control
dc voltage controller.
On the basis of measurements the following items are calculated:
actual value for flux
actual value for torque
actual value for reactive power
estimate for frequency.
ACA 635 IGBT Supply Unit Program 6-9
Chapter 6 – Firmware Description
DC Voltage Controller The ISU control has two reference values for the DC voltage control:
Parameter 23.01 DC VOLT REF (user given reference)
Parameter 2.05 DC REF Q-CTRL (minimum DC voltage reference
calculated by reactive power controller).
DC REF Q-CTRL
2.05
DC VOLT REF
23.01
RAMPING
120.01 DC RAMP UP
120.02 DC RAMP DOWN
SELECTOR
A
MAX(A,B)
B
LIMITER
113.01 DC REF MAX
113.02 DC REF MIN
In normal mode, the ramped value of Parameter 23.01 DC VOLT REF is selected if it is higher than Parameter 2.05 DC REF Q-CTRL. The DC reference ramping times are set by Parameters 120.01 DC UP TIME and 120.02 DC DOWN TIME. Minimum and maximum values for the DC reference are set by Parameters 113.01 DC REF MAX and
113.02 DC REF MIN.
Reference List The references are listed below.
Code Parameter Unit Description
23.01 DC VOLT REF V User given reference
113.01 DC REF MAX V Upper limit for the reference = 1.2
113.02 DC REF MIN V Lower limit for the reference = 0.65
120.01 DC RAMP UP s DC voltage reference ramp time from 0
120.02 DC RAMP DOWN s DC voltage reference ramp time from
Actual Value
1.10 160.04 DC VOLTAGE V Actual DC voltage
2.05 DC REF Q-CTRL V Reference from reactive power control
2.06 DC REF RAMP V Ramped and limited reference
DC REF RAMP
2.06
DC VOLTAGE
1.10
+
-
sqrt(2) · Par. 4.04 CONV NOM VOLTAGE
sqrt(2) · Par. 4.04 CONV NOM VOLTAG
to sqrt(2)
· Par. 4.04 CONV NOM
VOLTAGE. Default 1 s.
· Par. 4.04 CONV NOM
sqrt(2) VOLTAGE to 0. Default 1 s.
PI
Torque ref.
for hysteresis control
·
·
The DC voltage controller is the primary controller for the ISU.
The DC voltage controller keeps the DC voltage in a preset reference in all load conditions. An error signal is calculated from DC voltage measurement (Actual Signal 1.10 DC VOLTAGE) and Actual Signal
2.06 DC REF RAMP. The output of the DC voltage PI controller is the torque reference for hysteresis control.
6-10 ACA 635 IGBT Supply Unit Program
Chapter 6 – Firmware Description
The PI controller parameters are pretuned. There is no need to retune
them.
Reactive Power Control The reactive power control sets the flux reference for hysteresis control
to values with which zero reactive power is achieved.
Reactive power control is capable of generating a preset amount of
reactive power (Parameter 24.01 Q POWER REF) to the network
(positive = capacitive, negative = reactive) by changing the flux length.
Increasing the ISU flux length higher than the network flux length,
capacitive power is generated to the network and vice versa. Increased
flux means that the output voltage of the ISU is higher than the network
voltage.
Reactive power control parameters are listed below.
Code Parameter Unit Description
24.01 Q POWER REF % Reactive power in percentage of the nominal power
1.07 REACTIVE POWER kVAr Calculated reactive power
120.03 QPOW RAMP UP s Reactive power reference ramp up time from 0 kVAr to the absolute value of Par.
4.06 CONV NOM POWER. Default 1 s.
120.04 QPOW RAMP DOWN s Reactive power reference ramp down time from the absolute value of Par. 4.06 CONV NOM POWER to 0 kVAr. Default 1s.
A block diagram of reactive power control is shown below.
Q POWER REF
24.01
RAMPING
+
PI Flux ref. for hysteresis control
-
120.03 QPOW RAMP UP
120.04 QPOW RAMP DOWN
1.07
REACTIVE POWER
ACA 635 IGBT Supply Unit Program 6-11
Chapter 6 – Firmware Description
6-12 ACA 635 IGBT Supply Unit Program
Chapter 7 – Fault Tracing
Overview
This chapter explains the fault tracing procedure based on the warning and fault messages given by the ISU program. A factory installed control panel in the line-side converter is required in this procedure. For control panel use and motor-side inverter fault tracing, see the Firmware Manual of the application program.
All warning and fault messages are presented in tables below with information on the cause and remedy for each case. Most warning and fault conditions can be identified and cured with that information. If not, contact an ABB service representative.
CAUTION! Do not attempt any measurement, parts replacement or other service procedure not described in this manual. Such action will void guarantee, endanger correct operation, and increase downtime and expense.
WARNING! All electrical installation and maintenance work described in this chapter should only be undertaken by a qualified electrician. The Safety Instructions on the first pages of this manual must be followed.
Fault Tracing
Fault Resetting An active fault can be reset either by pressing the keypad RESET key,
The drive is equipped with advanced protection features that continuously guard the unit against damage and down time due to incorrect operating conditions and electrical and mechanical malfunctions.
The warning message disappears when any of the Control Panel keys is pressed. The warning will reappear in one minute if conditions remain unchanged. If the drive is operated with the Control Panel detached, the red LED in the Control Panel mounting platform indicates fault condition.
For setting of programmable warning and fault messages and functions, refer to Chapter 8 – Parameters.
by digital input or fieldbus, or switching the supply voltage off for a while. When the fault has been removed, the drive can be started.
ACA 635 IGBT Supply Sections, ACS800-17 7-1
Chapter 7 – Fault Tracing
Fault History When a fault is detected, it is stored in the Fault History. The last faults
and warnings are stored with the time the fault was detected.
WARNING! After a fault reset, the drive will start if the start signal is on. Before the reset, switch off the external start signal or ensure that it is safe to start.
The Fault History can be viewed by pressing or in the Actual Signal Display Mode. The Fault History can then be scrolled with and . To exit the Fault History press or . The Fault History can be cleared by pressing the RESET key.
Fault and Warning
The tables below show the warning and fault messages.
Messages
Warning Messages
Warning Cause What to do
ACS 600 TEMP/ ACS 800 TEMP Par. 9.12 bit 4
AI<MIN FUNC Par. 9.12 bit 3
CH0 COM LOST Par. 9.12 bit 0
CURRENT LIM Par. 9.12 bit 5
DI5 = 0 Par. 9.12 bit 14
Excessive IGBT module temperature. A warning is given if the temperature exceeds 115 °C.
I/O reference 4...20 mA is below 3.1 mA when Par. 13.06 MINIMUM AI2 or Par. 13.10 MINIMUM AI3 is set to 4 mA.
Communication break detected on CH0 receive. (can be deactivated: see Parameter 70.04)
Current limit is exceeded. The limit is 220% of
I
1base(10s/60s)
Digital input DI5 is OFF (0). Check the function indicated via digital input
.
Check ambient conditions. Check air flow and fan operation. Check heatsink fins for dust pick-up. Check line current against unit current.
Check for proper analogue control signal level. Check the control wiring.
Check the fibre optic cables between the NAMC board / RDCO module and overriding system (or fieldbus adapter). Test with new fibre optic cables. Check that the CH0 node address (Par. 70.01 CH0 NODE ADDR) is correct in the ISU.
Check the status of the fieldbus adapter. See appropriate fieldbus adapter manual.
Check parameter settings of Group 51, if a fieldbus adapter is present. Check the connections between the fieldbus and the adapter. Check that the bus master is communicating and correctly configured.
Limit inverter actual power or lower the reactive power percentage in Par. 24.01 Q POWER REF.
DI5.
7-2 ACA 635 IGBT Supply Sections, ACS800-17
Warning Messages
Warning Cause What to do
E EARTH FLT Par. 9.12 bit 13
EARTH FAULT Par. 9.12 bit 13
NET LOST Par. 9.12 bit 10
PANEL LOST Par. 9.12 bit 1
NO COMMUNICATION (x)
ID N CHANGED The ID number of the ISU has been changed
LOAD FACTORY Factory parameter settings are being restored. Please wait.
IT (Ungrounded) Network Impedance between a live part (e.g. phase conductor, DC link, motor cable or motor) and earth/ground is too low. Earth fault in LCL filter, line converter, DC link, inverter(s), motor cables or motor.
Earthed/Grounded Network The sum of line currents measured with internal current transducers is too high. Earth fault in LCL filter, line converter, DC link, inverter(s), motor cables or motor, or current unbalance in parallel connected converters.
Network voltage is lost during modulation. Line current is below 0.0064 may cause DC link undervoltage.
A Local Control device (CDP 312 or DriveWindow) has ceased communicating. This can be caused by disconnection of the selected local control device during local control or an internal fault in the local controlling device. This warning transfers the ISU to remote mode.
This message is generated by the Control Panel CDP 312 control program. There is a cabling problem or a hardware malfunction on the Panel Link. (4) = Panel type is not compatible with the version of the converter application program.
from 1 (the change is not displayed on the Control Panel CDP 312).
· I
10s/60s
. The situation
Check motors. Check motor cables. Check ISU. Check inverter(s). Check LCL filter.
Check motors. Check motor cables. Check ISU fuses (parallel connected units). Check ISU. Check inverter(s). Check LCL filter.
