Texas Instruments SN65LVDS388DBT, SN65LVDS388DBTR, SN65LVDT386DGG, SN65LVDT386DGGR, SN65LVDT388DBT Datasheet

...
SN65LVDS386, SN65LVDT386, SN75LVDS386, SN75LVDT386 SN65LVDS388, SN65LVDT388, SN75LVDS388, SN75LVDT388
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS394A – SEPTEMBER 1999 – REVISED DECEMBER 1999
D
Eight (‘388) or Sixteen (‘386) Line Receivers Meet or Exceed the Requirements of ANSI TIA/EIA-644 Standard
D
Integrated 110- Line Termination Resistors on LVDT Products
D
Designed for Signaling Rates† Up To 630 Mbps
D
SN65 Version’s Bus-Terminal ESD Exceeds 15 kV
D
Operates From a Single 3.3-V Supply
D
Typical Propagation Delay Time of 2.6 ns
D
Output Skew 100 ps (Typ) Part-To-Part Skew is Less Than 1 ns
D
LVTTL Levels are 5-V Tolerant
D
Open-Circuit Fail Safe
D
Flow-Through Pin Out
D
Packaged in Thin Shrink Small-Outline Package With 20-mil Terminal Pitch
description
The ‘LVDS388 and ‘LVDT388 (T designates integrated termination) are eight and the ‘LVDS386 and ‘LVDT386 sixteen differential line receivers respectively that implement the electri­cal characteristics of low-voltage differential signaling (L VDS). This signaling technique lowers the output voltage levels of 5-V differential standard levels (such as EIA/TIA-422B) to reduce the power, increase the switching speeds, and allow operation with a 3-V supply rail. Any of the eight or sixteen differential receivers will provide a valid logical output state with a ±100 mV differential input voltage within the input common­mode voltage range. The input common-mode voltage range allows 1 V of ground potential difference between two L VDS nodes. Additionally , the high-speed switching of L VDS signals almost always require the use of a line impedance matching resistor at the receiving end of the cable or transmission media. The LVDT products eliminate this external resistor by integrating it with the receiver.
SN65LVDS388, SN75LVDS388 SN65LVDT388, SN75LVDT388
DBT PACKAGE
(TOP VIEW)
1
38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20
GND V
CC
ENA A1Y A2Y ENB B1Y B2Y GND V
CC
GND C1Y C2Y ENC D1Y D2Y END V
CC
GND
A1A A1B A2A A2B
NC B1A B1B B2A B2B
NC C1A C1B C2A C2B
NC D1A D1B D2A D2B
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
SN65LVDS386, SN75LVDS386 SN65LVDT386, SN75LVDT386
DGG PACKAGE
(TOP VIEW)
1
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
GND V
CC
V
CC
GND ENA A1Y A2Y A3Y A4Y ENB B1Y B2Y B3Y B4Y GND V
CC
V
CC
GND C1Y C2Y C3Y C4Y ENC D1Y D2Y D3Y D4Y END GND V
CC
V
CC
GND
A1A A1B A2A A2B A3A A3B A4A A4B B1A B1B B2A B2B B3A B3B B4A B4B C1A C1B C2A C2B C3A C3B C4A C4B D1A D1B D2A D2B D3A D3B D4A D4B
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Signaling rate, 1/t, where t is the minimum unit interval and is expressed in the units bits/s (bits per second)
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Copyright 1999, Texas Instruments Incorporated
1
SN65LVDS386, SN65LVDT386, SN75LVDS386, SN75LVDT386 SN65LVDS388, SN65LVDT388, SN75LVDS388, SN75LVDT388 HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS394A – SEPTEMBER 1999 – REVISED DECEMBER 1999
description (continued)
The intended application of this device and signaling technique is for point-to-point baseband data transmission over controlled impedance media of approximately 100 . The transmission media may be printed circuit board traces, backplanes, or cables. The large number of receivers integrated into the same substrate along with the low pulse skew of balanced signaling, allows extremely precise timing alignment of clock and data for synchronous parallel data transfers. When used with its companion, 8- or 16-channel driver, the SN65LVDS389 or SN65L VDS387, over 300 million data transfers per second in single-edge clocked systems are possible with very little power. (Note: The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other system characteristics.)
Available Options
Part number
SN65LVDS386DGG SN65LVDT386DGG SN75LVDS386DGG SN75LVDT386DGG SN65LVDS388DBT SN65LVDT388DBT SN75LVDS388DBT SN75LVDT388DBT
Temperature
Range
–40_C to 85_C –40_C to 85_C
0_C to 70_C
0_C to 70_C –40_C to 85_C –40_C to 85_C
0_C to 70_C
0_C to 70_C
Number of
Receivers
16 15 kV 16 15 kV 16 4 kV 16 4 kV
8 15 kV 8 15 kV 8 4 kV 8 4 kV
Bus-Pin ESD
logic diagram (positive logic)
’LVDx386
’LVDT386 ONLY
1A 1B
2A 2B
EN
3A 3B 4A 4B
H = high level, L = low level, X = irrelevant, Z = high impedance (off), ? = indeterminate
1Y
2Y
3Y
4Y
’LVDT388 ONLY
1A 1B
EN
2A 2B
’LVDx388
Function Table
SNx5LVD386/388 and SNx5LVDT386/388
DIFFERENTIAL INPUT
A-B EN Y
VID 100 mV H H
-100 mV < VID 100 mV H ? VID≤ -100 mV H L
X L Z
Open H H
ENABLES OUTPUT
1Y
2Y
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
SN65LVDS386, SN65LVDT386, SN75LVDS386, SN75LVDT386 SN65LVDS388, SN65LVDT388, SN75LVDS388, SN75LVDT388
equivalent input and output schematic diagrams
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS394A – SEPTEMBER 1999 – REVISED DECEMBER 1999
V
CC
300 k300 k
EN
A Input B Input
7 V 7 V
110
’LVDT Devices Only
100
7 V
absolute maximum ratings over operating free-air temperature (unless otherwise noted)
300 k
V
CC
V
CC
5
Y Output
7 V
Supply voltage range, VCC (see Note 1) –0.5 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage range: Enables or Y –0.5 V to VCC + 2 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A or B –0.5 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrostatic discharge: (see Note 2)
SN65’ (A, B, and GND) Class 3, A:15 kV, B: 700 V. . . . . . . . . . . . . . . . . . . . . . . . . . . .
