VEGA SON71 User Manual

VEGASON 71 - D
TIB • Technical Information • Operating Instructions
Pulse-echo measuring system
1 2
1 2 3
5.000
4
VEGASON
m
Single channel flow measurement
Approvals for hazardous areas, certificate acc. to CENELEC
VEGA Grieshaber KG
Am Hohenstein 113 D-77761 Schiltach Phone 0 78 36 / 50 - 0 Fax 0 78 36 / 50 201
Contents
1 Introduction
1.1 Contents of the instruction manual .....................................................................................................................4
1.2 Safety information ...............................................................................................................................................4
1.3 Product description .............................................................................................................................................4
1.4 Approvals ............................................................................................................................................................4
2 Technical Information
2.1 Configuration of a measuring system .................................................................................................................5
2.2 Technical data, VEGASON 71 - D.......................................................................................................................6
2.3 Technical data, transducer ..................................................................................................................................7
2.3 Dimensional drawings ......................................................................................................................................... 8
2.4 Measuring range .................................................................................................................................................8
2.5 General installation instructions ..........................................................................................................................9
2.6 Installation fault .................................................................................................................................................10
2.7 Electrical connection ......................................................................................................................................... 11
Contents
3 Operating surface
3.1 Indicating and operating elements ....................................................................................................................12
3.2 Operation .......................................................................................................................................................... 13
4 Set-up
4.1 Flow chart for set-up ......................................................................................................................................... 14
4.2 Mode range, general parameter adjustment, mode 0 - 00 … 0 - 99 ................................................................. 15
5 Adjustment
5.1 Empty / full adjustment in metres without flow change ..................................................................................... 18
5.2 Demonstration and programming example .......................................................................................................18
6 Flow measurement
6.1 Linearization......................................................................................................................................................19
6.1.1 Meter flume / weir .................................................................................................................................. 19
6.1.2 Enquiry of linearization curves 4 … 6 ....................................................................................................20
6.2 Linearity protocol...............................................................................................................................................22
2
VEGASON 71 - D
Contents
7 Output results
7.1 Display ..............................................................................................................................................................23
7.1.1 Allocation of a multiplication factor.........................................................................................................23
7.1.2 Measuring unit .......................................................................................................................................23
7.1.3 Decimal point .........................................................................................................................................23
7.1.4 Integration time ......................................................................................................................................24
7.2 Adjustment max. flow ........................................................................................................................................24
7.3 Impulse value for flow relay ...............................................................................................................................24
7.4 Impulse value for sampling relay.......................................................................................................................24
7.5 Definition of the min. flow volume limit ..............................................................................................................25
7.6 Calculation examples of the max. flow ..............................................................................................................25
7.6.1 Khafagi-Venturi flume.............................................................................................................................26
7.6.2 Trapezoidal weir (Cipolletti) ....................................................................................................................27
7.6.3 Rectangular weir without throat .............................................................................................................28
7.6.4 Rectangular weir with throat ..................................................................................................................29
7.6.5 V-Notch .................................................................................................................................................. 30
7.6.6 Palmer-Bowlus-flume .............................................................................................................................31
7.7 Level module.....................................................................................................................................................32
7.7.1 Coordinations and their relations ...........................................................................................................32
7.7.2 Switching commands .............................................................................................................................32
7.8 Current module .................................................................................................................................................33
8 Supplementary programmings
8.1 Failure processing............................................................................................................................................. 33
8.2 Simulation .........................................................................................................................................................34
8.3 Basic adjustment, mode range general parameter adjustment.........................................................................34
8.4 Keyword ............................................................................................................................................................ 34
9 Optimization
9.1 Enquiry of the optimization................................................................................................................................35
9.2 Mode range optimization, mode 1 - 01 … 1 - 27...............................................................................................36
9.3 Definition of the operating range .......................................................................................................................37
9.4 Multiple echo reduction .....................................................................................................................................37
9.5 Adjustment of the max. gain .............................................................................................................................37
9.6 Fault signal........................................................................................................................................................ 38
9.8 Protocol of the optimization...............................................................................................................................38
9.7 Basic adjustment, mode range optimization .....................................................................................................38
10 Supplement
10.1 Error codes........................................................................................................................................................39
10.2 Error schedule...................................................................................................................................................39
VEGASON 71 - D
3
1 Introduction
1 Introduction
1.1 Contents of the instruction manual
The Technical Information / Operating Instructions is called TIB. It contains all necessary information for correct
- installation
- connection
- set-up
- linearization
- optimization of the pulse-echo-measuring system VEGASON 71 - D.
VEGA regularly revises the contents of TIBs as technical improvements are made to the instruments.
1.2 Safety information
The described module must only be installed and operated as described in this TIB. Please note that other action can cause damage for which VEGA does not accept responsiblity.
1.3 Product description
The pulse-echo measuring system VEGASON 71 - D is used for flow and level measurement.
A measuring system consists of
- a central electronics and
- a sensor. The sensor is provided with a temperature sensor for
compensation of the temperature influence to the sound running period. Measuring data and temperature information are transmitted along the same coaxial cable.
All adjustment procedures, optimizations etc. can be directly programmed via a keyboard on the central electronics.
1.4 Approvals
If a measuring system is mounted acc. to the following approval, the respective legal document has to be used and the regulations have to be strictly observed.
Approvals for hazardous areas, certificate acc. to CENELEC.
Consisting of:
- central electronics VEGASON 71 - D
- sensor SW 71 R Ex defined in the conformity certificate PTB-no. Ex-94.C.4066.
The running periods of periodically emitted sound impulse packets which are reflected by the flow product to be measured are evaluated.
The running period of sound is a measure of the distance between sensor and liquid surface.
The control electronics determines this distance and converts it into flow information.
The measuring results are indicated on the integral LC­display and acc. to the version, provided as relay and current outputs.
The conformity certificate is included with the product on delivery.
