Texas Instruments SN65LVDS387DGG, SN65LVDS387DGGR, SN65LVDS389DBT, SN65LVDS389DBTR, SN75LVDS389DBT Datasheet

...
SN65LVDS387, SN75LVDS387, SN65LVDS389, SN75LVDS389
HIGH-SPEED DIFFERENTIAL LINE DRIVERS
SLLS362B – SEPTEMBER 1999 – REVISED NOVEMBER 1999
D
Eight (’389) or Sixteen (’387) Line Drivers Meet or Exceed the Requirements of ANSI EIA/TIA-644 Standard
D
Designed for Signaling Rates up to 630 Mbps With Very Low Radiation (EMI)
D
Low-Voltage Differential Signaling With Typical Output Voltage of 350 mV and a 100 Load
D
Propagation Delay Times Less Than 2.9 ns
D
Output Skew Is Less Than 150 ps
D
Part-to-Part Skew Is Less Than 1.5 ns
D
35 mW Total Power Dissipation in Each Driver Operating at 200 MHz
D
Driver is High Impedance When Disabled or With VCC < 1.5 V
D
SN65’ Version Bus-Pin ESD Protection Exceeds 12 kV
D
Packaged in Thin Shrink Small-Outline Package With 20-mil Terminal Pitch
D
Low-Voltage TTL (LVTTL) Logic Inputs Are 5-V Tolerant
description
The SN65L VDS389 and SN75L VDS389 are eight and the SN65LVDS387 and SN75LVDS387 are sixteen differential line drivers that implement the electrical characteristics of low-voltage differential signalling (LVDS). This signaling technique low­ers the output voltage levels of 5-V differential standard levels (such as EIA/TIA-422B) to reduce the power, increase the switching speeds, and al­low operation with a 3.3-V supply rail. Any of the sixteen current-mode drivers will deliver a mini­mum differential output voltage magnitude of 247 mV into a 100- load when enabled.
DBT PACKAGE
(TOP VIEW)
GND
V
CC
GND
ENA
A1A A2A A3A A4A
GND
V
CC
GND
B1A B2A B3A B4A
ENB
GND
V
CC
GND
’LVDS389
1
38
2
37
3
36
4
35
5
34
6
33
7
32
8
31
9
30
10
29
11
28
12
27
13
26
14
25
15
24
16
23
17
22
18
21
19
20
A1Y A1Z A2Y A2Z A3Y A3Z A4Y A4Z NC NC NC B1Y B1Z B2Y B2Z B3Y B3Z B4Y B4Z
DGG PACKAGE
(TOP VIEW)
GND
V
CC
V
CC
GND
ENA
A1A A2A A3A A4A
ENB
B1A B2A B3A B4A
GND
V
CC
V
CC
GND
C1A C2A C3A C4A
ENC
D1A D2A D3A D4A
END
GND
V
CC
V
CC
GND
’LVDS387
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
A1Y A1Z A2Y A2Z A3Y A3Z A4Y A4Z B1Y B1Z B2Y B2Z B3Y B3Z B4Y B4Z C1Y C1Z C2Y C2Z C3Y C3Z C4Y C4Z D1Y D1Z D2Y D2Z D3Y D3Z D4Y D4Z
The intended application of this device and signaling technique is for point-to-point and multidrop baseband data transmission over controlled impedance media of approximately 100 Ω. The transmission media can be printed-circuit board traces, backplanes, or cables. The large number of drivers integrated into the same substrate, along with the low pulse skew of balanced signaling, allows extremely precise timing alignment of clock and data for synchronous parallel data transfers. When used with the companion 16- or 8-channel receivers, the SN65LVDS386 or SN65LVDS388, over 300 million data transfers per second in single-edge clocked systems are possible with very little power. (Note: The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other system characteristics.)
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
TI is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Copyright 1999, Texas Instruments Incorporated
1
SN65LVDS387, SN75LVDS387, SN65LVDS389, SN75LVDS389 HIGH-SPEED DIFFERENTIAL LINE DRIVERS
SLLS362B – SEPTEMBER 1999 – REVISED NOVEMBER 1999
description (continued)
The drivers are enabled in groups of four and are designated as banks A, B, C, and D. When disabled, the driver outputs are a high impedance. Each driver input (A) and enable (EN) have an internal pulldown that will drive the input to a low level when open circuited.
The SN65LVDS387 and SN65LVDS389 are characterized for operation from –40°C to 85°C. The SN75LVDS387 and SN75LVDS389 are characterized for operation from 0°C to 70°C.
logic diagram (positive logic)
1A
2A
EN
3A
4A
(1/4 of ’LVDS387 or 1/2 of ’LVDS389 shown)
AVAILABLE OPTIONS
PART NUMBER
SN65LVDS387DGG –40°C to 85°C 16 12 kV SN75LVDS387DGG 0°C to 70°C 16 4 kV SN65LVDS389DBT –40°C to 85°C 8 12 kV SN75LVDS389DBT 0°C to 70°C 8 4 kV
This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., SN65LVDS387DGGR).