Check network conditions.
Check Control Panel connector. Replace Control Panel in the mounting platform.
Check the Panel Link connections. Press the RESET key. The panel reset may take up to half a minute, please wait. Check the Panel type and the version of the drive application program. The Panel type is printed on the cover of the Panel.
To change the ID number back to 1 go to Drive Selection Mode by pressing DRIVE. Press
ENTER. Set the ID number to 1. Press ENTER.
Chapter 7 – Fault Tracing
Fault Messages
Fault Text Cause What to do
ACS 600 TEMP/ ACS 800 TEMP Par. 9.01 bit 3 Par. 9.11 bit 3
AMBIENT TEMP Par. 9.02 bit 7
CHARGING FLT Par. 9.11 bit 0
ACA 635 IGBT Supply Sections, ACS800-17 7-3
Excessive IGBT module temperature. The trip level is 125 °C.
I/O control board temperature is lower than +5 °C or exceeds +73 °C.
DC link voltage is not high enough after charging procedure. DC link voltage has not exceeded the value of Par. 30.12 DC UNDERVOLT TRIP or current is not below 5% of I charging.
at the end of the
10s/60s
Check ambient conditions. Check air flow and fan operation. Check heatsink fins for dust pick-up. Check line current against unit current.
Check ambient temperature in the auxiliary control unit (ACU).
Check charging circuit fuses. Check charging circuit. Check possible short-circuit in DC link. Check the setting of Par. 30.12 DC UNDERVOLT TRIP.
Chapter 7 – Fault Tracing
Fault Messages
Fault Text Cause What to do
CH0 COM LOST Par. 9.02 bit 12 Par. 9.11 bit 10
DC OVERVOLT Par. 9.01 bit 2 Par. 9.11 bit 15
DC UNDERVOLT Par. 9.02 bit 2 Par. 9.11 bit 14
Faulty PPCC link (DC voltage measurement is zero).
Communication break detected on CH0 receive. (programmable fault, see Parameter 70.05)
Intermediate circuit DC voltage is excessive. This can be caused by
1. static or transient overvoltages in the mains.
2. too high supply voltage during synchronisation. The default trip limit is 740 VDC for 415 V units, 891 VDC for 500 V units and 1230 VDC for 690 V units. The trip limit can be changed with Par.
30.11 DC OVERVOLT TRIP. Intermediate circuit DC voltage is not sufficient.
This can be caused by a missing mains phase, a blown fuse or a rectifier bridge internal fault.
Check the PPCC link. See fault message PPCC LINK.
Check the fibre optic cables between the NAMC board / RDCO module and the overriding system (or fieldbus adapter). Test with new fibre optic cables.
Check that the CH0 node address (Parameter
70.01) is correct in the ISU.
Check the status of the fieldbus adapter. See appropriate fieldbus adapter manual. Check parameter settings of Group 51, if a fieldbus adapter is present. Check the connections between the fieldbus and the adapter. Check that the bus master is communicating and correctly configured.
Check the level of supply voltage, DC voltage and converter nominal voltage.
Check supply and inverter fuses. Check supply voltage.
The default trip limit is 293 VDC for 415 V units, 354 VDC for 500 V units and 488 VDC for 690 V units. The tip limit can be changed with Par. 30.12 DC UNDERVOLT TRIP.
DI5 = 0 Par. 9.11 bit 2
E EARTH FLT Par. 9.11 bit 4
EARTH FAULT Par. 9.01 bit 4 Par. 9.11 bit 12
Digital input DI5 is OFF (0). Check the function indicated via digital input
DI5.
IT (Ungrounded) Network Impedance between a live part (e.g. phase conductor, DC link, motor cable or motor) and earth/ground is too low. Earth fault in LCL filter, line converter, DC link, inverter(s), motor cables or motor.
Earthed/grounded Network The sum of line currents measured with internal current transducers is too high. Earth fault in LCL filter, line converter, DC link, inverter(s), motor cables or motor, or current unbalance in parallel connected converters.
Check motors. Check motor cables. Check ISU. Check inverter(s). Check LCL filter.
Check motors. Check motor cables. Check ISU fuses (parallel connected units). Check ISU. Check inverter(s). Check LCL filter.
7-4 ACA 635 IGBT Supply Sections, ACS800-17
Fault Messages
Fault Text Cause What to do
FAN FLT Par. 9.11 bit 5
IO FAULT Par. 9.02 bit 6
MAIN CNT FLT Par. 9.11 bit 6
NET VOLT FLT Par. 9.11 bit 9
OVER SWFREQ Par. 9.02 bit 9
OVERCURRENT Par. 9.01 bit 1 Par. 9.11 bit 1
PPCC LINK Par. 9.02 bit 11
SHORT CIRC Par. 9.01 bit 0
Fan is not rotating, or contactor connection is loose.
I/O communication fault or error detected on CH1. This can be caused by a fault in the NIOC board / RDCO module / RMIO board or a faulty/ loose fibre optic cable connection.
Main contactor is not functioning properly, or loose wiring.
Mains voltage is out of allowable range during synchronisation or ID Run. Trip limits are 208 V for 415 V units, 250 V for 500 V units and 345 V for 690 V units.
Switching overfrequency fault. This may be due to a hardware fault in the electronic boards.
Input current is excessive. The overcurrent trip limit is 0.98 CURRENT). The trip limit is approximately 190% of the converter nominal current I
4.05 CONV NOM CURRENT).
NINT board current measurement or communication fault between the NAMC/RMIO and NINT boards. The fault indication is not activated, when the DC link voltage is disconnected, but the NAMC/ RMIO board has an external power supply. The indication is activated when the charging is completed and the DC link voltage is “high”.
Short-circuit current has been detected on a power plate.
· (Par. 4.08 CONV MAX
1N
(Par.
Check the acknowledge circuit connection to the digital input DI1. Check the condition of the bearings of the fan motor by rotating fan motor manually. If the bearings are faulty replace the fan (available as spare part). Replace the fan if trippings continue and the bearings are OK.
Check for loose connections between the NIOC and NAMC board (or on RDCO module). Test with new fibre optic cables. If the fault is still active, replace the NIOC board / RDCO module / RMIO board.
Check main contactor control circuit wiring and signal wiring. Check main contactor control voltage level (should be 230 V).
Check mains voltage. Start again.
Replace the NAMC/RMIO board. Replace the NINT board. On units with parallel connected inverters, replace the NPBU board.
Check motor load. Check supply voltage. Check that there is no power factor compensation capacitors in the supply. Check ISU power semiconductors and current transducers.
Check the fibre optic cables connected between the NAMC/RMIO and NINT boards. In parallel connected inverters, also check the cabling on the NPBU-xx board. If the fault is still active, replace the NPBU board (only with parallel connected inverters), NAMC/RMIO and NINT board (in this order) until the fault disappears. Test with new fibre optic cables in the PPCC (power plate control board) link.
Measure the resistance of the power plate(s). If a faulty power plate is detected, replace the power plate and the NINT and NGDR boards, or change the whole converter phase module. Check the main circuit.
Chapter 7 – Fault Tracing
ACA 635 IGBT Supply Sections, ACS800-17 7-5
Chapter 7 – Fault Tracing
Fault Messages
Fault Text Cause What to do
SC (INU 1) Par. 9.01 bit 12
SC (INU 2) Par. 9.01 bit 13
SC (INU 3) Par. 9.01 bit 14
SC (INU 4) Par. 9.01 bit 15
SUPPLY PHASE Par. 9.02 bit 0
SYNCHRO FLT Par. 9.11 bit 13
USER MACRO There is no User Macro saved or the file is
Short-circuit in parallel connected phase module block 1
Short-circuit in parallel connected phase module block 2
Short-circuit in parallel connected phase module block 3
Short-circuit in parallel connected phase module block 4
Missing phase during synchronisation Check supply fuses.
Synchronisation to supply network is failed. Supply frequency has changed too much after ID Run.
defective.
Check the fibre optic cables between the NPBU board channel CH1 and the NINT board of phase module block 1. Check the motor and the motor cable. Check all power plates in the phase module block 1. If a faulty power plate is detected, replace the whole phase module.
Check the fibre optic cables between the NPBU board channel CH1 and the NINT board of phase module block 2. Check the motor and the motor cable. Check all power plates in the phase module block 2. If a faulty power plate is detected, replace the whole phase module.
Check the fibre optic cables between the NPBU board channel CH1 and the NINT board of phase module block 3. Check the motor and the motor cable. Check all power plates in the phase module block 3. If a faulty power plate is detected, replace the whole phase module.
Check the fibre optic cables between the NPBU board channel CH1 and the board of phase module block 4. Check the motor and the motor cable. Check all power plates in the phase module block 4. If a faulty power plate is detected, replace the whole phase module.
Check for supply network unbalance. Perform the ID Run again. See Parameter
99.07.
Create the User Macro again.
What to Do in Case of an Earth Fault Indication
This section describes how to trace the cause of an internal earth fault indication (Warning/Fault EARTH FAULT).
An earth fault indication does not always signify an actual earth fault. The indication can sometimes be caused by a faulty IGBT or a faulty NGDR control board.
7-6 ACA 635 IGBT Supply Sections, ACS800-17
Earth fault indication
TN
network?