4
VEGASON 71 - D
2 Technical Information
2 Technical Information
2.1 Configuration of a measuring system
Input Central electronics Outputs
Measuring data from the sensor 2 LC-display (multi-functional indication)
5.000
1 2
1 2 3
4
VEGASON
Flow module
- 1 relay output for flow
- 1 relay output for sampling Level module
- 2 relay outputs Current module
- 1 output flow proportional module
- 1 output level proportional module
Sensor
Central electronics consisting of:
- plastic housing with cover
- operating elements (5 keys)
- LED-display
- two LC-displays (multi-functional displays)
- power supply unit
- data memory (EEPROM, no buffer battery required)
- outputs: flow module, level module, current module
- terminals for power supply, inputs and outputs
VEGASON 71 - D
Sensor:
- in standard version or
- in Ex-version, certificate acc. to CENELEC Accessories:
- swivelling holder for sensor mounting Options:
- totalising counter (flow)
- indicator VEGADIS 171 A
- overvoltage arresters
5
2.2 T echnical data, VEGASON 71 - D
Power supply
Operating voltage
- Standard U
- Option U Power consumption at U Fuse for version
and max-load 12 V A, 5 W
nenn
16 … 42 V AC or 16 … 60 V DC 2 A 90 … 250 V AC 500 mA
Measuring range
Min. distance 0.300 m Max. distance 4.000 m (5.000 m)
Measuring data
Min. span 10 cm Display in m (0.000 … 5.000 distance) Resolution in mm Scanning 3 mm Measuring frequency 50 kHz Measuring rate 0,4 sec. Angle of reflection (at –3 dB) 8° Linearity error after empty and full adjustment < 0,1 % of measuring range Temperature error of the electronics 0,1 % / 10 k of measuring range
= 24 V AC (16 … 42 V), 50/60 Hz
nenn
U
= 24 V DC (16 … 60 V)
nenn
= 230 V AC (90 … 250 V), 50/60 Hz
nenn
2 T echnical Information
Central electronics
Inputs 1 (1 channel, for 1 sensor) Outputs see section "output" Housing material Polycarbonate Electrical connection max. 1,5 mm
2
Cable entry 1 x Pg 7, 1 x Pg 13,5 (up to max. 5 x Pg 13,5) Protection IP 65 Ambient temperature -20°C … +60°C Storage and transport temperature -20°C … +80°C Weight approx. 1,9 kg
Output Indication
LC-display 2, 4-digit each
Flow module
1 flow relay output active, with status indication (LED)
- voltage impulse 24 V
- current impulse 20 mA
- pulse duration 200 ms 1 sampling relay output floating spdt, with status indication (LED)
- contact material AgCdO and Au plated
- min. turn-on voltage 10 mV switching current 10 µA
- max. turn-on voltage 250 V AC, 60 V DC switching current 2 A AC, 1 A DC
- max. breaking capacity 125 V A, 60 W
6
VEGASON 71 - D
2 Technical Information
Level module
2 relay outputs floating spdts each
and 2 status indications (LEDs)
- contact material AgCdO and Au plated
- min. turn-on voltage 10 mV switching current 10 µA
- max. turn-on voltage 250 V AC, 60 V DC switching current 2 A AC, 1 A DC
- max. breaking capacity 125 V A, 60 W
Current module
2 current outputs
- range 0/4 … 20 mA
- resolution 0,05 % of range
- load max. 500 Ohm
- load dependent error at 0 … 500 Ohm, < 0,2 % related to the range
or module as described above however with 2 floating outputs each
Fault signal
1 fail safe relay 1 floating spdt contact data as described under relay outputs 2 failure-LEDs
2.3 Technical data, transducer
Transducer SW 71
Material of the transducer housing PVDF Material of the fixing tube PVDF, thread G 1 A Connection cable to central electronics standard coaxial cable type RG 58 Cable length 5 m, as option 300 m Diameter of cable approx. 5 mm Temperature sensor integrated in the transducer Ambient temperature -20°C … +80°C Storage and transport pressure -20°C … +80°C Protection IP 68 Permissible ambient temperature 1 bar Weight approx. 0,8 kg
Transducer SW 71 R Ex
Ex-approval PTB-no. Ex-94.C.4066 Flame proofing Casting "m" Marking EEx m II T6 or T5 or T4 Material of the transducer housing PVDF Material of the fixing tube PVDF, thread G 1 A Connection cable to central electronics standard coaxial cable type RG 58 Cable length 5 m, as option up to 300 m Diameter of cable approx. 5 mm Temperature sensor integrated in the transducer Temperature class T6 = 60°C, T5 = 75°C, T4 = 80°C Storage and transport temperature -20°C … +80°C Protection IP 68 Permissible ambient pressure 1 bar Weight approx. 1,0 kg
VEGASON 71 - D
7
2.3 Dimensional drawings
(Dimensions in mm)
2 T echnical Information
Swivelling flange
28
138
Central electronics
Min. distance for adjacent instrument
Flange DN 150 PN 16
1 2
40
1 2 3
Pg 13,5 Pg 7
G 1 A
Sensor
*174
4
VEGASON
5
*229
* Mounting diemsnions
45
90
90
2.4 Measuring range
Reference plane
Min.-distance
Measuring range
ø95
Min.-distance
300 mm
0.000 m
0.300 m
max.
4.000 m (5.000 m)
8
VEGASON 71 - D
2 Technical Information
2.5 General installation instructions
Open flume with weir (e.g. rectangular)
- Installation of the transducer upstream
- Observe distance to the weir (3 … 4 x h
- Installation if possible centered to the flume
- Installation vertical to the surface of the flow product
- Observe min. distance relating to h
- Min. distance diaphragm opening to downstream water 5 cm
90°
weir
max
max
)
Min.-
max
h
max
2 x h
distance
3 - 4 x h
max
90°
upstream water
5 cm
downstream water
Open flume with measuring channel (e.g. Khafagi-Venturi flume)
- Installation of the sensor at the inlet
- Observe distance to the Khafagi-Venturi flume (3…4xh
- Installation if possible centered to the flume
- Installation vertically to the surface of the flow product
- Min. distance relating to the height of damping h
max
Note
Otherwise follow the installation guidelines given by the channel manufacturer.
Sensor
3 - 4 x h
max
90°
h
max
max
)
Sensor
VEGASON 71 - D
B
9
2.6 Installation fault
< 300 mm
max
h
2 T echnical Information
Fault: Min. distance from sensor to h
maintained.
max
not
Problem: The upper range cannot be measured. Solution: Correct min. distance of the sensor to 0,3 m.
> 300 mm
max
h
Fault: Distance from sensor to h Problem: Unreliable results due to very weak echoes.
too large.
max
Solution: Correct min. distance of the sensor to 0,3 m.
Fault: Sensor is not directed vertically to the surface. Problem: Sensor receives weak echoes. Solution: Mount sensor vertically.
Fault: Strong heat fluctuations, e.g. sun. Problem: The measuring accuracy is not constant. Solution: Install a sun shield in the respective position.
Fault: Sensor too close to the flume wall, i.e. not
mounted in the centre.
Problem: Build-up and rough flume walls cause
measuring problems.
Solution: Mount sensor in the centre of the flume.
10
Fault: Surface has foaming problem. Problem: The surface of the foam is detected as level.
The measured value is wrong.
Solution: The used measuring principle is not suitable
and must be replaced e.g. by a hydrostatic system (pressure transmitter).
VEGASON 71 - D
2 Technical Information
2.7 Electrical connection
Flow module
Flow module:
- Flow Terminal 9 and 10
- Sampling Terminal 12 … 14
91011
Relay output
-
+
Fuse type TR5 Manufacturer, e.g. Messrs. Wickmann, Current value see 2.2 Technical Data
12
1 2
3
2
1
13 14
Service socket
4
5
Failure relay output
Power supply
Level module
15 16
18
17
1 2
Relay output
Service switch
19
1 2
20
Attention!
High
voltage
Current module
+ - + -
23
21 22
1 2
Current output
6
24
7
8
standard coax cable max. cable length = 300 mm
Current module:
- flow proportional Terminal 21 and 22
- level proportional Terminal 23 and 24
Note
During operation the sensor is clocked with high­performance impulses. It is therefore recommended to provide all electrical connections first and then switch on the power supply.
The connection line to the sensor can be extended as shown. Therefore observe that a max. line length of 300 m is not be exceeded.
Sensor
standard waterproof distributor box
VEGASON 71 - D
11
3 Operating surface
3.1 Indicating and operating elements
Outer view Inner view
3 Operating surface
LED-indication Fault signal
1
8888
2
1 2 3
LED-indication of the relay output 1 … 4
4
Measuring units as label in the provided window
Scheme of operation
Indication of measured values MODEFIELD
1
8888
2
8888
PARAMETER FIELD
MOD
STO
Selection of mode
Cursor position figures raise figures lower
Memory
Indication of measured values
e.g. flow 00.00 … 75.00 11.25 m3/h
Demonstration after respective programming of
- Measuring unit
- Allocation of a multiplication factor
- Decimal point e.g. Flow 0 … 100 % 50.0 %
Level 0 … 100 % 50.00 %
Distance 0.000 … 5.000 m 5.000 m
12
Mode range
General parameter adjustment 0 - 00 99
Optimization 1 - 01 27
Linearization curve 4 4.H.01 32
Linearization curve 5 5.H.01 32
Linearization curve 6 6.H.01 32
Fault signals E2.01 .04
VEGASON 71 - D
3 Operating surface
3.2 Operation
VEGASON 71 - D has 3 modes which can be enquired with the MOD-button (scrolling)
- indication of measured values
- mode range
- parameter adjustment. After 60 mins. VEGASON 71 - D resets automatically to mode "Indication of measured values".
1. Indication
of mea­sured values
2. Mode
range
3. Parameter
adjustment
5.000
MOD
0Ê00 0Ê99
48.94
MOD
Cursor position Figures raise Figures lower
0 - 00
– – – – 0
Cursor position
MOD
Figures raise Figures lower
+
-
+
-
STO
1. Indication of measured value Flow in m
3
/h Flow in % Level in % Distance in m
2. Mode range Enquiry of the mode numbers in the MODEFIELD. The parameters of the enquired mode numbers can be checked or modified in mode 3.
3. Parameter adjustment Programming of the parameters in the PARAMETER FIELD. The parameter of the respectively enquired mode can be modified and stored with the key STO. Push the MOD-key if no modification is desired or if the modified parameter should not be stored. In both cases reset in mode 1.
