Xilinx AC701 Evaluation Board for the Artix-7 FPGA User Manual

AC701 Evaluation Board for the Artix-7 FPGA
User Guide
UG952 (v1.4) August 6, 2019
DISCLAIMER
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.
© Copyright 2012–2019 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCI Express, PCIe, and PCI-X are trademarks of PCI-SIG and used under license. HDMI, HDMI logo, and High-Definition Multimedia Interface are trademarks of HDMI Licensing LLC. All other trademarks are the property of their respective owners.
https://www.xilinx.com/legal.htm#tos; IP cores may
https://www.xilinx.com/legal.htm#tos.

Revision History

The following table shows the revision history for this document.
Date Version Revision
10/23/2012 1.0 Initial Xilinx release.
01/30/2013 1.1 Updated photograph in Figure 1-2, page 11 to revision 1.0 of the AC701 board. Revised Figure 1-3.
Revised last paragraph under DDR3 Memory Module, page 15, fourth paragraph under USB JTAG
Module, page 23, third paragraph under GTP Transceivers, page 35, first paragraph under U3 IN0: 125 MHz Clock Generator, page 33, first, second and third paragraphs under U3/U4 IN2: FMC HPC GBT Clocks, page 35, fourth paragraph under PCI Express Edge Connector, page 38, and the first paragraph
under SFP/SFP+ Connector, page 39. Revised third and fourth rows in Table 1-13, page 40 and the fifth row in Table 1-14, page 40. Revised second paragraph and added fourth paragraph under LCD Character
Display, page 47. Revised first paragraph under I2C Bus Switch, page 49. Added Figure 1-32, page 53, Figure 1-34, page 53 and Figure 1-35, page 54. Revised Figure 1-41, page 57. Added section AC701 Board Power System, page 67 and section XADC Power System Measurement, page 72. Added third
paragraph under Power Management, page 62. Revised Figure 1-49, page 78. Revised Figure A-2,
page 82. Updated the Xilinx Design Constraints in Appendix C. Added Appendix F, Regulatory and Compliance Information.
08/28/2013 1.2 Added Figure 1-10. Revised Figure 1-2, Figure 1-49, and Figure 1-50.
AC701 Evaluation Board www.xilinx.com UG952 (v1.4) August 6, 2019
Date Version Revision
04/07/2015 1.3 Replaced the board photo in Figure 1-2 with the Rev 2.0 board. Added callout row to GTP transceiver
clock multiplexers in Table 1-1. Replaced Table 1-4, Table 1-5, Table 1-7, and Table 1-8. Replaced I/O banks 32, 33, and 34 with banks 33, 34, and 35 in DDR3 Memory Module, page 15. Updated
Figure 1-10. Major revision of GTP Transceiver Clock Multiplexer section, starting on page 28. Added
note to Table 1-13. Replaced Ta bl e 1-16, Table 1-19, Table 1-21, Table 1-23, and Table 1-26. Updated
Figure 1-42. Voltage regulators changed in section AC701 Board Power System, page 67. Updated
device types and footnotes in Table 1-27 to reflect device changes. Updated Figure 1-44 and Figure 1-45. Changed Texas Instruments parts numbers to LMZ31710 and LMZ31704 in [Ref 22]. Changed XADC_GPIO_3, 2, 1, 0 description in Table 1-35. Added Figure A-3 to show board components called out in Table A-3. Updated the Artix-7 FPGA AC701 Declaration of Conformity link in Appendix F,
Regulatory and Compliance Information.
08/06/2019 1.4 Updated DDR3 Memory Module section. Changed Appendix C, Xilinx Design Constraints. Updated the
Appendix F, Regulatory and Compliance Information.
UG952 (v1.4) August 6, 2019 www.xilinx.com AC701 Evaluation Board
AC701 Evaluation Board www.xilinx.com UG952 (v1.4) August 6, 2019

Table of Contents

Send Feedback
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Chapter 1: AC701 Evaluation Board Features
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
AC701 Board Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrostatic Discharge Caution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Feature Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Artix-7 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
DDR3 Memory Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Quad SPI Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
SPI Flash Memory External Programming Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
SD Card Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
USB JTAG Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
GTP Transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
PCI Express Edge Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
SFP/SFP+ Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10/100/1000 Mb/s Tri-Speed Ethernet PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Ethernet PHY User LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
USB-to-UART Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
HDMI Video Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
LCD Character Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
I2C Bus Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
AC701 Board LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
User I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
FPGA Mezzanine Card Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
AC701 Board Power System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
XADC Power System Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
XADC Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
AC701 Evaluation Board www.xilinx.com 5
UG952 (v1.4) August 5, 2019
Appendix A: Default Switch and Jumper Settings
User GPIO DIP Switch SW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Configuration DIP Switch SW1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Default Jumper Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Appendix B: VITA 57.1 FMC Connector Pinouts
Send Feedback
Appendix C: Xilinx Design Constraints
Appendix D: Board Setup
Installing the AC701 Board in a PC Chassis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Appendix E: Board Specifications
Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Environmental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Operating Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Appendix F: Regulatory and Compliance Information
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
CE Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
CE Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Electromagnetic Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Appendix G: Additional Resources
Xilinx Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Solution Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 5, 2019
AC701 Evaluation Board Features
Send Feedback

Overview

The AC701 evaluation board for the Artix®-7 FPGA provides a hardware environment for developing and evaluating designs targeting the Artix-7 XC7A200T-2FBG676C FPGA. The AC701 board provides features common to many embedded processing systems, including a DDR3 SODIMM memory, an 4-lane PCI Express® interface, a tri-mode Ethernet PHY, general purpose I/ O, and a UART interface. Other features can be added by using an FPGA mezzanine card (FMC) attached to the VITA-57 FPGA mezzanine connector provided on the board. A high pin count (HPC) FMC connector is provided. See details for each feature are described in Feature Descriptions.

Additional Information

See Appendix G, Additional Resources for references to documents, files and resources relevant to the AC701 board.
AC701 Board Features for a complete list of features. The
Chapter 1

AC701 Board Features

Artix-7 XC7A200T-2FBG676C FPGA
•1 GB DDR3 memory SODIMM
256 Mb quad serial peripheral interface (quad SPI) flash memory
Secure Digital (SD) connector
USB JTAG through Digilent module
Clock generation
Fixed 200 MHz LVDS oscillator
I2C programmable LVDS oscillator
SMA connectors
SMA connectors for GTP transceiver clocking
GTP transceivers
FMC HPC connector (two GTP transceivers)
SMA connectors (one pair each for TX, RX and REFCLK)
PCI Express (four lanes)
Small form-factor pluggable plus (SFP+) connector
Ethernet PHY RGMII interface (RJ-45 connector)
PCI Express endpoint connectivity
Gen1 4-lane (x4)
AC701 Evaluation Board www.xilinx.com 7
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
Send Feedback
Gen2 4-lane (x4)
SFP+ connector
10/100/1,000 tri-speed Ethernet PHY
USB-to-UART bridge
High-Definition Multimedia Interface (HDMI™) technology codec
I2C bus
•I2C MUX
I2C EEPROM (1 KB)
User I2C programmable LVDS oscillator
DDR3 SODIMM socket
HDMI codec
FMC HPC connector
SFP+ connector
I2C programmable jitter-attenuating precision clock multiplier
•Status LEDs
Ethernet status
Power good
•FPGA INIT
FPGA DONE
User I/O
User LEDs (four GPIO)
User pushbuttons (five directional)
CPU reset pushbutton
User DIP switch (4-pole GPIO)
User SMA GPIO connectors (one pair)
LCD character display (16 characters x 2 lines)
• Switches
Power on/off slide switch
FPGA_PROG_B pushbutton switch
Configuration mode DIP switch
VITA 57.1 FMC HPC connector
Power management
PMBus voltage and current monitoring through TI power controller
XADC header
Configuration options
Quad SPI flash memory
USB JTAG configuration port
Platform cable header JTAG configuration port
8 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
The AC701 board block diagram is shown in Figure 1-1. The AC701 board schematics are
Send Feedback
available for download from the AC701 Evaluation Kit product page.

Electrostatic Discharge Caution

Caution! ESD can damage electronic components when they are improperly handled, and can
result in total or intermittent failures. Always follow ESD-prevention procedures when removing and replacing components.
To prevent ESD damage:
Use an ESD wrist or ankle strap and ensure that it makes skin contact. Connect the equipment end of the strap to an unpainted metal surface on the chassis.
Avoid touching the adapter against your clothing. The wrist strap protects components from ESD on the body only.
Handle the adapter by its bracket or edges only. Avoid touching the printed circuit board or the connectors.
Put the adapter down only on an antistatic surface such as the bag supplied in your kit.
If you are returning the adapter to Xilinx Product Support, place it back in its antistatic bag immediately.
If a wrist strap is not available, ground yourself by touching the metal chassis before handling the adapter or any other part of the computer/server.
Electrostatic Discharge Caution
AC701 Evaluation Board www.xilinx.com 9
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
UG952_c1_01_101512
Artix-7 FPGA
XC7A200T-2FBG676C
128 Mb Quad SPI
Flash Memory
SD Card Interface
4-lane PCI Express
Edge Connector
LCD Display
(2 line x 16 characters)
1 KB EEPROM (I2C)
I2C Bus Switch
XADC Header
User Switches,
Buttons, and LEDs
HDMI Video
Interface
Differential Clock
GTP SMA Clock
1 GB DDR3 Memory
(SODIMM)
FMC Connector
(HPC)
10/100/1000 Ethernet
Interface
DIP Switch SW1
Config
USB-to-UART Bridge
JTAG Interface
micro-B USB Connector
SFP+ Single Cage
Send Feedback
X-Ref Target - Figure 1-1
Figure 1-1: AC701 Board Block Diagram
10 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019

Feature Descriptions

UG952_c1_02_022715
18
29
30
31
13
5
14
1
6
7
30
11
11
8
9
32
10
3
16
17
12
15
2
25
00
Square callout references a component on the back side of the board
Round callout references a component on the front side of the board
00
4
26
23
21
28
22
24
19
27
33
34
35
20
Send Feedback
Figure 1-2 shows the AC701 board. Each numbered feature that is referenced in Figure 1-2 is
described in the sections that follow.
Note: The image in Figure 1-2 is for reference only and might not reflect the current revision of the
board.
X-Ref Target - Figure 1-2
Feature Descriptions
Table 1-1: AC701 Board Component Descriptions
Callout
AC701 Evaluation Board www.xilinx.com 11
UG952 (v1.4) August 6, 2019
Figure 1-2: AC701 Board Components (Rev. 2.0)
Reference
Designator
1 U1 Artix-7 FPGA Xilinx XC7A200T-2FBG676C
2 J1 DDR3 SODIMM socket with memory Micron MT8JT12864HZ-1G6G1 10
3 U7 Quad SPI flash memory Micron N25Q256A13ESF40G 4
Component Description Notes
Schematic
0381502
Page Number
4 U29 SD card interface connector Molex 67840-8001 14
5 U26 USB-JTAG module
6 U51 System clock source (back side of board) SiTime SIT9102AI-243N25E200.0000 3
7 U34
8 J31, J32 SMA user clock input Rosenberger 32K10K-400L5 3
Programmable user clock source
MHz-810 MHz (back side of board)
10
Digilent USB JTAG module (with micro-B receptacle)
Silicon Labs SI570BAB000544DG (default 156.250
MHz)
4
3
Chapter 1: AC701 Evaluation Board Features
Send Feedback
Table 1-1: AC701 Board Component Descriptions (Cont’d)
Callout
10 U24 Jitter attenuated clock (back side of board) Silicon Labs SI5324-C-GM 16
12 P1 PCI Express® edge connector 4-lane card edge connector 28
13 P3 SFP/SFP+ connector Molex 74441-0010 20
14 U12 10/100/1000 tri-speed Ethernet PHY Marvell 88E1116RA0-NNC1C000 15
15 U2 GTP transceiver clock generator 125 MHz ICS ICS84402IAGI-01LF 3
16 J17, U44
17 P2, U48 HDMI video connector and device
18 J23 LCD character display connector 2 x 7 0.1 in male pin header 14
19 U52 I2C bus switch (back side of board) TI PCA9548ARGER 6
20 DS11–DS13 Ethernet PHY status LEDs, green Lumex SML-LX0603GW 15
21 DS2–DS5 User GPIO LEDs, green Lumex SML-LX0603GW 21
Reference
Designator
9 J25, J26 SMA GTP reference clock input Rosenberger 32K10K-400L5 3
11 U1 GTP transceivers Embedded within FPGA U1 30
USB-to-UART bridge (back side of board) and mini-B receptacle (front side of board)
Component Description Notes
Page Number
Silicon Labs CP2103GM 5
Molex 500254-1927, Analog Devices ADV7511KSTZ-P
Schematic
0381502
19, 18
22 SW3 – SW7 User pushbuttons E-switch E-Switch TL3301EF100QG 21
23 SW2 GPIO DIP switch, 4-pole C&K SDA04H1SBD 21
24 SW10 User rotary switch Panasonic EVQ-WK4001 21
25 J33, J34 SMA user GPIO Rosenberger 32K10K-400L5 3
26 SW15 Power on/off slide switch C&K 1201M2S3AQE2 38
27 SW9
28 SW1 Configuration mode DIP switch, 3-pole C&K SDA03H1SBD 7
29 J30 FMC HPC connector Samtec ASP_134486_01 24–27
U8, U9,
30
31 J19 XADC header 2X10 0.1 inch male header 31
32
33 J2 PMBus connector Assmann AWHW10G-0202-T-R 38
34 J49 6 pin Molex mini-fit Jr. connector for 12V Molex 39-30-1060 38
U49,
U53-U60
J44, J45,
J46, J47
FPGA_PROG_B pushbutton switch (active-Low)
Power management (voltage regulators front side of board, controllers back side of board)
MGT transmit, receive SMA pairs Rosenberger 32K10K-400L5 3
E-Switch TL3301EF100QG 7
TI UCD90120ARGC controllers in conjunction with various regulators
39–50
12 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
Table 1-1: AC701 Board Component Descriptions (Cont’d)
Send Feedback
Feature Descriptions
Callout
Reference
Designator
Component Description Notes
Page Number
35 U3, U4 GTP transceiver clock multiplexers Micrel SY89544UMG 30
Notes:
1. Jumper header locations are identified in Default Jumper Settings in Appendix A.

Artix-7 FPGA

[Figure 1-2, callout 1]
The AC701 board is populated with the Artix-7 XC7A200T-2FBG676C FPGA.
For further information on Artix-7 FPGAs, see 7 Series FPGAs Overview (DS180) [Ref 2].
FPGA Configuration
The AC701 board supports two of the five 7 series FPGA configuration modes:
Master SPI flash memory using the onboard Quad SPI flash memory
JTAG using a standard-A to micro-B USB cable for connecting the host PC to the AC701 board configuration port or by J4 Platform Cable USB/Parallel Cable IV flat cable connector
Each configuration interface corresponds to one or more configuration modes and bus widths as listed in respectively, as shown in Figure 1-3.
X-Ref Target - Figure 1-3
Table 1-2. The mode switches M2, M1, and M0 are on SW1 positions 1, 2, and 3
FPGA_3V3
FPGA_M2 FPGA_M1 FPGA_M0
R339
1.21K 1% 1/10W
R338
1.21K 1% 1/10W
R337
1.21K 1% 1/10W
SW1
1
NC
2 3
SDA03H1SBD
6 5 4
Schematic
0381502
AC701 Evaluation Board www.xilinx.com 13
UG952 (v1.4) August 6, 2019
UG952_c1_03_011713
Figure 1-3: SW1 Default Settings
The default mode setting is M[2:0] = 001, which selects Master SPI flash memory at board power-on. See
Configuration Options for more information about the mode switch SW1.
Table 1-2: AC701 Board FPGA Configuration Modes
Configuration
Mode
SW1 DIP switch
Settings (M[2:0])
Bus
Width
CCLK
Direction
Master SPI flash memory 001 x1, x2, x4 Output
JTAG 101 x1 Not applicable
Chapter 1: AC701 Evaluation Board Features
UG952_c1_04_092812
GND
2
2
1
1
B1
1.5V Seiko TS518SE_FL35E
2
1
3
BAS40-04
D6
40V
200 mW
NC
FPGA_VBATT
+
VCC1V8 (1.8V)
R83
4.70K 5% 1/10W
Send Feedback
For full details on configuring the FPGA, see 7 Series FPGAs Configuration User Guide (UG470)
[Ref 6].
Encryption Key Backup Circuit
FPGA U1 implements bitstream encryption key technology. The AC701 board provides the encryption key backup battery circuit shown in button-type battery B1 is soldered to the board with the positive output connected to FPGA U1 VCCBATT pin G14. The battery supply current I board power is off. B1 is charged from the VCC1V8 1.8V rail through a series diode with a typical forward voltage drop of 0.38V and 4.7 kΩ current limit resistor. The nominal charging voltage is
1.62V.
X-Ref Target - Figure 1-4
Figure 1-4. The rechargeable 1.5V lithium
specification is 150 nA maximum when
BATT
14 www.xilinx.com AC701 Evaluation Board
I/O Voltage Rails
Figure 1-4: Encryption Key Backup Circuit
In addition to Bank 0, there are eight I/O banks available on the Artix-7 device. The voltages applied to the FPGA I/O banks used by the AC701 board are listed in
Table 1-3.
Table 1-3: FPGA Bank Voltage Rails
U1 FPGA Bank
Power Supply Rail
Net Name
Vol tage
Bank 0 FPGA_3V3 3.3V
Bank 12 VCCO_VADJ 2.5V
Bank 13 FPGA_1V8 1.8V
Bank 14 FPGA_3V3 3.3V
Bank 15 VCCO_VADJ 2.5V
Bank 16 VCCO_VADJ 2.5V
Bank 33 FPGA_1V5 1.5V
UG952 (v1.4) August 6, 2019
Table 1-3: FPGA Bank Voltage Rails (Cont’d)
Send Feedback
Feature Descriptions
U1 FPGA Bank
Bank 34 FPGA_1V5 1.5V
Bank 35 FPGA_1V5 1.5V