Chapter 7 – Fault Tracing
Flowchart Use this flowchart for tracing the cause of an earth fault indication and
for locating faulty parts. The flowchart includes remedies.
Check whether
No
Par. 160.01 IU and Par. 160.03 IW are
appr. 0 A when
UDC is on.
No
Ye s
Measure Earth leakage on motor or cabling?
Yes
Change: damaged motor, switchgear or cabling
Fault fixed?
Yes
No
No
Yes
Set Par. 30.03 EARTH FAULT LEVEL to 5.
Fault fixed?
Yes
Par. 3.12 PP 0 TEMP
Change :
1. NINT board
2. current transducers
3. cabling between NINT and NXPP boards and current transducers
4. NXPP board
No
Frame Size
2xR11i, 2xR12i
4xR11i or 4xR12?
Ye s
Is the
difference between
to Par. 3.15 PP 3
TEMP < 5 °C?
Yes
No
No
1. Locate the hottest power plate: See Par. 3.12 PP 0 TEMP to Par. 3.15 PP 3 TEMP and ACS 600 Service Manual:
Indicator LEDs on the NINT and NXPP Boards.
2. Change the NGDR board of the hottest power plate.
Fault fixed?
No
Yes
Faulty NGDR board. Breakthrough fault.
Change the NGDR board of the adjacent power plate.
Fault fixed?
No
A faulty
fibre between NINT
and NPBU
boards?
Contact ABB for
No
permission to set Par.
30.03 EARTH FAULT LEVEL to 6.
Yes
Faulty NGDR board. No control.
Yes
Change
No
Change the fibre.
Fault fixed?
cabling to less capacitive
Yes
OK
ACA 635 IGBT Supply Sections, ACS800-17 7-7
Chapter 7 – Fault Tracing
7-8 ACA 635 IGBT Supply Sections, ACS800-17
Chapter 8 – Parameters
Overview
Parameters for the IGBT supply unit control program are described in the tables below.
Symbols used in the tables: Column Type: I = integer, R = real, B = boolean, C = character string ISU = IGBT Supply Unit
IGBT Supply Unit Program 8-1
Chapter 8 – Parameters
1 Actual Signals
Code Parameter Range/Unit Description Integer Scaling
1 ACTUAL
SIGNALS
1.05 FREQUENCY Hz Calculated line frequency 100 = 1 Hz
1.06 LINE CURRENT A Measured line current 1= 1 A
1.07 REACTIVE POWER kVAr Calculated reactive power (positive = capacitive, negative = reactive).
1.08 POWER kW Calculated line converter power (positive = power flow from supply network to intermediate circuit, negative = power flow from intermediate circuit to supply network).
1.09 POWER % Input power in percentage of nominal value (Par. 4.06 CONV NOM POWER)
1.10 DC VOLTAGE V Measured intermediate circuit voltage 1= 1 V
1.11 MAINS VOLTAGE V Calculated input voltage 1= 1 V
1.12 PP TEMP
1.13 TIME OF USAGE h Elapsed time meter. The timer is running when the NAMC/
1.14 KWH SUPPLY kWh This actual signal counts the kilowatt hours in operation. 1 = 100 kWh
1.15 DI6-1 STATUS 0000000...
1.16 KWH MOTORING kWh This actual signal counts the kilowatt hours of motoring
1.17 KWH GENERATING kWh This actual signal counts the kilowatt hours of regenerative
1.19 AI1 [V] 0...10 Non-scaled value of analogue input AI1. See Par. 13.01
1.20 AI2 [mA] 0...20 Non-scaled value of analogue input AI2. See Par. 13.04
1.21 AI3 [mA] 0...20 Non-scaled value of analogue input AI3. See Par. 13.08
1.22 RO3-1 STATUS 0000000...
1.23 AO1 [mA] 0...20 mA Value of analogue output 1 signal in milliamperes. For
1.24 AO2 [mA] 0...20 mA Value of analogue output 2 signal in milliamperes. For
1.26 LED PANEL
OUTPUT
1.27 COSFII Calculated cosfii 100 = 1
°C
0111111
0000111
% Monitoring of the NLMD-01 LED panel output. See
Temperature of the power plate in degrees Celcius 1 = 1 °C
RMIO board is powered.
Status of the digital inputs DI6 to DI1 in the software. 0 VDC = “0” +24 VDC = “1”
Example
Control Panel (CDP 312) display when digital inputs DI1 and DI4 are activated is 0001001, where the digits for digital inputs are read from right to left (DI1 to DI6).
(power flow from supply network to intermediate circuit).
braking (power flow from intermediate circuit to supply network).
AI1 HIGH VALUE and 13.02 AI1 LOW VALUE.
AI2 HIGH VALUE and 13.05 AI2 LOW VALUE.
AI3 HIGH VALUE and 13.09 AI3 LOW VALUE. Status of the standard I/O board relay outputs.
Example
Control Panel (CDP 312) display when relay outputs 2 and 3 are activated is 0000110, where the digits are read from right to left (DO1 to DO6)
signal selecting and scaling, see Parameter Group 15.
signal selecting and scaling, see Parameter Group 15.
Parameter Group 18.
1 = 1 kVAr
1= 1 kW
1= 1%
1 = 1 h
1= 1
1 = 100 kWh
1 = 100 kWh
10000 = 10 V or 20 mA
20000 = 20 mA, 2 V or 10 V
20000 = 20 mA
1 = 1
20000 = 20 mA
20000 = 20 mA
1= 1
8-2 IGBT Supply Unit Program
Chapter 8 – Parameters
2 Actual Signals
Code Parameter Unit Description Integer
Scaling
2 ACTUAL
SIGNALS
2.05 DC REF Q-CTRL V Minimum voltage reference of intermediate circuit calculated by reactive power control
2.06 DC REF RAMP V Ramped and limited intermediate circuit voltage reference for power control
2.07 DC REF INITIALIZ V Initialized intermediate circuit voltage reference based on line-side ID Run. The voltage reference is calculated from DC voltage measurement and is approximately sqrt(2) voltage.
· supply network
1 = 1 V
1 = 1 V
1 = 1 V
3 Actual Signals
Code Parameter Unit Description Integer
3 ACTUAL
SIGNALS
3.12 PP 0 TEMP
3.13 PP 1 TEMP ºC The highest power plate temperature of phase module block 2. 1 = 1 ºC
3.14 PP 2 TEMP ºC The highest power plate temperature of phase module block 3. 1 = 1 ºC
3.15 PP 3 TEMP ºC The highest power plate temperature of phase module block 4. 1 = 1 ºC
ºC
Scaling
These parameters are visible in parallel connected units (frame sizes 2xR11i/R12i and 4xR11i/R12i) only and show the highest power plate temperatures of the phase module blocks no. 1 to 4 (see Chapter 3 – Hardware Description: IGBT Supply Unit). LEDs on the NINT board indicate the hottest phase (U, V or W) of each module block. See Chapter 7 – Fault Tracing / What to Do in Case
of an Earth Fault Indication.
The highest power plate temperature of phase module block 1. 1 = 1 ºC
IGBT Supply Unit Program 8-3
Chapter 8 – Parameters
4 Information
The software version (Parameters 4.01 and 4.03) is expressed as follows:
Character noExample Meaning
1 I I = Input bridge software 2 X Product: X= ISU 3XSoftware type:
A = application software (Parameter 4.03) 4 G Control board: G = NAMC-51, R = RMIO 5 to 8 6000 Software version number: 6000 = NAMC-51, 7000 = RMIO
Code Parameter T
4INFORMATION
4.01 SOFTWARE PACKAGE VER
4.02 DTC VERSION B xxxx Software version number of the flux software. This fixed part of
4.03 APPLIC NAME C IXAx xxxx The application software name can be identified by means of
4.04 CONV NOM VOLTAGE
4.05 CONV NOM CURRENT
4.06 CONV NOM POWER
4.07 CONV MAX VOLTAGE
4.08 CONV MAX CURRENT
4.09 INVERTER TYPE
Range/Unit Description Integer
y p e
C IXXx xxxx This signal describes the software of the downloaded loading
package.
the software consists of the line converter control, operation system, communication control of the DDCS channels and Modbus software for the control panel.
this signal. This part of the software has been written using PC elements.
R V Downloaded line converter nominal supply voltage 1 = 1 V
R A Downloaded line converter nominal line current 1 = 1 A
R kW Line converter nominal power. 1 = 1 kW
R V Maximum value of converter voltage measuring range 1 = 1 V
R A Maximum value of converter current measuring range 1 = 1 A
C xxxxxx x xxx Line-side converter type -
Scaling
-
-
-
8-4 IGBT Supply Unit Program
Chapter 8 – Parameters
7 Control Word
8 Status Word
Parameter 7.01 is the control word of the line converter. The control word is a 16-bit packed boolean word displayed as a hex value and updated at 10 ms intervals.
Parameter 7.01 MAIN CTRL WORD (Control word of the line converter)
Bit Name Value Description
0ON 0 ⇒1 Starts charging
OFF 0 Opens main contactor
1, 2 0 Not in use
3 START 1 Starts modulation
0 Stops modulation
4...6 0 Not in use
7 RESET 0 1 Makes a reset
0–
8...15 0 Not in use
This parameter is a 16-bit packed boolean word displayed as a hex value and updated at 4 ms intervals.