In mode 99 the mode range of the general parameter adjustment can be quit and the optimization as well as the linearization curve 4 … 6 can be enquired. Reset also in mode 99.
If after STO the actual mode range is enquired again within 60 mins., the last enquired mode number appears automatically.
VEGASON 71 - D
13
4 Set-up
4.1 Flow chart for set-up
Connect sensor to control electronics and switch on the power supply .
4 Set-up
The software version is displayed and the fault signal responds.
The measuring system is ready and starts the self-check cycle. Preliminary indication:
0.000 m
Self-check cycle, i.e.:
1. Echo limitation from top to bottom.
2. Echo limitation from bottom to top.
3. Generation of a measuring window, within which a preferred processing of the echo is made.
Feeding
phase:
1.
2.
3.
5 6
4
Sensor
Flume
1
!
2
!
48.94
0.000 m
Echo
Measuring window
After approx. 1 … 3 min. the measuring system is in operating status. The fault signal extinguishes. The measuring system has finished the self-check and operates with the parameters of the factory setting.
NO
?
YES
Flow measurement
(level measurement in flume)
14
5 6
1
!
4
2
!
Optimization required.
In the flume a distance of e.g. 0,600 m is determined.
0.600 m
VEGASON 71 - D
4 Set-up
4.2 Mode range, general parameter adjustment, mode
0 - 000 - 00
0 - 00
0 - 000 - 00
0 - 990 - 99
0 - 99
0 - 990 - 99
Function Mode-no. Mode description Parameter Page
(bold = factory setting)
0 - 00 Software version .................................................... z.B. 48.94
0 - 0110 not coordinated ...................................................... ––––
Adjustment 0 - 11 Empty adjustment
- distance in m ..................................................... 5.000 m … 0.000 m
- level in % ...........................................................
0.00.0
0.0 … 80.0 P. 18
0.00.0
0 - 12 Full adjustment
- distance in m ..................................................... 0.000 m … 5.000 m
- level in % ...........................................................
100.0100.0
100.0 … 20.0
100.0100.0
Display Allocation of a multiplication factor
function 0 - 13 - relating to 0 % ...................................................
0 - 14 - relating to 100 % ............................................... 0000 …
00000000
0000 … 9999
00000000
10001000
1000 … 9999
10001000
0 - 15 Measuring unit P. 23
- distance in m .....................................................
11
1
11
- level in % ........................................................... 2
- scaled value ...................................................... 3
0 - 16 Decimal point ......................................................... 0.000 …
0 - 17 Integration time ......................................................
00
0 … 900 P. 24
00
000.0 000.0
000.0 … 0000
000.0 000.0
Lineari- 0 - 18 Linearization curves
zation - linear ................................................................. 1
- not coordinated ................................................. 2
- not coordinated ................................................. 3
- individually programmable curve 4 .................... 4
- individually programmable curve 5 .................... 5
- individually programmable curve 6 .................... 6
- root function Q = K x h
- linear function Q = K x h
0,5
................................... 7
1,0
.................................
- Venturi flume rectangular flume rectangular weir trapezoidal weir Q = K x h
- Palmer Bowlus Flume Q = K x h
- quadratic function Q = K x h
- V-Notch Q = K x h
2,5
........................................................ 12
1,5
.............................. 9
1,86
................... 10
2,0
................................................
0 - 1952 not coordinated ...................................................... ––––
Level 0 - 53 Coordination
module - measuring result in m ........................................ 1
Relay output 1
0 - 54 not coordinated ...................................................... –––– P. 32
- measuring result in %........................................
Switching command
0 - 55 - on ...................................................................... 0.000 m … 5.000 m
0 - 56 - off ...................................................................... 0.000 m … 5.000 m
88
8 P. 20
88
11
22
2
22
VEGASON 71 - D
0 - 57 not coordinated ...................................................... ––––
15
4 Set-up
4.2 Mode range, general parameter adjustment (continuation)
Function Mode-no. Mode description Parameter Page
(bold = factory settings)
(level 0 - 58 Coordination
module) - measuring result in m........................................ 1
Relay output 2
Current Characteristics
module 0 - 65 - end ....................................................................
Current out­put 1 + 2
0 - 59 not coordinated ...................................................... –––– P. 32
0 - 60 - on ...................................................................... 0.000 m … 5.000 m
0 - 61 - off ...................................................................... 0.000 m … 5.000 m
0 - 6264 not coordinated ...................................................... ––––
0 - 66 - begin ................................................................. 00.00
0 - 6781 not coordinated ...................................................... ––––
- measuring result in %........................................
Switching command
22
2
22
20.0020.00
20.00 … 00.00 P. 33
20.0020.00
04.0004.00
04.00 … 20.00
04.0004.00
Max. 0 - 82 Flow (max. 4 positions) .......................................... 00019999
flow 0 - 83 Multiplier
(at level - flow x 1 ..............................................................
100 %) - flow x 10 ............................................................ 1
- flow x 100 .......................................................... 2 P. 24
- flow x 1000 ........................................................ 3
0 - 84 Time unit for above flow
- seconds .............................................................
- minutes.............................................................. 2
- hours ................................................................. 3
Flow module
Pulse value 0 - 85 Flow quantity / impulse .......................................... 00019999
for flow 0 - 86 Multiplier
relay - flow quantity / impulse x 1 .................................
- flow quantity / impulse x 10 ............................... 1
- flow quantity / impulse x 100 ............................. 2
- flow quantity / impulse x 1000 ........................... 3
Pulse value 0 - 87 Flow quantity / impulse .......................................... 00019999
for samp- 0 - 88 Multiplier
ling relay - flow quantity / impulse x 1 ................................. 0
- flow quantity / impulse x 10 ...............................
- flow quantity / impulse x 100 ............................. 2 P. 25
- flow quantity / impulse x 1000 ........................... 3
- flow quantity / impulse x 10000 ......................... 4
- flow quantity / impulse x 100000 ....................... 5
- flow quantity / impulse x 1000000 ..................... 6
00
0
00
11
1
11
00
0 P. 24
00
11
1
11
10001000
1000
10001000
10001000
1000
10001000
10001000
1000
10001000
16
0 - 89 Time dependent controls in hours .........................
0 - 90 Min. flow volume limit in % .....................................
0 - 91 u. 92 not coordinated ...................................................... ––––
00
0 (off) … 100
00
0.00.0
0.0 … 100 P. 25
0.00.0
VEGASON 71 - D
4 Set-up
4.2 Mode range, general parameter adjustment (continuation)
Function Mode-no. Mode description Parameter Page
(bold = factory settings)
0 - 93 Failure processing
- store actual current,
switching relay unchanged ................................
- current 0 mA, switching relay de-energized ...... 2 P. 33
- current corresponds to 0 %,
switching relay de-energized ............................. 3
- current corresponds to 100 %,
switching relay de-energized ............................. 4
0 - 94 Simulation .............................................................. 0.000 m … 9.999 m P. 34
0 - 95 u. 96 not coordinated ...................................................... ––––
0 - 97 Basic adjustment
- switched off .......................................................
- switched on ....................................................... 1
0 - 98 Keyword (= 0070)
- switched off .......................................................
- switched on ....................................................... 1
11
1
11
00
0 P. 34
00
00
0 P. 34
00
0 - 99 Change
- general parameter adjustment ..........................
- optimization ....................................................... 1 P. 20
- not coordinated ................................................. 2 and
- linearization curve 4 .......................................... 4 P. 35
- lineariztion curve 5 ............................................ 5
- linearization curve 6 .......................................... 6
00
0
00
VEGASON 71 - D
17
5 Adjustment
5 Adjustment
5.1 Empty / full adjustment in metres without flow change
With this adjustment procedure two distances in m are defined which correspond to the levels of 0 % and 100 %.