DDR3 Memory Module

[Figure 1-2, callout 2]
The memory module at J1 is a 1 GB DDR3 small outline dual-inline memory module (SODIMM). It provides volatile synchronous dynamic random access memory (SDRAM) for storing user code and data. The SODIMM socket has a perforated EMI shield surrounding it as seen in
Part number: MT8JTF12864HZ-1G6G1 (Micron Technology)
Configuration: 1GB (128 Mb x 64)
Supply voltage: 1.5V
Datapath width: 64 bits
Data rate: up to 1,600 MT/s
The AC701 XC7A200T FPGA memory interface performance is documented in the Artix-7 FPGAs Data Sheet: DC and AC Switching Characteristics (DS181)
The DDR3 interface is implemented across I/O banks 33, 34, and 35. An external 0.75V reference VTTREF is provided for these banks. Any interface connected to these banks that requires a reference voltage must use this FPGA voltage reference. The connections between the DDR3 memory and the FPGA are listed in
Power Supply Rail
Net Name
Table 1-4.
Vol tage
Figure 1-2.
[Ref 4].
Table 1-4: DDR3 Memory Connections to the FPGA
FPGA Pin (U1)
M4 DDR3_A0 SSTL15 98 A0
J3 DDR3_A1 SSTL15 97 A1
J1 DDR3_A2 SSTL15 96 A2
L4 DDR3_A3 SSTL15 95 A3
K5 DDR3_A4 SSTL15 92 A4
M7 DDR3_A5 SSTL15 91 A5
K1 DDR3_A6 SSTL15 90 A6
M6 DDR3_A7 SSTL15 86 A7
H1 DDR3_A8 SSTL15 89 A8
K3 DDR3_A9 SSTL15 85 A9
N7 DDR3_A10 SSTL15 107 A10/AP
L5 DDR3_A11 SSTL15 84 A11
L7 DDR3_A12 SSTL15 83 A12_BC_N
Schematic Net
Name
I/O Standard
J1 DDR3 Memory
Pin Number Pin Name
AC701 Evaluation Board www.xilinx.com 15
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
Send Feedback
Table 1-4: DDR3 Memory Connections to the FPGA (Cont’d)
FPGA Pin (U1)
N6 DDR3_A13 SSTL15 119 A13
L3 DDR3_A14 SSTL15 80 A14
K2 DDR3_A15 SSTL15 78 A15
N1 DDR3_BA0 SSTL15 109 BA0
M1 DDR3_BA1 SSTL15 108 BA1
H2 DDR3_BA2 SSTL15 79 BA2
AB6 DDR3_D0 SSTL15 5 DQ0
AA8 DDR3_D1 SSTL15 7 DQ1
Y8 DDR3_D2 SSTL15 15 DQ2
AB5 DDR3_D3 SSTL15 17 DQ3
AA5 DDR3_D4 SSTL15 4 DQ4
Y5 DDR3_D5 SSTL15 6 DQ5
Y6 DDR3_D6 SSTL15 16 DQ6
Y7 DDR3_D7 SSTL15 18 DQ7
Schematic Net
Name
I/O Standard
J1 DDR3 Memory
Pin Number Pin Name
AF4 DDR3_D8 SSTL15 21 DQ8
AF5 DDR3_D9 SSTL15 23 DQ9
AF3 DDR3_D10 SSTL15 33 DQ10
AE3 DDR3_D11 SSTL15 35 DQ11
AD3 DDR3_D12 SSTL15 22 DQ12
AC3 DDR3_D13 SSTL15 24 DQ13
AB4 DDR3_D14 SSTL15 34 DQ14
AA4 DDR3_D15 SSTL15 36 DQ15
AC2 DDR3_D16 SSTL15 39 DQ16
AB2 DDR3_D17 SSTL15 41 DQ17
AF2 DDR3_D18 SSTL15 51 DQ18
AE2 DDR3_D19 SSTL15 53 DQ19
Y1 DDR3_D20 SSTL15 40 DQ20
Y2 DDR3_D21 SSTL15 42 DQ21
AC1 DDR3_D22 SSTL15 50 DQ22
AB1 DDR3_D23 SSTL15 52 DQ23
16 www.xilinx.com AC701 Evaluation Board
Y3 DDR3_D24 SSTL15 57 DQ24
W3 DDR3_D25 SSTL15 59 DQ25
UG952 (v1.4) August 6, 2019
Table 1-4: DDR3 Memory Connections to the FPGA (Cont’d)
Send Feedback
Feature Descriptions
FPGA Pin (U1)
W6 DDR3_D26 SSTL15 67 DQ26
V6 DDR3_D27 SSTL15 69 DQ27
W4 DDR3_D28 SSTL15 56 DQ28
W5 DDR3_D29 SSTL15 58 DQ29
W1 DDR3_D30 SSTL15 68 DQ30
V1 DDR3_D31 SSTL15 70 DQ31
G2 DDR3_D32 SSTL15 129 DQ32
D1 DDR3_D33 SSTL15 131 DQ33
E1 DDR3_D34 SSTL15 141 DQ34
E2 DDR3_D35 SSTL15 143 DQ35
F2 DDR3_D36 SSTL15 130 DQ36
A2 DDR3_D37 SSTL15 132 DQ37
A3 DDR3_D38 SSTL15 140 DQ38
C2 DDR3_D39 SSTL15 142 DQ39
Schematic Net
Name
I/O Standard
J1 DDR3 Memory
Pin Number Pin Name
C3 DDR3_D40 SSTL15 147 DQ40
D3 DDR3_D41 SSTL15 149 DQ41
A4 DDR3_D42 SSTL15 157 DQ42
B4 DDR3_D43 SSTL15 159 DQ43
C4 DDR3_D44 SSTL15 146 DQ44
D4 DDR3_D45 SSTL15 148 DQ45
D5 DDR3_D46 SSTL15 158 DQ46
E5 DDR3_D47 SSTL15 160 DQ47
F4 DDR3_D48 SSTL15 163 DQ48
G4 DDR3_D49 SSTL15 165 DQ49
K6 DDR3_D50 SSTL15 175 DQ50
K7 DDR3_D51 SSTL15 177 DQ51
K8 DDR3_D52 SSTL15 164 DQ52
L8 DDR3_D53 SSTL15 166 DQ53
J5 DDR3_D54 SSTL15 174 DQ54
J6 DDR3_D55 SSTL15 176 DQ55
AC701 Evaluation Board www.xilinx.com 17
UG952 (v1.4) August 6, 2019
G6 DDR3_D56 SSTL15 181 DQ56
H6 DDR3_D57 SSTL15 183 DQ57
Chapter 1: AC701 Evaluation Board Features
Send Feedback
Table 1-4: DDR3 Memory Connections to the FPGA (Cont’d)
FPGA Pin (U1)
F7 DDR3_D58 SSTL15 191 DQ58
F8 DDR3_D59 SSTL15 193 DQ59
G8 DDR3_D60 SSTL15 180 DQ60
H8 DDR3_D61 SSTL15 182 DQ61
D6 DDR3_D62 SSTL15 192 DQ62
E6 DDR3_D63 SSTL15 194 DQ63
AC6 DDR3_DM0 SSTL15 11 DM0
AC4 DDR3_DM1 SSTL15 28 DM1
AA3 DDR3_DM2 SSTL15 46 DM2
U7 DDR3_DM3 SSTL15 63 DM3
G1 DDR3_DM4 SSTL15 136 DM4
F3 DDR3_DM5 SSTL15 153 DM5
G5 DDR3_DM6 SSTL15 170 DM6
H9 DDR3_DM7 SSTL15 187 DM7
Schematic Net
Name
I/O Standard
J1 DDR3 Memory
Pin Number Pin Name
W8 DDR3_DQS0_N SSTL15 10 DQS0_N
V8 DDR3_DQS0_P SSTL15 12 DQS0_P
AE5 DDR3_DQS1_N SSTL15 27 DQS1_N
AD5 DDR3_DQS1_P SSTL15 29 DQS1_P
AE1 DDR3_DQS2_N SSTL15 45 DQS2_N
AD1 DDR3_DQS2_P SSTL15 47 DQS2_P
V2 DDR3_DQS3_N SSTL15 62 DQS3_N
V3 DDR3_DQS3_P SSTL15 64 DQS3_P
B1 DDR3_DQS4_N SSTL15 135 DQS4_N
C1 DDR3_DQS4_P SSTL15 137 DQS4_P
A5 DDR3_DQS5_N SSTL15 152 DQS5_N
B5 DDR3_DQS5_P SSTL15 154 DQS5_P
H4 DDR3_DQS6_N SSTL15 169 DQS6_N
J4 DDR3_DQS6_P SSTL15 171 DQS6_P
G7 DDR3_DQS7_N SSTL15 186 DQS7_N
H7 DDR3_DQS7_P SSTL15 188 DQS7_P
18 www.xilinx.com AC701 Evaluation Board
R2 DDR3_ODT0 SSTL15 116 ODT0
U2 DDR3_ODT1 SSTL15 120 ODT1
UG952 (v1.4) August 6, 2019
Table 1-4: DDR3 Memory Connections to the FPGA (Cont’d)
Send Feedback
Feature Descriptions
FPGA Pin (U1)
N8 DDR3_RESET_B LV CM OS 15 30 RESET_B
T3 DDR3_S0_B SSTL15 114 S0_B
T2 DDR3_S1_B SSTL15 121 S1_B
U1
R1 DDR3_WE_B SSTL15 113 WE_B
T4 DDR3_CAS_B SSTL15 115 CAS_B
P1 DDR3_RAS_B SSTL15 110 RAS_B
P4 DDR3_CKE0 SSTL15 73 CKE0
N4 DDR3_CKE1 SSTL15 74 CKE1
L2 DDR3_CLK0_N DIFF_SSTL15 103 CK0_N
M2 DDR3_CLK0_P DIFF_SSTL15 101 CK0_P
N2 DDR3_CLK1_N DIFF_SSTL15 104 CK1_N
N3 DDR3_CLK1_P DIFF_SSTL15 102 CK1_P
Schematic Net
Name
DDR3_TEMP_
EVENT
I/O Standard
LV CM OS 15 198 EVENT_B
J1 DDR3 Memory
Pin Number Pin Name
The AC701 board DDR3 memory interface adheres to the constraints guidelines documented in the DDR3 Design Guidelines section of the 7 (UG586)
[Ref 4]. The AC701 board DDR3 memory interface is a 40 Ω impedance implementation.
Series FPGAs Memory Interface Solutions User Guide
Other memory interface details are available in the 7 Series FPGAs Memory Interface Solutions
User
Guide (UG586) and the 7 Series FPGAs Memory Resources User Guide (UG473) [Ref 5]. For
more DDR3 SODIMM details, see the Micron MT8JTF12864HZ-1G6G1 data sheet [Ref 15].
AC701 Evaluation Board www.xilinx.com 19
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
UG952_c1_05_060514
VCC3V3
N25Q256 256 Mb Serial Flash Memory
GND
1
2
3
5
7
6
U7
4
8
VCC3V3
C18
0.1μF 25V X5R
FLASH_D2
DQ1
16
15
14
12
10
11
13
9
SB
NC3
NC2
NC1
NC0
VCC
HOLD_B/DQ3
WB/VPP/DQ2
VSS
NC4
NC5
NC6
NC7
DQ0
C
R17
DNP
R18
4.7kΩ 5%
R431
15Ω 1%
R432
15Ω 1%
FLASH_D0
FPGA_CCLK
FLASH_D2_R
FLASH_D0_R
GND
VCC3V3
R20
DNP
R19
4.7kΩ 5%
R21
4.7kΩ 5%
R430
15Ω 1%
R429
15Ω 1%
FLASH_D2_R
FLASH_D3_R
FLASH_D3
FLASH_D1
QSPI_IC_CS_B
Send Feedback

Quad SPI Flash Memory

[Figure 1-2, callout 3]
The Quad SPI flash memory U7 provides 256 Mb of nonvolatile storage that can be used for configuration and data storage.
Part number: N25Q256A13ESF40G (Micron)
Supply voltage: 3.3V
Datapath width: 4 bits
Data rate: various depending on Single/Dual/Quad mode and CCLK rate
Four data lines and the FPGA CCLK pin are wired to the Quad SPI flash memory. The connections between the SPI flash memory and the FPGA are listed in
Table 1-5: Quad SPI Flash Memory Connections to the FPGA
Table 1-5.
X-Ref Target - Figure 1-5
FPGA Pin (U1)
Schematic Net
Name
I/O Standard
U7 Quad SPI Flash Memory
Pin Number Pin Name
R14 FLASH_D0 LV CM OS 33 15 DQ0
R15 FLASH_D1 LV CM OS 33 8 DQ1
P14 FLASH_D2 LV CM OS 33 9 DQ2
N14 FLASH_D3 LV CM O S3 3 1 DQ3
H13 FPGA_CCLK LVC MO S3 3 16 C
P18 QSPI_IC_CS_B LV CM OS 33 7 S_B
The configuration section of the 7 Series FPGAs Configuration User Guide (UG470) [Ref 6] provides details on using the Quad SPI flash memory. Figure 1-5 shows the connections of the Quad SPI flash memory on the AC701 board. For more details, see the Micron N25Q256A13ESF40G data sheet
[Ref 15].
20 www.xilinx.com AC701 Evaluation Board
Figure 1-5: 256 Mb Quad SPI Flash Memory
UG952 (v1.4) August 6, 2019

SPI Flash Memory External Programming Header

UG952_c1_06_092812
VCC3V3
GND
2
3
4
6
8
7
5
9
FLASH_D3
FLASH_D2
QSPI_CS_B
FLASH_D0
FLASH_D1
FPGA_CCLK
1
FPGA_PROG_B
J7
HDR
1X9
Send Feedback
In addition to the Quad SPI device FPGA U1 connections shown in Table 1-5, the FPGA U1 SPI flash memory interface is connected to an external programming header J7.
Table 1-6 shows the SPI flash memory J7 connections to FPGA U1.
Table 1-6: SPI Flash Memory J7 Connections to the FPGA
U1 FPGA Pin Schematic Net Name J7 Pin
AE16 FPGA_PROG_B 1
N14 FLASH_D3 2
P14 FLASH_D2 3
J3.2 QSPI_CS_B 4
R14 FLASH_D0 5
R15 FLASH_D1 6
H13 FPGA_CCLK 7
NA GND 8
Feature Descriptions
NA VCC3V3 9
Figure 1-6 shows the J7 SPI flash memory external programming connector.
X-Ref Target - Figure 1-6
Figure 1-6: SPI Flash Memory J7 External Programming Connector
AC701 Evaluation Board www.xilinx.com 21
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
UG952_c1_07_100212
SDIO Card
Connector
U29
DETECT
DAT2
DAT1
DAT0
CLK
CMD
CD_DAT3
VDD
PROTECT
GNDTAB2VSS1
GNDTAB1
VSS2
GND
GND
SDIO_SDWP
11
SDIO_SDDET
10
SDIO_DAT2
9
SDIO_DAT1
8
SDIO_DAT0 7
SDIO_CLK
5
SDIO_CMD
1SDIO_CD_DAT3
VCC3V3
C52
0.1μF 25V X5R
GND
4
6
3
D_P
12
GNDTAB3
GNDTAB4
IOGND1
IOGND2
15
16
17
18
13
14
51.1K 1% Eight Places
VCC3V3
R319
R325
R324
R318
R322
R323
R317
R321
2
To
FPGA
Bank 14
(U1)
Send Feedback

SD Card Interface

[Figure 1-2, callout 4]
The AC701 board includes a secure digital input/output (SDIO) interface to provide user-logic access to general purpose nonvolatile SDIO memory cards and peripherals. The SD card slot is designed to support 50
The SDIO signals are connected to I/O bank 14, which has its VCCO set to 3.3V. Figure 1-7 shows the connections of the SD card interface on the AC701 board.
X-Ref Target - Figure 1-7
MHz high speed SD cards.
Figure 1-7: SD Card Interface
Table 1-7 lists the SD card interface connections to the FPGA.
22 www.xilinx.com AC701 Evaluation Board
Table 1-7: SDIO Connections to the FPGA
FPGA Pin (U1)
R20 SDIO_SDWP LV CM OS 33 11 SDWP
P24 SDIO_SDDET LV CM OS 33 10 SDDET
N23 SDIO_CMD LV CM OS 33 2 CMD
N24 SDIO_CLK LV CM OS 33 5 CLK
P23 SDIO_DAT2 LV CM OS 33 9 DAT2
N19 SDIO_DAT1 LV CM OS 3 3 8 DAT1
P19 SDIO_DAT0 LV CM OS 33 7 DAT0
P21 SDIO_CD_DAT3 LV CM OS 33 1 CD_DAT3
Schematic Net
Name
I/O Standard
U29 SDIO Connector
Pin Number Pin Name
UG952 (v1.4) August 6, 2019
X-Ref Target - Figure 1-8
UG952_c1_08_012913
Part of U19
BUFFER
USB
Module
(U26)
or
JTAG
Connector
(J4)
TDO
TDI
U1
FPGA
TDI
TDO
FMC HPC
Connector
TDI
TDO
J30
N.C.
SPST Bus Switch U27
Part of U19
BUFFER
Send Feedback
Feature Descriptions

USB JTAG Module

[Figure 1-2, callout 5]
JTAG configuration is provided through a Digilent onboard USB-to-JTAG configuration logic module (U26) where a host computer accesses the AC701 board JTAG chain through a standard-A plug (host side) to micro-B plug (AC701 board side) USB cable.
A 2-mm JTAG header (J4) is also provided in parallel for access by Xilinx download cables such as the Platform Cable USB II and the Parallel Cable IV.
The JTAG chain of the AC701 board is illustrated in Figure 1-8. JTAG configuration is allowed at any time regardless of FPGA mode pin settings. JTAG initiated configuration takes priority over the configuration method selected through the FPGA mode pin settings at SW1.
AC701 Evaluation Board www.xilinx.com 23
UG952 (v1.4) August 6, 2019
Figure 1-8: JTAG Chain Block Diagram
When an FMC card is attached to the AC701 board, it is automatically added to the JTAG chain through electronically controlled single-pole single-throw (SPST) switch U27. The SPST switch is in a normally closed state and transitions to an open state when an FMC card is attached. Switch U27 adds an attached FMC HPC mezzanine card to the FPGAs JTAG chain as determined by the FMC_HPC_PRSNT_M2C_B signal. The attached FMC card must implement a TDI-to-TDO connection through a device or bypass jumper in order for the JTAG chain to be completed to the FPGA U1.
Chapter 1: AC701 Evaluation Board Features
UG952_c1_09_101512
JTAG_TDI
FMC_TDI_BUF
FPGA_TDO
FPGA_TMS_BUF
FPGA_TCK_BUF
FPGA_TDI_BUF
FMC1_TDO_FPGA_TDI
FMC1_HPC_TMS_BUF
FMC1_HPC_PRSNT_M2C_B
JTAG_TMS
JTAG_TCK
JTAG_TDO
FMC1_HPC_TCK_BUF
FMC1 HPC
Connector
TDI
TDO
J30
TMS
TCK
PRSNT_L
VCC3V3
Artix-7
FPGA
TDI
N16
TDO
U1
TMS
TCK
Digilent
USB-JTAG
Module
TMS
TDI
SN74LV541A
Buffer
U19
R95 15Ω
U26
R96 15Ω
R94 15Ω
TCK
TDO
TMS
TDI
J4
TCK
TDO
JTAG
Header
VCC3V3
VCC3V3
U27
Bank 0
Bank 14
Send Feedback
The JTAG connectivity on the AC701 board allows a host computer to download bitstreams to the FPGA using Xilinx software tools. In addition, the JTAG connector allows debug tools or a software debugger to access the FPGA. Xilinx software tools can also indirectly program the Quad SPI flash memory. To accomplish this, Xilinx software configures the FPGA with a temporary design to access and program the Quad SPI flash memory device. The JTAG circuit is shown in
X-Ref Target - Figure 1-9
Figure 1-9.
Figure 1-9: JTAG Circuit