TEMPERATURE
RANGE
DRIVER FUNCTION TABLE
1Y 1Z
2Y 2Z
3Y 3Z
4Y 4Z
NO. OF
DRIVERS
BUS-PIN
ESD
INPUT
A EN Y Z
H H H L
L H L H
X L Z Z
OPEN H L H
H = high-level, L = low-level, X = irrelevant, Z = high-impedance (off)
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
ENABLE OUTPUTS
O erating free-air tem erature, T
A
SN65LVDS387, SN75LVDS387, SN65LVDS389, SN75LVDS389
equivalent input and output schematic diagrams
EQUIVALENT OF EACH A OR EN INPUT TYPICAL OF ALL OUTPUTS
V
CC
HIGH-SPEED DIFFERENTIAL LINE DRIVERS
SLLS362B – SEPTEMBER 1999 – REVISED NOVEMBER 1999
V
CC
7 V
50
10 k
300 k
–0.5 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CC
5
Y or Z Output
7 V
A or EN
Input
absolute maximum ratings over operating free-air temperature (unless otherwise noted)
Supply voltage range, V
Input voltage range: Inputs –0.5 V to 6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Y or Z –0.5 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrostatic discharge: SN65’ (Y, Z, and GND) Class 3, A:12 kV, B: 500 V. . . . . . . . . . . . . . . . . . . . . . . . . . . .
SN65’ (All pins) Class 3, A: 4 kV, B:400 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SN75’ (Y, Z, and GND) Class 3, A:4 kV, B: 400 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SN75’ (All pins) Class 2, A: 2 kV, B:200 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous power dissipation (see Dissipation Rating Table). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range –65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 in) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
This is the inverse of the junction-to-ambient thermal resistance when board-mounted (low-k) and with no air flow.
2. Tested in accordance with MIL-STD-883C Method 3015.7.
DISSIPATION RATING TABLE
PACKAGE
DBT 1071 mW 8.5 mW/°C 688 mW 556 mW
DGG 2094 mW 16.7 mW/°C 1342 mW 1089 mW
TA 25°C
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
recommended operating conditions
Supply voltage, V High-level input voltage, V Low-level input voltage, V
p
MIN NOM MAX UNIT
CC
IH
IL
p
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
SN75’ 0 70 °C SN65’ –40 85 °C
3 3.3 3.6 V 2 V
0.8 V
3
SN65LVDS387, SN75LVDS387, SN65LVDS389, SN75LVDS389
R
100 Ω
R
100 Ω
ICCSu ly current
mA
,
IOSShort-circuit output current
R
L
100 Ω
L
See Figure 5
HIGH-SPEED DIFFERENTIAL LINE DRIVERS
SLLS362B – SEPTEMBER 1999 – REVISED NOVEMBER 1999
electrical characteristics over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP†MAX UNIT
|VOD| Differential output voltage magnitude |VOD| V
OC(SS)
V
OC(SS)
V
OC(PP)
I
I
IH
I
IL
I
OZ
I
O(OFF)
C
IN
C
O
All typical values are at 25°C and with a 3.3 V supply.
Change in differential output voltage magnitude between logic states
Steady-state common-mode output voltage 1.125 1.375 V Change in steady-state common-mode output
voltage between logic states Peak-to-peak common-mode output voltage 50 150 mV
Supply current
High-level input current VIH = 2 V 3 20 µA Low-level input current VIL = 0.8 V 2 10 µA
p
High-impedance output current VO = 0 V or V Power-off output current VCC = 1.5 V, VO = 2.4 V ±1 µA Input capacitance VI = 0.4 sin (4E6πt) + 0.5 V 5 pF
Output capacitance
=
L
See Figure 1 and 2
See 3
’LVDS387 ’LVDS389
’LVDS387 ’LVDS389
VOY or VOZ = 0 V ±24 mA VOD = 0 V ±12 mA
VI = 0.4 sin (4E6πt) + 0.5 V, Disabled
,,
CC
Enabled,
=
L
VIN = 0.8 V or 2 V Disabled,
VIN = 0 V or V
,
CC
247 340 454
–50 50
–50 50 mV
85 95 50 70
0.5 1.5
0.5 1.5
±1 µA
9.4 pF
mV
mA
switching characteristics over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP†MAX UNIT
t
PLH
t
PHL
t
r
t
f
t
sk(p)
t
sk(o)
t
sk(pp)
t
PZH
t
PZL
t
PHZ
t
PLZ
All typical values are at 25°C and with a 3.3 V supply.
t
sk(o)
§
t
sk(pp)
with the same supply voltages, at the same temperature, and have identical packages and test circuits.
Propagation delay time, low-to-high-level output 0.9 1.7 2.9 ns Propagation delay time, high-to-low-level output 0.9 1.6 2.9 ns Differential output signal rise time Differential output signal fall time Pulse skew (|t
Output skew Part-to-part skew
Propagation delay time, high-impedance-to-high-level output 6.4 15 ns Propagation delay time, high-impedance-to-low-level output Propagation delay time, high-level-to-high-impedance output Propagation delay time, low-level-to-high-impedance output 4.5 15 ns
is the magnitude of the time difference between the t
is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate
PHL
– t
|)
PLH
§
or t
PLH
of all drivers of a single device with all of their inputs connected together.
PHL
= CL = 10 pF, See Figure 4
,
0.4 0.8 1 ns
0.4 0.8 1 ns 150 500 ps
80 150 ps
1.5 ns
5.9 15 ns
3.5 15 ns
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Loading...
+ 9 hidden pages