5.2 Demonstration and programming example
Demonstration
m %
0.000
0.350
0.700
100
0
0.35 m distance ^ 100 %
0.7 m distance ^0%
Programming example
0.350 m distance ^ 100 %
• Enquire mode 0 - 12 in the MODEFIELD
• Program 0.350 m in the PARAMETER FIELD
• Then store with key STO
0.700 m distance ^ 0 %
• Enquire mode 0 - 11 in the MODEFIELD
• Program 0.700 m in the PARAMETER FIELD
• Then store with key STO (The sequence of the empty and full adjustment is individual)
18
VEGASON 71 - D
6 Flow measurement
6 Flow measurement
6.1 Linearization
6.1.1 Meter flume / weir
The system measures the level and calculates the flow. The relationship between level and flow is linear in most
cases. The level value (in %) must be therefore converted into a
flow porportional value. The necessary mathematical functions depend on the
flumes and weirs used. For the standard flumes and weirs the respective functions
are available as pre-programmed linearization curves and can be directly enquired.
Flumes / weirs which do not correspond to the known functions, can be imitated via three programmable linearization curves.
Standard flumes / weirs
Pre-programmed linearization curves
Enquire linearization curves
0 - 18 = 1
7
bis
12
NO standard flumes / weirs
Programmable linearization curves
Enquire mode range
0 - 99 = 4
5 6
Program index markers for linearization curves
4 - 0132 5 - 0132 6 - 0132
Enquire linearization curves
0 - 18 = 4
5 6
Processing results flow proportional
VEGASON 71 - D
19
6 Flow measurement
6.1 Linearization (continuation)
6.1.2 Enquiry of linearization curves 4 … 6
In mode 0 - 99 linearization curves 4 … 6 can be enquired as well as the reset (mode 4 - 99, 5 - 99, 6 - 99) to the general parameter adjustment can be made.
0 - 9 9
5 H . 0 1
4
4 H . 0 1
5
Enquiry linearization curve 4 … 6
6
Reset to general parameter adjustment
0 - 0 1
Programming example
Linearization curve 4
• Enquire mode 0 - 99 in the MODEFIELD
• Program figure 4 in the PARAMETER FIELD
• Then store with STO
• Push MOD-key for enquiry of the index markers Reset is always made in mode 99 with figure 0 in the P ARAMETER FIELD.
Linearization curve 4
6 H . 0 1
32
4 - 9 9
0
Function Mode-no. Mode description Parameter
(bold = factory setting)
Index 4.H.01 1. index markers - level percent ................... 000.0
markers 4.L.01 - flow percent .................... 000.0
bis to
4.H.32 32. index markers - level percent ................... 000.0 …
4.L.32 - flow percent .................... 000.0 …
4 - 3398 not coordinated .................................................... ––––
4 - 99 Change
- general parameter adjustment......................... 0
- optimization ..................................................... 1
- not coordinated ................................................ 2
- linearization curve 4 ........................................ 4
- linearization curve 5 ........................................ 5
- linearization curve 6 ........................................ 6
Linearization curve 5 as linearization curve 4, however 5.H.01 5.H.32
5.L.01 5.L.32 5 and 5 - 99
Linearization curve 6 as linearization curve 4, however 6.H.01 6.H.32
6.L.01 6.L.32 6 and 6 - 99
100.0100.0
100.0
100.0100.0
100.0100.0
100.0
100.0100.0
100.0100.0
100.0
100.0100.0
100.0100.0
100.0
100.0100.0
20
VEGASON 71 - D
6 Flow measurement
Display
4 = no. of the linearization curve
4 = no. of the linearization curve
Change-over
Display 1
Display 2
Display 1
Display 2
H H
4 .
H . 0 1
H H
1 0 0 . 0
L L
4 .
L . 0 1
L L
1 0 0 . 0
H = indication for level percent 01 = 1. index markers
MODEFIELD
P ARAMETER FIELD
level percent value (factory setting)
L = indication for flow percent 01 = 1. index markers
MODEFIELD
PARAMETER FIELD
flow percent value (factory setting)
00
4 .
H
.
0 1
4 .
00
99
L
.
9 1
99
4 .
4 .
H H
H . 0 1
H H
L L
L . 0 1
L L
Example of a linearization curve
Flow
%
4.L.05
100.0
100
50
4 .
4 . L
H
. 0
. 0
11
1
11
99
9
99
scrolling with key –>
scrolling with key + or –
Example of a linearity protocol
Index marker Level percent Flow percent no. (level)
01 30.0 % 10.0 % 02 50.0 % 15.0 % 03 75.0 % 40.0 % 04 90.0 % 70.0 % 05 100.0 % 100.0 %
4.L.01
010.0
VEGASON 71 - D
Level
0
50 100 %
4.H.01
030.0
4.H.05
100.0
21
6 Flow measurement
6.1 Linearization (continuation)
Programming example
When programming the level and flow percent values, observe the following:
- The starting point of the characteristics (index marker
00) is generated by the instrument itself and coordinated with the values H = 0.0, L = 0.0.
- The end (last index marker) can be made individually within the 32 value pairs.
- The last index marker must only consist of 100.0 level percent and 100.0 flow percent.
Programming acc. to linearity protocol
(see e.g. page 21)
Index marker 01 (level percent)
• Enquire index marker 4.H.01 in the MODEFIELD
• Program 30 % in the PARAMETER FIELD acc. to the linearization curve
• Then store with STO
Index marker 01 (flow percent)
• Enquire index marker 4.L.01 in the MODEFIELD
• Program 10 % in the PARAMETER FIELD acc. to the linearization curve
• Then store with STO
etc. acc. to linearity protocol. After programming of all data
- reset to mode range 0
- change display indication to flow proportional indication, i.e. mode 0 - 130 - 16
- here in the example activate the programmed linearization curve, i.e. mode 0 - 18 = 4.
6.2 Linearity protocol
Linearization curve
Index Level percent Flow percent marker no. (level)
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Date Name
22
VEGASON 71 - D
7 Output results
7 Output results
7.1 Display
7.1.1 Allocation of a multiplication factor
If an indication in flow m3/h is requested, first an allocation of a multiplication factor to the measured level 0 % and 100 % must be carried out in mode 0 - 13 and 0 - 14.
This allocation of a multiplication factor is only valid for the indication and does not influence the output results for the relay and current outputs.
7.1.2 Measuring unit
In mode 0 - 15 first of all the level proportional indication is converted to a linearized, flow percentage indication, derived from the allocation of a multiplication factor.
Furthermore different measuring units can be inserted as label into the respective window.
7.1.3 Decimal point
Furthermore the position of the decimal point can be determined in mode 0 - 16.
Programming example
Allocation of a multiplier for 0 %
• Enquire mode 0 - 13 in the MODEFIELD
• Program the figure 0000 in the P ARAMETER FIELD
• Then store with STO On display 1 the actual distance of 0.525 m is indicated at
the moment.
Allocation of a multiplier for 100 %
• Enquire mode 0 - 14 in the MODEFIELD
• Program the figure 7500 in the PARAMETER FIELD
• Then store with STO On display 1 still the actual distance of 0.525 m is
indicated.
Measuring unit and label
• Enquire mode 0 - 15 in the MODEFIELD
• Program the figure 3 in the PARAMETER FIELD
• Then store with STO On the display 15 % (linearized value) of the previously
programmed allocation of a multiplier are indicated (112.5).
Demonstration to the programming example
- adjustment see page 18
- linearization curve, page 21
Mode
0-15 = 1 0-15 = 2 0-15 = 3 distance level flow in m in % in %
0.350
0.525
0.700
100
0
50
100
15 0
Position of the decimal point
• Enquire mode 0 - 16 in the MODEFIELD
• Shift with key –> the position of the decimal point to the right until the requested position is reached
• Then store with STO
The desired form is indicated on the display (11.25). Insert the label m
Flow acc. to allocation of a multiplier in m
0 - 14
= 75.00
= 00.00
0 - 13
3
/h into the window.
3
/h
11.25
11.25
VEGASON 71 - D
23
7 Output results
7.1.4 Integration time
An integration time can be programmed in mode 0 - 17 to damp probable fluctuations during the indication of measured values.
Programming example
Integration time = 10 secs.
• Enquire mode 0 - 17 in the MODEFIELD
• Program figure 010 in the PARAMETER FIELD
• Then store with STO
7.2 Adjustment max. flow
The adjustment of the max. flow at 100 % is necessary to enable the conversion of flow to flow volume.