SN65’ (All pins) Class 3, A: 8 kV, B:600 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SN75’ (A, B, and GND) Class 2, A:4 kV, B: 400 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SN75’ (All pins) Class 2, A: 2 kV, B:200 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range –65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 in) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
This is the inverse of the junction-to-ambient thermal resistance when board-mounted (low-k) and with no air flow.
2. Tested in accordance with MIL-STD-883C Method 3015.7.
DISSIPATION RATING TABLE
PACKAGE
DBT 1071 mW 8.5 mW/°C 688 mW 556 mW
DGG 2094 mW 16.7 mW/°C 1342 mW 1089 mW
TA 25°C
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
SN65LVDS386, SN65LVDT386, SN75LVDS386, SN75LVDT386
O erating free-air tem erature, T
A
SN65LVDS388, SN65LVDT388, SN75LVDS388, SN75LVDT388 HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS394A – SEPTEMBER 1999 – REVISED DECEMBER 1999
recommended operating conditions
MIN NOM MAX UNIT
Supply voltage, V High-level input voltage, V Low-level input voltage, V Magnitude of differential input voltage, VID 0.1 0.6 V
Common–mode input voltage, VIC (see Figure 4)
p
CC
IH
IL
p
SN75’ 0 70 °C SN65’ –40 85 °C
3 3.3 3.6 V 2 V
|VID|
2
2.4
*
VCC – 0.8
0.8 V
|VID|
2
V
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
See Figure 1 and Table 1
I
Supply current
mA
’LVDS
I
Input current (A or B inputs)
A
’LVDT
I
High–impedance output current
A
g
See Figure 3
SN65LVDS386, SN65LVDT386, SN75LVDS386, SN75LVDT386 SN65LVDS388, SN65LVDT388, SN75LVDS388, SN75LVDT388
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
SLLS394A – SEPTEMBER 1999 – REVISED DECEMBER 1999
electrical characteristics over recommended operating conditions (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP†MAX UNIT
V
ITH+
V
ITH–
V
OH
V
OL
CC
I
I
ID
I
ID
I
I(OFF)
I
I(OFF)
I
IH
I
IL
OZ
C
IN
Z
(t)
All typical values are at 25°C and with a 3.3 V supply.
Positive–going differential input voltage threshold Negative–going differential input voltage threshold High–level output voltage IOH = –8 mA 2.4 3 V Low–level output voltage IOL = 8 mA 0.2 0.4 V
pp
p
Differential input current |IIA – IIB| ‘LVDS
Differential input current (IIA – IIB) ‘LVDT Power–off Input current (A or B inputs) ‘LVDS VCC = 0 V, VI=2.4 V 12 ±20 µA
Power–off Input current (A or B inputs) ‘LVDT VCC = 0 V, VI=2.4 V ±40 µA High–level input current (enables) VIH = 2 V 10 µA Low–level input current (enables) VIL = 0.8 V 10 µA
p
Input Capacitance, A or B input to GND VID = 0.4 sin 2.5E09 t V 5 pF T ermination impedance VID = 0.4 sin 2.5E09 t V 88 132
p
p
Enabled, No load 50 70 Disabled 3 VI = 0 V –13 –20 VI = 2.4 V –1.2 –3 VI = 0 V, other input open –40 VI = 2.4 V, other input open –2.4 VIA= 0 V, VIB = 0.1V,
VIA= 2.4 V, VIB = 2.3 V VIA= 0.2 V, VIB = 0V,
VIA= 2.4 V, VIB = 2.2 V
VO = 0 V ±1 VO = 3.6 V 10
–100 mV
1.5 2.2 mA
100 mV
±2 µA
µ
µ
switching characteristics over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP†MAX UNIT
t
PLH
t
PHL
t
r
t
f
t
sk(p)
t
sk(o)
t
sk(pp)
t
PZH
t
PZL
t
PHZ
t
PLZ
All typical values are at 25°C and with a 3.3 V supply.
t
sk(o)
§
t
sk(pp)
with the same supply voltages, at the same temperature, and have identical packages and test circuits.
Propagation delay time, low-to-high-level output 1 2.6 4 ns Propagation delay time, high-to-low-level output 1 2.5 4 ns Differential output signal rise time 500 800 1200 ps Differential output signal fall time Pulse skew (|t
Output skew Part-to-part skew
Propagation delay time, high-impedance-to-high-level output 7 15 ns Propagation delay time, high-impedance-to-low-level output Propagation delay time, high-level-to-high-impedance output Propagation delay time, low-level-to-high-impedance output 7 15 ns
is the magnitude of the time difference between the t
is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate
PHL
– t
|)
PLH
§
or t
PLH
of all drivers of a single device with all of their inputs connected together.
PHL
See Figure 2
500 800 1200 ps
150 600 ps 100 400 ps
1 ns
7 15 ns 7 15 ns
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
5
Loading...
+ 10 hidden pages