Clock Generation

There are three clock sources available for the FPGA logic on the AC701 board (see Table 1-8).
Table 1-8: AC701 Board Clock Sources
FPGA
Pin (U1)
Schematic Net
Name
I/O Standard
Clock
Reference
R3 SYSCLK_P LVDS_25
U51
P3 SYSCLK_N LVDS_25 5
24 www.xilinx.com AC701 Evaluation Board
Pin Description
4 SiT9102 2.5V LVDS 200 MHz Fixed Frequency Oscillator
(SiTime). See
System Clock Source.
UG952 (v1.4) August 6, 2019
Table 1-8: AC701 Board Clock Sources (Cont’d)
UG952_c1_110_012015
U1
Artix-7 FPGA
XC7A200T-2FBG676C
Bank 16 Bank 15 Bank 14 Bank 13 Bank 12
Bank 36 Bank 35 Bank 34 Bank 33 Bank 32
GTP Quad
216
GTP Quad
213
PCI Express
Connector
P1
User SMA
J31(P)/J32(N)
Si5324
Jitter Attenuator
CLK Multiplier
U24
GTP SMA
J25(P)/J26(N)
FMC Connector
(HPC)
J30
SI570
Programmable
Oscillator
U34
Default 156.25 MHz
ICS844021
125 Mhz Clock
U2
X6
Crystal
Oscillator
114.285 MHz
3
2
1
0
U3
0
1
2
3
U4
PCIE_CLK_Q0_P/N
SYSCLK_P/N
Pins R3,P3
System CLK
200 MHz
U51
EMCCLK
90 MHz
U40
Rec_Clock_C_P/N Pins D23,D24
SEP_MGT_CLK_SEL[1:0] Pins C24:B26
PCIE_MGT_CLK_SEL[1:0] Pins C26:A24
USER_CLOCK_N
FPGA_EMCCLK
USER_CLOCK_N/P
EPHYCLK_Q0_C_P/N Pins 7,6
SI5324_Out0_C_N/P Pins 29,28
Pins D4,D5
Pins B20,B21
SI532_Out1_C_P/N Pins 35,34
SMA_MGT_REFCLK_P Pin 1,1
SFP_MGT_CLK0_N/P Pins AA13,AB13
SFP_MGT_CLK1_N/P Pins AA13,AB13
Pins J23,H23
Pins 3
Pins M21,M22
NC
NC
I2C
I2C or SPI
Send Feedback
Feature Descriptions
FPGA
Pin (U1)
Schematic Net
Name
I/O Standard
Clock
Reference
M21 USER_CLOCK_P LVDS_25
U34
M22 USER_CLOCK_N LVDS_25 5
P16 FPGA_EMCCLK LV CM OS 3 3 U40 3
The AC701 clocking diagram is shown in Figure 1-10. The FPGA logic clock source circuits are detailed first after Figure 1-10, followed by the GTP clock sources circuitry descriptions in the GTP
Transceivers section.
X-Ref Target - Figure 1-10
Pin Description
4 Si570 3.3V LVDS I2C Programmable Oscillator (Silicon
Labs). Default power-on frequency 156.250
MHz. See
Programmable User Clock Source.
SiT8103 3.3V Single-Ended LVCMOS 90 MHz Fixed Frequency Oscillator (SiTime). See
System Clock Source.
AC701 Evaluation Board www.xilinx.com 25
Figure 1-10: AC701 Board Clocking Diagram
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
UG952_c1_10_100212
GND
VCC2V5
SIT9102 200 MHz Oscillator
OE NC GND
VCC
OUT_B
OUT
1 2 3
6 5 4
U51
R166 100Ω 1%
SYSCLK_P
SYSCLK_N
C30
0.1 μF 10V X5R
Send Feedback
System Clock Source
[Figure 1-2, callout 6]
The AC701 board has a 2.5V LVDS differential 200 MHz oscillator (U51) soldered onto the back side of the board and wired to an FPGA MRCC clock input on bank 34. This 200 is named SYSCLK_P and SYSCLK_N, which are connected to FPGA U1 pins R3 and P3 respectively.
Oscillator: Si Time SiT9102AI-243N25E200.00000 (200 MHz)
PPM frequency tolerance: 50 ppm
Differential output
For more details, see the Si Time SiT9102 data sheet [Ref 20]. The system clock circuit is shown in
Figure 1-11.
X-Ref Target - Figure 1-11
MHz signal pair
26 www.xilinx.com AC701 Evaluation Board
Programmable User Clock Source
[Figure 1-2, callout 7]
The AC701 board has a programmable low-jitter 3.3V differential oscillator (U34) driving the FPGA MRCC inputs of bank 14. This USER_CLOCK_P and USER_CLOCK_N clock signal pair are connected to FPGA U1 pins M21 and M22 respectively. On power-up, the user clock defaults to an output frequency of 156.250 range of 10 user clock to its default frequency of 156.250
Programmable oscillator: Silicon Labs Si570BAB000544DG (10 MHz810 MHz)
Differential output
MHz to 810 MHz through an I2C interface. Power cycling the AC701 board reverts the
Figure 1-11: System Clock Source
MHz. User applications can change the output frequency within the
MHz.
UG952 (v1.4) August 6, 2019
The user clock circuit is shown in Figure 1-12.
Send Feedback
X-Ref Target - Figure 1-12
VCC3V3
Feature Descriptions
VCC3V3
To
I2C
Bus Switch
(U49)
R15
4.7KΩ 5%
USER CLOCK SDA
USER CLOCK SCL
GND
U34
Si570
Programmable
Oscillator
1
NC
2
OE
7
SDA
8
SCL
3
GND
VDD
CLK-
CLK+
6
USER CLOCK N
5
USER CLOCK P
4
C192
0.01 μF 25V X7R
GND
10 MHz - 810 MHz
UG952_c1_11_101512
Figure 1-12: User Clock Source
The Silicon Labs Si570 data sheet is available from their website [Ref 21].
User SMA Clock Input
[Figure 1-2, callout 8]
An external high-precision clock signal can be provided to the FPGA bank 15 by connecting differential clock signals through the onboard 50Ω SMA connectors J31 (P) and J32 (N). The differential clock signal names are USER_SMA_CLOCK_P and USER_SMA_CLOCK_N, which are connected to FPGA U1 pins J23 and H23 respectively. The user-provided differential clock circuit is shown in
Figure 1-13.
Note: This user clock is input to FPGA bank 15 which is powered by VCCO_VADJ. The
VCCO_VADJ rail is typically 2.5V, but can be reprogrammed to be either 1.8V or 3.3V. The USER_SMA_CLOCK_P/N signals should not exceed the VCCO_VADJ voltage (1.8V, 2.5V or 3.3V) in use.
X-Ref Target - Figure 1-13
J31
SMA
Connector
J32
SMA
Connector
USER_SMA_CLOCK_P
GND
USER_SMA_CLOCK_N
GND
UG952_c1_12_100212
Figure 1-13: User SMA Clock Source
AC701 Evaluation Board www.xilinx.com 27
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
Send Feedback
GTP Transceiver Clock Multiplexer
[Figure 1-2, callout 35]
The AC701 board provides flexible GTP Quad 213 MGTREFCLK options through the use of external multiplexer (MUX) components U3 and U4 to service the GTP Quad 213 SFP, FMC, and SMA MGT interfaces.
FPGA U1 MGT Bank 213 has two clock inputs, MGTREFCLK0 and MGTREFCLK1. Each clock input is driven by a series capacitor coupled clock sourced from a SY89544UMG 4-to-1 multiplexer.
Each multiplexer has a clock source at three of its four inputs; the fourth input is not connected.
The diagram for the GTP Quad 213 clock multiplexer circuit is shown in Figure 1-14.
X-Ref Target - Figure 1-14
U2
ICS844021
125 Mhz Clock
U24
Si5324
Jitter Attenuator
CLK Multiplier
X6
Crystal
Oscillator
114.285 MHz
J25(P)/J26(N)
I2C or SPI
J30
FMC Connector
GTP SMA
EPHYCLK_Q0_C_P/N Pins 7,6
SI5324_Out0_C_N/P Pins 29,28
Pins D4,D5
(HPC)
Pins B20,B21
SI5324_Out1_C_P/N Pins 35,34
SMA_MGT_REFCLK_P Pin 1,1
NC
NC
Rec_Clock_C_P/N Pins D23,D24
SEP_MGT_CLK_SEL[1:0] Pins C24:B26
PCIE_MGT_CLK_SEL[1:0] Pins C26:A24
0 1
U3
2 3
3 2
U4
1 0
SFP_MGT_CLK0_N/P Pins AA13,AB13
SFP_MGT_CLK1_N/P Pins AA13,AB13
SFP TX/RX
FMC DPO
FMC DP1
SMA MGT TX/RX
U1
Artix-7 FPGA
XC7A200T­2FBG676C
Bank 16
GTP Quad
213
UG952_c1_114_012115
Table 1-9: MGT Clock Multiplexer U3 and U4 Clock Sources
Jitter attenuated clock U24
FMC HPC GBT CLK0
GTP SMA REFCLK
28 www.xilinx.com AC701 Evaluation Board
Figure 1-14: AC701 Board GTP 213 U3 and U4 MUX Inputs
Table 1-9 lists the MGT sources for U3 and U4. See Table 1-10 and Table 1-11 for details.
Clock Name Reference Description
125 MHz clock
generator
U2
ICS844021 Crystal-to-LVDS Clock Generator (ICS). See U3 IN0: 125 MHz Clock
Generator.
Si5324C LVDS precision clock multiplier/jitter attenuator (Silicon Labs). See U3/U4
IN1: Jitter Attenuated Clock.
FMC_HPC_GBTCLK0_M2C_C_P/N at U3; FMC_HPC_GBTCLK1_M2C_C_P/N at U4; See
U3/U4 IN2: FMC HPC GBT Clocks.
and CLK1
J30
J25 SMA_MGT_REFCLK_P (net name). See U4 IN0: GTP Transceiver SMA Clock Input.
(differential pair)
J26 SMA_MGT_REFCLK_N (net name). See U4 IN0: GTP Transceiver SMA Clock Input.
UG952 (v1.4) August 6, 2019
Clock Multiplexer U3 SY89544UMG drives Bank 213 MGTREFCLK0 pins AA13 (P) and AB13
Send Feedback
(N).
See Table 1-10 for clock MUX U3 connections.
Table 1-10: Multiplexer U3 SY89544UMG MGT Clock Inputs
Clock Source
Device Ref Pin Input
ICS84402I U2
SI5324C-GM U24
FMC HPC J30
Schematic Net Name
7 EPHYCLK_Q0_P
6 EPHYCLK_Q0_N 2
29 SI5324_OUT0_C_N
28 SI5324_OUT0_C_P 30
D4
D5
FMC1_HPC_
GBTCLK0_M2C_P
FMC1_HPC_
GBTCLK0_M2C_N
SY89544UMG U3
SEL
[1:0](2)
IN0 00
IN1 01
IN2 10
Pin Output Pin Pin Name
4
32
27
25
10(Q)
11(QB)
Schematic Net Name
(1)
SFP_MGT_CLK0_P SFP_MGT_CLK0_N
Feature Descriptions
FPGA U1 Bank 213
AA13 AB13
MGTREFCLK0P
MGTREFCLK0N
ADJ
23
21
of 2.5V)
Not connected IN3 11
Notes:
1. U3 output clock nets SFP_MGT_CLK0_P/N implement a series 0.1μF capacitor
2. SEL[1:0] nets SFP_MGT_CLK_SEL1 FPGA U1 pin C24 and SFP_MGT_CLK_SEL0 FPGA U1 pin B26. The I/O standard is LVCMOS25 (IOSTANDARD assumes a default V
The multiplexer U3 clock input channel select nets are SFP_MGT_CLK_SEL[1:0].
Net SFP_MGT_CLK_SEL1 is wired to FPGA U1 pin C24 and net SFP_MGT_CLK_SEL0 is wired to FPGA U1 pin B26 on FPGA U1 Bank 16.
The U3 multiplexer circuit is shown in Figure 1-15.
AC701 Evaluation Board www.xilinx.com 29
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
Send Feedback
X-Ref Target - Figure 1-15
VCC2V5
VCC2V5
U3
EPHYCLK_Q0_P
NC
EPHYCLK_Q0_N
SI5324_OUT0_C_P
NC
SI5324_OUT0_C_N
FMC1_HBC_GBTCLK0_M2C_C_P
NC
FMC1_HBC_GBTCLK0_M2C_C_N
NC
NC
NC
18
VCC1
5
VCC2
4
IN0
VT0
IN0
IN1
VT1
IN1
IN2
VT2
IN2
IN3
VT3
IN3
SEL0
SEL1
50
50
50
50
50
50
50
50
3
2
32
31
30
27
26
25
23
22
21
6
19
SY89544UMG
0
1
2
3
S0
S1
VCC3
VCC4
VCC5
VCC6
VCC7
VCC8
GND1
GND2
GND3
GND4
GND5
GND6
PWRPAD
17
20
24
28
29
10
Q
11
Q
7
9
12
13
16
18
33
GND
C105
0.1μF 25V X5R
C320
0.1μF 25V X5R
SFP_MGT_CLK0_P
SFP_MGT_CLK0_P
C318
0.1μF 25V X5R
TO MGT BANK 213 MGTREFCLK0_P/N PINS AA13, AB13
MGT_CLK0_SEL1
MGT_CLK0_SEL0
VCC2V5
GND
R454 10K 1/10W 1%
SFP_MGT_CLK_SEL0
SFP_MGT_CLK_SEL1
Q24 NDS336P 460 mW
R332
10K
1/10W
1%
GND
VCC2V5
R455 10K 1/10W 1%
Q25 NDS336P 460 mW
R333
10K
1/10W
1%
GND
Figure 1-15: MGT Clock Multiplexer U3 Circuit
UG952_c1_16_101612
30 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
Clock Multiplexer U4 SY89544UMG drives Bank 213 MGTREFCLK1 pins AA11 (P) and
Send Feedback
AB11(N). See
Table 1-11 for clock Multiplexer U4 connections.
Table 1-11: Multiplexer U4 SY89544UMG MGT Clock Inputs
Clock Source
Device Ref Pin Input
SMA J25 1 SMA_MGT_REFCLK_P
SMA J26 1 SMA_MGT_REFCLK_N 2
SI5324C-GM U24
B20
FMC HPC J30
B21
Schematic Net Name
35 SI5324_OUT1_C_N
34 SI5324_OUT1_C_P 30
FMC1_HPC_
GBTCLK1_M2C_P
FMC1_HPC_
GBTCLK1_M2C_N
SY89544UMG (U4)
SEL
[1:0]
IN0 00
IN1 01
IN2 10
Pin Output Pin Pin Name
4
32
27
25
10(Q)
11(QB)
Schematic Net Name
(1)
SFP_MGT_CLK1_P SFP_MGT_CLK1_N
Feature Descriptions
FPGA U1 Bank 213
AA11 AB11
MGTREFCLK1P
MGTREFCLK1N
Not connected IN3 11
Notes:
1. U4 output clock nets SFP_MGT_CLK0_P/N implement a series 0.1 μF capacitor.
2. SEL[1:0] nets PCIE_MGT_CLK_SEL1 FPGA U1 pin C26 and PCIE_MGT_CLK_SEL0 FPGA U1 pin A24 I/O standard = LVCMOS25 (IOSTANDARD assumes default V
ADJ
of 2.5V)
23
21
The Multiplexer U4 clock input channel select nets are PCIE_MGT_CLK_SEL[1:0].
Net PCIE_MGT_CLK_SEL1 is wired to FPGA U1 pin C26 and net PCIE_MGT_CLK_SEL0 is wired to FPGA U1 pin A24 on FPGA U1 Bank 16.
The U4 Multiplexer circuit is shown in Figure 1-16.
AC701 Evaluation Board www.xilinx.com 31
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
Send Feedback
X-Ref Target - Figure 1-16
VCC2V5
VCC2V5
U4
SMA_MGT_REFCLK_P
NC
SMA_MGT_REFCLK_N
SI5324_OUT1_C_P
NC
SI5324_OUT1_C_N
FMC1_HBC_GBTCLK1_M2C_C_P
NC
FMC1_HBC_GBTCLK1_M2C_C_N
NC
NC
NC
18
VCC1
5
VCC2
4
IN0
VT0
IN0
IN1
VT1
IN1
IN2
VT2
IN2
IN3
VT3
IN3
SEL0
SEL1
50
50
50
50
50
50
50
50
3
2
32
31
30
27
26
25
23
22
21
6
19
SY89544UMG
0
1
2
3
S0
S1
VCC3
VCC4
VCC5
VCC6
VCC7
VCC8
GND1
GND2
GND3
GND4
GND5
GND6
PWRPAD
17
20
24
28
29
10
Q
11
Q
7
9
12
13
16
18
33
GND
C106
0.1μF 25V X5R
C321
0.1μF 25V X5R
SFP_MGT_CLK1_P
SFP_MGT_CLK1_P
C322
0.1μF 25V X5R
TO MGT BANK 213 MGTREFCLK1_P/N PINS AA11, AB11
MGT_CLK1_SEL1
MGT_CLK1_SEL0
VCC2V5
GND
R452 10K 1/10W 1%
PCIE_MGT_CLK_SEL0
PCIE_MGT_CLK_SEL1
Q23 NDS336P 460 mW
R151
10K
1/10W
1%
GND
VCC2V5
R453 10K 1/10W 1%
Q22 NDS336P 460 mW
R152
10K
1/10W
1%
GND
Figure 1-16: MGT Clock Multiplexer U4 Circuit
UG952_c1_17_101612
32 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
X-Ref Target - Figure 1-17
GND_EPHYCLK GND_EPHYCLKGND_EPHYCLK
R320
1.0M 5%
R487
0Ω 5%
R486
0Ω 5%
C300 18pF 50V NPO
C301 18pF 50V NPO
EPHYCLK_XTAL_OUT
GND2
GND1
X2
X1
X3
25.00 MHz 50 ppm
EPHYCLK_XTAL_IN
2
1
3
4
VDD
Q0
NQ0
OE
XTAL_OUT
XTAL_IN
GND
VDDA
8
7
6
5
3
4
2
1
U2
VDDA_EPHYCLK
EPHYCLK_Q0_C_N EPHYCLK_Q0_N
EPHYCLK_Q0_C_P EPHYCLK_Q0_P
ICS844021I
VDD_EPHYCLK
UG952_c1_13_101512
Send Feedback
Feature Descriptions
GTP Transceiver Clock Multiplexer Input Clock Sources
This section describes the GTP 213 Multiplexer U3 and U4 input clock circuits as listed in
Table 1-11.
U3 IN0: 125 MHz Clock Generator
[Figure 1-2, callout 15]
Clock Multiplexer U3 IN 0 (pin 4 P, pin 2 N) is driven by U2 ICS84402I Crystal-to-LVDS clock generator. This device uses 25 VCO, multiplies this by five to produce a 0.45 output. The circuit for the 125
MHz crystal X3 as its base input frequency and, using an internal
ps (typical) RMS phase jitter, 125 MHz LVDS
MHz clock is shown in Figure 1-17.
Figure 1-17: AC701 Board 125 MHz U3 MUX IN0 Source Circuit
AC701 Evaluation Board www.xilinx.com 33
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
UG952_c1_15_011813
R424
4.7KΩ 5%
SI5324_VCC
SI5324_VCC
Si5324C-C-GM Clock Multiplier/ Jitter Attenuator
VDDA
GND
XB
XA
NC5
32
6
5
29
28
U24
CKOUT1_N
7
8
CKOUT1_P
C31
0.1μF 25V X5R
C32
0.1μF 25V X5R
SI5324_XTAL_XA
GND2
GND1
XB
XA
X6
114.285 MHz 20 ppm
SI5324_OUT0_C_N
SI5324_OUT0_C_P
C9
0.1μF 25V X5R
C10
0.1μF 25V X5R
SI5324_OUT1_C_P
SI5324_OUT1_C_N
SI5324_OUT_N
SI5324_OUT_N
SI5324_OUT_P
SI5324_OUT_P
SI5324_XTAL_XB
GND
NC4
2
1
3
4
C33
0.1μF 25V X5R
C34
0.1μF 25V X5R
REC_CLOCK_P
REC_CLOCK_N
REC_CLOCK_C_P
REC_CLOCK_C_N
16
17
R167
100Ω
R4
4.7K
R292
4.7K
CKIN1_P
CKIN1_N
NCNC12
13
CKIN2_P
CKIN2_N
10
5
VDDA
VDDA
2
NC3
2
NC2
2
NC1
NC
NC
NC
NC
NC
35
34
CKOUT2_N
CKOUT2_P
SI5324_INT_ALM_B 3
NC 4
NC 11
NC 15
NC 18
NC 19
NC 20
SI5326_RST_B 1
21
31
GND2
9
GND1
31
A2_SS
31
A1
24
A0
22
SI5324_SCL
SCL
23
SI5324_SDA
SDA_SDO
27
NC
SDI
36
CMODE
GND
INC
DEC
LOL
RATE1
RATE0
C2B
INT_C1B
CS_CA
RST_B
37
GNDPAD
Send Feedback
U3/U4 IN1: Jitter Attenuated Clock
[Figure 1-2, callout 10]
The AC701 board includes a Silicon Labs Si5324 jitter attenuator U24 on the back side of the board. FPGA user logic can implement a clock recovery circuit and then output this clock to a differential I/O pair on I/O bank 16 (REC_CLOCK_C_P, FPGA U1 pin D23 and REC_CLOCK_C_N, FPGA U1 pin D24) for jitter attenuation. Duplicate capacitively coupled jitter attenuated clocks are routed to a pair of GTP clock MUX components U3 and U4. See
The primary purpose of this clock is to support CPRI/OBSAI applications that perform clock recovery from a user-supplied SFP/SFP+ module and use the jitter attenuated recovered clock to drive the reference clock inputs of a GTP transceiver. The jitter attenuated clock circuit is shown in
Figure 1-18.
X-Ref Target - Figure 1-18
Table 1-9.
34 www.xilinx.com AC701 Evaluation Board
See the Silicon Labs Si5324 data sheet for more information on this device [Ref 21]. The SI5324 U24 connections to FPGA U1 are shown in Table 1-10.
Figure 1-18: Jitter Attenuated Clock
UG952 (v1.4) August 6, 2019
Feature Descriptions
Send Feedback
U4 IN0: GTP Transceiver SMA Clock Input
[Figure 1-2, callout 9]
The AC701 board includes a pair of SMA connectors for a GTP transceiver clock that are wired to GTP quad bank 213 through clock MUX U4. This differential clock has signal names SMA_MGT_REFCLK_P and SMA_REFCLK_N, which are connected to MGT clock MUX U4 input 0 pins 4 and 2 respectively. The clock MUX output pins 10 (P-side) and 11 (N-side) are capacitively coupled to FPGA U1 GTP Quad 213 MGTREFCLK1 pin AA11 and AB11 respectively.
External user-provided GTP reference clock on SMA input connectors
Differential input
X-Ref Target - Figure 1-19
Figure 1-19 shows this direct-coupled SMA clock input circuit.
SMA
Connector
SMA
Connector
J25
J26
GND
R485
0Ω 5%
R484
0Ω 5%
SMA_MGT_REFCLK_PSMA_MGT_REFCLK_C_P
SMA_MGT_REFCLK_NSMA_MGT_REFCLK_C_N
U3/U4 IN2: FMC HPC GBT Clocks
[Figure 1-2, callout 29]
The FMC HPC connector J30 sources two MGT clocks. FMC1_HPC_GBTCLK0_M2C_P/N from FMC connector section D (J30.D4(P), J30.D5(N)) is wired to SY89544UMG U3 IN2, pins 27(P) and 25(N). FMC1_HPC_GBTCLK1_M2C_P/N from connector section B (J30.B20(P), J30.B21(N)) is wired to SY89544UMG U4 IN2, pins 27(P) and 25(N).

GTP Transceivers

[Figure 1-2, callout 11]
The AC701 board provides access to eight GTP transceivers:
Four of the GTP transceivers are wired to the PCI Express x4 endpoint edge connector (P1) fingers
Two of the GTP transceivers are wired to the FMC HPC connector (J30)
One GTP transceiver is wired to SMA connectors (RX: J46, J47 TX: J44, J45)
One GTP transceiver is wired to the SFP/SFP+ Module connector (P3)
GND
Figure 1-19: GTP SMA Clock Source
UG952_c1_14_101512
AC701 Evaluation Board www.xilinx.com 35
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
Send Feedback
The GTP transceivers in 7 series FPGAs are grouped into four channels described as Quads. The reference clock for a Quad can be sourced from the Quad above or Quad below the GTP Quad of interest. There are two GTP transceiver Quads on the AC701 board with connectivity as shown here:
Quad 213
Contains four GTP transceivers:
- GTP0 SFP
- GTP1 FMC HPC DP0
- GTP2 FMC HPC DP1
- GTP3 SMA transmit/receive connector pairs
MGTREFCLK0 Clock MUX U3 output
MGTREFCLK1 Clock MUX U4 output
Quad 216
Contains four GTP transceivers for PCIe lanes 0–3
MGTREFCLK0 PCIe edge connector clock
MGTREFCLK1 NC
Table 1-12 lists the GTP transceiver interface connections to the FPGA (U1).
Table 1-12: GTP Transceiver Interface Connections for FPGA U1
Transceiver Bank Placement
GTP_BANK_213 GTPE2_CHANNEL_
X0Y0
GTPE2_CHANNEL_
X0Y1
GTPE2_CHANNEL_
X0Y2
GTPE2_CHANNEL_
X0Y3
Pin
Number
AC10 MGTPTXP0_213 SFP_TX_P P3.18 SFP+ Conn. P3
AD10 MGTPTXN0_213 SFP_TX_N P3.19 SFP+ Conn. P3
AC12 MGTPRXP0_213 SFP_RX_P P3.13 SFP+ Conn. P3
AD12 MGTPRXN0_213 SFP_RX_N P3.12 SFP+ Conn. P3
AE9 MGTPTXP1_213 FMC1_HPC_DP0_C2M_P J30.C2 FMC HPC J30
AF9 MGTPTXN1_213 FMC1_HPC_DP0_C2M_N J30.C3 FMC HPC J30
AE13 MGTPRXP1_213 FMC1_HPC_DP0_M2C_P J30.C6 FMC HPC J30
AF13 MGTPRXN1_213 FMC1_HPC_DP0_M2C_N J30.C7 FMC HPC J30
AC8 MGTPTXP2_213 FMC1_HPC_DP1_C2M_P J30.A22 FMC HPC J30
AD8 MGTPTXN2_213 FMC1_HPC_DP1_C2M_N J30.A23 FMC HPC J30
AC14 MGTPRXP2_213 FMC1_HPC_DP1_M2C_P J30.A2 FMC HPC J30
AD14 MGTPRXN2_213 FMC1_HPC_DP1_M2C_N J30.A3 FMC HPC J30
AE7 MGTPTXP3_213 SMA_MGT_TX_P J44.1 Clock input SMA
AF7 MGTPTXN3_213 SMA_MGT_TX_N J45.1 Clock input SMA
AE11 MGTPRXP3_213 SMA_MGT_RX_P J46.1 Clock input SMA
Pin Name Schematic Net Name
Connected
Pin
Connected Device
36 www.xilinx.com AC701 Evaluation Board
GTPE2_CHANNEL_
X0Y0
AF11 MGTPRXN3_213 SMA_MGT_RX_N J47.1 Clock input SMA
AA13 MGTREFCLK0P_213 SFP_MGT_CLK0_C_P U3.10
AB13 MGTREFCLK0N_213 SFP_MGT_CLK0_C_N U3.11
AA11 MGTREFCLK1P_213 SFP_MGT_CLK1_C_P U4.10
AB11 MGTREFCLK1N_213 SFP_MGT_CLK1_C_N U4.11
(1)
(1)
(1)
(1)
Clock MUX U3
Clock MUX U3
Clock MUX U4
Clock MUX U4
UG952 (v1.4) August 6, 2019
Table 1-12: GTP Transceiver Interface Connections for FPGA U1 (Cont’d)
Send Feedback
Transceiver Bank Placement
GTP_BANK_216 GTPE2_CHANNEL_
X0Y4
GTPE2_CHANNEL_
X0Y5
GTPE2_CHANNEL_
X0Y6
GTPE2_CHANNEL_
X0Y7
Pin
Number
B7 MGTPTXP0_216 PCIE_TX3_P P1.A29
A7 MGTPTXN0_216 PCIE_TX3_N P1.A30
B11 MGTPRXP0_216 PCIE_RX3_P P1.B27 PCIe edge conn. P1
A11 MGTPRXN0_216 PCIE_RX3_N P1.B28 PCIe edge conn. P1
D8 MGTPTXP1_216 PCIE_TX2_P P1.A25
C8 MGTPTXN1_216 PCIE_TX2_N P1.A26
D14 MGTPRXP1_216 PCIE_RX2_P P1.B23 PCIe edge conn. P1
C14 MGTPRXN1_216 PCIE_RX2_N P1.B24 PCIe edge conn. P1
B9 MGTPTXP2_216 PCIE_TX1_P P1.A21
A9 MGTPTXN2_216 PCIE_TX1_N P1.A22
B13 MGTPRXP2_216 PCIE_RX1_P P1.B19 PCIe edge conn. P1
A13 MGTPRXN2_216 PCIE_RX1_N P1.B20 PCIe edge conn. P1
D10 MGTPTXP3_216 PCIE_TX0_P P1.A16
C10 MGTPTXN3_216 PCIE_TX0_N P1.A17
Pin Name Schematic Net Name
Feature Descriptions
Connected
Pin
Connected Device
(2)
PCIe edge conn. P1
(2)
PCIe edge conn. P1
(2)
PCIe edge conn. P1
(2)
PCIe edge conn. P1
(2)
PCIe edge conn. P1
(2)
PCIe edge conn. P1
(2)
PCIe edge conn. P1
(2)
PCIe edge conn. P1
D12 MGTPRXP3_216 PCIE_RX0_P P1.B14 PCIe edge conn. P1
C12 MGTPRXN3_216 PCIE_RX0_N P1.B15 PCIe edge conn. P1
GTPE2_CHANNEL_
X0Y1
F11 MGTREFCLK0P_216 PCIE_CLK_QO_P P1.A13
E11 MGTREFCLK0N_216 PCIE_CLK_QO_N P1.A14
F13 MGTREFCLK1P_216 NC NA NA
E13 MGTREFCLK1N_216 NC NA NA
Notes:
1. Clock MUX U3 and U4 output nets are capacitively coupled to the GTP REFCLK input pins.
2. PCIE_TXn_P/N and PCIE_CLK_Q0_P/N are capacitively coupled to the PCIe edge connector P1.
For more information on the GTP transceivers see 7 Series FPGAs GTX/GTH Transceivers
User
Guide (UG476) [Ref 8].
(2)
PCIe edge conn. P1
(2)
PCIe edge conn. P1
AC701 Evaluation Board www.xilinx.com 37
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
UG952_c1_18_100312
PCI Express
Four-Lane
Edge connector
GND
GND
A15
A13
A14
P1
REFCLK+
A12
GND
C188
0.01μF 25V X7R
C189
0.01μF 25V X7R
PCIE_CLK_Q0_P
PCIE_CLK_Q0_N
PCIE_CLK_Q0_C_P
PCIE_CLK_Q0_C_N
OE
REFCLK-
UG952_c1_19_100312
PCIE_PRSNT_B
PCIE_PRSNT_X1 PCIE_PRSNT_X4
J12
132
4
Send Feedback