The value given by the manufacturer of the weir or flume at max. flow must be adjusted (this value must be reached at 100 % of the adjustment carried out).
If the weir of flume is oversized or the data for max. flow are not known, the required adjustment parameters can be determined as described in chapter "7.6 Calculation examples of the max. flow".
7.3 Impulse value for flow relay
It is possible to connect a counter to VEGASON 71 - D to detect the flow quantity. When using a 24 V counter, it can be directly connected to the flow module, terminal 9 and
10.
In mode 0 - 85 and 0 - 86 the multiplier of the step-down ratio (flow volume/pulse) can be determined.
Note
The instrument automatically takes the measuring unit selected for the adjustment of the max. flow.
Example
One impulse on the counter per 5 m corresponds to 0005 x 1 m
- Mode 0 - 85, flow volume / impulse = 0005
- Mode 0 - 86, multiplier = 0
3
Programming
Flow volume / impulse = 0005
• Enquire mode 0 - 85 in the MODEFIELD
• Program figure 0005 in the PARAMETER FIELD
• Then store with STO
3
Note
The adjusted measuring unit is also valid for the following programmings of the pulse rate.
Example
Max. flow acc. to manufacturers data = 364 m3/h corresponds to 0364 x 1 m
- Mode 0 - 82, flow = 0364
- Mode 0 - 83, multiplier = 0
- Mode 0 - 84, time unit = 3 (h)
3
/h
Programming
Flow = 364
• Enquire mode 0 - 82 in the MODEFIELD
• Program figure 0364 in the PARAMETER FIELD
• Then store with STO
Multiplier = 0
• Enquire mode 0 - 83 In the MODEFIELD
• Program figure 0 in the PARAMETER FIELD
• Then store with STO
Time unit = 3
• Enquire mode 0 - 84 In the MODEFIELD
• Program figure 3 in the PARAMETER FIELD
• Then store with STO
Multiplier = 0
• Enquire mode 0 - 86 in the MODEFIELD
• Program figure 0 in the PARAMETER FIELD
• Then store with STO
7.4 Impulse value for sampling relay
A sampler can be connected to VEGASON 71 - D. The sampling relay is provided for the connection of such an instrument. The control for the sampler can be carried out flow dependent, time dependent or combined.
Mode 0 - 87 and 0 - 88 for flow dependent control, mode 0 - 89 for time dependent control.
Note
For flow dependent control the instrument automatically takes the measuring unit selected for the adjustment of max. flow.
24
VEGASON 71 - D
7 Output results
7.4 Impulse value for sampling relay (continuation)
Example
One impulse on the sampler per 50000 m corresponds to 5000 • 10 m
- Mode 0 - 87, flow volume / impulse = 5000
- Mode 0 - 88, multiplier = 1
- Mode 0 - 89, time dependent control
every 24 hours = 24
3
Programming
Flow volume / impulse = 5000
• Enquire mode 0 - 87 in the MODEFIELD
• Program figure 5000 in the PARAMETER FIELD
• Then store with STO
Multiplier = 1
• Enquire mode 0 - 88 in the MODEFIELD
• Program figure 1 in the PARAMETER FIELD
• Then store with STO
Time dependent control = 24
• Enquire mode 0 - 89 in the MODEFIELD
• Program figure 24 in the PARAMETER FIELD
• Then store with STO
3
7.6 Calculation examples of the max. flow
The expression "Max. flow" considers the following flume specific factors
- geometry
- flow rate
- flume material
The respectively valid value can therefore only be stated exactly by the flume manufacturer .
If this information to an available flume or weir is not available, it can be approximated.
Therefore the following schedules and fundamentals can be used.
It must be observed that for the various types of flumes and weir forms, different versions are possible, which are however not considered in the formulars.
Supplementary it is recommended to determine and observe the frame conditions defined in the literature for flow measurement (surface of flume, flow rate etc.).
The own manufacture of flumes and weirs based on the following versions is not possible.
7.5 Definition of the min. flow volume limit
With open flumes sediment build-up can cause a zero error. VEGASON 71 - D would therefore permanently detect a low flow which will be considered for flow volume counting.
A minimum flow volume limit can be set in mode 0 - 90 to eliminate this problem. If the flow is below this limit, this value is not considered for the determination of the flow volume.
This parameter adjustment does not influence the level proportional or flow proportional output via current outputs or switching relays.
Programming example
Min. flow volume limit at 0,5 %
• Enquire mode 0 - 90 in the MODEFIELD
• Program figure 000.5 in the PARAMETER FIELD
• Then store with STO
For the following flumes, flow schedules and calculation examples are stated
Page
- Venturi flume 26
- Trapezoidal weir (Cipoletti) 27
- Rectangular weir without throat 28
- Rectangular weir with throat 29
- V-Notch 30
- Palmer-Bowlus-flume 31
Conversion information
- Liter/sec • 3,6 = m3/h 1
3
-m
/h • ––– = Liter/sec
3,6
- Example 10 Liter/sec
^ 36 m3/h
VEGASON 71 - D
25
7.6.1 Khafagi-Venturi flume
with rectangular cross-section and flat bottom
Sensor
3 - 4 x h
max
90°
h
max
Explanation: Q
= max. flow in m3/h
max
B = flume width in mm or m K = flume specific factor h
= max. damming height in mm or m
max
7 Output results
Sensor
B
K (factor)
Selection of the actual flow (Q)
Flow schedule for usual V enturi flumes
BK Q in mm (Factor) in m3/h in mm in m3/h in mm
max
45 605 80 260 4,8 40 120 838 124 280 9,3 50 160 1106 210 330 16,2 60 200 1383 363 410 25,6 70 240 1654 532 470 37,4 80 320 2178 864 540 58,8 90 640 4280 3776 920 383 200
If a V enturi flume acc. to above value is used, the value for Q
can be taken out of the respective column and can be
max
used for programming of mode 0 - 820 - 84. Programming acc. to selection Q
- Mode 0 - 82, flow = 0864
- Mode 0 - 83, multiplier = 0
- Mode 0 - 84, time unit = 3 (h)
h
max
Q
min
= 864 m3/h
max
h
min
Calculation of the actual flow value (Q)
The following formula can be used for calculation of the actual flow for liquid levels < h
Q = K • h
1,5
max
…>h
Q in m3/h B in m h in m
Assumed values for a calculation example B = 0,16 m K = 1106 (derived from B) h = 0,25 m
Calculation example Q = 1106 • 0,25
1,5
= 138,2 m3/h
Programming acc. to calculation example Q
= 138,2 m3/h
max
- Mode 0 - 82, flow = 0138
- Mode 0 - 83, multiplier = 0
- Mode 0 - 84, time unit = 3 (h)
min
.
26
VEGASON 71 - D
7 Output results
7.6.2 T rapezoidal weir (Cipolletti)
With sharp weir edge (Cipolletti)
2 x h
max
B
max
h
1
/4 h
max
max
Weir K (Factor)
2 - 3 x h
Explanation: Q
= max. flow in m3/h
max
B = weir width (bottom) in mm or m K = weir specific factor h
= max. weir height in mm or m
max
k = thickness of the weir in mm
Selection of the actual flow (Q)
Flow schedule for usual trapezoidal weir
BK Q in mm (Factor) in m3/h in mm in m3/h in mm
max
300 2011 116,8 150 29,5 60 450 3014 354,4 240 44,3 60 600 4011 760,4 330 58,9 60 800 5353 1457,0 420 78,7 60 1000 6688 2581,0 530 93,3 60 1500 10043 6523,0 750 147,6 60 2000 13381 14397,0 1050 196,7 60
3000 20082 36893,0 1500 295,1 60
h
max
Q
min
h
min
3 - 4 x h
max
k 3 mm
or
k 3 mm
45°
Calculation of the actual flow value (Q)
The following formula can be used for calculation of the actual flow for liquid levels < h
Q = K • h
1,5
max
…>h
Q in m3/h B in m h in m
Assumed values for a calculation example B = 0,6 m K = 4011 (derived from B) h = 0,27 m
min
.
