Texas Instruments SM320C6713-EP, SM320C6713B-EP Datasheet

SM320C6713-EP SM320C6713B-EP
FLOATING-POINT DIGITAL SIGNAL PROCESSORS
Data Manual
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
August 2003–Revised April 2011
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com
Contents
1 FEATURES ......................................................................................................................... 9
2 SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS ..................................... 10
3 DEVICE INFORMATION ...................................................................................................... 11
3.1 Description ................................................................................................................. 14
3.2 Device Characteristics .................................................................................................... 16
3.3 Functional Block and CPU (DSP Core) Diagram ..................................................................... 17
4 OVERVIEW ....................................................................................................................... 18
4.1 CPU (DSP Core) Description ............................................................................................ 18
4.2 Memory Map Summary ................................................................................................... 19
4.3 L2 Memory Structure Expanded ......................................................................................... 21
4.4 Peripheral Register Descriptions ........................................................................................ 22
4.5 Signal Groups Description ................................................................................................ 30
5 DEVICE CONFIGURATIONS ................................................................................................ 35
5.1 Device Configurations at Device Reset ................................................................................. 35
5.2 Peripheral Pin Selection at Device Reset .............................................................................. 36
5.3 Peripheral Selection/Device Configurations Via the DEVCFG Control Register .................................. 36
5.4 Multiplexed Pins ........................................................................................................... 37
5.5 Configuration Examples .................................................................................................. 41
5.6 Debugging Considerations ............................................................................................... 47
6 TERMINAL FUNCTIONS ...................................................................................................... 47
6.1 Development Support ..................................................................................................... 55
6.2 Device and Development-Support Tool Nomenclature ............................................................... 56
6.2.1 Device Development Evolutionary Flow ..................................................................... 56
6.2.2 Support Tool Development Evolutionary Flow .............................................................. 56
6.3 Ordering Nomenclature ................................................................................................... 57
6.4 Documentation Support ................................................................................................... 57
7 REGISTER INFORMATION .................................................................................................. 59
7.1 CPU Control Status Register (CSR) Description ...................................................................... 59
7.2 Cache Configuration (CCFG) Register Description (13B) ........................................................... 60
7.3 Interrupts and Interrupt Selector ......................................................................................... 61
7.4 External Interrupt Sources ............................................................................................... 63
7.5 EDMA Module and EDMA Selector ..................................................................................... 64
8 PLL and PLL Controller ...................................................................................................... 68
8.1 PLL Registers .............................................................................................................. 69
9 MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS ............................................. 75
9.1 McASP Block Diagram .................................................................................................... 75
9.2 Multichannel Time Division Multiplexed (TDM) Synchronous Transfer Mode ..................................... 77
9.3 Burst Transfer Mode ...................................................................................................... 77
9.4 Supported Bit Stream Formats for TDM and Burst Transfer Modes ................................................ 78
9.5 Digital Audio Interface Transmitter (DIT) Transfer Mode (Transmitter Only) ...................................... 78
9.6 McASP Flexible Clock Generators ...................................................................................... 79
9.7 McASP Error Handling and Management .............................................................................. 79
9.8 McASP Interrupts and EDMA Events ................................................................................... 80
9.9 I
10 LOGIC AND POWER SUPPLY .............................................................................................. 82
2
C ........................................................................................................................... 80
2 Contents Copyright © 2003–2011, Texas Instruments Incorporated
SM320C6713-EP
SM320C6713B-EP
www.ti.com
10.1 General-Purpose Input/Output (GPIO) ................................................................................. 82
10.2 Power-Down Mode Logic ................................................................................................. 83
10.2.1 Triggering, Wake-Up, and Effects ............................................................................ 83
10.3 Power-Supply Sequencing ............................................................................................... 84
10.3.1 System-Level Design Considerations ........................................................................ 85
10.3.2 Power-Supply Design Considerations ....................................................................... 85
10.4 Power-Supply Decoupling ................................................................................................ 85
10.5 IEEE Std 1149.1 JTAG Compatibility Statement ...................................................................... 85
10.6 EMIF Device Speed ....................................................................................................... 86
10.7 EMIF Big Endian Mode Correctness (C6713B Only) ................................................................. 87
10.8 Bootmode ................................................................................................................... 88
SGUS049K–AUGUST 2003– REVISED APRIL 2011