Parameter 8.01 MAIN STATUS WORD (Status signals of the line converter)
Bit
0 RDY_ON 1 Ready to switch on = no fault
1 RDY_RUN 1 Ready to operate = DC bus charged
2 RDY_REF 1 Operation enabled
3 TRIPPED 1 Fault
4, 5, 6 Not in use
7 ALARM 1 Warning
8MODULATING 1
9 REMOTE 1 Drive control location: REMOTE
10 NET OK 1 Network voltage is OK.
11 Not in use
12, 13 Not in use
14 CHARGING 1 Charging contactor closed
15 Not in use
Name
Val ue
0 Not ready to switch on = fault
0 Not ready to operate
0
0 No fault
0No Warning
Line converter modulates.
0
Line converter not modulating
0 Drive control location: LOCAL
0 Network voltage is lost.
0 Charging contactor open
STATE/Description
IGBT Supply Unit Program 8-5
Chapter 8 – Parameters
9 Fault Words
These parameters are 16-bit words. They are displayed as hex values. Bit value 1 = Fault, and 0 = No Fault. Parameters are updated at 100 ms intervals.
Code Parameter Bit Name Description
9 FAULT WORDS
9.01 FAULT WORD 1
0 SHORT CIRC Short-circuit in the main circuit 1 OVERCURRENT Overcurrent 2 DC OVERVOLT Intermediate circuit DC overvoltage 3 ACS 600/800 TEMP IGBT module overtemperature 4 EARTH FAULT Internally detected earth fault 5, 6 Not in use 7 Internal faults. If this bit is 1, write down the value of Parameter
9.03. Contact ABB.
8...11 Not in use 12 SC (INU1) Short-circuit in parallel connected phase module block 1 13 SC (INU2) Short-circuit in parallel connected phase module block 2 14 SC (INU3) Short-circuit in parallel connected phase module block 3 15 SC (INU4) Short-circuit in parallel connected phase module block 4
9.02 FAULT WORD 2
0 SUPPLY PHASE Missing phase during synchronisation 1Not in use 2 DC UNDERVOLT Intermediate circuit DC undervoltage
3...5 Not in use 6 IO FAULT I/O device fault on CH1 7 AMBIENT TEMP I/O control board temperature 8Not in use 9 OVER SWFREQ Switching overfrequency 10 Not in use 11 PPCC LINK Current measurement or communication fault of NINT board 12 CH0 COM LOST Communication break on CH0
13...15 Not in use
9.03 FAULT WORD 3
0 FLT (F1_7) Factory default parameter file error 1 USER MACRO User Macro file error 2 FLT (F1_4) EPROM operating error 3 FLT (F1_5) FPROM data error 4 FLT (F2_12) Internal time level 2 overflow (100 ms) 5 FLT (F2_13) Internal time level 3 overflow (1 ms) 6 FLT (F2_14) Internal time level 4 overflow (50 ms) 7 FLT (F2_15) Internal time level 5 overflow (1 s) 8 FLT (F2_16) State machine overflow 9 FLT (F2_17) Application program execution error 10 FLT (F2_18) Application program execution error 11 FLT (F2_19) Illegal instruction 12 FLT (F2_3) Register stack overflow 13 FLT (F2_1) System stack overflow 14 FLT (F2_0) System stack underflow 15 Reserved
8-6 IGBT Supply Unit Program
Chapter 8 – Parameters
Code Parameter Bit Name Description
9 FAULT WORDS
9.07 INT FAULT INFO * Bits 0 to 3 are in use with parallel-connected converters only.
Control board NINT 1 (of phase module block 1) is connected to branching unit board NPBU channel CH1, NINT 2 is connected
to channel CH2 etc. 0 NINT 1 FAULT NINT 1 board fault * 1 NINT 2 FAULT NINT 2 board fault * 2 NINT 3 FAULT NINT 3 board fault * 3 NINT 4 FAULT NINT 4 board fault * 4 NPBU FAULT NPBU board fault * 5Not in use 6 U-PH SC U Short-circuit in phase U upper-leg IGBT(s) 7 U-PH SC L Short-circuit in phase U lower-leg IGBT(s) 8 V-PH SC U Short-circuit in phase V upper-leg IGBT(s) 9 V-PH SC L Short-circuit in phase V lower-leg IGBT(s) 10 W-PH SC U Short-circuit in phase W upper-leg IGBT(s) 11 W-PH SC L Short-circuit in phase W lower-leg IGBT(s)
12...15 Not in use
Converter Phase Module Block
Upper-leg IGBTs
NAMC/
NINT
RMIO
Lower-leg IGBTs
UVW
Converter Constructed of Two to Four Parallel-connected Phase Module Blocks
NDCU/RDCU
NAMC/ RMIO
NINT
NXPP
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
1
NGDR
NGDR
NGDR
NGDR
NGDR
NXPP
NGDR
NGDR
NGDR
NPBU
CH1
NGDR
NGDR
NGDR
CH2
CH3
NXPP
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
NGDR
VUW VUW
NINT 2
NGDR
NGDR
NGDR
NGDR
NXPP
NGDR
NGDR
NGDR
NGDR
NINT 3
NGDR
NGDR
WVU
IGBT Supply Unit Program 8-7
Chapter 8 – Parameters
Code Parameter Bit Name Description
9 FAULT WORDS
9.11 SUPPLY FAULT WORD
0 CHARGING FLT DC link short-circuit during charging 1 OVERCURRENT Overcurrent 2 DI5 = 0 External fault indicated via DI5
9.12 SUPPLY ALARM WORD
3 ACS 600 TEMP /
ACS 800 TEMP 4 E EARTH FLT Earth fault detected by an external monitoring device 5 FAN FLT Fan failure. Fault is activated 5 seconds after failure. 6 MAIN CNT FLT Main contactor failure 7 SHORT CIRC Short-circuit in the main circuit (indication from power plate). 8 Internal faults. If this bit is 1, write down the value of Parameter
9 NET VOLT FLT Supply voltage out of range during synchronisation 10 CH0 COM LOST Communication break on CH0 11 Not in use 12 EARTH FAULT Internally detected earth fault 13 SYNCHRO FLT Synchronisation to supply failed 14 DC UNDERVOLT Intermediate circuit DC undervoltage 15 DC OVERVOLT Intermediate circuit DC overvoltage
0 CH0 TIMEOUT Communication break detected 1 PANEL LOST Local control lost 2 Not in use 3 AI<MIN FUNC Current below 4 mA (4 mA minimum selected) 4
5 CURRENT LIM Current limit exceeded
6...9 Not in use 10 NET LOST Network voltage lost 11, 12 Not in use 13 EARTH FAULT Internally detected earth fault
14 DI5 = 0 External fault indicated via DI5 15 Not in use
ACS 600 TEMP/
ACS 800 TEMP
E EARTH FLT Earth fault detected by an external monitoring device
IGBT module temperature is excessive.
9.03. Contact ABB.
IGBT module temperature is excessive.
8-8 IGBT Supply Unit Program
11 Reference Selects
Chapter 8 – Parameters
Code Parameter T
11 REFERENCE
SELECT
11.01 DC REF SELECT I PARAM
11.02 Q REF SELECT I PARAM
Default Alternative Settings
y p e
23.1
24.1
( ) Fieldbus Equivalent
(1) PARAM 23.1; (2) AI1; (3) AI2; (4) AI3
(1) PARAM 24.1; (2) AI1; (3) AI2; (4) AI3
Description Integer
Source for intermediate circuit DC voltage reference
Source for reactive power reference 1 = 1
13 Analogue Inputs
Code Parameter T
13 ANALOGUE
INPUTS
13.01 AI1 HIGH VALUE I 20000 -32768...32767 This value corresponds to the maximum input
13.02 AI1 LOW VALUE I 0 -32768...32767 This value corresponds to the minimum input
13.03 FILTER AI1 R 1000 0...30000 ms Filter time constant for analogue input AI1.
13.04 AI2 HIGH VALUE I 0 -32768...32767 This value corresponds to the maximum input
13.05 AI2 LOW VALUE I 0 -32768...32767 This value corresponds to the minimum input
13.06 MINIMUM AI2 I 0 mA (1) 0 mA; (2) 4 mA This value corresponds to the minimum
13.07 FILTER AI2 R 1000 ms 0...30000 ms Filter time constant for analogue input AI2.
13.08 AI3 HIGH VALUE I 10000 -32768...32767 This value corresponds to the maximum input
13.09 AI3 LOW VALUE I 0 -32768...32767 This value corresponds to the minimum input
13.10 MINIMUM AI3 I 0 mA (1) 0 mA; (2) 4 mA This value corresponds to the minimum
13.11 FILTER AI3 R 1000 ms 0...30000 ms Filter time constant for analogue input AI3.
13.12 MINIMUM AI1 I 0 V (1) 0 V; (2) -10 V This value corresponds to the minimum
Default Alternative Settings
y p e
( ) Fieldbus Equivalent
Description Integer
voltage on analogue input AI1.
voltage on analogue input AI1.
The hardware filter time constant is 20 ms.
in milliamperes (20 mA) on analogue input AI2.
in milliamperes (0 or 4 mA) on analogue input AI2.
reference from analogue input AI2.