If a trapezoidal weir acc. to above value is used, the value
can be taken out of the respective column and can
for Q
max
be used for programming of mode 0 - 820 - 84. Programming acc. to selection Q
- Mode 0 - 82, flow = 3689
= 36893 m3/h
max
- Mode 0 - 83, multiplier = 1
- Mode 0 - 84, time unit = 3 (h)
VEGASON 71 - D
Calculation example Q = 4011• 0,27
1,5
= 562,73 m3/h
Programming acc. to calculation example
= 562,73 m3/h
Q
max
- Mode 0 - 82, flow = 0563
- Mode 0 - 83, multiplier = 0
- Mode 0 - 84, time unit = 3 (h)
27
7.6.3 Rectangular weir without throat
With sharp weir edge (without throat)
7 Output results
B
max
h
Weir edge
max
K = 6593
2 - 3 x h
Explanation: Q
= max. flow in m3/h
max
B = weir width in mm or m K = throat specific factor for above rectangular weir = 6593 h
= max. weir height in mm or m
max
k = thickness of the weir in mm
Selection of the actual flow (Q)
Flow schedule for usual rectangular weir
BQ in mm in m3/h in mm in m3/h in mm
max
200 54,81 120 19,4 60 400 310,0 240 38,7 60 600 650,0 300 58,1 60 800 1592,0 450 77,5 60 1000 3064,0 600 96,9 60 1500 6423,0 750 145,3 60
If a rectangular weir acc. to above value is used, the value for Q
can be taken out of the respective column and can
max
be used for programming of mode 0 - 820 - 84. Programming acc. to selection Q
- Mode 0 - 82, flow = 1592
- Mode 0 - 83, multiplier = 0
- Mode 0 - 84, time unit = 3
h
max
Q
min
h
min
= 1592 m3/h
max
3 - 4 x h
max
k 3 mm
or
k 3 mm
45°
Calculation of the actual flow value (Q)
The following formula can be used for calculation of the actual flow for liquid levels < h
Q = B • K • h
1,5
max
…>h
Q in m3/h B in m h in m
Assumed values for a calculation example B = 0,4 m K = 6593 h = 0,13 m
Calculation example Q = 0,4 • 6593• 0,13
1,5
= 123,61 m3/h
Programming acc. to calculation example
= 123,61 m3/h
Q
max
- Mode 0 - 82, flow = 0124
- Mode 0 - 83, multiplier = 0
- Mode 0 - 84, time unit = 3
min
.
28
VEGASON 71 - D
7 Output results
7.6.4 Rectangular weir with throat
With sharp weir edge and throat
2 x h
max
Weir edge
B
max
h
max
K = 6290
2 - 3 x h
Explanation: Q
= max. flow in m3/h
max
B = weir width in mm or m K = throat specific factor for above rectangular weir = 6290 h
= max. weir height in mm or m
max
k = thickness of the weir in mm
Selection of the actual flow (Q)
Flow schedule for usual rectangular weir
BQ in mm in m3/h in mm in m3/h in mm
max
200 52,3 120 18,5 60 300 109,6 150 27,7 60 400 295,8 240 37,0 60 500 441,2 270 46,2 60 600 620,0 300 55,5 60 800 1519 450 73,9 60 1000 2923 600 92,4 60 1500 6128 750 138,7 60 2000 13535 1050 184,9 60
3000 34666 1500 277,3 60
If a rectangular weir acc. to above value is used, the value for Q
can be taken out of the respective column and can
max
be used for programming of mode 0 - 820 - 84. Programming acc. to selection Q
- Mode 0 - 82, flow = 1353
- Mode 0 - 83, multiplier = 1
- Mode 0 - 84, time unit = 3
h
max
Q
min
h
min
= 13535 m3/h
max
3 - 4 x h
max
k 3 mm
or
k 3 mm
45°
Calculation of the actual flow value (Q)
The following formula can be used for calculation of the actual flow for liquid levels < h
Q = B • K • h
1,5
max
…>h
Q in m3/h B in m h in m
Assumed values for a calculation example B = 0,4 m K = 6290 h = 0,13 m
Calculation example Q = 0,4 • 6290 • 0,13
1,5
= 117,9 m3/h
Programming acc. to calculation example
= 117,9 m3/h
Q
max
- Mode 0 - 82, flow = 0118
- Mode 0 - 83, multiplier = 0
- Mode 0 - 84, time unit = 3
min
.
VEGASON 71 - D
29
7.6.5 V-Notch
With sharp weir edge
7 Output results
2 x h
max
α
max
h
K (Factor)
max
2 - 3 x h
Explanation: Q
= max. flow in m3/h
max
α = angle of beam K = weir specific factor h
= max. weir height in mm or m
max
k = thickness of the weir in mm
Selection of the actual flow (Q)
Flow schedule for usual V-Notch
α KQ in ° (Factor) in m3/h in mm in m3/h in mm
max
90 4966 1385,0 600 4,4 60 60 2869 800,0 600 2,5 60 45 2056 573,3 600 1,8 60 30 1334 372,0 600 1,2 60
22,5 989 275,8 600 0,87 60
If a V -Notch acc. to above value is used, the value for Q can be taken out of the respective column and can be used for programming of mode 0 - 820 - 84.
Programming acc. to selection Q
- Mode 0 - 82, flow = 0573
- Mode 0 - 83, multiplier = 0
- Mode 0 - 84, time unit = 3
h
max
Q
min
= 573,3 m3/h
max
h
min
3 - 4 x h
max
k 3 mm
or
k 3 mm
45°
Calculation of the actual flow value (Q)
The following formula can be used for calculation of the actual flow.
Q = K • h α in °
Q in m h in m
Assumed values for a calculation example α =45° K = 2056 (derived from α)
max
h = 0,33 m Calculation example
Q = 2056 • 0,33 Programming acc. to calculation example
Q
- Mode 0 - 82, flow = 0129
- Mode 0 - 83, multiplier = 0
- Mode 0 - 84, time unit = 3
2,5
3
/h
= 128,6 m3/h
max
2,5
= 128,6 m3/h
30
VEGASON 71 - D
7 Output results
7.6.6 Palmer-Bowlus-flume
D
D/4
30°
Explanation: Q
max
D = tube diameter in inch K = flume specific factor h
max
D/2 D/4
30°
K
= max. flow in m3/h
= max. height in mm or m
max
h
D/6
D/2
Selection of the actual flow (Q)
Flow schedule for usual flumes
DK Q in inch (Factor) in m3/h in mm in m3/h in mm
6" 1952 37,82 120 2,9 30
max
8" 2338 68,60 150 7,3 45 10" 2712 148,8 210 12,3 55 12" 3046 214,3 240 18,9 65 15" 3519 374,8 300 32,1 80 18" 3943 501,4 330 54,4 100 24" 4745 1074,0 450 114,5 135 30" 5488 2122,0 600 192,3 165
Note: The data of above schedule relate to Palmer-Bowlus­Flumes of Messrs. Plasti-Fab.
If a Palmer-Bowlus-Flume acc. to above values is used, the value for Q column and can be used for programming of mode
can be taken out of the respective
max
0 - 820 - 84. Programming acc. to selection Q
- Mode 0 - 82, flow = 2122
- Mode 0 - 83, multiplier = 0
- Mode 0 - 84, time unit = 3
h
max
Q
min
= 2122 m3/h
max
h
min
Calculation of the actual flow value (Q)
The following formula can be used for calculation of the actual flow for liquid levels < h
Q = K • h D in inch
Q in m
1,86
3
/h
max
…>h
h in m Assumed values for a calculation example
D = 12" K = 3046 (derived from D) h = 0,1 m
Calculation example Q = 3046 • 0,1
1,86
= 42,046 m3/h
Programming acc. to calculation example
= 42,042 m3/h
Q
max
- Mode 0 - 82, flow = 0042
- Mode 0 - 83, multiplier = 0
- Mode 0 - 84, time unit = 3
min
.
VEGASON 71 - D
31
7 Output results
7.7 Level module
The pulse-echo measuring system can be equipped with a level module. This module is provided with two relays.
Mode coordination
Relay Coordination Switching command output ON OFF
1 Mode 0 - 53 Mode 0 - 55 Mode 0 - 56 2 Mode 0 - 54 Mode 0 - 60 Mode 0 - 61
7.7.1 Coordinations and their relations
For each relay or relay output the coordination can be programmed separately .