11 PARAMETRIC INFORMATION ............................................................................................. 89
11.1 Absolute Maximum Ratings .............................................................................................. 89
11.2 Recommended Operating Conditions .................................................................................. 89
11.3 Electrical Characteristics ................................................................................................. 90
11.4 Parameter Measurement Information ................................................................................... 91
11.4.1 Timing Information .............................................................................................. 91
11.4.2 Signal Transition Levels ....................................................................................... 91
11.4.3 AC Transient Rise/Fall Time Specifications ................................................................. 92
11.4.4 Timing Parameters and Board Routing Analysis ........................................................... 93
11.5 Input and Output Clocks .................................................................................................. 94
11.6 Asynchronous Memory Timing .......................................................................................... 97
11.7 Synchronous-Burst Memory Timing ................................................................................... 100
11.8 Synchronous DRAM Timing ............................................................................................ 101
11.9 HOLD/HOLDA Timing ................................................................................................... 106
11.10 BUSREQ Timing ......................................................................................................... 106
11.11 Reset Timing ............................................................................................................. 107
11.12 External Interrupt Timing ............................................................................................... 109
11.13 Multichannel Audio Serial Port (McASP) Timing .................................................................... 110
11.14 Inter-Integrated Circuits (I
11.15 Host-Port Interface Timing .............................................................................................. 115
11.16 Multichannel Buffered Serial Port (McBSP) Timing ................................................................. 119
11.17 Timer Timing ............................................................................................................. 126
11.18 General-Purpose Input/Output (GPIO) Port Timing ................................................................. 127
11.19 JTAG Test Port Timing .................................................................................................. 128
2
C) Timing .................................................................................. 113
12 MECHANICAL DATA ........................................................................................................ 129
12.1 Mechanical Information .................................................................................................. 129
12.2 Packaging Information ................................................................................................... 129
Copyright © 2003–2011, Texas Instruments Incorporated Contents 3
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com
List of Figures
4-1 320C67xCPU (DSP Core) Data Paths..................................................................................... 19
4-2 L2 Memory Configuration ....................................................................................................... 21
4-3 EDMA Channel Parameter Entries (Six Words) for Each EDMA Event .................................................. 25
4-4 CPU (DSP Core) and Peripheral Signals ..................................................................................... 31
4-5 Peripheral Signals................................................................................................................ 32
4-6 Peripheral Signals................................................................................................................ 33
4-7 Peripheral Signals................................................................................................................ 34
4-8 Peripheral Signals................................................................................................................ 34
5-1 Configuration Example A (Two I2C + Two McASP + GPIO) ............................................................... 42
5-2 Configuration Example B (One I2C + One McBSP + Two McASP + GPIO) ............................................. 43
5-3 Configuration Example C [2 I2C + 1 McBSP + 1 McASP + 1 McASP (DIT) + GPIO] .................................. 44
5-4 Configuration Example D [1 I2C + 2 McBSP + 1 McASP + 1 McASP (DIT) + GPIO + Timers] ....................... 45
5-5 Configuration Example E (1 I2C + HPI + 1 McASP)......................................................................... 46
5-6 Configuration Example F (One McBSP + HPI + One McASP)............................................................. 47
6-1 TMS320C6000DSP Device Nomenclature (Including SM320C6713 and C6713B Devices)....................... 57
7-1 CPU Control Status Register (CPU CSR) .................................................................................... 59
7-2 Cache Configuration (CCFG) Register........................................................................................ 61
8-1 PLL and Clock Generator Logic................................................................................................ 68
9-1 McASP0 and McASP1 Configuration.......................................................................................... 76
9-2 I2Cx Module Block Diagram .................................................................................................... 81
10-1 GPIO Enable (GPEN) Register (Hex Address: 01B0 0000) ............................................................... 82
10-2 GPIO Direction (GPDIR) Register (Hex Address: 01B0 0004) ............................................................ 82
10-3 Power-Down Mode Logic........................................................................................................ 83
10-4 PWRD Field of the CSR ........................................................................................................ 84
10-5 Schottky Diode Diagram......................................................................................................... 85
10-6 16/8-Bit EMIF Big Endian Mode Correctness Mapping (HD12 = 1) (C6713B Only) .................................... 87
10-7 16/8-Bit EMIF Big Endian Mode Correctness Mapping (HD12 = 0) (C6713B Only) .................................... 88
11-1 Test Load Circuit for AC Timing Measurements ............................................................................. 91
11-2 Input and Output Voltage Reference Levels for AC Timing Measurements.............................................. 91
11-3 Rise and Fall Transition Time Voltage Reference Levels................................................................... 91
11-4 AC Transient Specification Rise Time......................................................................................... 92