PCI Express Edge Connector

[Figure 1-2, callout 12]
The 4-lane PCI Express edge connector performs data transfers at the rate of 2.5 GT/s for a Gen1 application and 5.0 have a characteristic impedance of 85Ω ±10%. The PCIe clock is routed as a 100Ω differential pair. The 7
series FPGAs GTP transceivers are used for multi-gigabit per second serial interfaces.
The XC7A200T-2FBG676C FPGA (-2 speed grade) included with the AC701 board supports up to Gen2 x4.
The PCIe clock is input from the edge connector. It is AC coupled to the FPGA through the MGTREFCLK0 pins of Quad 216. PCIE_CLK_Q0_P is connected to FPGA U1 pin F11, and the _N net is connected to pin E11. The PCI Express clock circuit is shown in
X-Ref Target - Figure 1-20
GT/s for a Gen2 application. The PCIe transmit and receive signal datapaths
Figure 1-20.
38 www.xilinx.com AC701 Evaluation Board
PCIe lane width/size is selected using jumper J12 (Figure 1-21). The default lane size selection is 4-lane (J12 pins 3 and 4) jumpered).
X-Ref Target - Figure 1-21
Table 1-12 lists the PCIe edge connector connections.
For more information, see the 7 Series FPGAs Integrated Block for PCI Express v3.0 Product Guide (PG054)
[Ref 9].
Figure 1-20: PCI Express Clock
Figure 1-21: PCI Express Lane Size Select Jumper J12
UG952 (v1.4) August 6, 2019
X-Ref Target - Figure 1-22
UG952_c1_20_011813
GND12
GND1
GND2
GND3
GND4
GND5
GND6
GND7
GND8
GND9
GND10
TD_N
TD_P
VCCT
VCCR
RD_P
RD_N
LOS
VEET_3
VEET_2
VEER_3
VEER_1
VEER_2
VEET_1
RS0
RS1
MOD_ABS
SCL
SDA
TX_DISABLE
TX_FAULT
GND11
2-3: LOW BW TX2-3: LOW BW RX
1-2: FULL BW RX
SFP Enable
1-2: FULL BW TX
SFP_RS1
SFP_VCCT
32
21
22
23
24
25
26
27
28
29
30
19
18
16
15
13
12
8
20
17
14
10
11
1
7
9
6
5
4
3
2
31
P3
SFP+ Module
Connector
74441-0010
SFP_LOS
SFP_TX_FAULT
SFP_IIC_SDA
SFP_IIC_SCL
SFP_RX_P
SFP_RX_N
SFP_TX_P
SFP_TX_DISABLE
SFP_RS0
3
2
1
J38 J39
12
J6
HDR_1X2
SFP_MOD_DETECT
1
J21
SFP_TX_N
SFP_VCCR
R392
4.7K
1/10W
5%
L7
4.7μH
3.0 A
VCC3V3
C22
0.1μF 25V X5R
GND
VCC3V3
L6
4.7μH
3.0 A
C115 22μF 25V X5R
C23
0.1μF 25V X5R
C114 22μF 25V X5R
GND
SFP_TX_DISABLE
R12
4.7K
1/10W
5%
VCC3V3
GND
R11
4.7K
1/10W
5%
R13
4.7K
1/10W
5%
R14
4.7K
1/10W
5%
1
J22
1
HDR_1X1
J20
HDR_1X3
R391
4.7K 1/10W 5%
VCC3V3
VCC3V3
GND
GND
1
2
3
Send Feedback

SFP/SFP+ Connector

[Figure 1-2, callout 13]
The AC701 board contains a small form-factor pluggable (SFP+) connector and cage assembly (P3) that accepts SFP or SFP+ modules.
Feature Descriptions
Figure 1-22 shows the SFP+ module connector circuitry.
Figure 1-22: SFP+ Module Connector
AC701 Evaluation Board www.xilinx.com 39
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
Send Feedback
Table 1-13 lists the SFP+ module receive and transmit connections to the FPGA.
Table 1-13: FPGA U1 to SFP+ Module Connections
FPGA Pin
(U1)
AD12 SFP_RX_N 12 RD_N
AC12 SFP_RX_P 13 RD_P
AD10 SFP_TX_N 19 TD_N
AC10 SFP_TX_P 18 TD_P
R18 SFP_TX_DISABLE
R23 SFP_LOS
Notes:
1. For SFP_TX_DISABLE and SFP_LOS, the I/O standard = LVCMOS33.
Schematic
Net Name
(1)
(1)
SFP+ Pin
(P5)
3 TX_DISABLE
8 LOS
Table 1-14 lists the SFP+ module control and status connections.
Table 1-14: SFP+ Module Control and Status
SFP Control/Status
Signal
Board Connection
Test point J22
SFP_TX_FAULT
High = fault
Low = normal operation
SFP+ Pin Name
(P5)
SFP_TX_DISABLE
SFP_MOD_DETECT
SFP_RS0
SFP_RS1
SFP_LOS
Jumper J6 (and FPGA pin R18)
Off = SFP disabled
On = SFP enabled
Test point J21
High = module not present
Low = module present
Jumper J38
Jumper pins 1-2 = full receiver bandwidth
Jumper pins 2-3 = reduced receiver bandwidth
Jumper J39
Jumper pins 1-2 = full transmitter bandwidth
Jumper pins 2-3 = reduced transmitter bandwidth
Test point J20
High = loss of receiver signal
Low = normal operation
40 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019

10/100/1000 Mb/s Tri-Speed Ethernet PHY

Send Feedback
[Figure 1-2, callout 14]
The AC701 board uses the Marvell Alaska PHY device (88E1116R) at U12 for Ethernet communications at 10 Mb/s, 100 Mb/s, or 1,000 Mb/s. The board supports RGMII mode only. The PHY connection to a user-provided ethernet cable is through a Halo HFJ11-1G01E RJ-45 connector (P4) with built-in magnetics.
On power-up, or on reset, the PHY is configured to operate in RGMII mode with PHY address 0b00111 using the settings shown in passed over the MDIO interface.
Table 1-15: Ethernet PHY U12 Configuration Pin Settings
U12 Pin Name (No.) Setting Configuration
CONFIG0 (64) VCCO1V8 PHYAD[1]=1 PHYAD[0]=1
CONFIG1 (1) PHY_LED0 PHYAD[3]=0 PHYAD[2]=1
CONFIG2 (2) GND ENA_XC=0 PHYAD[4]=0
Table 1-15. These settings can be overwritten by commands
PHY_LED0 ENA_XC=0 PHYAD[4]=1
VCC1V8 ENA_XC=1 PHYAD[4]=1
Feature Descriptions
CONFIG3 (3) GND RGMII_TX=0 RGMII_RX=0
PHY_LED0 RGMII_TX=0 RGMII_RX=1
PHY_LED1 RGMII_TX=1 RGMII_RX=0
VCC1V8 RGMII_TX=1 RGMII_RX=1
AC701 Evaluation Board www.xilinx.com 41
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
UG952_c1_21_100312
GND
R275
1.0M 5%
C406 18pF 50V NPO
NC
NC
C405 18pF 50V NPO
PHY_XTAL_OUT
GND2
GND1
X2
X1
X1
25.00 MHz 50 ppm
PHY_XTAL_IN
3
4
1
2
Send Feedback
The Ethernet connections from the XC7A200T at U1 to the 88E1116R PHY device at U12 are listed in
Table 1-16 Ethernet PHY Connections to FPGA U1.
Table 1-16: Ethernet PHY U12 Connections to FPGA U1
FPGA Pin (U1)
Schematic Net
Name
I/O Standard
M88E1116R (U12)
Pin Pin Name
T14 PHY_MDIO LV CM OS 18 45 MDIO
W18 PHY_MDC LVC MO S1 8 48 MDC
U22 PHY_TX_CLK LV CM OS 18 60 TX_CLK
T15 PHY_TX_CTRL HSTL 63 TX_CTRL
U16 PHY_TXD0 HSTL 58 TXD0
U15 PHY_TXD1 HSTL 59 TXD1
T18 PHY_TXD2 HSTL 61 TXD2
T17 PHY_TXD3 HSTL 62 TXD3
U21 PHY_RX_CLK LV CM OS 18 53 RX_CLK
U14 PHY_RX_CTRL HSTL 49 RX_CTRL
U17 PHY_RXD0 HSTL 50 RXD0
V17 PHY_RXD1 HSTL 51 RXD1
V16 PHY_RXD2 HSTL 54 RXD2
V14 PHY_RXD3 HSTL 55 RXD3
V18 PHY_RESET_B LV CM OS 18 10 RESET_B
Ethernet PHY Clock Source
A 25.00 MHz, 50 ppm crystal at X1 is the clock source for the 88E1116R PHY at U12. Figure 1-23 shows the clock source.
X-Ref Target - Figure 1-23
Figure 1-23: Ethernet PHY Clock Source
42 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
X-Ref Target - Figure 1-24
Send Feedback

Ethernet PHY User LEDs

[Figure 1-2, callout 20]
The three Ethernet PHY user LEDs shown in Figure 1-24 are located near the RJ45 Ethernet jack P4. The ON/OFF state for each LED is software dependent and has no specific meaning at Ethernet PHY power-on.
VCC3V3
VCC3V3
Feature Descriptions
VCC3V3
PHY_LED0
R279 261Ω 1/10W
DS11 LED-GRN-SMT
Q3 NDS331N 460 mW
GND
UG952_c1_22_100312
GND
R281 261Ω 1/10W
DS13 LED-GRN-SMT
Q3 NDS331N 460 mW
PHY_LED1
GND
R280 261Ω 1/10W
DS12 LED-GRN-SMT
Q3 NDS331N 460 mW
PHY_LED2
Figure 1-24: Ethernet PHY User LEDs
See the Marvell 88E1116R Alaska Gigabit Ethernet transceiver data sheet for details concerning the use of the Ethernet PHY user LEDs. They are referred to in the data sheet as LED0, LED1, and LED2. The product brief and other product information for the Marvell 88E1116R Alaska Gigabit ethernet transceiver is available at
[Ref 18].
The Marvell 88E1116R PHY data sheet can be obtained under NDA with Marvell [Ref 18].
AC701 Evaluation Board www.xilinx.com 43
UG952 (v1.4) August 6, 2019

USB-to-UART Bridge

[Figure 1-2, callout 16]
The AC701 board contains a Silicon Labs CP2103GM USB-to-UART bridge device (U44) which allows a connection to a host computer with a USB port. The USB cable is supplied in the evaluation kit (standard-A plug to host computer, mini-B plug to AC701 board connector J17). The CP2103GM is powered by the USB 5V provided by the host PC when the USB cable is plugged into the USB port on the AC701 board.
Xilinx UART IP is expected to be implemented in the FPGA logic. The FPGA supports the USB-to-UART bridge using four signal pins: Transmit (TX), Receive (RX), Request to Send (RTS), and Clear to Send (CTS).
Silicon Labs provides royalty-free Virtual COM Port (VCP) drivers for the host computer. These drivers permit the CP2103GM USB-to-UART bridge to appear as a COM port to communications application software (for example, Tera Term or HyperTerm) that runs on the host computer. The VCP device drivers must be installed on the host PC prior to establishing communications with the AC701 board.
Chapter 1: AC701 Evaluation Board Features
Send Feedback
Table 1-17 shows the USB signal definitions at J17.
Table 1-17: USB J17 Mini-B Receptacle Pin Assignments and Signal Definitions
USB Receptacle
Pins (J17)
1 VBUS USB_UART_VBUS
2 D_N USB_D_N
3 D_P USB_D_P
4 GND USB_UART_GND Signal ground 2, 29 GND, GND
Receptacle
Pin Name
Schematic
Net Name
Description
+5V from host system - U12
CP2103 power
Bidirectional differential serial
data (N-side)
Bidirectional differential serial
data (P-side)
U44 Pin
(CP2103GM)
7, 8 REGIN, VBUS
4 D–
3 D+
U44 Pin Name
(CP2103GM)
Table 1-18 shows the USB connections between the FPGA and the UART.
Table 1-18: FPGA to UART Connections
FPGA (U1)
Pin Function Direction IOSTANDARD Pin Function Direction
W19 Request to send Output LV CM OS 18 USB_UART_CTS 22 Clear to send Input
V19 Clear to send Input LV CM OS 18 USB_UART_RTS 23 Request to send Output
U19 Transmit Data out LV CM OS 1 8 USB_UART_RX 24 Receive data Data in
T19 Receive Data in LV CM OS 18 USB_UART_TX 25 Transmit data Data out
Schematic Net
Name
CP2103GM Device (U44)
See the Silicon Labs website for technical information on the CP2103GM and the VCP drivers
[Ref 21].

HDMI Video Output

[Figure 1-2, callout 17]
The AC701 board provides a HDMI video output using the Analog Devices ADV7511KSTZ-P HDMI transmitter (U48). The HDMI output is provided on a Molex 500254-1927 HDMI type-A connector (P2). The ADV7511 is wired to support 1080P 60 input data mapping.
The AC701 board supports the following HDMI device interfaces:
24 data lines
Independent VSYNC, HSYNC
Single-ended input CLK
Interrupt Out Pin to FPGA
•I2C
•SPDIF
Hz, YCbCr 4:4:4 encoding using 24-bit
44 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
X-Ref Target - Figure 1-25
Send Feedback
Figure 1-25 shows the HDMI codec circuit.
VCC3V3
VCC1V8
Feature Descriptions
VCC2V5
HDMI_INT
IIC_SCL_HDMI IIC_SDA_HDMI
HDMI_VSYNC HDMI_HSYNC
HDMI_CLK
HDMI_HEAC_C_N
To HDMI
Connector to
FPGA U1
R104
2.43K 1/10W 1%
HDMI_D35 HDMI_D34 HDMI_D33 HDMI_D32 HDMI_D31 HDMI_D30 HDMI_D29 HDMI_D28
HDMI_D23 HDMI_D22 HDMI_D21 HDMI_D20 HDMI_D19 HDMI_D18 HDMI_D17 HDMI_D16
HDMI_D11 HDMI_D10 HDMI_D9 HDMI_D8 HDMI_D7 HDMI_D6 HDMI_D5 HDMI_D4
HDMI_DE
HDMI_SPDIF
R106
R105
2.43K 1/10W 1%
NC NC NC NC
NC NC NC NC
NC NC NC NC
2.43K 1/10W 1%
R102 887
U48
ADV7511
45
INT
38
PD
55
SCL CEC_CLK
56
SDA
2
VSYNC
98
HSYNC
79
CLK
30
HPD
57
D35
58
D34
59
D33
60
D32
61
D31
62
D30
63
D29
64
D28
65
D27
66
D26
67
D25
68
D24
69
D23
70
D22
71
D21
72
D20
73
D19
74
D18
78
D17
80
D16
81
D15
82
D14
83
D13
84
D12
85
D11
86
D10
87
D9
88
D8
89
D7
90
D6
91
D5
92
D4
93
D3
94
D2
95
D1
96
D0
97
DE
10
SPDIF
3
DSD0
4
DSD1
5
DSD2
6
DSD3
7
DSD4
8
DSD5
9
DSD_CLK
11
MCLK
12
I2S0
13
I2S1
14
I2S2
15
I2S3
16
SCLK
17
LRCLK
28
R_EXT
SPDIF_OUT
PVDD1 PVDD2 PVDD3
AVDD1 AVDD2 AVDD3
DVDD1 DVDD2 DVDD3 DVDD4 DVDD5
DVDD_3V
BGVDD
TX0_P
TX0_N
TX1_P
TX1_N
TX2_P TX2_N TXC_P
TXC_N
DDCSDA
DDCSCL
HEAC_P HEAC_N
CEC
GND1 GND2 GND3 GND4 GND5 GND6 GND7 GND8
GND9 GND10 GND11
HDMI_CEC_12MHZ_CLK
50
46
HDMI_SPDIF_OUT
21 24 25
29 34 41
76 77 49 19 1
47
26
HDMI_D0_P
36
HDMI_D0_N
35
HDMI_D1_P
40
HDMI_D1_N
39
HDMI_D2_P
43
HDMI_D2_N
42
HDMI_CLK_P
33
HDMI_CLK_N
32
HDMI_DDCSDA
54 53
HDMI_DDCSCL
HDMI_HEAC_P
52
HDMI_HEAC_N
51
HDMI_CEC
48
99 100 18
20 22
23 27 31 37 44 75
GND
HDMI_AVDDHDMI_PLVDD
HDMI_AVDD
HDMI_DVDD
HDMI_DVDD_3V
HDMI_PLVDD
C78
0.1UF 25V
X5R
To HDMI Connector
1
U41
12.00000 MHZ
4
VCC
1
2
GND
SIT8102
50PPM
1
OE
23
GNDOUT
GND
AC701 Evaluation Board www.xilinx.com 45
UG952 (v1.4) August 6, 2019
GND
Figure 1-25: HDMI Codec Circuit
UG952_c1_23_100312
Chapter 1: AC701 Evaluation Board Features
Send Feedback
Table 1-19 lists the connections between the codec and the FPGA.
Table 1-19: FPGA to HDMI Codec Connections (ADV7511)
FPGA Pin (U1) Schematic Net Name I/O Standard
AA24 HDMI_R_D4 LV C MO S1 8 92 D4
Y25 HDMI_R_D5 LV CM OS 18 91 D5
Y26 HDMI_R_D6 LV CM OS 18 90 D6
V26 HDMI_R_D7 LV CM OS 18 89 D7
W26 HDMI_R_D8 LV CM OS 18 88 D8
W25 HDMI_R_D9 LV CM OS 18 87 D9
W24 HDMI_R_D10 LV C MO S1 8 86 D10
U26 HDMI_R_D11 LVC MO S1 8 85 D11
U25 HDMI_R_D16 LV C MO S1 8 80 D16
V24 HDMI_R_D17 LV C MO S1 8 78 D17
U20 HDMI_R_D18 LV C MO S1 8 74 D18
W23 HDMI_R_D19 LV C MO S1 8 73 D19
W20 HDMI_R_D20 LV C MO S1 8 72 D20
U24 HDMI_R_D21 LV C MO S1 8 71 D21
ADV7511 (U48)
Pin Pin Name
Y20 HDMI_R_D22 LV C MO S1 8 70 D22
V23 HDMI_R_D23 LV C MO S1 8 69 D23
AA23 HDMI_R_D28 LV CM OS 18 64 D28
AA25 HDMI_R_D29 LV CM OS 18 63 D29
AB25 HDMI_R_D30 LV CM O S1 8 62 D30
AC24 HDMI_R_D31 LV CM O S1 8 61 D31
AB24 HDMI_R_D32 LV CM O S1 8 60 D32
Y22 HDMI_R_D33 LV C MO S1 8 59 D33
Y23 HDMI_R_D34 LV C MO S1 8 58 D34
V22 HDMI_R_D35 LV C MO S1 8 57 D35
AB26 HDMI_R_DE LV CM OS 18 97 DE
Y21 HDMI_R_SPDIF LV CM O S1 8 10 SPDIF
V21 HDMI_R_CLK LV CM OS 18 79 CLK
AC26 HDMI_R_VSYNC LV CM OS 18 2 VSYNC
AA22 HDMI_R_HSYNC LV C MO S1 8 98 HSYNC
W21 HDMI_INT LV CM OS 18 45 INT
46 www.xilinx.com AC701 Evaluation Board
T20 HDMI_SPDIF_OUT_LS LV CM OS 18 46 SPDIF_OUT
UG952 (v1.4) August 6, 2019
Feature Descriptions
Send Feedback
Table 1-20 lists the connections between the codec and the HDMI connector P2.
Table 1-20: ADV7511 Connections to HDMI Connector
ADV7511 (U48) Schematic Net Name HDMI Connector P2 Pin
36 HDMI_D0_P 7
35 HDMI_D0_N 9
40 HDMI_D1_P 4
39 HDMI_D1_N 6
43 HDMI_D2_P 1
42 HDMI_D2_N 3
33 HDMI_CLK_P 10
32 HDMI_CLK_N 12
54 HDMI_DDCSDA 16
53 HDMI_DDCSCL 15
52 HDMI_HEAC_P 14
51 HDMI_HEAC_N 19
48 HDMI_CRC 13
Information about the ADV7511 is available on the Analog Devices website [Ref 16].