Relay Measur- Measur- Coordination Linearization
1 Distance
2 as above, however 0 - 54 = … 0 - 18 = …
7.7.2 Switching commands
Mode 0 - 53 defines the measuring result and its measuring unit coordinated to the relay output.
ing result ing unit Mode Mode
Level propor­tional
Volume Flow propor- in % 0 - 53 = 2 0 - 18 = tional 4 … 12
in m 0 - 53 = 1 0 - 18 = 1 Level
in % 0 - 53 = 2 0 - 18 = 1
Diagram for overfill protection
Two point level switch: switching command of f above switching command on means overfill protection (function A)
% m
100
75
switching command off Mode 0 - 56
switching command on Mode 0 - 55
25
50
off
0
on
Diagram for protection against dry running of pumps
Two point level switch: switching command of f above switching command on means protection against dry running of pumps (function B)
% m
100
75
switching command on Mode 0 - 55
switching command off Mode 0 - 56
25
50
on
0
off
Acc. to the sequence of the switching commands it is possible to program the respective relay output as overfill protection or protection against dry running of pumps (A/B-function).
The min- for the switching commands is 10 mm or 0,5 %. Mode 0 - 55 means switching command on, i.e.
- the relay of output 1 is energized
- the LED-indication extinguishes Mode 0 - 56 means switching command off, i.e.
- the relay of output 1 is de-energized
- the LED-indication lights Same procedure for relay output 2, however mode 0 - 60
and 0 - 61.
32
Programming example for relay output 1
- coordination to measuring unit level in % corresponds
to 0 - 53 = 2
- two-point level switch as overfill protection
Coordination
• Enquire mode 0 - 53 in the MODEFIELD
• Program figure 2 in the PARAMETER FIELD
• Then store with STO
Switching command on
• Enquire mode 0 - 55 in the MODEFIELD
• Program 025.0 % in the PARAMETER FIELD
• Then store with STO
Switching command off
• Enquire mode 0 - 56 in the MODEFIELD
• Program 050.0 % in the PARAMETER FIELD
• Then store with STO
Same procedure for relay output 2, however mode 0 - 60 and 0 - 61.
VEGASON 71 - D
7 Output results / 8 Supplementary programmings
7.8 Current module
The pulse-echo measuring system can be equipped with another module. The module is provided with two current outputs.
Current output 1 is automatically coordinated to the flow proportional output result and current output 2 to the level proportional output result.
The course of characteristics of the current output is fixed by an initial and final point.
The factory setting defines a course of 4 … 20 mA corresponding to 0 … 100 %.
Within the whole range of 0.00 … 20.00 mA, each current value can be programmed for a raising or falling characteristics.
The current- between initial and final value must be min. 1 mA.
Programming example
Factory setting Programming example
% mA
100
80 60 40
Mode 0 - 65
20
End of characte­ristics
mA 16
8 Supplementary programmings
8.1 Failure processing
In mode 0 - 93 the reaction of the relay and current outputs in case of failure can be defined.
Programming possibilites
Mode Current outputs Relay outputs 0 - 93 LED
= 1 actual currents are no change
stored
= 2 current - 0 mA = 3 current corresp. to 0 % operated relay de-energize = 4 current corresp. to 100%
Programming example
Change-over to failure processing
e.g. 0 - 93 = 4
• Enquire mode 0 - 93 in the MODEFIELD
• Program figure 4 in the PARAMETER FIELD
• Then store with STO
Note
For adjustment of the failure processing observe additionally the schedule of error codes in the supplement.
20
Mode 0 - 66
0
4
Begin of characteristics
0
End of characteristics 100 % ^ 16 mA
• Enquire mode 0 - 65 in the MODEFIELD
• Program 16.00 mA in the PARAMETER FIELD
• Then store with STO
Begin of characteristics 0 % ^ 0 mA
• Enquire mode 0 - 66 in the MODEFIELD
• Program 00.00 mA in the PARAMETER FIELD
• Then store with STO
VEGASON 71 - D
33
8 Supplementary programmings
8.2 Simulation
By this mode it is possible to simulate the outputs along the whole range of the distance in m, to test the functions of the connected process control. The simulation influences the relay outputs, the current outputs and the indication (display 2).
The key "+" increases and the key "–" reduces the outputs. First of all the simulation is made in 5 mm steps and is accelerated after approx. 10 secs. to 25 mm steps.
Relay outputs
Current outputs
Measured
Sensor
Simulation
Note
The simulation is marked by
- enquiry of mode 0 - 94
- flashing of all figures, e.g. 0.700 m
value
Indication
0 - 94
0.700
8.3 Basic adjustment, mode range general parameter adjustment
After parameter adjustment of one or several modes it is perhaps necessary to reset the parameters of this mode to factory setting.
Mode 0 - 97 offers this possibility, therefore the proviously adjusted parameters are cancelled. During the cancellation, CAL is displayed (approx. 5 sec.).
Programming example
• Enquire mode 0 - 97 in the MODEFIELD
• Program figure 1 in the P ARAMETER FIELD
• Then store with STO, CAL is displayed for approx.
5 secs. in the PARAMETER FIELD
8.4 Keyword
Acc. to the factory setting the keyword is switched off and the data input is released.
All mentioned modes can be now enquired and their parameters can be indicated on the display of the measuring system and modified if necessary, as described above.
The activation of the keyword (mode 0 - 98 = 1) protects the parameters from unauthorized and undesired modifications.
Warning
During simulation the measured values from the sensor are NOT transferred for processing. Mode 0 - 94 must be therefore quit immediately after simulation is finished. The timer reset (after 60 mins.) should be only seen as kick-off. After simulation, all outputs are up-dated with the valid measured value.
Programming example
Simulation example
• Enquire mode 0 - 94 in the MODEFIELD
• Activate simulation with key MOD, at the moment the actual measuring result flashes in the PARAMETER FIELD
• Modify the outputs respectively with key "+" or "–"
• After having finished the test procedures quit the simulation again with MOD or STO-key.
Another release of the data input is only possible after programming of the keyword (overwriting of the indicated key symbol).
The programming of the keyword can be made in any mode and is effective for the whole mode range (mode 98 is 0).
The keyword is: 0070
Programming
Activate keyword
• Enquire mode 0 - 98 in the MODEFIELD
• Program figure 1 in the P ARAMETER FIELD
• Then store with STO
Adjust keyword
• Enquire the desired mode no. for parameter adjustment in MODEFIELD, here in the example mode 0 - 53
• Enquire data input, the key symbol 0––n is displayed in the P ARAMETER FIELD
• Program 0070 as keyword
• Then store with STO
• The programming of e.g. mode 0 - 53 can be continued
34
VEGASON 71 - D
9 Optimization
9 Optimization
When dispatched the measuring system is provided with all experience and practical parameters, so that generally no optimization is necessary.
9.1 Enquiry of the optimization
In mode 0 - 99 the optimization as well as the reset (mode 1 - 99) to the general parameter adjustment can be carried out.
0 - 9 9
1
Optimization
Reset to general parameter adjustment
0 - 0 1
Programming example
Optimization
• Enquire mode 0 - 99 in the MODEFIELD
• Program figure 1 in the PARAMETER FIELD
• Then store with STO
• For enquiry of the optimization, push MOD-key The reset is made in mode 99 with figure 0 in the PARAMETER FIELD.
1 - 0 1 0 - 9 9
27
0
VEGASON 71 - D
35
9 Optimization
9.2 Mode range optimization, mode
Mode-no. Mode description Parameter Page
1 - 01 u. 02 not coordinated ........................................................... – – – –
1 - 03 Instrument version ...................................................... 71 - D
1 - 04 not coordinated........................................................... ––––
1 - 05 Indication, distance in m 1 - 06 Indication, gain in dB
Operating range P. 37
1 - 07 - being of operating range 1 - 08 - end of operating range
1 - 0911 not coordinated ........................................................... ––––
Multiple echo reduction
1 - 12 - reduction ..................................................................
1 - 13 - optimization ..............................................................