11-5 AC Transient Specification Fall Time .......................................................................................... 92
11-6 Board-Level Input/Output Timings ............................................................................................. 94
11-7 CLKIN.............................................................................................................................. 94
11-8 CLKOUT2 ......................................................................................................................... 94
11-9 CLKOUT3 ......................................................................................................................... 95
11-10 ECLKIN............................................................................................................................ 95
11-11 ECLKOUT......................................................................................................................... 96
11-12 Asynchronous Memory Read................................................................................................... 99
11-13 Asynchronous Memory Write................................................................................................... 99
11-14 SBSRAM Read Timing......................................................................................................... 101
11-15 SBSRAM Write Timing......................................................................................................... 101
11-16 SDRAM Read Command (CAS Latency 3) ................................................................................. 103
11-17 SDRAM Write Command...................................................................................................... 103
11-18 SDRAM ACTV Command ..................................................................................................... 104
11-19 SDRAM DCAB Command..................................................................................................... 104
11-20 SDRAM DEAC Command..................................................................................................... 105
4 List of Figures Copyright © 2003–2011, Texas Instruments Incorporated
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
11-21 SDRAM REFR Command..................................................................................................... 105
11-22 SDRAM MRS Command ...................................................................................................... 105
11-23 HOLD/HOLDA Timing.......................................................................................................... 106
11-24 BUSREQ......................................................................................................................... 107
11-25 Reset Timing .................................................................................................................... 108
11-26 External/NMI Interrupt.......................................................................................................... 109
11-27 McASP Input Timings .......................................................................................................... 112
11-28 McASP Output Timings........................................................................................................ 112
11-29 I 11-30 I
2
C Receive...................................................................................................................... 113
2
C Transmit Timings........................................................................................................... 114
11-31 HPI Read Timing (HAS Not Used, Tied High) .............................................................................. 117
11-32 HPI Read Timing (HAS Used) ................................................................................................ 117
11-33 HPI Write Timing (HAS Not Used, Tied High) .............................................................................. 118
11-34 HPI Write Timing (HAS Used)................................................................................................. 118
11-35 McBSP Timings................................................................................................................. 121
11-36 FSR Timing When GSYNC = 1............................................................................................... 121
11-37 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0................................................... 122
11-38 McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0............................................................ 123
11-39 McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1............................................................ 124
11-40 McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1............................................................ 125
11-41 Timer ............................................................................................................................. 126
11-42 GPIO Port Timing............................................................................................................... 127
11-43 JTAG Test-Port Timing......................................................................................................... 128
Copyright © 2003–2011, Texas Instruments Incorporated List of Figures 5
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com
List of Tables
3-1 Terminal Assignments for 272-Ball GDP Package (in Order of Ball No.) ................................................ 12
3-2 Characteristics of the C6713 and C6713B Processor....................................................................... 16
4-1 320C6713/13B Memory Map Summary ...................................................................................... 20
4-2 EMIF Registers ................................................................................................................... 22
4-3 L2 Cache Registers .............................................................................................................. 23
4-4 Interrupt Selector Registers..................................................................................................... 23
4-5 Device Registers ................................................................................................................. 24
4-6 EDMA Parameter RAM ......................................................................................................... 24
4-7 EDMA Registers.................................................................................................................. 25
4-8 Quick DMA (QDMA) and Pseudo Registers ................................................................................. 25
4-9 PLL Controller Registers ........................................................................................................ 25
4-10 McASP0 and McASP1 Registers .............................................................................................. 26
4-11 I2C0 and I2C1 Registers........................................................................................................ 28
4-12 HPI Registers ..................................................................................................................... 28