The hardware filter time constant is 20 ms.
in milliamperes (20 mA) on analogue input AI3.
in milliamperes (0 or 4 mA) on analogue input AI3.
reference from analogue input AI3.
The hardware filter time constant is 20 ms.
reference from analogue input AI1.
Scaling
1 = 1
Scaling
1 = 1
1 = 1
1 = 1 ms
1 = 1
1 = 1
1 = 1 ms
1 = 1
1 = 1
1 = 1 ms
IGBT Supply Unit Program 8-9
Chapter 8 – Parameters
14 Digital Outputs
Code Parameter T
14 DIGITAL
OUTPUTS
14.04 DO2 GROUP+INDEX
14.05 DO2 BIT NUMBER
Default Range Description Integer
y p e
801 -199999...+199999 This parameter selects the signal that controls
digital output D02 by the bit specified with Par.
14.05 DO2 BIT NUMBER. Example Par 8.01 MAIN STATUS WORD is selected to digital output D02, the value of Par. 14.04 is set to 801, where 8 indicates the group and 01 the index of the selected signal. The bit number is specified with Par. 14.05 DO2 BIT NUMBER. Note: Inversion of the output is set with a minus sign of the Par. 14.04 value.
0 0...15 This parameter specifies the bit number of the
signal selected with Par. 14.04 DO2 GROUP+ INDEX. See the example above.
: When bit number 0 (RDY_ON) of
Scaling
1 = 1
1 = 1
8-10 IGBT Supply Unit Program
15 Analogue Outputs
Chapter 8 – Parameters
Code Parameter T
15 ANALOGUE
OUTPUTS
15.01 ANALOGUE OUTPUT 1
15.02 INVERT AO1 B NO (0) NO; (1) YES Analogue output signal 1 inversion
15.03 MINIMUM AO1 I 0 mA (1) 0 mA; (2) 4 mA;
15.04 FILTER AO1 R 0.10 s 0...10 s Filter time constant for AO1 100 = 1 s
15.05 SCALE AO1 R 100 0...65536 Nominal value of AO1 (Par. 15.01
15.06 ANALOGUE OUTPUT 2
15.07 INVERT AO2 B NO (0) NO; (1) YES Analogue output signal 2 inversion
15.08 MINIMUM AO2 I 0 mA (1) 0 mA; (2) 4 mA
15.09 FILTER AO2 R 0.10 s 0...10 s Filter time constant for AO2 100 = 1 s
15.10 SCALE AO2 R 3000 0...65536 Nominal value of AO2 signal (Par. 15.06
Default Alternative Settings
y p e
I 106 0...30000 Analogue output signal 1 source selection.
I 101 0...30000 Analogue output signal 2 source selection.
( ) Fieldbus Equivalent
(3) 10 mA
(3) 10 mA
Description Integer
Example: analogue output 1, set Parameter 15.01 to value 2301.
Analogue output signal 1 offset in milliamperes
ANALOGUE OUTPUT 1). It corresponds to 20 mA at the output. Example: to Parameter 15.01 ANALOGUE OUTPUT 1. The value of Par. 15.05 is 100. When the value of Par. 1.06 LINE CURRENT is 100 A, the output of AO1 is 20 mA.
See example in Par. 15.01.
Analogue output signal 2 offset in milliamperes
ANALOGUE OUTPUT 2). It corresponds to 20 mA at the output. See example in Par.
15.05.
To link Par. 23. 01 DC VOLT REF to
Par. 1.06 LINE CURRENT is linked
Scaling
1 = 1
1 = 1
1 = 1
1 = 1
IGBT Supply Unit Program 8-11
Chapter 8 – Parameters
16 System Control Inputs
Code Parameter
16 SYSTEM CTR
INPUTS
16.02 PARAMETER LOCK
16.03 PASS CODE I 0 Pass code for the Parameter Lock. The default
16.06 PARAMETER BACKUP
Default Alternative Settings
T y p e
B OPEN Using this parameter, unauthorised parameter
IDONE
( ) Fieldbus Equivalent
(1) LOCKED Parameter changes are disabled. (0) OPEN Parameter changes are enabled.
(0) DONE Parameter value after the saving has been
(1) SAVE Parameter saving from RAM to permanent
Description
changes by CDP 312 Control Panel or the DriveWindow PC tool can be inhibited for Parameter Groups 0...99.
value is 0. To open the Parameter Lock for parameter groups below 100, change the value to
358. After the Parameter Lock is opened, the value is automatically reset.
completed.
FPROM memory.
Note: Parameter changes done through the CDP 312 Control Panel or DriveWindow are saved automatically to FPROM. Parameter changes done by an overriding control system (e.g. fieldbus or AC 80) via CH0 of the NAMC board / RDCO module are saved only to the volatile RAM memory. The changes need to be saved to FPROM separately using this parameter selection.
8-12 IGBT Supply Unit Program
18 LED Panel Control
Chapter 8 – Parameters
Code Parameter T
18 LED PANEL
CTRL
18.01 LED PANEL OUTPUT
18.02 SCALE PANEL R 100 0...65536 Scaling factor for the NLMD-01 Monitoring
Default Range Description Integer
y p e
The NLMD-01 Monitoring Display has a LED bar to show an absolute real type value: 0 50 100 150 %
.
The source and the scale of the display signal are defined by this parameter group.
Note: If NLMD -01 and CDP 312 Control Panel are used together, Actual Signal 1.26 LED PANEL OUTPUT must be the first signal in CDP 312 Actual Signal Display Mode. Otherwise the NLMD-01 LED bar display will show an incorrect value.
I 109 0...30000 Signal source selection for the NLMD-01
Monitoring Display. Example: set Parameter 18.01 to value 109.
Display. Example: Parameter 18.01. The frequency is 50 Hz (= 100
To link Par. 1.09 POWER to the display
Par. 1.05 FREQUENCY is linked to
· 50 = 5000 as integer scaled). Value 5000 of
Parameter 18.02 gives 100% display on the NLMD-01.
Scaling
1 = 1
1 = 1
IGBT Supply Unit Program 8-13
Chapter 8 – Parameters
19 Data Storage
Trend Monitoring with
Drive Window
A
APC2, AC80
PC element ACSRX
Data set 14
Index: 1 Index: 2
Index: 3
Parameters of this group are storages for receiving information from or sending it to an overriding system. The parameters are unconnected. They can be used for linking, testing and commissioning purposes.
Example 1.
Address of data set 14 index 2 is 90.08. To monitor a signal assigned for drive control from data set 14 index 2 (data word 14.2) using DriveWindow, follow the steps below.
3. Set Parameter 90.08 D SET 14 VAL 2 to 1901 (denoting Parameter
19.01).
4. Set DriveWindow monitoring channel to read Parameter 19.01.
RMIO/
NAMC-xx
Data set table
Index
Data set
.
.
.
.
1
14
2 3
.
.
.
.
.
.
Address Assignment of Data set
GroupIndex
90 08
For DriveWindow PC Tool
19.01
PC
Drive Window
Parameter table
19.01
A = a value assigned from overriding system to drive control
Sending a value Example 1.
To send a value to overriding system data set 15 index 2, set Parameter 92.08 D SET 15 VAL 2 to 1902 by a CDP 312 Control Panel or DriveWindow.
APC2, AC80
PC element ACSRX
B
Data set 15
Index: 1 Index: 2
Index: 3
RMIO/
NAMC-xx
Data set table
Index
Data set
.
.
.
.
1
15
2 3
.
.
.
.
.
.
Address Assignment of Data set
GroupIndex
92 08
B = a value assigned for overriding system application
From DriveWindow PC Tool
19.02
PC
Drive Window
Parameter table
19.02
8-14 IGBT Supply Unit Program
Chapter 8 – Parameters
19 Data Storage
Parameter Table
Integer scaling of these parameters is 1 = 1, the type is real and the range is -32768...+32767.
Code Parameter
19 DATA STORAGE
19.01 DATA 1
19.02 DATA 2
19.03 DATA 3
19.04 DATA 4
19.05 DATA 5
19.06 DATA 6
19.07 DATA 7
19.08 DATA 8
IGBT Supply Unit Program 8-15
Chapter 8 – Parameters
21 Start/Stop Functions
Code Parameter T
21 START/STOP
21.01 DC LEVEL START B NO (0) NO Disable level start
21.02 DC VOLTAGE LEVEL
Default Range/Unit Description
y p e
(1) YES Enable level start. The selection is not recommended
for units with an LCL filter. Consult ABB before setting this parameter to YES. Note: If Par. 99.08 AUTO LINE ID RUN is set to YES, the ISU performs the ID Run in NAMC/RMIO board power-up and modulates for one second thereafter. The ISU stops and waits until DC voltage exceeds the level of Par. 21.02 DC VOLTAGE LEVEL.
R See table
below.
See table below. Intermediate circuit DC voltage level at which the
modulation starts
Par. 4.04 CONV
NOM VOLTAGE
(V)
415 646 380 706 500 778 457 851 690 1073 632 1174
Default of Par. 21.02:
1.1 · sqrt(2) · Par. 4.04
CONV NOM VOLTAGE
(V) Minimum (V) Maximum (V)
(65% ...120%) · sqrt(2) · Par. 4.04
Range of Par. 21.02:
CONV NOM VOLTAGE
21.03 STOP LEVEL TIME
21.04 STOP LEVEL POWER
R 1000 ms ms Modulator is stopped when the power is higher than
defined with Par. 21.04 STOP LEVEL POWER for a time defined with this parameter.