LCD Character Display

[Figure 1-2, callout 18]
A 2-line by 16-character display is provided on the AC701 board (Figure 1-26).
X-Ref Target - Figure 1-26
LCD Display (16 x 2)
UG952_c1_24_101612
Figure 1-26: LCD Display
AC701 Evaluation Board www.xilinx.com 47
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
UG952_c1_25_100312
LCD Contrast Potentiometer
LCD_RW
LCD_DB4
LCD_DB6
LCD_RS
LCD_E
NC
NC
LCD_DB5
LCD_DB7
9
87
65
43
2
10
1
12 14
11 13
LCD_VEE
GND
VCCB
B1 B2 B3 B4
B6 B7
GND
A3
A8 OE
A4 A5
A7
A6
B5
A1 A2
B8
VCCA
19 20 18 17 16
14 13
11
4
9
10
5 6
8
7
15
1 3
12
2
U45
FPGA_3V3
LCD_E_LS LCD_RW_LS LCD_DB4_LS LCD_DB5_LS LCD_DB6_LS LCD_DB7_LS LCD_RS_LS
NC
LCD_RS
LCD_DB7
LCD_DB6
LCD_DB5
LCD_DB4
LCD_RW
LCD_E
NC
TXS0108E 8-Bit
Bidirectional
Voltage Level
Translator
J23
GND
VCC5V0
R118
6.81kΩ
R232 2 kΩ
NC
NC
VCC5V0
C472
0.1μF 25V X5R
GND
VCC5V0
C473
0.1μF 25V X5R
GND
GND
UG952_c1_26_101812
LCD Display Assembly
PWA
10 mm
Low Profile Socket
Samtec SLW-107-01-L-D
Low Profile Terminal
Samtec MTLW-107-07-G-D-265
Send Feedback
The character display runs at 5.0V and is connected to the FPGA 3.3V HP bank 14 through a TI TXS0108E 8-bit bidirectional voltage level translator (U45). circuit.
X-Ref Target - Figure 1-27
Figure 1-27 shows the LCD interface
X-Ref Target - Figure 1-28
48 www.xilinx.com AC701 Evaluation Board
Figure 1-27: LCD Interface Circuit
The AC701 board base board uses a male Samtec MTLW-107-07-G-D-265 2x7 header (J23) with
0.025 inch square posts on 0.100 inch centers for connecting to a Samtec SLW-107-01-L-D female socket on the LCD display panel assembly. The LCD header shown in
Figure 1-28: LCD Header Details
Figure 1-28.
UG952 (v1.4) August 6, 2019
Table 1-21 lists the connections between the FPGA and the LCD header. If the LCD is not installed,
PCA9548
12C 1-to-8
Bus Switch
CH7 - SI5324_SDA/SCL
U52
IIC_SDA/SCL_MAIN
CH6 - IIC_SDA/SCL_DDR3
CH5 - IIC_SDA/SCL_HDMI
CH4 - SFP_IIC_SDA/SCL
CH3 - EEPROM_IIC_SDA/SCL
CH2 - (NOT USED)
CH1 - FMC_HPC_IIC_SDA/SCL
CH0 - USER_CLK_SDL/SCL
FPGA
Bank 14
(3.3V)
0x74
U1
UG952_C1_27_100312
Send Feedback
the J23 pins listed in Table 1-21 can be used for GPIO.
Table 1-21: FPGA to LCD Header Connections
FPGA Pin (U1) Schematic Net Name I/O Standard LCD Header Pin (J23)
For the Displaytech S162DBABC LCD data sheet, see [Ref 23].

I2C Bus Switch

Feature Descriptions
L25 LCD_DB4_LS LV CM O S3 3 4
M24 LCD_DB5_LS LV C MO S3 3 3
M25 LCD_DB6_LS LV C MO S3 3 2
L22 LCD_DB7_LS LV CM O S3 3 1
L24 LCD_RW_LS LV CM OS 33 10
L23 LCD_RS_LS LV CM OS 3 3 11
L20 LCD_E_LS LV CM O S3 3 9
[Figure 1-2, callout 19]
The AC701 board implements a single I2C port on FPGA Bank 14 (IIC_SDA_MAIN, FPGA pin K25 and IIC_SCL_MAIN, FPGA pin N18), which is routed through a Texas Instruments PCA9548 1-to-8 channel I2C switch (U52). The I2C switch can operate at speeds up to 400
kHz. The U52 bus switch at I2C address 0x74/0b01110100 must be addressed and configured to select the desired target downstream device.
The AC701 board I2C bus topology is shown in Figure 1-29.
X-Ref Target - Figure 1-29
Figure 1-29: I2C Bus Topology
User applications that communicate with devices on one of the downstream I2C buses must first set up a path to the desired bus through the U52 bus switch at I2C address 0x74/0b01110100.
AC701 Evaluation Board www.xilinx.com 49
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
Send Feedback
Table 1-22 lists the address for each bus.
Table 1-22: I2C Bus Addresses
I2C Device
PCA9548 bus switch NA 0b1110100
Si570 clock 0 0b1011101
FMC HPC 1 0bXXXXX00
NOT USED 2 Not used
I2C EEPROM 3 0b1010100
SFP module 4 0b1010000
ADV7511 HDMI 5 0b0111001
DDR3 SODIMM 6 0b1010000, 0b0011000
Si5324 clock 7 0b1101000
Information about the PCA9548 is available on the TI Semiconductor website [Ref 22].

AC701 Board LEDs

Table 1-23 lists all LEDs on the AC701 board.
Table 1-23: AC701 Board LEDs
Reference
Designator
I2C Switch
Position
Description Notes
I2C Address
Schematic
Page
DS1 INIT dual color red/green Avago HSMF-C155 7
DS2 GPIO LED0 Lumex SML-LX0603GW 21
DS3 GPIO LED1 Lumex SML-LX0603GW 21
DS4 GPIO LED2 Lumex SML-LX0603GW 21
DS5 GPIO LED3 Lumex SML-LX0603GW 21
DS6 U8 TI controller #1 PWRGOOD Lumex SML-LX0603GW 39
DS10 FPGA DONE Lumex SML-LX0603GW 7
DS11 EPHY U12 status LED2 Lumex SML-LX0603GW 15
DS12 EPHY U12 status LED1 Lumex SML-LX0603GW 15
DS13 EPHY U12 status LED0 Lumex SML-LX0603GW 15
DS14 FMC PWRCTL1_VCC4B_PG Lumex SML-LX0603GW 24
DS15 VCCINT ON Lumex SML-LX0603GW 40
DS16 VCCAUX ON Lumex SML-LX0603GW 41
DS17 VCCBRAM ON Lumex SML-LX0603GW 42
DS18 FPGA_1V5 ON Lumex SML-LX0603GW 43
50 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
Table 1-23: AC701 Board LEDs (Cont’d)
Send Feedback
Feature Descriptions

User I/O

Reference
Designator
DS19 VCCO_VADJ ON Lumex SML-LX0603GW 46
DS20 DDR3 SODIMM RTERM VTT ON Lumex SML-LX0603GW 44
DS21 VCC3V3 ON Lumex SML-LX0603GW 48
DS22 12V INPUT POWER ON Lumex SML-LX0603GW 38
DS23 U9 TI Controller #2 PWRGOOD Lumex SML-LX0603GW 45
DS24 MGTAVCC ON Lumex SML-LX0603GW 49
DS25 MGTAVTT ON Lumex SML-LX0603GW 50
DS26 FPGA_1V8 ON Lumex SML-LX0603GW 47
DS27 DDR3 SODIMM VTT ON Lumex SML-LX0603GW 44
Notes:
1. The Lumex SML-LX0603GW LED is green
Description Notes
[Figure 1-2, callout 2125]
The AC701 board provides the following user and general purpose I/O capabilities:
Schematic
Page
Four user GPIO LEDs (callout 21)
GPIO_LED_[3-0]: DS5, DS4, DS3, DS2
Five user pushbuttons and reset switch (callout 22)
GPIO_SW_[NESWC]: SW3, SW4, SW5, SW7, SW6
CPU_RESET: SW8
4-position user DIP switch (callout 23)
GPIO_DIP_SW[4-0]: SW2
User rotary switch (callout 24, hidden beneath the LCD)
ROTARY_PUSH, ROTARY_INCA, ROTARY_INCB: SW10
User SMA (callout 25)
USER_SMA_GPIO_P, USER_SMA_GPIO_N: J33, J34
2 line x 16 character LCD character display (callout 18)
If the display is unmounted, connector J23 pins are available as 7 independent GPIOs
6-pin in-line male 0.1 inch PMOD header
PMOD[3-0]: J48
AC701 Evaluation Board www.xilinx.com 51
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
UG952_c1_28_100312
R147
49.9Ω 1%
DS2
R148
49.9Ω 1%
DS3
R149
49.9Ω 1%
DS4
R150
49.9Ω 1%
GND
DS5
GPIO_LED_2
GPIO_LED_0
GPIO_LED_1
GPIO_LED_3
Send Feedback
User GPIO LEDs
[Figure 1-2, callout 21]
Figure 1-30 shows the user LED circuits.
X-Ref Target - Figure 1-30
Figure 1-30: User LEDs
X-Ref Target - Figure 1-31
GPIO SW W
GND
User Pushbuttons and Reset Switch
[Figure 1-2, callout 22]
Figure 1-31 shows the user pushbutton switch circuits.
SW3
4
32
R36
4.7kΩ
0.1 W 5%
GND
SW6
4
32
R39
4.7kΩ
0.1 W 5%
GND
SW5
4
32
FPGA_1V5
SW7
4
1
32
R40
4.7kΩ
0.1 W 5%
GPIO SW N
GPIO SW C
GPIO SW S
FPGA_1V5
1
FPGA_1V5
1
FPGA_1V5
1
GPIO SW E
GND
FPGA_1V5
SW4
4
1
32
R37
4.7kΩ
0.1 W 5%
52 www.xilinx.com AC701 Evaluation Board
R38
4.7kΩ
0.1 W 5%
GND
Figure 1-31: User Pushbuttons
UG952_c1_29_011813
UG952 (v1.4) August 6, 2019
X-Ref Target - Figure 1-32
UG952_c1_140_011813
FPGA_1V5
CPU_RESET
R41
4.7kΩ
0.1 W 5%
GND
4
32
1
SW8
UG952_c1_141_011813
VCC3V3
R45
4.7kΩ
0.1 W 5%
R43
4.7kΩ
0.1 W 5%
R44
4.7kΩ
0.1 W 5%
EVQ-WK4001
Edge-Drive Jog Encoder
SW10
B
SW1B
SW2
SW1A
COM
A
GND
6
5
4
3
2
1
GND
ROTARY INCB
ROTARY PUSH
ROTARY INCA
GND
7
Send Feedback
Figure 1-32 shows the user CPU_RESET pushbutton switch circuit.
Figure 1-32: CPU_RESET Pushbutton
GPIO DIP Switch
[Figure 1-2, callout 23]
Figure 1-33 shows the GPIO DIP switch circuit.
X-Ref Target - Figure 1-33
GPIO_DIP_SW0
GPIO_DIP_SW1
GPIO_DIP_SW2
GPIO_DIP_SW3
R52
4.7kΩ
0.1 W 5%
R53
4.7kΩ
0.1 W 5%
R51
4.7kΩ
0.1 W 5%
R50
4.7kΩ
0.1 W 5%
Feature Descriptions
SW2
1
2
3
4
SDA04H1SBD
FPGA_1V5
8
7
6
5
AC701 Evaluation Board www.xilinx.com 53
UG952 (v1.4) August 6, 2019
GND
Figure 1-33: GPIO DIP Switch
User Rotary Switch
[Figure 1-2, callout 24]
Figure 1-34 shows the user rotary switch circuit.
X-Ref Target - Figure 1-34
Figure 1-34: User Rotary Switch Circuit
UG952_c1_30_100412
Chapter 1: AC701 Evaluation Board Features
USER_SMA_GPIO_P
J34
USER_SMA_GPIO_N
GND
J33
GND
UG952_c1_142_011813
SMA
Connector
SMA
Connector
UG952_c1_31_100412
LCD Contrast Potentiometer
LCD_RW
LCD_DB4
LCD_DB6
LCD_RS
LCD_E
NC
NC
LCD_DB5
LCD_DB7
9
87
65
43
2
10
1
12 14
11 13
LCD_VEE
J23
GND
VCC5V0
R118
6.81kΩ
R232 2 kΩ
NC
NC
VCC5V0
GND
3
4
5
6
2
1
J48
HDR_1X6
VCC3V3
PMOD_0
PMOD_1
PMOD_2
PMOD_3
GND
UG952_c1_32_100412
Send Feedback
User SMA Connectors
[Figure 1-2, callout 25]
Figure 1-35 shows the user SMA connector circuit.
X-Ref Target - Figure 1-35
LCD Connector
Figure 1-35: User SMA Connector
Figure 1-36 shows the LCD J23 2x7 male pin header circuit.
X-Ref Target - Figure 1-36
Figure 1-36: LCD Header J23
PMOD Connector
Figure 1-37 shows the J48 PMOD male pin header.
X-Ref Target - Figure 1-37
Figure 1-37: PMOD Header J48
UG952 (v1.4) August 6, 2019
54 www.xilinx.com AC701 Evaluation Board
Feature Descriptions
Send Feedback
Table 1-24 lists the GPIO Connections to FPGA U1.
Table 1-24: GPIO Connections to FPGA U1
FPGA Pin (U1) Schematic Net Name I/O Standard GPIO Component Pin
User LEDs (Active High)
M26 GPIO_LED_0 LVC MO S3 3 DS2.2
T24 GPIO_LED_1 LV CM OS 3 3 DS3.2
T25 GPIO_LED_2 LV CM OS 3 3 DS4.2
R26 GPIO_LED_3 LVC MO S3 3 DS5.2
User Directional Pushbutton Switches (Active High)
P6 GPIO_SW_N SSTL15 SW3.3
U5 GPIO_SW_E SSTL15 SW4.3
T5 GPIO_SW_S SSTL15 SW5.3
R5 GPIO_SW_W SSTL15 SW7.3
U6 GPIO_SW_C SSTL15 SW6.3
User CPU_RESET Pushbutton Switch (Active High)
U4 CPU_RESET SSTL15 SW8.3
User 4-Pole DIP Switch (Active High)
R8 GPIO_DIP_SW0 SSTL15 SW2.1
P8 GPIO_DIP_SW1 SSTL15 SW2.2
R7 GPIO_DIP_SW2 SSTL15 SW2.3
R6 GPIO_DIP_SW3 SSTL15 SW2.4
User Rotary Encoder Switch (Active High)
P20 ROTARY_INCB LV CM OS 33 SW10.6
N21 ROTARY_PUSH LV CM OS 33 SW10.5
N22 ROTARY_INCA LV CM OS 3 3 SW10.1
User SMA Connectors
T8 USER_SMA_GPIO_P SSTL15 J33.1
T7 USER_SMA_GPIO_N SSTL15 J34.1
User GPIO PMOD Male Pin Header
P26 PMOD_0 LV CM O S3 3 J48.1
AC701 Evaluation Board www.xilinx.com 55
UG952 (v1.4) August 6, 2019
T22 PMOD_1 LVC MO S3 3 J48.2
R22 PMOD_2 LV CM OS 33 J48.3
T23 PMOD_3 LVC MO S3 3 J48.4
Chapter 1: AC701 Evaluation Board Features
UG952_c1_33_101612
VCC12 P IN
VCC12 P
R369 1kΩ 1%
GND
1
2
3
4
SW15
C539 330μF 25V
GND
DS22
5
6
J49
1
2
3
4
5
6
12V
N/C
COM
12V
N/C
COM
GND
Powe r
PCIe
UG952_c1_34_101612
To ATX 4-Pin Peripheral
Power Connector
To J49 on AC701 Board
Send Feedback

Switches

[Figure 1-2, callout 2627]
The AC701 board includes a power and a configuration switch:
Power on/off slide switch SW15 (callout 26)
FPGA_PROGRAM_B SW14, active-Low (callout 27)
Power On/Off Slide Switch SW15
[Figure 1-2, callout 26]
The AC701 board power switch is SW15. Sliding the switch actuator from the Off to On position applies 12V power from J49, a 6-pin mini-fit connector. Green LED DS22 illuminates when the AC701 board power is on. See
Caution! Do NOT plug a PC ATX power supply 6-pin connector into J49 on the AC701 board
The ATX 6-pin connector has a different pinout than J49. Connecting an ATX 6-pin connector into J49 damages the AC701 board and voids the board warranty.
Figure 1-38 shows the simplified diagram of the power connector J49, power switch SW15 and
indicator LED DS22.
X-Ref Target - Figure 1-38
Power Management for details on the onboard power system.
56 www.xilinx.com AC701 Evaluation Board
Figure 1-38: Power On/Off Switch SW15
The AC701 Evaluation Kit provides the adapter cable shown in Figure 1-39 for powering the AC701 board from the ATX power supply 4-pin peripheral connector. The Xilinx part number for this cable is 2600304, and is equivalent to Sourcegate Technologies part number AZCBL-WH-1109-RA4. For information on ordering this cable, see
X-Ref Target - Figure 1-39
Figure 1-39: ATX Power Supply Adapter Cable
[Ref 24].
UG952 (v1.4) August 6, 2019
Feature Descriptions
UG952_c1_41_030615
SDA03H1SBD
SW1
FPGA_3V3
FPGA_M0
FPGA_M2
FPGA_M1
R339
1.21K
0.1W 1%
R338
1.21K
0.1 W 1%
R337
1.21K
0.1W 1%
1
2
3
6
5
4
GND
ON
NC
Send Feedback
FPGA_PROG_B Pushbutton SW9 (Active-Low)
[Figure 1-2, callout 27]
Switch SW9 grounds the FPGA PROGRAM_B pin when pressed. This action initiates an FPGA reconfiguration. The FPGA_PROG_B signal is connected to FPGA U1 pin AE16.
See 7 Series FPGAs Configuration User Guide (UG470) [Ref 6] for further details on configuring the 7 series FPGAs.
Figure 1-40 shows SW9.
X-Ref Target - Figure 1-40
FPGA_3V3
R42
4.7kΩ
0.1 W
FPGA_PROG_B
5%
Figure 1-40: FPGA_PROG_B Pushbutton SW9
SW9
1
23
4
UG952_c1_35_100412
GND
Configuration Mode Switch SW1
The AC701 board supports two of the five 7 series FPGA configuration modes:
Master SPI flash memory using the onboard Quad SPI flash memory
JTAG using a standard-A to micro-B USB cable for connecting the host PC to the AC701
board configuration port (on the Digilent module)
Each configuration interface corresponds to one or more configuration modes and bus widths as listed in respectively, as shown in Figure 1-41.
Note: On the AC701 board, SW1 switch position 2 is not used.
X-Ref Target - Figure 1-41
Table 1-25. The mode switches M2, M1, and M0 are on SW1 positions 1, 2, and 3
AC701 Evaluation Board www.xilinx.com 57
UG952 (v1.4) August 6, 2019
Figure 1-41: Mode Switch SW1
Chapter 1: AC701 Evaluation Board Features
Send Feedback
The default mode setting is M[2:0] = 001, which selects Master SPI flash memory at board power-on.
Table 1-25: AC701 Board FPGA Configuration Modes
Configuration Mode
Master SPI flash memory 001 x1, x2, x4 Output
JTAG 101 x1 Not Applicable
See 7 Series FPGAs Configuration User Guide (UG470) [Ref 6] for further details on configuring the 7 series FPGAs.
SW13 DIP Switch