1 - 1419 not coordinated ........................................................... ––––
Max. gain
1 - 20 - Indication, echo gain
1 - 21 - limitation ...................................................................
1 - 22 - optimization ..............................................................
1 - 011 - 01
1 - 01
1 - 011 - 01
1 - 271 - 27
1 - 27
1 - 271 - 27
(bold = factory setting)
0.0000.000
0.000 m
0.0000.000
6.0006.000
6.000 m
6.0006.000
0.000.00
0.00 … 1.25 V P. 37
0.000.00
0.000.00
0.00 … 1.25 V
0.000.00
0.030.03
0.03 … 4.95 V P. 37
0.030.03
0.030.03
0.03 … 4.95 V
0.030.03
1 - 23 not coordinated........................................................... ––––
1 - 24 Fault signal
switch off / switch on...................................................
1 - 25 u. 26 not coordinated ........................................................... ––––
Basic adjustment (factory setting)
1 - 27 switch off / switch on...................................................
1 - 5175 Service activities......................................................... PASS
1 - 99 Change
- general parameter adjustment ................................
- optimization ............................................................. 1 P. 20
- not coordinated ....................................................... 2 and
- linearization curve 4 ................................................ 4 P. 35
- linearization curve 5 ................................................ 5
- linearization curve 6 ................................................ 6
00
0 / 1 P. 38
00
00
0 / 1 P. 38
00
00
0
00
36
VEGASON 71 - D
9 Optimization
9.3 Definition of the operating range
The operating range can be limited in this mode by programming of
- operating range begin and
- operating range end. Echoes outside this limitation are ignored.
Note
The operating range end should always be programmed 10 % > than the flume end.
9.4 Multiple echo reduction
It is possible to reduce the echo gain by an offset function to gate out possible multiple echoes.
Reduction range (offset range) = 0.00 … 1.25 Practical values = 0.00 … 0.20
Useful echo
Multiple echoes
9.5 Adjustment of the max. gain
The pulse-echo measuring system tries to detect an echo by using the whole gain. This means, that in case of an empty flume the gain can be bigger than required for the useful echo when the flow is available.
This causes that sound reflections (false echoes) are detected as useful echoes. It is useful to limit the control range of the gain to avoid this.
Note
- The limitation can be adjusted from 0.03 V to 4.50 V, as optimization up to 4.95 V .
- The optimum adjustment of this mode is only possible when the flume is empty.
- For orientation a d is indicated on the display of the measuring system, as long as with the actual gain, an echo (false echo) is detected.
Programming example
Indication of the echo gain
• Enquire mode 1 - 20 in the MODEFIELD
• e.g. 2.00 is indicated in the P ARAMETER FIELD, i.e. in case of an obviously wrong indication of measured values, a false echo is detected with a gain of 2.000
The reduction (offset) depends on the function and starts with the end of the measuring window.
Programming example
Reduction and optimization to e.g. 0.20
Reduction
• Enquire mode 1 - 12 in the MODEFIELD
• Program reduction 0.12 (V) in the PARAMETER FIELD
• Then store with STO
Optimization
• Enquire mode 1 - 13 in the MODEFIELD
• Activate the optimization with MOD-key (the whole parameter indication 0.12 flashes)
• Optimize with "+"-key, until e.g. 0.20 (V) The optimization is made in 0.01 V steps
If during the optimization a modification in the other direction is required, this can be realized with key "–".
Limitation
• Enquire mode 1 - 21 in the MODEFIELD
• Program e.g. 2.30 as limitation in the PARAMETER FIELD
• Then store with STO
Optimization
• Enquire mode 1 - 22 in the MODEFIELD e.g. d 2.30 is displayed in the P ARAMETER FIELD
• Activate the optimization with MOD-key
• Optimize with "+"-key, until d extinguishes The optimization is made in 0.02 V steps.
Requirement for this adjustment is that with actually available flow, a considerably higher gain is sufficient (relate do above example 2,50 V).
If during the optimization a modification in the other direction is required, this can be realized with key "–".
VEGASON 71 - D
37
9 Optimization
9.6 Fault signal
The fault signal is triggered when the measuring reliability is not ensured. The measuring reliability is calculated out of the ratio echo measurement to noise level measurement.
The fault signal can be varied as follows: Explanation in case of fault
Fault signal of mode 1 - 24 = 0 (factory setting)
- Indication of the error code on the display.
- The last as correct detected measured value is stored.
- With the detection of a new correct echo, the last stored value is cancelled and the actual value is indicated.
Fault signal ON mode 1 - 24 = 1
- Indication of the error code on the display.
- The fail safe relay de-energizes.
- The signal LED lights.
- With the detection of a new correct echo, the fleeding phase is automatically started and after it is finished an actual measured value is given.
In both cases the relay and current outputs react acc. to the failure processing given in mode 0 - 93.
Programming example
• Enquire mode 1 - 24 in the MODEFIELD
• Program fault signal ON with 1 in the PARAMETER FIELD
• Then store with STO
9.7 Basic adjustment, mode range optimization
All parameters, their data modified during an optimization can be reset to factory setting if necessary.
Programming example
• Enquire mode 1 - 27 in the MODEFIELD
• Modify figure 0 to figure 1 in the P ARAMETER FIELD
• Then activate the basic adjustment with key STO
Influences
- CAL (flashing) appears for approx. 3 secs. on the
display.
- All modes of the optimization are reset to factory setting
(see protocol)
- The measuring system starts a new feeding phase,
therefore the fail safe relay de-energizes and the failure LED lights.
- CAL extinguishes after 3 secs. and the figures 0.000
remain displayed.
- This means, basic adjustment activated, feeding phase
started.
- After approx. 1 … 3 mins. the operating status is
reached again. The fault signal extinguishes and the measuring system operates with the parameters of the factory setting.
9.8 Protocol of the optimization
Mode-no. Mode description Factory setting Optimization
123
Operating range
1 - 07 - begin of operating range ................... 0.000 m
1 - 08 - end of operating range ...................... 6.000 m
Multiple echo reduction
1 - 12 - reduction in Volt................................. 0.00
1 - 13 - optimization in Volt ............................ 0.00
Max. gain
1 - 21 - limitation in Volt ................................. 0.03
1 - 22 - optimization in Volt ............................ 0.03
1 - 24 Fault signal .......................................... 0 (off)
1 - 27 Basic adjustment ................................. 0 (off)
Date Name
38
VEGASON 71 - D
10 Supplement
10 Supplement
10.1 Error codes
Problemes during the measurement of wrong adjustmentes during the programming are commented via the displays with fault signals.
The fault signals are made in the mode "Indication of measured values" via display 1 (top).
In below error schedule the fault signals sometimes cause the fail safe relay to de-energize and the failure LED to light.
The current outputs as well as the relay outputs react acc. to the below schedule or their parameter adjustment in mode 0 - 93 (see page 33).
When the error source is removed (e.g. repair of a line break) the fault signal is cancelled.
Example of a fault signal:
1 E 3 . 0 4 Line break / temperature sensor defect
= Coding of the error = Error class = E = Error
The error E3.04 is indicated undelayed when switching on and during operation after approx. 15 secs.
10.2 Error schedule
Error Meaning Pre-adjustment Fail safe relay / Relay output / code Mode 1 - 24 -LED Current output
E2.01 Signal to noise distance = 0 acc. to parameter adjustment
< 1 dB in mode 0- 93
= 1 acc. to parameter adjustment
in mode 0 - 93
E2.02 Echo in dead time without influence Modification corresponds to E2.03 Postoscillation > 1,8 m the value for 100 %
E3.01 Data loss in the without influence E3.02 data memory acc. to parameter adjustment E3.03 in mode 0 - 93
E3.04 Line break/ = 0 acc. to parameter adjustment
Temperature sensor defect in mode 0 - 93
= 1 acc. to parameter adjustment
in mode 0 - 93
ERR Parameter exceeded without influence no change
during adjustment
VEGASON 71 - D
39
VEGA Grieshaber KG
Am Hohenstein 113 D-77761 Schiltach Phone 0 78 36 / 50 - 0 Fax 0 78 36 / 50 201
Technical data subject to alterations 2.15 573 / Febr. '95
Loading...