R 0 kW kW Motoring power to stop the modulator
8-16 IGBT Supply Unit Program
Chapter 8 – Parameters
The functions set by this parameter group are visualised below.
stands for intermediate circuit DC voltage. P stands for converter
U
c
supply power.
P, U
U
c
+
P
m
Par. 21.04
Par. 21.02
P
P
g
g
P
Par. 21.03
t
-
Modulation starts
Modulation stops
IGBT Supply Unit Program 8-17
Chapter 8 – Parameters
23 DC Bus Reference
By changing the value of Parameter 23.01 DC VOLT REF from the default setting, the DC link voltage can be raised higher than with a conventional 6-pulse diode rectifier in order to compensate a low voltage level in the network.
Note: Check the motor insulation requirement. See ACS 600 MultiDrive Safety and Product Information guide (EN code
63982229) or ACS800-17 Hardware Manual (EN code 64638505).
WARNING! When setting this parameter, consult your local ABB representative. The LCL filter of the supply section may overheat.
Example If the supply voltage is 380 V, and the motor voltage 400 V, the voltage
difference can be compensated simply by setting Parameter 23.01 DC VOLT REF to value 565 (i.e. sqrt(2) · 400 V). However, the line converter power is still calculated on the basis of 380 V: P = sqrt(3) · 380 · line current.
Code Parameter
23 DC VOLT REF
23.01 DC VOLT REF R See table below. User-given setpoint value for intermediate circuit DC voltage
T
Range Description Integer
y p e
reference
Par. 4.04 CONV NOM
VOLTAGE
(V)
415 380 706 500 457 851 690 632 1174
Range of Par. 23.01:
(65% ...120%) · sqrt(2) · Par. 4.04
CONV NOM VOLTAGE
Minimum (V) Maximum (V)
Scaling
1 = 1 V
Note: The program limits the minimum value to sqrt(2) · U the actual supply voltage.
, where UAC denotes
AC
24 Reactive Power
Code Parameter
24 REACTIVE
POWER
24.01 Q POWER REF
8-18 IGBT Supply Unit Program
T
Default Range Description Integer
y p e
R
0% -100%...+100% Setpoint value for reactive power control in
percentage of Par. 4.06 CONV NOM POWER. Reactive power control is capable of generating the set amount of reactive power to the network (positive = capacitive, negative = reactive).
Scaling
1 = 1%
30 Fault Functions
Chapter 8 – Parameters
Code Parameter
T
Default Alternative
y p e
Settings
( ) Fieldbus
Description Integer
Scaling
Equivalent
30 FAULT
1 = 1
FUNCTIONS
30.02 EARTH FAULT B WARNING (0) WARNING A warning is given in an earth fault condition. 1 = 1 (1) FAULT Converter trips in an earth fault. 1 = 1
30.03 EARTH FAULT
LEVEL
R 4 for frame
sizes R6i to R12i; 5 for frame sizes 2xR11i, 2xR12i, 4xR11i, 4xR12i
Non-parallel connected converters (frame sizes R6i, R7i, R8i, R9i, R11i and R12i): This parameter sets the earth fault trip level through the PPCC link. In frame sizes R6i and R7i, the default setting cannot be changed. Parallel connected converters (frame sizes 2xR11i, 2xR12i, 4xR11i, 4xR12i): current
1 = 1
unbalance protection of converter output, e.g,
in a short-circuit. 1 1% unbalance in the sum current 2 3% unbalance in the sum current 3 8% unbalance in the sum current 4 13% unbalance in the sum current 5 18% unbalance in the sum current 6 28% unbalance in the sum current 7 39% unbalance in the sum current 8 62% unbalance in the sum current
30.04 EXT EARTH FAULT
I NO Earth fault detector is connected to digital input
DI4. This parameter selects the converter
1 = 1
reaction.
(1) NO Not in use (2) DI4=0 FAULTS Converter trips on EARTH FAULT if DI4 is OFF
(0).
(3) DI4=1 FAULTS Converter trips on EARTH FAULT if DI4 is ON
(1).
(4) DI4=0 ALARMS A warning is given if DI4 is OFF (0). (5) DI4=1 ALARMS A warning is given if DI4 is ON (1).
30.05 EXT EVENT I NO This parameter selects the converter reaction
to the state of digital input DI5.
(1) NO Not in use (2) DI5=0 ALARMS A warning is given if DI5 is OFF (0). (3) DI5=0 FAULTS Converter trips if DI5 is OFF (0).
30.11 DC OVERVOLT TRIP
R 740/891/1230 0...747 VDC
(415 V units)
0...900 VDC (500 V units)
0...1242 V DC (690 V units)
Intermediate circuit DC overvoltage trip limit. The lower range limit is determined by Par.
30.12 DC UNDERVOLT TRIP. When the setting of this parameter is changed, the corresponding higher range limit of Par. 30.12 DC OVERVOLT TRIP will also change.
1 = 1
IGBT Supply Unit Program 8-19
Chapter 8 – Parameters
30.12 DC
R 293/354/488 0...747 VDC UNDERVOLT TRIP
51 Communication Module
Code Parameter
51 COMMUNICATION
MODULE
51.01 FIELDBUS PAR1
51.02 ...
FIELDBUS_PAR2 ...15
51.15
70 DDCS Control
(415 V units)
0...900 VDC (500 V units)
0...1242 V DC (690 V units)
Intermediate circuit DC undervoltage trip limit. The higher range limit is determined by Par.
30.11 DC OVERVOLT TRIP. When the setting of this parameter is changed, the corresponding lower range limit of Par. 30.11 DC OVERVOLT TRIP will also change. This
1 = 1
parameter also determines DC voltage check limit during charging.
T
Description
y p e
This group defines the communication parameters for a fieldbus adapter module. The parameter names are copied from the module when it is installed and its connection to the drive is activated with Parameter 98.02 COMM MODULE. See the module manual.
C
Module type and software version
R
According to module type
Code Parameter
70 DDCS CONTROL
70.01 CH0 NODE ADDR
70.02 CH0 LINK CONTROL
70.03 CH0 BAUD RATE
T
Default Alternative Settings
y p e
R
1 1...125 Node address for channel CH0. When
( ) Fieldbus Equivalent
Description Integer
using the AC 80 system, the address must be 1 to 12. When using the APC2 system, the address must be 1. In other control systems, the node address is set according to the application.
R
10 1...15 DDCS channel CH0 intensity control for
transmission LEDs. This parameter can be used in special cases to optimise the communication performance in the link.
I
4 Mbit/s (0) 8 Mbit/s (not in use);
(1) 4 Mbit/s; (2) 2 Mbit/s (not in use); (3) 1 Mbit/s
Channel CH0 communication speed. This parameter must be set to 4 Mbits/s, when FCI communication module is used. Otherwise, the overriding system automatically sets the communication speed.
Scaling
1 = 1
1= 1
8-20 IGBT Supply Unit Program
Chapter 8 – Parameters
70.04 CH0 TIMEOUT
70.05 CH0 COMM LOSS CTRL
70.06 CH1 LINK CONTROL
70.15 CH3 NODE ADDR
70.16 CH3 LINK CONTROL
70.19 DDCS CH0 HW CONN
R
100 ms 0...60000 ms The delay time before a communication
break fault is indicated. The time count starts when the link does not update the message. During the time elapsing, CH0 TIMEOUT warning is set by 9.12 SUPPLY ALARM WORD bit 0. When the value of Par. 70.04 is zero, timeout is not monitored and CH0 COM LOST fault is not indicated regardless of the value of Par. 70.05.
I
FAULT This parameter is in use when Par. 98.01
COMMAND SEL is set to MCW and Par.
98.02 COMM MODULE to FBA DSET1, FBA DSET10 or INVERTER.
(1) NO FAULT A warning is given on communication loss
on channel CH0.
(2) FAULT Converter trips on communication loss on
channel CH0.
R
10 1...15 DDCS channel CH1 intensity control for
transmission LEDs in each device in a link. The parameter can be used in special cases to optimise the communication performance in the link.
R
1 1...254 Node address for channel CH3. This
channel is normally used with the start-up and maintenance tools. If the CH3 channels of several drives have been connected in a ring or star (by branching unit) configuration, each one must be assigned a unique node address. The new node address becomes valid only after auxiliary power shutdown of the NAMC/RMIO board.
R
15 1...15 DDCS channel CH3 intensity control for
transmission LEDs in each device in a link. The parameter can be used in special cases to optimise the communication performance in the link.
B
STAR This parameter is used for enabling or
disabling regeneration of channel CH0 optical transmitter in DDCS mode. DDCS mode is typically used with APC2, AC70 and AC450 controllers. In regeneration mode, any message received by the channel is echoed back. This parameter is not in use in DriveBus mode.
(0) RING Regeneration enabled. Select RING if the
CH0 channels on the NAMC boards / RDCO modules are connected in a ring configuration.