FPGA Mezzanine Card Interface

[Figure 1-2, callout 29]
The AC701 board supports the VITA 57.1 FPGA mezzanine card (FMC) specification by providing high pin count (HPC) connector J30. HPC J30 is keyed so that a the mezzanine card faces away from the AC701 board when connected.
Signaling speed ratings:
Single-ended: 9 GHz (18 Gb/s)
Differential optimal vertical: 9 GHz (18 Gb/s)
Differential optimal horizontal: 16 GHz (32 Gb/s)
High density vertical: 7 GHz (15 Gb/s)
The Samtec connector system is rated for signaling speeds up to 9 GHz (18 Gb/s) based on a –3 dB insertion loss point within a two-level signaling environment.
Settings (M[2:0])
Bus Width CCLK Direction
Connector type:
Samtec SEAF series, 1.27 mm (0.050 in) pitch. Mates with SEAM series connector
For more information about SEAF series connectors, go to the Samtec website [Ref 19].
HPC Connector J30
[Figure 1-2, callout 29]
The 400-pin HPC connector defined by the FMC specification (Figure B-1) provides connectivity for up to:
160 single-ended or 80 differential user-defined signals
10 GTP transceivers
2 GTP transceiver clocks
4 differential clocks
159 ground and 15 power connections
The connections between the HPC connector at J30 and FPGA U1 (Table 1-26) implements a subset of this connectivity:
58 differential user defined pairs
34 LA pairs (LA00-LA33)
24 HA pairs (HA00-HA23)
58 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
Feature Descriptions
Send Feedback
4 GTP transceivers
2 GTP transceiver clocks
2 differential clocks
159 ground and 15 power connections
Note: The AC701 board VADJ voltage for HPC connector J30 is determined by the FMC VADJ
power sequencing logic described in
Power Management.
Table 1-26: HPC Connections, J30 to FPGA U1
J30 FMC1
HPC Pin
A2 FMC1_HPC_DP1_M2C_P
A3 FMC1_HPC_DP1_M2C_N
A6 NC NA NA B5 NC NA NA
A7 NC NA NA B8 NC NA NA
A10 NC NA NA B9 NC NA NA
A11 NC NA NA B12 NC NA NA
A14 NC NA NA B13 NC NA NA
Schematic Net Name I/O Standard
(1)
(1)
FPGA
(U1) Pin
AC14 B1 NC NA NA
AD14 B4 NC NA NA
J30 FMC1
HPC Pin
Schematic Net Name I/O Standard
FPGA
(U1) Pin
A15 NC NA NA B16 NC NA NA
A18 NC NA NA B17 NC NA NA
A19 NC NA NA B20 FMC1_HPC_GBTCLK1_M2C_P NA U4.27
A22 FMC1_HPC_DP1_C2M_P
A23 FMC1_HPC_DP1_C2M_N
A26 NC NA NA B25 NC NA NA
A27 NC NA NA B28 NC NA NA
A30 NC NA NA B29 NC NA NA
A31 NC NA NA B32 NC NA NA
A34 NC NA NA B33 NC NA NA
A35 NC NA NA B36 NC NA NA
A38 NC NA NA B37 NC NA NA
A39 NC NA NA B40 NC NA NA
C2 FMC1_HPC_DP0_C2M_P
C3 FMC1_HPC_DP0_C2M_N
C6 FMC1_HPC_DP0_M2C_P
C7 FMC1_HPC_DP0_M2C_N
C10 FMC1_HPC_LA06_P LV CM OS 2 5 G19 D9 FMC1_HPC_LA01_CC_N LV CM OS 25 E18
(1)
(1)
(1)
(1)
(1)
(1)
AC8 B21 FMC1_HPC_GBTCLK1_M2C_N NA U4.25
AD8 B24 NC NA NA
AE9 D1 CTRL2_PWRGOOD LV C MO S2 5 P15
AF9 D4 FMC1_HPC_GBTCLK0_M2C_P NA U3.27
AE13 D5 FMC1_HPC_GBTCLK0_M2C_N NA U3.25
AF13 D8 FMC1_HPC_LA01_CC_P LVC MO S 25 E17
C11 FMC1_HPC_LA06_N LV C MO S2 5 F20 D11 FMC1_HPC_LA05_P LV CM OS 25 G15
C14 FMC1_HPC_LA10_P LV CM OS 2 5 A17 D12 FMC1_HPC_LA05_N LV CM O S2 5 F15
C15 FMC1_HPC_LA10_N LVC MO S 25 A18 D14 FMC1_HPC_LA09_P LV CM OS 25 E16
C18 FMC1_HPC_LA14_P LV CM OS 2 5 C21 D15 FMC1_HPC_LA09_N LVC MO S2 5 D16
C19 FMC1_HPC_LA14_N LVC MO S 25 B21 D17 FMC1_HPC_LA13_P LV CM OS 25 B20
AC701 Evaluation Board www.xilinx.com 59
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
Send Feedback
Table 1-26: HPC Connections, J30 to FPGA U1 (Cont’d)
J30 FMC1
HPC Pin
C22 FMC1_HPC_LA18_CC_P LV CM OS 2 5 G20 D18 FMC1_HPC_LA13_N LV CM OS 25 A20
C23 FMC1_HPC_LA18_CC_N LV CM OS 2 5 G21 D20 FMC1_HPC_LA17_CC_P LV CM OS 25 K21
C26 FMC1_HPC_LA27_P LV CM OS 2 5 F23 D21 FMC1_HPC_LA17_CC_N LV CM OS 2 5 J21
C27 FMC1_HPC_LA27_N LV CM OS 2 5 E23 D23 FMC1_HPC_LA23_P LV CM OS 25 K20
C30 FMC1_HPC_IIC_SCL NA U52.19 D24 FMC1_HPC_LA23_N LV CM OS 25 J20
C31 FMC1_HPC_IIC_SDA NA U52.20 D26 FMC1_HPC_LA26_P LVC MO S2 5 J24
C34 GA0 = 0 = GND NA NA D27 FMC1_HPC_LA26_N LVC MO S 25 H24
C35 VCC12_P NA NA D29 FMC1_HPC_TCK_BUF NA U19.13
C37 VCC12_P NA NA D30 FMC1_TDI_BUF NA U19.17
C39 VCC3V3 NA NA D31 FMC1_TDO_FPGA_TDI NA U19.2
Schematic Net Name I/O Standard
FPGA
(U1) Pin
J30 FMC1
HPC Pin
D32 VCC3V3 NA NA
D33 FMC1_HPC_TMS_BUF NA U19.15
D34 NC NA NA
D35 GA1 = 0 = GND NA NA
Schematic Net Name I/O Standard
FPGA
(U1) Pin
D36 VCC3V3 NA NA
D38 VCC3V3 NA NA
D40 VCC3V3 NA NA
E2 FMC1_HPC_HA01_CC_P LV C MO S2 5 AB21 F1 FMC1_HPC_PG_M2C LV CM OS 2 5 N17
E3 FMC1_HPC_HA01_CC_N LV C MO S2 5 AC21 F4 FMC1_HPC_HA00_CC_P LVC MO S2 5 AA19
E6 FMC1_HPC_HA05_P LV CM OS 2 5 AD25 F5 FMC1_HPC_HA00_CC_N LV CM OS 2 5 AB19
E7 FMC1_HPC_HA05_N LV C MO S2 5 AD26 F7 FMC1_HPC_HA04_P LVC MO S 25 AF24
E9 FMC1_HPC_HA09_P LV CM OS 2 5 AF19 F8 FMC1_HPC_HA04_N LVC MO S2 5 AF25
E10 FMC1_HPC_HA09_N LV C MO S2 5 AF20 F10 FMC1_HPC_HA08_P LV CM OS 25 AD21
E12 FMC1_HPC_HA13_P LV CM OS 2 5 AC18 F11 FMC1_HPC_HA08_N LVC MO S2 5 AE21
E13 FMC1_HPC_HA13_N LV C MO S2 5 AD18 F13 FMC1_HPC_HA12_P LV CM OS 25 AC19
E15 FMC1_HPC_HA16_P LV CM OS 2 5 AE17 F14 FMC1_HPC_HA12_N LVC MO S2 5 AD19
E16 FMC1_HPC_HA16_N LV C MO S2 5 AF17 F16 FMC1_HPC_HA15_P LV CM OS 25 Y18
E18 FMC1_HPC_HA20_P LV CM OS 2 5 Y16 F17 FMC1_HPC_HA15_N LVC MO S 25 AA18
E19 FMC1_HPC_HA20_N LV C MO S2 5 Y17 F19 FMC1_HPC_HA19_P LV CM OS 25 AC17
E21 NC NA NA F20 FMC1_HPC_HA19_N LVC MO S2 5 AD17
E22 NC NA NA F22 NC NA NA
E24 NC NA NA F23 NC NA NA
E25 NC NA NA F25 NC NA NA
E27 NC NA NA F26 NC NA NA
E28 NC NA NA F28 NC NA NA
60 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
Feature Descriptions
Send Feedback
Table 1-26: HPC Connections, J30 to FPGA U1 (Cont’d)
J30 FMC1
HPC Pin
E30 NC NA NA F29 NC NA NA
E31 NC NA NA F31 NC NA NA
E33 NC NA NA F32 NC NA NA
E34 NC NA NA F34 NC NA NA
E36 NC NA NA F35 NC NA NA
E37 NC NA NA F37 NC NA NA
E39 VCCO_VADJ NA NA F38 NC NA NA
G2 FMC1_HPC_CLK1_M2C_P LVC M OS 25 H21 H1 NC NA NA
G3 FMC1_HPC_CLK1_M2C_N LV CM O S2 5 H22 H2 FMC1_HPC_PRSNT_M2C_B LV CM OS 25 N16
G6 FMC1_HPC_LA00_CC_P LV CM O S2 5 D18 H4 FMC1_HPC_CLK0_M2C_P LV CM OS 25 D19
G7 FMC1_HPC_LA00_CC_N LV CM O S2 5 C18 H5 FMC1_HPC_CLK0_M2C_N LV CM OS 25 C19
G9 FMC1_HPC_LA03_P LV CM O S2 5 G17 H7 FMC1_HPC_LA02_P LV CM OS 25 H14
G10 FMC1_HPC_LA03_N LV CM O S2 5 F17 H8 FMC1_HPC_LA02_N LV CM OS 25 H15
Schematic Net Name I/O Standard
FPGA
(U1) Pin
J30 FMC1
HPC Pin
F40 VCCO_VADJ NA NA
Schematic Net Name I/O Standard
FPGA
(U1) Pin
G12 FMC1_HPC_LA08_P LV C MO S2 5 C17 H10 FMC1_HPC_LA04_P LV CM OS 25 F18
G13 FMC1_HPC_LA08_N LV CM O S2 5 B17 H11 FMC1_HPC_LA04_N LV CM OS 25 F19
G15 FMC1_HPC_LA12_P LV C MO S2 5 E20 H13 FMC1_HPC_LA07_P LVC MO S2 5 H16
G16 FMC1_HPC_LA12_N LV CM O S2 5 D20 H14 FMC1_HPC_LA07_N LVC MO S2 5 G16
G18 FMC1_HPC_LA16_P LV C MO S2 5 E21 H16 FMC1_HPC_LA11_P LV CM OS 25 B19
G19 FMC1_HPC_LA16_N LV CM O S2 5 D21 H17 FMC1_HPC_LA11_N LVC MO S2 5 A19
G21 FMC1_HPC_LA20_P LV C MO S2 5 M16 H19 FMC1_HPC_LA15_P LV CM OS 25 B22
G22 FMC1_HPC_LA20_N LV CM O S2 5 M17 H20 FMC1_HPC_LA15_N LVC MO S2 5 A22
G24 FMC1_HPC_LA22_P LV C MO S2 5 L17 H22 FMC1_HPC_LA19_P LVC MO S2 5 M14
G25 FMC1_HPC_LA22_N LV CM O S2 5 L18 H23 FMC1_HPC_LA19_N LV CM OS 2 5 L14
G27 FMC1_HPC_LA25_P LV C MO S2 5 G22 H25 FMC1_HPC_LA21_P LV CM OS 25 J19
G28 FMC1_HPC_LA25_N LV CM O S2 5 F22 H26 FMC1_HPC_LA21_N LV CM OS 25 H19
G30 FMC1_HPC_LA29_P LV C MO S2 5 G24 H28 FMC1_HPC_LA24_P LV CM OS 25 J18
G31 FMC1_HPC_LA29_N LV CM O S2 5 F24 H29 FMC1_HPC_LA24_N LV CM OS 25 H18
G33 FMC1_HPC_LA31_P LV C MO S2 5 E26 H31 FMC1_HPC_LA28_P LVC MO S2 5 K22
G34 FMC1_HPC_LA31_N LV CM O S2 5 D26 H32 FMC1_HPC_LA28_N LVC MO S2 5 K23
G36 FMC1_HPC_LA33_P LV C MO S2 5 G25 H34 FMC1_HPC_LA30_P LV CM OS 25 E25
G37 FMC1_HPC_LA33_N LV CM O S2 5 F25 H35 FMC1_HPC_LA30_N LV CM OS 25 D25
G39 VCCO_VADJ NA NA H37 FMC1_HPC_LA32_P LVC MO S2 5 H26
AC701 Evaluation Board www.xilinx.com 61
UG952 (v1.4) August 6, 2019
H38 FMC1_HPC_LA32_N LVC MO S2 5 G26
H40 VCCO_VADJ NA NA
Chapter 1: AC701 Evaluation Board Features
Send Feedback
Table 1-26: HPC Connections, J30 to FPGA U1 (Cont’d)
J30 FMC1
HPC Pin
J2 NC NA NA K1 NC NA NA
J3 NC NA NA K4 NC NA NA
J6 FMC1_HPC_HA03_P LV C MO S2 5 AC22 K5 NC NA NA
J7 FMC1_HPC_HA03_N LVC M OS 25 AC23 K7 FMC1_HPC_HA02_P LV CM OS 25 AE25
J9 FMC1_HPC_HA07_P LV C MO S2 5 AD23 K8 FMC1_HPC_HA02_N LVC M OS 25 AE26
J10 FMC1_HPC_HA07_N LV CM OS 2 5 AD24 K10 FMC1_HPC_HA06_P LVC MO S2 5 AE23
J12 FMC1_HPC_HA11_P LV CM O S2 5 AD20 K11 FMC1_HPC_HA06_N LVC M OS 25 AF23
J13 FMC1_HPC_HA11_N LV CM O S2 5 AE20 K13 FMC1_HPC_HA10_P LV C MO S2 5 AE22
J15 FMC1_HPC_HA14_P LVC M OS 25 AE18 K14 FMC1_HPC_HA10_N LV CM OS 25 AF22
J16 FMC1_HPC_HA14_N LV CM OS 2 5 AF18 K16 FMC1_HPC_HA17_CC_P LV CM OS 25 AA20
J18 FMC1_HPC_HA18_P LVC M OS 25 AA17 K17 FMC1_HPC_HA17_CC_N LV CM OS 25 AB20
J19 FMC1_HPC_HA18_N LV CM OS 2 5 AB17 K19 FMC1_HPC_HA21_P LV CM OS 25 AB16
J21 FMC1_HPC_HA22_P LVC M OS 25 Y15 K20 FMC1_HPC_HA21_N LV CM OS 25 AC16
J22 FMC1_HPC_HA22_N LV CM OS 2 5 AA15 K22 FMC1_HPC_HA23_P LVC MO S2 5 W14
Schematic Net Name I/O Standard
FPGA
(U1) Pin
J30 FMC1
HPC Pin
Schematic Net Name I/O Standard
FPGA
(U1) Pin
J24 NC NA NA K23 FMC1_HPC_HA23_N LVC MO S2 5 W15
J25 NC NA NA K25 NC NA NA
J27 NC NA NA K26 NC NA NA
J28 NC NA NA K28 NC NA NA
J30 NC NA NA K29 NC NA NA
J31 NC NA NA K31 NC NA NA
J33 NC NA NA K32 NC NA NA
J34 NC NA NA K34 NC NA NA
J36 NC NA NA K35 NC NA NA
J37 NC NA NA K37 NC NA NA
J39 NC NA NA K38 NC NA NA
K40 NC NA NA
Notes:
1. No I/O standards are associated with MGT connections.

Power Management

[Figure 1-2, callout 30]
The AC701 board uses power regulators and PMBus compliant system controllers from Texas Instruments to supply core and auxiliary voltages. The Texas Instruments Fusion Digital Power GUI is used to monitor the voltage and current levels of the board power modules.
62 www.xilinx.com AC701 Evaluation Board
The AC701 board power distribution diagram is shown in Figure 1-42.
UG952 (v1.4) August 6, 2019
X-Ref Target - Figure 1-42
Send Feedback
J49
Feature Descriptions
The pcb layout and power system design meets the recommended criteria described in the 7 Series FPGAs PCB Design and Pin Planning Guide (UG483)
[Ref 11].
12V PWR
Jack
Power Controller 1 PMBUS 101
Switching Regulator
1.0V at 10A
Switching Module
1.8V at 6A
Switching Module
1.0V at 3A
Switching Module
1.5V at 6A
Power Controller 2 PMBUS 102
Switching Module
1.2V–3.3V at 6A
Switching Module
1.8V at 3A
Switching Module
3.3V at 6A
Switching Module
1.0V at 3A
U8
U49
U53
U54
U55
U9
U56
U57
U58
U59
V33D_CTL1
VCCINT
VCCAUX
VCCBRAM
FPGA_1V5
V33D_CTL2
VCCO_VADJ
FPGA_1V8
VCC3V3
MGTAVCC
Switching Module
1.2V at 3A
Switching Regulator
5.0V at 4A
1.5V/2=0.75V REFIN
3.3V POWER
1.5V/2=0.75V REFIN
3.3V POWER
U60
U46
Linear Regulator
1.7V–2.0V at 300 mA
Linear Regulator
3.3V at 250 mA
Linear Regulator
3.3V at 250 mA
Source/Sink Regulator
0.75V at 3A
Source/Sink Regulator
0.75V at 3A
U10
U61
U63
U37
U36
V33D_CTL1
V33D_CTL2
Figure 1-42: AC701 Board Onboard Power Regulators
MGTAVTT
VCC5V0
XADC_VCC
VTTDDR
DDR3_VTERM
UG952_c1_44_030915
AC701 Evaluation Board www.xilinx.com 63
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
Send Feedback
The AC701 board core and auxiliary voltages are listed in Table 1-27.
Table 1-27: AC701 Board Onboard Power System Devices
(2)
(5)
(6)
(5)
(5)
Reference
Designator
Description
U8 PMBus controller - PMBus Addr = 101 39
U49 10A 0.6V5.5V adjustable switching regulator VCCINT 1.00V 40
U53 6A 0.6V5.5V adjustable switching regulator VCCAUX 1.80V 41
U54 3A 0.6V5.5V adjustable switching regulator VCCBRAM 1.00V 42
U55 6A 0.6V5.5V adjustable switching regulator FPGA_1V5 1.50V 43
U9 PMBus controller - PMBus Addr = 102 45
U56 6A 0.6V5.5V adjustable switching regulator VCCO_VADJ 2.50V 46
Device Type
UCD90120A
(1)
(4 Rails)
LMZ31710RVQ
LMZ31506RUQ
LMZ31503RUQ
LMZ31506RUQ
UCD90120A
(3)
(5 Rails)
LMZ31506RUQ
Power Rail Net
Name
Power Rail
Vol tage
Schematic
Page
LMZ31503RUQ
LMZ31506RUQ
LMZ31503RUQ
LMZ31503RUQ
LMZ31704RVQ
(6)
(5)
(6)
(6)
(4)
U57 3A 0.6V5.5V adjustable switching regulator
U58 6A 0.6V5.5V adjustable switching regulator
U59 3A 0.6V5.5V adjustable switching regulator MGTAVCC 1.00V 49
U60 3A 0.6V5.5V adjustable switching regulator MGTAVTT 1.20V 50
U46 4A 0.6V5.5V adjustable linear regulator VCC5V0 5.00V 34
VCC1V8/
FPGA_1V8
VCC3V3/
FPGA_3V3
1.80V 47
3.30V 48
TL1963ADCQR U62 1.5A 1.21V5V adjustable LDO linear regulator VCC2V5 2.50V 48
TPS51200DR U37 3A source-sink DDR termination regulator VTTDDR 0.75V 44
TPS51200DR U36 3A source-sink DDR termination regulator
DDR3_VTERM_
R_0V75
0.75V 44
TPS79433DCQ U61 0.25A 1.2V5.5V adjustable LDO linear regulator V33D_CTL1 3.30V 39
TPS79433DCQ U63 0.25A 1.2V5.5V adjustable LDO linear regulator V33D_CTL2 3.30V 45
ADP123 U10 0.3A 0.8V5V adjustable linear regulator XADC_VCC 1.85V 29
REF3012 U35 50 uA fixed 1.25V voltage reference XADC_VREF 1.25V 29
Notes:
1. See Tab le 1-28.
2. LMZ22010TZ U49 10A 0.8V6V adjustable switching regulator on AC701 boards. previous to rev. 2.0. Previous board revisions are identified
by an assembly number label affixed to each pre-rev 2.0 PCB, 0431747-xx.
3. See Tab le 1-29.
4. LMZ12002TZ U46 2A 0.8V6V adjustable linear regulator on AC701 boards previous to rev. 2.0. Previous board revisions are identified by an
assembly number label affixed to each pre-rev 2.0 PCB, 0431747-xx.
5. TPS84621RUQ adjustable linear regulator was on AC701 boards previous to board Rev. 2.0. Previous board revisions are identified by an assembly number label affixed to each pre-rev 2.0 PCB, 0431747-xx.
6. TPS84620RUQ adjustable linear regulator was on AC701 boards previous to board Rev. 2.0. Previous board revisions are identified by an assembly number label affixed to each pre-rev 2.0 PCB, 0431747-xx.
64 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
Feature Descriptions
Send Feedback
Monitoring Voltage and Current
Voltage and current monitoring and voltage control are available for the TI controlled power rails through the Texas Instruments Fusion Digital Power Designer GUI. The two onboard TI UCD90120A power controllers (U8 at PMBus address 101 and U9 at address 102) are wired to the same PMBus. The PMBus connector, J2, is provided for use with the TI USB Interface Adapter PMBus pod (TI part number EVM USB-TO-GPIO) and associated TI Fusion Digital Power Designer GUI. This is the simplest and most convenient way to monitor the voltage and current values for the power rail listed in
Record 54022.
In Table 1-28 and Table 1-29 (one per controller), the Power Good (PG) On Threshold is the set-point at or above which the particular rail is deemed good. The PG Off Threshold is the set-point at or below which the particular rail is no longer deemed good. The controller internally ORs these PG conditions together and drives an output PG pin High only if all active rail PG states are good. The on and off delay parameter values are relative to when the board power on-off slide switch SW15 is turned on and off.
Table 1-28 defines the voltage and current values for each power rail controlled by the UCD90120A
U8 controller at PMBus Address 101.
Table 1-28: Power Rail Specifications for UCD90120A PMBus Controller U8 at Address 101
Table 1-28 and Tab le 1-29. For more information, see Answer
Rail
1 VINT_1V0 1.000 0.900 –10.0% 0.850 –15.0% 0.0 15.0 Rail #2,3,4 None None
2 VAUX_1V8 1.800 1.620 –10.0% 1.530 –15.0% 10.0 5.0 Rail #1,3,4 Rail #3 None
3 VBRAM_1V0 1.000 0.900 –10.0% 0.850 –15.0% 5.0 10.0 Rail #1,2,4 Rail #1 None
4 FPGA_1V5 1.500 1.350 –10.0% 1.275 –15.0% 15.0 0.0 Rail #1,2,3 Rail #2 None
Nominal
Vol tage
Power Good On Power Good Off
Tur n O n
Delay
(ms)
Turn
Off
Delay
(ms)
Fault
Shutdown
Slaves
Rail Turn-on
Dependencies
Rail GPI
Table 1-29 defines the voltage and current values for each power rail controlled by the UCD90120A
U9 controller at PMBus Address 102.
Table 1-29: Power Rail Specifications for UCD90120A PMBus Controller U9 at Address 102
Tur n
Rail
1 VADJ_2V5 2.500 2.250 –10.0% 2.125 –15.0% 5.0 15.0 Rail #2,3,4,5 Rail #3
2 FPGA_1V8 1.800 1.620 –10.0% 1.530 –15.0% 10.0 10.0 Rail #1,3,4,5 None None
Nominal
Voltage
Power Good On Power Good Off
On
Delay
(ms)
Tur n
Off
Delay
(ms)
Fault
Shutdown
Slaves
Rail Turn-on
Dependencies
Rail GPI
FMC_
VA D J _
ON_B
3 FPGA_3V3 3.300 2.970 –10.0% 2.805 –15.0% 0.0 20.0 Rail #1,2,4,5 None None
4 MGTVC_1V0 1.000 0.900 –10.0% 0.850 –15.0% 5.0 5.0 Rail #1,2,3,5 Rail #2 None
5 MGTVT_1V2 1.200 1.080 –10.0% 1.020 –15.0% 10.0 0.0 Rail #1,2,3,4 Rail #4 None
AC701 Evaluation Board www.xilinx.com 65
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
Send Feedback
VCCO_VADJ Voltage Control
The FMC VCCO_VADJ rail is set to 2.5V. When the AC701 board is powered on, the state of the FMC_VADJ_ON_B signal wired to header J8 is sampled by the TI UCD90120A controller U9. If a jumper is installed on J8, signal FMC_VADJ_ON_B is held low, and TI controller U9 energizes the FMC VCCO_VADJ rail at power on.
Removing the jumper at J8 after the board is powered up does not affect the 2.5V power delivered to the VCCO_VADJ rail and it remains on.
A jumper installed at J8 is the default setting. If a jumper is not installed on J8 at power on, the signal FMC_VADJ_ON_B is High and the AC701 board does not energize the VCCO_VADJ 2.5V power.
Installing a jumper at J8 after the AC701 board powers up in this mode turns on the VCCO_VADJ rail.
In this VCCO_VADJ off mode, you can control when to turn on VCCO_VADJ and to what voltage level (1.8V, 2.5V or 3.3V).
With VCCO_VADJ off, the FPGA still configures and has access to the TI controller PMBus and the VADJ_ON_B signal which are wired to FPGA U1 Bank 14. The combination of these features allows you to develop code to command the VCCO_VADJ rail to be set to 1.8V or 3.3V instead of the default setting of 2.5V.
See AC701 board schematic page 46 for a brief discussion concerning selectable VCCO_VADJ voltages. The important controller-to-regulator circuit signals are VCCO_VADJ_EN and FMC_ADJ_SEL[1:0]. In the VCCO_VADJ off mode, controller U9 does not toggle the regulator turn-on signal VCCO_VADJ_EN High, so the U56 regulator stays off. You must re-program the controller U9 VCCO_VADJ rail settings to the desired VCCO_VADJ voltage so that the controller expects the new voltage to appear on its MON1 remote sense pin. The FMC_ADJ_SEL[1:0] controller GPIO16 and GPIO17 pins must be set to the correct logic levels to force the VCCO_VADJ regulator Reset MUX U64 to select the appropriate RT_CLK and VADJ resistors for the desired voltage as shown in
Table 1-30.
Table 1-30: VCCO_VADJ Voltage Selection
FMC_ADJ_SEL[10] VCCO_ADJ (V)
BIT 1 BIT 0
0 0 2.5V
0 1 1.8V
1 0 3.3V
1 1 NOT USED
When the new VCCO_VADJ rail settings and Reset MUX logic levels are programmed into controller U9, the FMC_VADJ_ON_B signal can be driven Low by user FPGA logic and the controller toggles the VCCO_VADJ_EN signal High to allow the rail to come up at the new VCCO_VADJ voltage level.
Documentation describing PMBus programming for the UCD90120A controller is available at Texas Instruments
[Ref 22].
66 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
Feature Descriptions
Send Feedback
Cooling Fan Control
Cooling fan RPM is controlled and monitored by user-created IP in the FPGA using the fan control circuit is shown in
FPGA U1 can be cooled by a user-supplied 12V DC fan connected to J61. 12VDC is provided to the fan through J61 pin 2. The fan GND return is provided through J61 pin 1 and transistor Q17. Fan speed is controlled by a pulse-width-modulated signal from FPGA U1 pin J26 (on Bank 15) driving the gate of Q17. The default unprogrammed FPGA fan operation mode is ON. The fan speed tachometer signal on J61 pin 3 can be monitored on FPGA U1 pin J25 (on Bank 15).
X-Ref Target - Figure 1-43
Figure 1-43.
VCC12_P
J61
3
2
1
VCC2V5
Cooling
Fan
FPGA
U1 Pin J26
Fan Tach
Fan +12V
Fan GND
SM_FAN_PWM
Figure 1-43: FPGA Cooling Fan Circuit