(1) STAR Regeneration disabled. Select STAR with
a star configuration such as AC450 – CI810 – NDBU-95 optical branching unit(s) – NAMC board / RDCO module (RMIO board).
1 = 1 ms
1 = 1
1 = 1
1=1
1=1
IGBT Supply Unit Program 8-21
Chapter 8 – Parameters
70.20 CH3 HW CONNECTION
71 DriveBus Communication
Code Parameter
71 DRIVEBUS
COMM
71.01 CH0 DRIVEBUS MODE
B
STAR This parameter is used for enabling or
disabling regeneration of channel CH3 optical transmitter. In regeneration mode any message received by the channel is echoed back.
(0) RING Regeneration enabled. Select RING if the
CH3 channels on the NAMC boards / RDCO modules are connected to a ring configuration.
(1) STAR Regeneration disabled. Select STAR with
a star configuration such as DriveWindow (PC) – NDBU-95 optical branching unit(s) – NAMC board / RDCO module (RMIO board).
T
Default Alternative Settings
y p e
B
YES This parameters selects the
( ) Fieldbus Equivalent
Description Integer
communication mode for channel CH0 on the NAMC board / RDCO module.The new mode becomes valid only on the next NAMC/RMIO board power-on.
(0) NO DDCS mode (1) YES DriveBus mode with AC 80 controller
1=1
Scaling
1 = 1
8-22 IGBT Supply Unit Program
Chapter 8 – Parameters
90, 91 Data Set Receive Addresses
Parameters of this group are addresses for received data from the overriding system.
Overriding System
DDCS link
RMIO/
Ch0
NAMC-xx
Dataset Table
10 12
14
32
Address Assignment of Dataset
Group
90.01.. .90.18
91.01...91.09
AMC Table
Data set receive addresses with the NAMC-51/RMIO board are given below. D SET 10 VAL 1 denotes the receive address of data set 10 value 1. Integer scaling of the parameters is 1 = 1 and range 0...9999.
Code Parameter Default Updating Interval (ms)
90, 91 DATA SET RECEIVE
ADDRESSES
90.01 D SET 10 VAL 1 701 2
90.02 D SET 10 VAL 2 0 2
90.03 D SET 10 VAL 3 0 2
90.04 D SET 12 VAL 1 0 4
90.05 D SET 12 VAL 2 0 4
90.06 D SET 12 VAL 3 0 4
90.07 D SET 14 VAL 1 0 10
90.08 D SET 14 VAL 2 0 10
90.09 D SET 14 VAL 3 0 10
90.10 D SET 16 VAL 1 0 10
90.11 D SET 16 VAL 2 0 10
90.12 D SET 16 VAL 3 0 10
90.13 D SET 18 VAL 1 0 100
90.14 D SET 18 VAL 2 0 100
90.15 D SET 18 VAL 3 0 100
90.16 D SET 20 VAL 1 0 100
90.17 D SET 20 VAL 2 0 100
90.18 D SET 20 VAL 3 0 100
91.01 D SET 22 VAL 1 0 100
91.02 D SET 22 VAL 2 0 100
91.03 D SET 22 VAL 3 0 100
91.04 D SET 24 VAL 1 0 100
91.05 D SET 24 VAL 2 0 100
91.06 D SET 24 VAL 3 0 100
91.07 D SET 32 VAL 1 0 100
91.08 D SET 32 VAL 2 0 100
91.09 D SET 32 VAL 3 0 100
IGBT Supply Unit Program 8-23
Chapter 8 – Parameters
92, 93 Data Set Transmit Addresses
Parameters of this group are signal addresses for transmitted data to the overiding system.
Overriding System
DDCS link
RMIO/
Ch0
NAMC-xx
Dataset Table
11 13
15
33
Address Assignment of Dataset
Group
92.01.. .92.18
93.01...93.09
AMC Table
Data set transmit addresses with the NAMC-51/RMIO board are given below. D SET 11 VAL 1 denotes the transmit address of data set 11 value 1. Integer scaling of the parameters is 1 = 1 and range 0...9999.
Code Parameter Default Updating Interval (ms) /
Description
92, 93
92.01 D SET 11 VAL 1 801 2
92.02 D SET 11 VAL 2 110 2
92.03 D SET 11 VAL 3 0 2
92.04 D SET 13 VAL 1 0 4
92.05 D SET 13 VAL 2 111 4
92.06 D SET 13 VAL 3 106 4
92.07 D SET 15 VAL 1 911 10
92.08 D SET 15 VAL 2 0 10
92.09 D SET 15 VAL 3 0 10
92.10 D SET 17 VAL 1 912 10
92.11 D SET 17 VAL 2 115 10
92.12 D SET 17 VAL 3 122 10
92.13 D SET 19 VAL 1 0 100
92.14 D SET 19 VAL 2 0 100
92.15 D SET 19 VAL 3 0 100
92.16 D SET 21 VAL 1 108 100
92.17 D SET 21 VAL 2 112 100
92.18 D SET 21 VAL 3 0 100
93.01 D SET 23 VAL 1 0 100
93.02 D SET 23 VAL 2 0 100
93.03 D SET 23 VAL 3 0 100
93.04 D SET 25 VAL 1 0 100
93.05 D SET 25 VAL 2 0 100
93.06 D SET 25 VAL 3 0 100
DATA SET TRANSMIT ADDRESSES
8-24 IGBT Supply Unit Program
98 Option Modules
Chapter 8 – Parameters
Code Parameter T
98 OPTION
MODULES
98.01 COMMAND SEL B I/O This parameter selects the control command
98.02 COMM MODULE I NO This parameter defines the control mode and place in
Default Alternative
y p e
Settings
( ) Fieldbus Equivalent
(0) MCW The ISU control program reads the control commands
(1) I/O The ISU control program reads the control commands
(1) NO The drive is controlled using I/O: DI2. (2) FBA DSET1 The drive is controlled through the communication link
(3) FBA DSET10 The drive is controlled through the communication link
(4) INVERTER Not in use
Description
interface(s).
via a serial link and through the digital input terminals.
through the digital input terminals.
the REMOTE mode.
(CH0) using datasets 1 and 2. This is a typical setting for use with a fieldbus adapter module.
(CH0) using datasets 10 to 33. (for example APC2, AC 70, AC80, NPBA-02, NCSA-01)
IGBT Supply Unit Program 8-25
Chapter 8 – Parameters
99 Start-up Data
Code Parameter
T
Default Alternative
y p e
Settings
( ) Fieldbus
Description
Equivalent
99 START UP
DATA
99.01 LANGUAGE I ENGLISH (0) ENGLISH (1) ENGLISHAM (2) DEUTSCH
The line-side converter displays the information in the selected language. Note: only English is available at the time of publishing.
(3) ITALIANO (4) ESPAÑOL (5) PORTUGUÊS (6) NEDERLANDS (7) FRANÇAIS (8) DANSK (9) SUOMI (10) SVENSKA
99.02 DEVICE NAME C Max. 32 characters The name of the supply section can be typed here by
DriveWindow. The name is shown in the System Configuration display of DriveWindow.
99.06 FAST SYNC B YES (0) NO Synchronization with phase order check (1) YES Synchronization without phase order check
99.07 LINE SIDE ID
RUN
BNO (0) NO Line-side converter ID Run is not performed after next
start.
(1) YES Next start makes ID Run for the line-side converter. It
takes about 5 seconds. After the ID Run, the converter keeps on modulating. It is not allowed to load the line-side converter during the ID Run.
99.08 AUTO LINE ID
RUN
B YES (0) NO No automatic line-side converter ID Run after power-up of
the NAMC/RMIO board and start. The parameter does not set Par. 99.07 to YES (ID Run request can still be set with Par. 99.07 if required).
(1) YES Line-side converter ID Run is performed automatically
after power-up of the NAMC/RMIO board and next start. The parameter sets Par. 99.07 to YES. Note: ID Run takes about 5 seconds. It is not allowed to load the line­side converter during the ID Run. If the ID Run has been performed once, Par. 99.08 can be set to NO (ID Run request can still be set with Par. 99.07 if required).
99.09 APPLIC
BNO (0) NO
RESTORE
99.10 SUPPLY ID
NUMBER
I 0 0...32767 This parameter can be used by the overriding system to
check the right connections of the optical cables to the drive type. This parameter requires support from the overriding system to verify the correct connection.
8-26 IGBT Supply Unit Program
Ratings
Appendix A – Technical Data
Abbreviations This table explains the abbreviations used in the following rating table.
Supply Section
I
1N
Duty Cycle (1 min / 5 min)
I
4/5min
I
1/5min
Duty Cycle (10 s / 60 s)
I
50/60s
I
10/60s
Total rms input current (continuous AC current)
Maximum base current with I
1/5min
.
Short term rms overload AC current (allowed for one minute every 5 minutes).
I
1/5min
I
4/5min
Maximum base current with I
1 min 4 min
1max
.
Short term rms overload AC current (allowed for 10 seconds every 60 seconds)
I
10/60s
I
50/60s
S
N
P
2N
Rated apparent supply power of the supply section Nominal power of intermediate DC link (continuous active motor or
10 s
50 s
generator power)
P
loss
U
N
Power loss Nominal mains voltage
Notes Note 1: The ratings correspond to voltage U
230 V or 115 V.
Note 2: P
is the heat loss of a unit with basic options. The value
loss
depends on the options included. Note 3: Noise level applies to echoless room.
and fan supply voltage
N
ACA 635 IGBT Supply Sections A-1
Appendix A – Technical Data
Ratings 380...690 V This table shows the nominal ratings for the IGBT supply sections.
Type Marking Nominal Ratings Duty Cycle (1 min / 5 min) Duty Cycle (10 s / 60 s) Frame
S
kVA
I
N
P
1N
2N
A
kW
I
4/5min
A
I
1/5min
A
I
50/60s
A
I
10/60s
A
Size
Air Flow P
3
/h
m
Noise
loss
Level
kW dBA
IGBT supply sections (380...415 V Range,UN = 415 V) ACA 635-0265-3 260 379 254 284 426 260 520 R8i 2100 6.4 60
ACA 635-0405-3 400 576 386 432 684 395 790 R9i 2100 9.7 60 ACA 635-0765-3 760 1006 673 755 1132 691 1384 R11i 4180 16.8 65 ACA 635-1125-3 1120 1494 1000 1121 1681 1036 2072 R12i 5680 25.0 68 ACA 635-1440-3 1440 1913 1280 1434 2152 1381 2762 2xR11i 8210 32.0 68 ACA 635-2145-3 2140 2838 1900 2129 3193 2072 4144 2xR12i 11210 47.5 70 ACA 635-2820-3 2820 3744 2506 2809 4212 2762 5524 4xR11i 16270 62.7 71 IBGT supply sections (380...500 V Range,UN = 500 V)
ACA 635-0325-5 320 368 308 276 414 240 480 R8i 2100 7.7 60 ACA 635-0495-5 490 565 473 424 636 365 730 R9i 2100 11.8 60 ACA 635-0935-5 930 987 826 741 1111 638 1277 R11i 4180 20.7 65 ACA 635-1385-5 1380 1466 1227 1099 1649 957 1914 R12i 5680 30.7 68 ACA 635-1760-5 1760 1876 1570 1407 2110 1276 2552 2xR11i 8210 39.3 68 ACA 635-2625-5 2620 2784 2329 2088 3133 1915 3829 2xR12i 11210 58.2 70 ACA 635-3450-5 3450 3673 3073 2754 4132 2552 5104 4xR11i 16270 76.8 71 IGBT supply sections (525...690 V Range,UN = 690 V)
ACA 635-0315-6 310 264 305 198 297 179 358 R8i 2100 7.6 60 ACA 635-0485-6 490 410 473 308 461 265 530 R9i 2100 11.8 60 ACA 635-0900-6 900 695 802 521 781 464 927 R11i 4180 20.1 65 ACA 635-1385-6 1380 1064 1229 798 1196 695 1389 R12i 5680 30.7 68 ACA 635-1710-6 1710 1320 1524 990 1485 926 1853 2xR11i 8210 38.1 68 ACA 635-2545-6 2540 1959 2262 1469 2204 1390 2780 2xR12i 11210 56.6 70 ACA 635-3350-6 3350 2584 2984 1938 2907 1853 3706 4xR11i 16270 74.6 71 ACA 635-5140-6 5140 3956 4568 2967 4451 2778 5557 4xR12i 22270 114.2 71
PDM code 00145936-F
A-2 ACA 635 IGBT Supply Sections
Appendix A – Technical Data
Dimensions and Weights
This table shows the dimensions and weights of the IGBT supply sections. The weights are estimates and apply to units with basic options and aluminium DC busbars. The width and weight of the auxiliary control unit are included: 400 mm (for frame sizes R8i and R9i, approximately 100 kg) or 600 mm (for frame sizes R11i and above, approximately 150 kg).
Type Marking Width
mm
IGBT supply sections (380...415 V Range,UN = 415 V) ACA 635-0265-3 1600 2130 550
ACA 635-0405-3 1600 2130 550 ACA 635-0765-3 2800 2130 1180 ACA 635-1125-3 3300 2130 1780 ACA 635-1440-3 4200 2130 2060 ACA 635-2145-3 5200 2130 3210 ACA 635-2820-3 7600 2130 3820 IBGT supply sections (380...500 V Range,UN = 500 V)
ACA 635-0325-5 1600 2130 550 ACA 635-0495-5 1600 2130 550 ACA 635-0935-5 2800 2130 1180 ACA 635-1385-5 3300 2130 1780 ACA 635-1760-5 4200 2130 2060 ACA 635-2625-5 5200 2130 3210 ACA 635-3450-5 7600 2130 3820 IGBT supply sections (525...690 V Range,UN = 690 V)
ACA 635-0315-6 1600 2130 550 ACA 635-0485-6 1600 2130 550 ACA 635-0900-6 2800 2130 1180 ACA 635-1385-6 3300 2130 1780 ACA 635-1710-6 4200 2130 2060 ACA 635-2545-6 5200 2130 3210 ACA 635-3350-6 7600 2130 3820 ACA 635-5140-6 9600 2130 6120
Height
mm
1)
Weight
kg
PDM code 00145936-F
1)
Height of the cabinet is 2074 for IP 54R.
ACA 635 IGBT Supply Sections A-3
Appendix A – Technical Data
Input Power Connection
Voltage (U1):
380/400/415 VAC 3­380/400/415/440/460/480/500 VAC 3­525/550/575/600/660/690 VAC 3-
phase for 415 VAC units
phase for 500 VAC units
phase for 690 VAC units
-40...+10% variation from converter nominal voltage is allowed. Short-circuit Capability (IEC 439): The rated short-time withstand
current of a drive equipped with an IGBT supply section is given below.
Frame Size I
R8i, R9i 37 78 R11i, R12i 50 105
Frequency: 50 Unbalance: Max.
± 2 Hz or 60 ± 2 Hz. Maximum rate of change 17%/s.
± 3% of nominal phase to phase input voltage
cw / 1 s
kA
I
pk
kA
Voltage Dips: Max. 25% Power Factor:
ϕ
cos 1.00=
1
I
λ
-------- ϕ
I
rms
1
(fundamental at nominal load)
cos 0.98>=
1
(total), where
is power factor
λ
I
is fundamental input current rms value,
1
I
is total input current rms value.
rms
A-4 ACA 635 IGBT Supply Sections
Appendix A – Technical Data
Harmonic Distortion This table gives total harmonic distortion (THD) of the ACA 635.
Definitions
THD
Voltage
%
44 20
0.8 4 100
Total Harmonic Distortion:
2
I
n
I
1
THD
40
=
2
THD
Current
%
nth harmonic component
I
n
fundamental current
I
1
R
sc
THD is calculated as follows: ratio of the rms value of the harmonics (n = 2...40) to the rms value of the fundamental. The voltage THD depends on the short-circuit ratio. The spectrum of the distortion also contains interharmonics. See also Applicable Standards.
Ratio of the short-circuit power of the supply network (source) to the fundamental apparent power of the ACA 635 at point of common coupling:
R
S
= short-circuit power at point of common coupling (PCC),
cc
= apparent power of the equipment calculated with rated rms line
S
equ
= Scc/S
sc
equ
, where
current.
Switching Frequency
Ambient Conditions
Efficiency
3 kHz (average).
See ACS 600 MultiDrive Safety and Product Information (EN code: 63982229) guide or ACS800-17 Hardware Manual (EN code: 64638505).
> 97.5% at nominal power level
ACA 635 IGBT Supply Sections A-5
Appendix A – Technical Data
Fuses
IGBT Supply Section AC
Fuses
The fuses (ultrarapid) of the IGBT supply section are given below. Only ultra rapid fuses guarantee proper protection for the rectifier semiconductors. Equivalent fuses from other manufacturers can also be used.
U
N
and I
denote nominal voltage and current of the fuse
N
respectively.
The AC fuses used in the ACA 635 IGBT supply sections are listed below.
IGBT Supply Type
ACA 635-0265-3 660 630 170M6810 ACA 635-0405-3 660 1000 170M6814 3
ACA 635-0765-3 690 700 170M5874 ACA 635-1125-3 690 900 170M5876 2 ACA 635-1440-3 690 700 170M5874 2 ACA 635-2145-3 690 900 170M5876 2 ACA 635-2820-3 690 700 170M5874 2
ACA 635-0325-5 660 630 170M6810 ACA 635-0495-5 660 1000 170M6814 3
U
(V)
N
I
(A)
N
Fuse
Type S i z e
DIN 43620
DIN 43653
DIN 43620
3
2
3
ACA 635-0935-5 690 700 170M5874 ACA 635-1385-5 690 900 170M5876 2 ACA 635-1760-5 690 700 170M5874 2 ACA 635-2625-5 690 900 170M5876 2 ACA 635-3450-5 690 700 170M5874 2
ACA 635-0315-6 1250 400 170M6303 ACA 635-0485-6 1250 630 170M6205 3SHT
ACA 635-0900-6 690 900 170M5876 ACA 635-1385-6 690 700 170M5874 2 ACA 635-1710-6 690 900 170M5876 2 ACA 635-2545-6 690 700 170M5874 2 ACA 635-3350-6 690 900 170M5876 2 ACA 635-5140-6 690 700 170M5874 2
DIN 43653
DIN 43620
DIN 43653
2
3SHT
2
A-6 ACA 635 IGBT Supply Sections
Loading...