AC701 Board Power System

The AC701 board hosts a power system based on the Texas Instruments (TI) UCD90120A power supply sequencer and monitor, and the LMZ31500 and LMZ31700 family voltage regulators.
UCD90120A Description
The UCD90120A is a 12-rail PMBus/I2C addressable power-supply sequencer and monitor. The device integrates a 12-bit ADC for monitoring up to 12 power supply voltage inputs. Twenty-six GPIO pins can be used for power supply enables, power-on reset signals, external interrupts, cascading, or other system functions. 12 of these pins offer PWM functionality. Using these pins, the UCD90120A device offers support for margining and general-purpose PWM functions.
R245
10.0K 1% 1/10W
R277
1.00K 1% 1/16W
R393
10.0K 1% 1/10W
D14 100V 500 mW DL4148
4
2
Q17
1
NDT30555L
1.3 W
3
GND
R390
4.75K 1% 1/10W
SM_FAN_TACH
D15
2.7V 500 mW MM3Z2V7B
GND
FPGA
U1 Pin J25
UG952_c1_38_100512
AC701 Evaluation Board www.xilinx.com 67
UG952 (v1.4) August 6, 2019
The UCD90120A device is configured by using the PC-based TI Fusion Digital Power Designer software. This software provides a graphical user interface (GUI) for configuring, storing, and monitoring power system operating parameters.
LMZ31500 Family Regulator Description
The LMZ31506RUQ (6A) and LMZ31503RUQ (3A) regulators are integrated synchronous buck switching regulators that combines a DC/DC converter with power MOSFETs, an inductor, and passives into low profile, BQFN packages. The LMZ3150x devices accept an input voltage rail between 4.5V and 14.5V and deliver an adjustable output voltage in the 0.6V to 5.5V range. This type of power solution allows as few as three external components and eliminates the loop compensation and magnetic parts selection process.
Chapter 1: AC701 Evaluation Board Features
Send Feedback
LMZ31700 Family Regulator Description
The LMZ31710 power module is a step-down DC-DC switching regulator capable of driving up to 10A load. The LMZ31710 can accept an input voltage rail between 4.5V and 17V, and deliver an adjustable and highly accurate output voltage as low as 0.6V. The LMZ31710 requires two external resistors and external capacitors to complete the design. The LMZ31710 is a reliable and robust design with these protection features: thermal shutdown, programmable input under-voltage lockout, output over-voltage protection, short-circuits protection, output current limit, and allows start -up into a pre-biased output. The sync input allows synchronization over the 200 1200
kHz switching frequency range and up to six modules can be connected in parallel for higher
load currents.
Table 1-31 shows the AC701 board power system configuration for controller U8.
Table 1-31: Controller U8 Power System Configuration
kHz to
Sequencer
#1 U8 PMBus
Addr 101, 4 Rails
Schematic
Regulator Type Volta g e Current
Page Contents Net Name
39 UCD90120A #1
40 Addr 101, Rail 1 VCCINT LMZ31710 (U49) 1.0V 10A
41 Addr 101, Rail 2 VCCAUX LMZ31506 (U53) 1.8V 6A
42 Addr 101, Rail 3 VCCBRAM LMZ31503 (U54) 1.0V 3A
43 Addr 101, Rail 4 FPGA_1V5 LMZ31506 (U55) 1.5V 6A
68 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
X-Ref Target - Figure 1-44
Send Feedback
U8
UCD90120A
Controller
(Controller 1)
GPIO (Out)
FPWM (Out)
ADC (In)
ADC (In)
GPIO (Out)
GPIO (Out)
FPWM (Out)
ADC (In)
ADC (In)
Figure 1-44 shows the power system for UCD90120A U8 controller #1
Rail Enable
PWM Margin
Current Sense
Voltage Sense
Low Pwr Select
Rail Enable
PWM Margin
Current Sense
Voltage Sense
Feature Descriptions
U49 (1.0V Nom)
LMZ31710
+12V
Input Filter
(2)
Vin Vout
EN
V
fb
FB
U53 (1.8V Nom)
LMZ31506
+12V
Input Filter
(2)
Vin Vout
EN
V
fb
FB
Rs 5mΩ
C
f
Rs 5mΩ
C
f
(1)
C
f
C
f
VCCINT 1.0V
VCCAUX 1.8V
GPIO (Out)
FPWM (Out)
ADC (In)
ADC (In)
GPIO (Out)
FPWM (Out)
ADC (In)
ADC (In)
Notes:
1. Capacitors labled Cf are bulk filter capacitors.
2. Voltage Sense is connected at point of load.
Rail Enable
PWM Margin
Current Sense
Voltage Sense
Rail Enable
PWM Margin
Current Sense
Voltage Sense
(2)
(2)
+12V
+12V
Input Filter
Input Filter
U54 (1.0V Nom)
LMZ31503
Vin Vout
EN
V
fb
FB
U55 (1.5V Nom)
LMZ31506
Vin Vout
EN
V
fb
FB
Rs 5mΩ
C
f
Rs 5mΩ
C
f
C
f
C
f
VCCBRAM 1.0V
FPGA_1V5 1.5V
UG952_c1_41_030915
AC701 Evaluation Board www.xilinx.com 69
UG952 (v1.4) August 6, 2019
Figure 1-44: U8 Controller #1 UCD90120A Power System
Chapter 1: AC701 Evaluation Board Features
Send Feedback
Table 1-32 shows the AC701 TI power system configuration for controller U9.
Table 1-32: Controller U9 Power System Configuration
Sequencer
#2 U9 PMBus Addr
102, 5 rails
Schematic
Regulator Type Volt a g e Current
Page Page Contents Net Name
45 UCD90120A #2
46 Addr 102, Rail 1 VCCO_VADJ LMZ31506 (U56) 2.5V 6A
47 Addr 102, Rail 2 FPGA_1V8 LMZ31503 (U57) 1.8V 3A
48 Addr 102, Rail 3 FPGA_3V3 LMZ31506 (U58) 3.3V 6A
49 Addr 102, Rail 4 MGTAVCC LMZ31503 (U59) 1.0V 3A
50 Addr 102, Rail 5 MGTAVTT LMZ31503 (U60) 1.2V 3A
70 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
X-Ref Target - Figure 1-45
Send Feedback
U9
UCD90120A
Controller
(Controller 2)
GPIO (Out)
FPWM (Out)
ADC (In)
ADC (In)
GPIO (Out)
GPIO (Out)
FPWM (Out)
ADC (In)
ADC (In)
Figure 1-45 shows the power system for UCD90120A U9 controller #2 rails 1 through 5.
Notes:
1. Capacitors labled Cf are bulk filter capacitors.
2. Voltage Sense is connected at point of load.
Rail Enable
PWM Margin
Current Sense
Voltage Sense
(2)
FMC_ADJ_SEL[1:0]
FMC_ADJ_SEL[1:0]
Value
0 0 0 1 1 0 1 1
VCCO_ADJ
Output
2.5V
1.8V
3.3V
3.3V
Rail Enable
PWM Margin
Current Sense
Voltage Sense
(2)
+12V
+12V
Input Filter
Input Filter
U56 (2.5V Nom)
LMZ31506
Vin Vout
EN
V
fb
FB
I0B
U64
YB
I1B
S[1:0]
I2B
I3B
U57 (1.8V Nom)
LMZ31503
Vin Vout
EN
V
fb
FB
Feature Descriptions
Rs 5mΩ
C
f
(1)
C
f
Rs 5mΩ
C
f
C
f
VCCO_ADJ 2.5V
VCC1V8 1.8V
(Not measued separately)
FPGA_1V8 1.8V
GPIO (Out)
FPWM (Out)
ADC (In)
ADC (In)
GPIO (Out)
FPWM (Out)
ADC (In)
ADC (In)
GPIO (Out)
FPWM (Out)
ADC (In)
ADC (In)
Rail Enable
PWM Margin
Current Sense
Voltage Sense
Rail Enable
PWM Margin
Current Sense
Voltage Sense
Rail Enable
PWM Margin
Current Sense
Voltage Sense
U58 (3.3V Nom)
LMZ31506
+12V
Input
Vin Vout
Filter
EN
V
fb
FB
(2)
Rs 5mΩ
C
f
C
f
VCC3V3 3.3V
(Not measued separately)
FPGA_3V3 3.3V
U59 (1.0V Nom)
LMZ31503
+12V
Input
Vin Vout
Filter
EN
V
fb
FB
(2)
Rs 5mΩ
C
f
C
f
MGTAVCC 1.0V
U60 (1.2V Nom)
LMZ31503
+12V
Input
Vin Vout
Filter
EN
V
fb
FB
(2)
Rs 5mΩ
C
f
C
f
MGTAVTT 1.2V
UG952_c1_138_030615
AC701 Evaluation Board www.xilinx.com 71
UG952 (v1.4) August 6, 2019
Figure 1-45: U9 Controller #2 UCD90120A Power System
Chapter 1: AC701 Evaluation Board Features
Send Feedback
The LMZ31503 and LMZ31700 family adjustable voltage regulators have their output voltage set by an external resistor. The regulator topology on the AC701 board permits the UCD90120A to monitor rail voltage and current. Voltage margining at +5% and -5% is also implemented.
Each voltage regulator external V
setting resistor is calculated and implemented as if the
OUT
regulator is standalone. The UCD90120A has two ADC inputs allocated per voltage rail, one input for the remote voltage sense connection, the other for the current sense resistor op amp output voltage connection. The UCD90120A ADC full scale input is 2.5V. The remote voltage feedback is scaled to approximately 2V if it exceeds 2V—that is, the VCCO_VADJ rail for the 2.5V and 3.3V modes, and the FPGA_3V3 rail also at 3.3V are resistor attenuated to scale the remotely sensed voltage at 0.606 to give approximately 2V at the ADC input pin for a 3.3V remote sense value. Rails below 2V are not scaled.
Each rail current sense op amp has its gain set to provide approximately 2V maximum at the TI UCD90120A ADC input pin when the rail current is at its expected maximum current level, as shown in
Figure 1-44 (U8 controller #1) and Figure 1-45 (U9 controller #2).
The UCD90120A has an assignable group of GPIO pins with PWM capability. Each controller channel has a PWM GPIO pin connected to the associated voltage regulator V V
setting resistor is also wired to this pin. The PWM GPIO pin is configured in 3-state mode.
OUT
This pin is not driven unless a Margin command is executed. The Margin command is available within the TI Fusion Digital Power Designer software.
During the margin high or low operation, the PWM GPIO pin drives a voltage into the voltage regulator V
pin, which causes a slight voltage change resulting in the regulator V
ADJ
the margin +5% or -5% voltage commanded.

XADC Power System Measurement

The AC701 board XADC interface includes power system voltage and current measuring capability. The V measurement capability. Other rails are measured through two external Analog Devices ADG707BRU multiplexers U14 and U13. Each rail has a TI INA333 op amp strapped across its series current sense resistor Kelvin terminals. This op amp has its gain adjusted to give approximately 1V at the expected full scale current value for the rail.
CCINT
, V
CCAUX
and V
CCBRAM
rail voltages are measured through the XADC internal voltage
pin. The external
ADJ
moving to
OUT
72 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
UG952_c1_139_011813
1. ..._XADC_P/N =Remote voltage sense.
2. ..._XADC_CS_P/N = Current Sense from op amp.
XC7A200T
FPGA
(Bank 15)
U1
ADIP K16
AD1N K17
AD9P M15
AD9N L15
Notes:
49.9
49.9
10 pF
49.9
49.9
10 pF
XC7A200T
FPGA
(Bank 16)
U1
A0 B25
A1 A25
A2 A23
VCCINT_XADC_CS_P/N
VCCAUX_XADC_CS_P/N
VCCBRAM_XADC_CS_P/N
FPGA_1V5_XADC_P/N
FPGA_1V5_XADC_CS_P/N
VCCO_VADJ_XADC_P/N
VCCO_VADJ_XADC_CS_P/N
FPGA_1V8_XADC_P/N
FPGA_1V8_XADC_CS_P/N
FPGA_3V3_XADC_P/N
FPGA_3V3_XADC_CS_P/N
MGTAVCC_XADC_P/N
MGTAVCC_XADC_CS_P/N
MGTAVTT_XADC_P/N
MGTAVTT_XADC_CS_P/N
NC
ADG707BRU
U14
S1A/B
S2A/B
S3A/B
S4A/B
S5A/B
S6A/B
S7A/B
S8A/B
DA
DB
A[2:0]
ADG707BRU
U13
S1A/B
S2A/B
S3A/B
S4A/B
S5A/B
S6A/B
S7A/B
S8A/B
DA
DB
A[2:0]
GND
1.00 K
1.00 K
FPGA_1V5_SENSE_P
FPGA_1V5_XADC_P
FPGA_1V5_XADC_N
(1.5V Scaled to 0.75V)
GND
3.01 K
1.00 K
VCCO_VADJ_SENSE_P
VCCO_VADJ_XADC_P
VCCO_VADJ_XADC_N
(2.5V Scaled to 0.625V)
GND
3.01 K
1.00 K
FPGA_1V8_SENSE_P
FPGA_1V8_XADC_P
FPGA_1V8_XADC_N
(1.8V Scaled to 0.45V)
GND
1.00 K
1.00 K
MGTAVCC_SENSE_P
MGTAVCC_XADC_P
MGTAVCC_XADC_N
(1.0V Scaled to 0.5V)
GND
1.00 K
1.00 K
MGTAVTT_SENSE_P
MGTAVTT_XADC_P
MGTAVTT_XADC_N
(1.2V Scaled to 0.6V)
GND
3.01 K
1.00 K
FPGA_3V3_SENSE_P
FPGA_3V3_XADC_P
FPGA_3V3_XADC_N
(3.3V Scaled to 0.825V)
Send Feedback
X-Ref Target - Figure 1-46
Figure 1-46 shows the XADC external multiplexer block diagram.
Feature Descriptions
AC701 Evaluation Board www.xilinx.com 73
UG952 (v1.4) August 6, 2019
Figure 1-46: XADC External Multiplexer Block Diagram
Chapter 1: AC701 Evaluation Board Features
Send Feedback
Table 1-33 and Tab le 1-34 list the AC701 board XADC power system voltage and current
measurement details for the external MUXes U14 and U13.
Table 1-33: XADC Measurements through Mux U14
I
Op Amp
Measurement
Typ e
V VCCINT NA NA NA NA XADC INTERNAL NA NA NA
I VCCINT CS 0A-4A U16 50 0V-0.996V
V VCCAUX NA NA NA NA XADC INTERNAL NA NA NA
I VCCAUX CS 0A-6A U17 30 0V-0.913V
V VCCBRAM NA NA NA NA XADC INTERNAL NA NA NA
I VCCBRAM CS 0A-1.8A U20 100 0V-0.909V
V FPGA_1V5 NA
I FPGA_1V5 CS 0A-6A U18 20 0V-0.604V
V VCCO_VADJ NA
I VCCO_VADJ CS 0A-3.2A U22 50 0V-0.796V
V FPGA_1V8 NA
Rail
Name
Current
Range
Reference
Designator
FPGA_1V5 remote sense divided to deliver
0.75V on FPGA_1V5_XADC_P
VCCO_VADJ 2.5V remote sense divided to deliver 0.625V on FPGA_1V5_XADC_P
FPGA_1V8 remote sense divided to deliver
0.45V on FPGA_1V8_XADC_P
sense
Gain Vo Range
Schematic
Net Name
VCCINT_XADC_CS_P 19 S1A 000
VCCINT_XADC_CS_N 11 S1B
VCCAUX_XADC_CS_P 20 S2A 001
VCCAUX_XADC_CS_N 10 S2B
VCCBRAM_XADC_CS_P 21 S3A 010
VCCBRAM_XADC_CS_N 9 S3B
FPGA_1V5_XADC_P 22 S4A 011
FPGA_1V5_SENSE_N 8 S4B
FPGA_1V5_XADC_CS_P 23 S5A 100
FPGA_1V5_XADC_CS_N 7 S5B
VCCO_VADJ_XADC_P 24 S6A 101
VCCO_VADJ_SENSE_N 6 S6B
VCCO_VADJ_XADC_CS_P 25 S7A 110
VCC0VADJ_XADC_CS_N 5 S7B
FPGA_1V8_XADC_P 26 S8A 111
FPGA_1V8_SENSE_N 4 S8B
8-to-1 Multiplexer U14
Pin
Number
Name
Pin
MUX
A[2:0]
Table 1-34: XADC Measurements through Mux U13
Measurement
74 www.xilinx.com AC701 Evaluation Board
I
Op Amp
Typ e
I FPGA_1V8 CS 0A-3A U21 50 0V-0.747V
V
I FPGA_3V3 CS 0A-3.2A U15 50 0V-0.796V
V
I MGTAVCC CS 0A-3A U25 50 0V-0.747V
V
Rail
Name
FPGA_3V3
SENSE
MGTAVCC
SENSE
MGTAVTT
SENSE
Current
Range
NA
NA
NA
Reference
Designator
FPGA_3V3 remote sense divided to deliver
0.825V on FPGA_3V3_XADC_P
MGTAVCC remote sense divided to deliver
0.5V on MGTAVCC_XADC_P
MGTAVTT remote sense divided to deliver
0.6V on MGTAVTT_XADC_P
sense
Gain Vo Range
Schematic
Net Name
FPGA_1V8_XADC_CS_P 19 S1A 000
FPGA_1V8_XADC_CS_N 11 S1B
FPGA_3V3_XADC_P 20 S2A 001
FPGA_3V3_SENSE_N 10 S2B
FPGA_3V3_XADC_CS_P 21 S3A 010
FPGA_3V3_XADC_CS_N 9 S3B
MGTAVCC_XADC_P 22 S4A 011
MGTAVCC_SENSE_N 8 S4B
MGTAVCC_XADC_CS_P 23 S5A 100
MGTAVCC_XADC_CS_N 7 S5B
MGTAVTT_XADC_P 24 S6A 101
MGTAVTT_SENSE_N 6 S6B
8-to-1 Multiplexer U14
Pin
Number
Pin
Name
MUX
A[2:0]
UG952 (v1.4) August 6, 2019
Table 1-34: XADC Measurements through Mux U13 (Cont’d)
Send Feedback
Op Amp
I
Measurement
Typ e
I MGTAVTT CS 0A-1.5A U23 100 0V-0.756V
Rail
Name
Current
Range
Not used, not connected
Designator
sense
Gain V
Range
o
Feature Descriptions
Schematic
Net Name
MGTAVTT_XADC_CS_P 25 S7A 110
MGTAVTT_XADC_CS_N 5 S7B
Not connected 26 S8A 111
Not connected 4 S8B
8-to-1 Multiplexer U14
Pin
Number
Pin
Name
MUX
A[2:0]Reference
AC701 Evaluation Board www.xilinx.com 75
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
Send Feedback

XADC Header

[Figure 1-2, callout 31]
7 series FPGAs provide an Analog Front End (XADC) block. The XADC block includes a dual
X-Ref Target - Figure 1-47
Header
J49
To
Dual Use IO
(Analog/Digital)
100Ω
1 nF
100Ω
100Ω
1 nF
100Ω
12-bit, 1 XADC Dual 12-Bit 1MSPS Analog-to-Digital Converter User Guide (UG480) on the capabilities of the analog front end. Figure 1-47 shows the AC701 board XADC support features.
U1
VAUX0P
VAUX0N
VAUX8P
VAUX8N
MSPS Analog-to-Digital Convertor (ADC) and on-chip sensors. See 7 Series FPGAs
XADC_VCC
FPGA
VCCADC
GNDADC
V
REFP
V
REFN
V
V
DXP
DXN
XADC_VREFP
P
N
XADC_VCC
100 nF Close to Package Pins
XADC_AGND
XADC_AGND
J42
100 nF
Close to Package Pins
100Ω
1 nF
100Ω
Ferrite Bead
J43
XADC_VCC Header J49
1.8V 150 mV max
10 μF
XADC_AGND
XADC_VREF to XADC Header J19.11
V
REF (1.25V)
Internal Reference
XADC_AGND
XADC_AGND
To
Header
J19
VCCAUX
U10
ADP123
Out
Gnd
U35
REF3012
Out In
Gnd
10 μF
Star Grid
Connection
In
Ferrite Bead
XADC_VCC5V0 to XADC Header J19.13
10 μF
J54
XADC_VCC
J9
[Ref 10] for details
VCC5V0
Ferrite Bead
J53
100 nF
Filter 5V Supply
Locate Components on Board
J10
GND
UG952_c1_39_101612
1 nF
76 www.xilinx.com AC701 Evaluation Board
Figure 1-47: Header XADC_VREF Voltage Source Options
The AC701 board supports both the internal FPGA sensor measurements and the external measurement capabilities of the XADC. Internal measurements of the die temperature, V V
CCAUX
, and V
CCBRAM
are available. The AC701 board V
CCINT
and V
CCBRAM
are provided by a
CCINT
,
common 1.0V supply.
Jumper J42 can be used to select either an external differential voltage reference (XADC_VREF) or on-chip voltage reference (jumper J42 2–3) for the analog-to-digital converter.
UG952 (v1.4) August 6, 2019
X-Ref Target - Figure 1-48
Send Feedback
VCCO_VADJ
Feature Descriptions
For external measurements, an XADC header (J19) is provided. This header can be used to provide analog inputs to the FPGA dedicated VP/VN channel, and to the VAUXP[0]/VAUXN[0], VAUXP[8]/VAUXN[8] auxiliary analog input channels. Simultaneous sampling of Channel 0 and Channel 8 is supported.
A user-provided analog signal multiplexer card can be used to sample additional external analog inputs using the four GPIO pins available on the XADC header as multiplexer address lines.
Figure 1-48 shows the XADC header J19 connections.
XADC_VCC5V0
XADC_VN XADC_VAUX0P
XADC_VAUX8N XADC_DXP XADC_VREF
XADC_GPIO_1 XADC_GPIO_3
J19
2
1
4
3
6
5
8
7
10
9 11 13 15 17 19
12 14 16 18 20
XADC_VCC_HEADER
GND
XADC_AGNDXADC_AGND
XADC_VP
XADC_VAUX0N XADC_VAUX8P
XADC_DXN
XADC_GPIO_0 XADC_GPIO_2
UG952_c1_40_101612
Figure 1-48: XADC header (J19)
Table 1-35 describes the XADC header J19 pin functions.
Table 1-35: XADC Header J19 Pinout
Net Name
J19 Pin
Number
XADC_VN, _VP 1, 2 Dedicated analog input channel for the XADC.
XADC_VAUX0P, N 3, 6
XADC_VAUX8N, P 7, 8
Auxiliary analog input channel 0. Also supports use as I/O inputs when anti alias capacitor is not present.
Auxiliary analog input channel 8. Also supports use as I/O inputs when anti alias capacitor is not present.
DXP, DXN 9, 12 Access to thermal diode.
XADC_AGND 4, 5, 10 Analog ground reference.
XADC_VREF 11 1.25V reference from the board.
XADC_VCC5V0 13 Filtered 5V supply from board.
XADC_VCC_HEADER 14 Analog 1.8V supply for XADC.
VCCO_VADJ 15 V
supply for bank which is the source of DIO pins.
CCO
GND 16 Digital ground (board) reference
Digital I/O. These pins come from FPGA U1 banks 15 and 16
= VCCO_VADJ). The XDC constraints file I/O standard is default
(V
XADC_GPIO_3, 2, 1, 0 19, 20, 17, 18
CCO
LVCMOS25, assuming VCCO_VADJ = 2.5V. If VCCO_VADJ is changed from 2.5V to 1.8V or 3.3V, the ADC file I/O standard for these nets needs to be changed to match.
Description
AC701 Evaluation Board www.xilinx.com 77
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
UG952_c1_49_030615
SDA03H1SBD
SW1
FPGA_3V3
FPGA_M0
FPGA_M2
FPGA_M1
R339
1.21K
0.1W 1%
R338
1.21K
0.1 W 1%
R337
1.21K
0.1W 1%
1
2
3
6
5
4
GND
ON
NC
Send Feedback

Configuration Options

The FPGA on the AC701 board can be configured using these methods:
Master SPI flash memory (uses the Quad SPI flash memory U7).
JTAG (uses the U26 Digilent USB-to-JTAG bridge or J4 download cable connector).
See USB JTAG Module for more information.
See 7 Series FPGAs XADC Dual 12-Bit 1MSPS Analog-to-Digital Converter User Guide (UG480)
[Ref 10] for further details on configuration modes.
The method used to configure the FPGA is controlled by the mode pins (M2, M1, M0) setting selected through DIP switch SW1.
Table 1-36: Mode Switch SW1 Settings
Configuration
Mode
Master SPI flash memory 001 x1, x2, x4 Output
JTAG 101 x1 Not applicable
Figure 1-49 shows mode switch SW1.
X-Ref Target - Figure 1-49
Table 1-36 lists the supported mode switch settings.
Mode Pins (M[2:0])
Bus
Width
CCLK
Direction
78 www.xilinx.com AC701 Evaluation Board
Figure 1-49: Mode Switch
UG952 (v1.4) August 6, 2019
X-Ref Target - Figure 1-50
UG952_c1_42_072513
DQ[1:0]
DQ2_WP
DQ3_HOLD_B
C
S-B
U7
N25Q256A13ESF40G
QUAD SPI
TCK
TMS
TDI
TDO
Bank 0
CCLK
VCCBATT
M[2:0]
DONE
PROGRAM_B
PROG_B
U1
FPGA
SW9
Bank 14
D[3:0]
FCS_B
EMCCLK
SIT8103
GND
VCC1V8
VCC3V3
R396
4.7K
GND
R396 261Ω
D6 BAS40-04
B1
DS10 GREEN
GND
U40
Oscillator
90 MHz
SW1
Mode
Switch
Send Feedback
Configuration Options
Figure 1-50 shows the Quad SPI flash memory U7 configuration circuit.
Figure 1-50: AC701 Board Quad SPI Flash Memory Configuration Circuit
AC701 Evaluation Board www.xilinx.com 79
UG952 (v1.4) August 6, 2019
Chapter 1: AC701 Evaluation Board Features
Send Feedback
80 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
Appendix A
UG952_aA_01_100712
SW2
1
OFF Position = 0
ON Position = 1
234
Send Feedback
Default Switch and Jumper Settings

User GPIO DIP Switch SW2

See Figure 1-2 callout 23 for location of SW2. Default settings are shown in Figure A-1 and details are listed in Table A- 1.
X-Ref Target - Figure A-1
Figure A-1: SW2 Default Settings
Table A-1: SW2 Default Switch Settings
Position Function Default
1 GPIO_DIP_SW0 OFF
2 GPIO_DIP_SW1 OFF
3 GPIO_DIP_SW2 OFF
4 GPIO_DIP_SW3 OFF
AC701 Evaluation Board www.xilinx.com 81
UG952 (v1.4) August 6, 2019
Appendix A: Default Switch and Jumper Settings
UG952_aA_02_011813
SW1 OFF Position = 0
ON Position = 1
1 23
M2
M1
M0
ON
Send Feedback

Configuration DIP Switch SW1

See Figure 1-2 callout 28 for location of SW1. Default settings are shown in Figure A-2 and details are listed in Table A- 2.
X-Ref Target - Figure A-2
Figure A-2: SW1 Default Settings
The default mode setting M[2:0] = 001 selects Master SPI flash memory configuration at board power-on.
Table A-2: SW1 Default Switch Settings
Position Function Default
1 FPGA_M2 M2 OFF
2 FPGA_M1 M1 OFF
3 FPGA_M0 M0 ON
82 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019

Default Jumper Settings

Send Feedback
The AC701 board default jumper configurations are listed in Table A-3. The AC701 board jumper header locations are shown in Figure A-3.
Table A-3: AC701 Default Jumper Settings
Default Jumper Settings
Callout
1 J3 None SPI SELECT = onboard SPI flash memory device 4
2 J5 1-2 EPHY U12.2 CONFIG2 = LOW 15
3 J6 1-2 P3 SFP+ TX enabled 20
4 J8 1-2 VCCO_VADJ (FMC) voltage = ON 45
5 J9 1-2 U35 REF3012 XADC_AGND L3 bypassed 29
6 J10 1-2 U35 REF3012 XADC_AGND = GND 29
7 J11 1-2 XADC V
8 J52 None J52.1 INIT_B, J51.2 DONE test header, not a jumper 7
9 J53 1-2 XADC_VCC5V0 = 5V 29
10 J63 None Voltage regulators enabled 38
11 J35 1-2 EPHY U12.3 CONFIG3 = HI 15
12 J36 None EPHY U12.2 CONFIG2 option header 15
13 J37 None EPHY U12.3 CONFIG3 option header 15
Header Ref
Des
Jumper
Position
Description
2-pin
4A range 34
CCINT
3-pin
0381502 Page
Schematic
14 J38 1-2 SFP RX BW = FULL 20
15 J39 1-2 SFP TX BW = FULL 20
16 J42 1-2 XADC_VREFP = REF3012 XADC_VREF 29
17 J43 2-3 XADC_VCC = ADP123 1.85V 29
18 J54 2-3 REF3012 VIN = XADC_VCC 29
2x2
19 J12 3-4 PCIE lane width = 4 28
AC701 Evaluation Board www.xilinx.com 83
UG952 (v1.4) August 6, 2019
Appendix A: Default Switch and Jumper Settings
8*BDB
Send Feedback
X-Ref Target - Figure A-3
Figure A-3: AC701 Board Components (Rev. 2.0)
84 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
Appendix B
UG952_aB_01_101612
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
VREF_B_M2C
GND
GND CLK2_M2C_P CLK2_M2C_N
GND
HA02_P HA02_N
GND
HA06_P HA06_N
GND
HA10_P HA10_N
GND
HA17_P_CC HA17_N_CC
GND
HA21_P HA21_N
GND
HA23_P HA23_N
GND
HB00_P_CC HB00_N_CC
GND
HB06_P_CC HB06_N_CC
GND
HB10_P HB10_N
GND
HB14_P HB14_N
GND
HB17_P_CC HB17_N_CC
GND
VIO_B_M2C
GND CLK3_M2C_P CLK3_M2C_N
GND
GND
HA03_P
HA03_N
GND
HA07_P
HA07_N
GND
HA11_P
HA11_N
GND
HA14_P
HA14_N
GND
HA18_P
HA18_N
GND
HA22_P
HA22_N
GND
HB01_P
HB01_N
GND
HB07_P
HB07_N
GND
HB11_P
HB11_N
GND
HB15_P
HB15_N
GND
HB18_P
HB18_N
GND
VIO_B_M2C
GND
VREF_A_M2C
PRSNT_M2C_L
GND CLK0_M2C_P CLK0_M2C_N
GND
LA02_P
LA02_N
GND
LA04_P
LA04_N
GND
LA07_P
LA07_N
GND
LA11_P
LA11_N
GND
LA15_P
LA15_N
GND
LA19_P
LA19_N
GND
LA21_P
LA21_N
GND
LA24_P
LA24_N
GND
LA28_P
LA28_N
GND
LA30_P
LA30_N
GND
LA32_P
LA32_N
GND
VADJ
GND DP1_M2C_P DP1_M2C_N
GND
GND DP2_M2C_P DP2_M2C_N
GND
GND DP3_M2C_P DP3_M2C_N
GND
GND DP4_M2C_P DP4_M2C_N
GND
GND DP5_M2C_P DP5_M2C_N
GND
GND DP1_C2M_P DP1_C2M_N
GND
GND DP2_C2M_P DP2_C2M_N
GND
GND DP3_C2M_P DP3_C2M_N
GND
GND DP4_C2M_P DP4_C2M_N
GND
GND DP5_C2M_P DP5_C2M_N
GND
RES1
GND
GND DP9_M2C_P DP9_M2C_N
GND
GND DP8_M2C_P DP8_M2C_N
GND
GND DP7_M2C_P DP7_M2C_N
GND
GND DP6_M2C_P DP6_M2C_N
GND
GND
GBTCLK1_M2C_P GBTCLK1_M2C_N
GND
GND DP9_C2M_P DP9_C2M_N
GND
GND DP8_C2M_P DP8_C2M_N
GND
GND DP7_C2M_P DP7_C2M_N
GND
GND DP6_C2M_P DP6_C2M_N
GND
GND
RES0
GND
DP0_C2M_P
DP0_C2M_N
GND GND
DP0_M2C_P
DP0_M2C_N
GND GND
LA06_P
LA06_N
GND GND
LA10_P
LA10_N
GND GND
LA14_P
LA14_N
GND
GND LA18_P_CC LA18_N_CC
GND
GND
LA27_P
LA27_N
GND
GND
SCL SDA GND GND GA0
12P0V
GND
12P0V
GND
3P3V
GND
PG_C2M
GND
GND GBTCLK0_M2C_P GBTCLK0_M2C_N
GND
GND
LA01_P_CC LA01_N_CC
GND
LA05_P LA05_N
GND
LA09_P LA09_N
GND
LA13_P LA13_N
GND
LA17_P_CC LA17_N_CC
GND
LA23_P LA23_N
GND
LA26_P LA26_N
GND
TCK
TDI
TDO
3P3VAUX
TMS
TRST_L
GA1
3P3V
GND
3P3V
GND
3P3V
GND
HA01_P_CC
HA01_N_CC
GND
GND HA05_P HA05_N
GND HA09_P HA09_N
GND HA13_P HA13_N
GND HA16_P HA16_N
GND HA20_P HA20_N
GND HB03_P HB03_N
GND HB05_P HB05_N
GND HB09_P HB09_N
GND HB13_P HB13_N
GND HB19_P HB19_N
GND HB21_P HB21_N
GND
VADJ
GND
PG_M2C
GND GND
HA00_P_CC
HA00_N_CC
GND HA04_P HA04_N
GND HA08_P HA08_N
GND HA12_P HA12_N
GND HA15_P HA15_N
GND HA19_P HA19_N
GND HB02_P HB02_N
GND HB04_P HB04_N
GND HB08_P HB08_N
GND HB12_P HB12_N
GND HB16_P HB16_N
GND HB20_P HB20_N
GND
VADJ
GND CLK1_M2C_P CLK1_M2C_N
GND
GND
LA00_P_CC LA00_N_CC
GND
LA03_P LA03_N
GND
LA08_P LA08_N
GND
LA12_P LA12_N
GND
LA16_P LA16_N
GND
LA20_P LA20_N
GND
LA22_P LA22_N
GND
LA25_P LA25_N
GND
LA29_P LA29_N
GND
LA31_P LA31_N
GND
LA33_P LA33_N
GND
VADJ
GND
KJHGFEDCBA
Send Feedback
VITA 57.1 FMC Connector Pinouts
Figure B-1 shows the pinout of the FPGA mezzanine card (FMC) high pin count (HPC) connector
defined by the VITA 57.1 FMC specification. For a description of how the AC701 board implements the FMC specification, see
X-Ref Target - Figure B-1
FPGA Mezzanine Card Interface and HPC Connector J30.
AC701 Evaluation Board www.xilinx.com 85
UG952 (v1.4) August 6, 2019
Figure B-1: FMC HPC Connector Pinout
Appendix B: VITA 57.1 FMC Connector Pinouts
Send Feedback
86 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
Xilinx Design Constraints
Send Feedback
The AC701 board Xilinx Design Constraints (XDC) file template provides for designs targeting the AC701 board. Net names in the constraints correlate with net names on the AC701 board schematic. You must identify the appropriate pins and replace the net names in this list with net names in the user RTL. For more information, see Vivado Design Suite User Guide, Using Constraints (UG903)
[Ref 12].
Appendix C
The FMC HPC connector J30 is connected to a 2.5V V implements customer-specific circuitry, the FMC bank I/O standards must be uniquely defined by each customer.
Refer to the Board Files area under the Documentation tab on the Virtex-7 FPGA AC701 Evaluation
Kit product page for the latest constraints file.
bank. Because each user FMC card
CCO
AC701 Evaluation Board www.xilinx.com 87
UG952 (v1.4) August 6, 2019
Appendix C: Xilinx Design Constraints
Send Feedback
88 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
Board Setup
UG952_c1_34_101612
To ATX 4-Pin Peripheral
Power Connector
To J49 on AC701 Board
Send Feedback

Installing the AC701 Board in a PC Chassis

Installation of the AC701 board inside a computer chassis is required when developing or testing PCI Express® functionality.
When the AC701 board is used inside a computer chassis (that is, plugged in to the PCIe® slot), power is provided from the ATX power supply 4-pin peripheral connector through the ATX adapter cable shown in
2600304.
X-Ref Target - Figure D-1
Figure D-1 to J49 on the AC701 board. The Xilinx part number for this cable is
Appendix D
Figure D-1: ATX Power Supply Adapter Cable
To install the AC701 board in a PC chassis:
1. On the AC701 board, remove all six rubber feet, the standoffs, and the PCIe bracket. The standoffs and feet are affixed to the board by screws on the top side of the board. Remove all six screws. Reinstall the PCIe bracket using two of the screws.
2. Power down the host computer and remove the power cord from the PC.
3. Open the PC chassis following the instructions provided with the PC.
4. Select a vacant PCIe expansion slot and remove the expansion cover (at the back of the chassis) by removing the screws on the top and bottom of the cover.
5. Plug the AC701 board into the PCIe connector at this slot.
6. Install the top mounting bracket screw into the PC expansion cover retainer bracket to secure the AC701 board in its slot.
Note: The AC701 board is taller than standard PCIe cards. Ensure that the height of the card
is free of obstructions.
7. Connect the ATX power supply to the AC701 board using the ATX power supply adapter cable as shown in
a. Plug the 6-pin 2 x 3 Molex connector on the adapter cable into J49 on the AC701 board.
b. Plug the 4-pin 1 x 4 peripheral power connector from the ATX power supply into the 4-pin
adapter cable connector.
Figure D-1:
AC701 Evaluation Board www.xilinx.com 89
UG952 (v1.4) August 6, 2019
Appendix D: Board Setup
Send Feedback
8. Slide the AC701 board power switch SW15 to the ON position. The PC can now be powered on.
90 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
Board Specifications
Send Feedback

Dimensions

Height 5.5 in. (14.0 cm)
Length 10.5 in. (26.7 cm)
Note: The AC701 board height exceeds the standard 4.376 in. (11.15 cm) height of a PCI Express
card.

Environmental

Temperature

Operating: 0°C to +45°C
Appendix E
Storage: –25°C to +60°C

Humidity

10% to 90% non-condensing

Operating Voltage

+12 V
DC
AC701 Evaluation Board www.xilinx.com 91
UG952 (v1.4) August 6, 2019
Appendix E: Board Specifications
Send Feedback
92 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
Appendix F
Send Feedback
Regulatory and Compliance Information

Overview

This product is designed and tested to conform to the European Union directives and standards described in this section.
Refer to the Artix-7 FPGA AC701 Evaluation Kit Master Answer Record concerning the CE requirements for the PC test environment.
The Artix-7 FPGA AC701 Declaration of Conformity is online.

CE Directives

2006/95/EC, Low Voltage Directive (LVD)
2004/108/EC, Electromagnetic Compatibility (EMC) Directive

CE Standards

Electromagnetic Compatibility

Safety

EN standards are maintained by the European Committee for Electrotechnical Standardization (CENELEC). IEC standards are maintained by the International Electrotechnical Commission (IEC).
EN 55022:2010, Information Technology Equipment Radio Disturbance Characteristics – Limits
and Methods of Measurement
EN 55024:2010, Information Technology Equipment Immunity Characteristics – Limits and Methods of Measurement
Note: This is a Class A product and can cause radio interference. In a domestic environment, the
user might be required to take adequate corrective measures.
IEC 60950-1:2005, Information technology equipment – Safety, Part 1: General requirements
EN 60950-1:2006, Information technology equipment – Safety, Part 1: General requirements
AC701 Evaluation Board www.xilinx.com 93
UG952 (v1.4) August 6, 2019
Appendix F: Regulatory and Compliance Information
Send Feedback

Markings

In August of 2005, the European Union (EU) implemented the EU WEEE Directive 2002/96/EC and later the WEEE Recast Directive 2012/19/EU requiring Producers of electronic and electrical equipment (EEE) to manage and finance the collection, reuse, recycling and to appropriately treat WEEE that the Producer places on the EU market after August 13, 2005. The goal of this directive is to minimize the volume of electrical and electronic waste disposal and to encourage re-use and recycling at the end of life.
Xilinx has met its national obligations to the EU WEEE Directive by registering in those countries to which Xilinx is an importer. Xilinx has also elected to join WEEE Compliance Schemes in some countries to help manage customer returns at end-of-life.
If you have purchased Xilinx-branded electrical or electronic products in the EU and are intending to discard these products at the end of their useful life, please do not dispose of them with your other household or municipal waste. Xilinx has labeled its branded electronic products with the WEEE Symbol to alert our customers that products bearing this label should not be disposed of in a landfill or with municipal or household waste in the EU.
This product complies with Directive 2002/95/EC on the restriction of hazardous substances (RoHS) in electrical and electronic equipment.
This product complies with CE Directives 2006/95/EC, Low Voltage Directive (LVD) and 2004/108/EC, Electromagnetic Compatibility (EMC) Directive.
94 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
Additional Resources
Send Feedback

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the Xilinx
Support website.
To create a Xilinx user account and sign up to receive automatic email notification whenever this document is updated, go to

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting tips.
myAlerts.
Appendix G

References

The most up to date information related to the AC701 board and its documentation is available on the following websites.
Artix-7 FPGA AC701 Evaluation Kit
Artix-7 AC701 Evaluation Kit - Master Answer Record 51900
These Xilinx documents provide supplemental material useful with this guide:
1. LogiCORE IP Tri-Mode Ethernet MAC User Guide (UG138)
2. 7 Series FPGAs Overview (DS180)
3. Artix-7 FPGAs Data Sheet: DC and AC Switching Characteristics (DS181)
4. Zynq-7000 SoC and 7 Series Devices Memory Interface Solutions User Guide (UG586)
5. 7 Series FPGAs Memory Resources User Guide (UG473)
6. 7 Series FPGAs Configuration User Guide (UG470)
7. 7 Series FPGAs Packaging and Pinout Product Specification (UG475)
8. 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)
9. 7 Series FPGAs Integrated Block for PCI Express LogiCORE IP Product Guide (PG054)
10. 7 Series FPGAs and Zynq-7000 SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital Converter User Guide (
UG480)
11. 7 Series FPGAs PCB Design Guide (UG483)
12. Vivado Design Suite User Guide: Using Constraints (UG903)
13. AC701 Si570 Programming Tutorial (XTP230)
14. AC701 Si570 Fixed Frequencies Tutorial (XTP229)
AC701 Evaluation Board www.xilinx.com 95
UG952 (v1.4) August 6, 2019
Appendix G: Additional Resources
Send Feedback
Documents associated with other devices used by the AC701 board are available at these vendor websites:
15. Micron Technology: www.micron.com (N25Q256A13ESF40G, MT8JTF12864HZ-1G6G1)
16. Analog Devices: www.analog.com/en/index (ADV7511KSTZ-P)
17. Integrated Device Technology: www.idt.com (ICS844021I)
18. Marvell Semiconductor: www.marvell.com/transceivers/alaska-gbe/ (88E1116R)
19. Samtec: www.samtec.com (SEAF series connectors)
20. Si Time: www.sitime.com (SiT9102)
21. Silicon Labs: www.silabs.com (Si570, Si5324C)
22. Texas Instruments: www.ti.com (UCD90120A, TPS84621RUQ, TPS84320RUQ, LMZ31710, LMZ31704, TL1963ADC, ADP123, TPS51200DR, TPS79433DCQ, TLV111733CDCY, PCA9548)
Documentation describing PMBus programming for the UCD90120A controller:
www.ti.com/fusiondocs.
23. Displaytech S162DBABC LCD can be found at:
www.displaytech-us.com/products/charactermodules.php.
Choose the S162D model full spec download arrow.
24. Sourcegate Technologies: www.sourcegate.net. To order the custom ATX cable, contact Sourcegate at, +65 6483 2878 for price and availability.
Note: The Xilinx ATX cable part number 2600304 is manufactured by Sourcegate Technologies
and is equivalent to the Sourcegate Technologies part number AZCBL-WH-11009. Sourcegate only manufactures the latest revision, which is currently A4. This is a custom cable and cannot be ordered from the Sourcegate website.
96 www.xilinx.com AC701 Evaluation Board
UG952 (v1.4) August 6, 2019
Loading...