4-13 Timer 0 and Timer 1 Registers ................................................................................................. 28
4-14 McBSP0 and McBSP1 Registers .............................................................................................. 28
4-15 GPIO Registers................................................................................................................... 29
5-1 Device Configurations Pins at Device Reset (HD[4:3], HD8, HD12 [13B only], and CLKMODE0) ................... 35
5-2 HPI_EN (HD14 Pin) Peripheral Selection (HPI or McASP1, and Select GPIO Pins) .................................. 36
5-3 Device Configuration Register (DEVCFG) [Address Location: 0x019C02000x019C02FF] .......................... 36
5-4 Device Configuration Register (DEVCFG) Selection Bit Descriptions .................................................... 37
5-5 Peripheral Pin Selection Matrix ................................................................................................ 38
5-6 C6713/13B Device Multiplexed/Shared Pins ................................................................................. 38
6-1 320C6713 and C6713B Device Part Numbers (P/Ns) and Ordering Information ....................................... 57
7-1 CPU CSR Bit Field Description ................................................................................................ 60
7-2 CCFG Register Bit Field Description .......................................................................................... 61
7-3 DSP Interrupts .................................................................................................................... 61
7-4 Interrupt Selector ................................................................................................................. 63
7-5 External Interrupt Sources and Peripheral Module Control................................................................. 64
7-6 EDMA Channels.................................................................................................................. 65
7-7 EDMA Selector ................................................................................................................... 66
7-8 EDMA Event Selector Registers (ESEL0 Register (0x01A0 FF00) ....................................................... 67
7-9 EDMA Event Selector RegistersESEL1 Register (0x01A0 FF04) ...................................................... 67
7-10 EDMA Event Selector RegistersESEL3 Register (0x01A0 FF0C) ..................................................... 67
7-11 EDMA Event Selection Registers (ESEL0, ESEL1, and ESEL3) Description............................................ 67
8-1 PLL Lock and Reset Times ..................................................................................................... 69
8-2 CLKOUT Signals, Default Settings, and Control............................................................................. 69
8-3 PLL Clock Frequency Ranges ................................................................................................. 70
8-4 PLL Control/Status Register (PLLCSR) (0x01B7 C100) ................................................................... 70
8-5 PLL Control/Status Register (PLLCSR) Description......................................................................... 71
8-6 PLL Multiplier (PLLM) Control Register (0x01B7 C110) .................................................................... 71
8-7 PLL Multiplier (PLLM) Control Register Description......................................................................... 72
8-8 PLL Wrapper Divider x Registers (PLLDIV0, PLLDIV1, PLLDIV2, and PLLDIV3)
(0x01B7 C114, 0x01B7 C118, 0x01B7 C11C, and 0x01B7 C120, respectively) ....................................... 72
8-9 PLL Wrapper Divider x Registers
(Prescaler Divider D0 and Post-Scaler Dividers D1, D2, and D3) Description .......................................... 72
8-10 Oscillator Divider 1 (OSCDIV1) Register (0x01B7 C124) .................................................................. 73
6 List of Tables Copyright © 2003–2011, Texas Instruments Incorporated
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
8-11 Oscillator Divider 1 (OSCDIV1) Register Description ....................................................................... 74
10-1 Characteristics of the Power-Down Modes ................................................................................... 84
10-2 C6713/13B Example Boards and Maximum EMIF Speed.................................................................. 87
11-1 Board-Level Timings Example (see ) .......................................................................................... 93
11-2 Timing Requirements for CLKIN ............................................................................................... 94
11-3 Switching Characteristics for CLKOUT2 ...................................................................................... 94
11-4 Switching Characteristics for CLKOUT3 ...................................................................................... 95
11-5 Timing Requirements for ECLKIN ............................................................................................. 95
11-6 Switching Characteristics for ECLKOUT ..................................................................................... 96
11-7 Timing Requirements for Asynchronous Memory Cycles .................................................................. 97
11-8 Switching Characteristics for Asynchronous Memory Cycles ............................................................. 97
11-9 Timing Requirements for Synchronous-Burst SRAM Cycles ............................................................. 100
11-10 Switching Characteristics for Synchronous-Burst SRAM Cycles ........................................................ 100
11-11 Timing Requirements for Synchronous DRAM Cycles .................................................................... 101
11-12 Switching Characteristics for Synchronous DRAM Cycles ............................................................... 101
11-13 Timing Requirements for HOLD/HOLDA Cycles ........................................................................... 106
11-14 Switching Characteristics for HOLD/HOLDA Cycles ...................................................................... 106
11-15 Switching Characteristics for BUSREQ Cycles ............................................................................ 106
11-16 Timing Requirements for RESET ............................................................................................ 107
11-17 Switching Characteristics For RESET ....................................................................................... 107
11-18 Timing Requirements for External Interrupts ............................................................................... 109
11-19 Timing Requirements for McASP ............................................................................................ 110
11-20 Switching Characteristics for McASP ........................................................................................ 110
11-21 Timing Requirements for I 11-22 Switching Characteristics for I
2
C ................................................................................................. 113
2
C ............................................................................................. 114
11-23 Timing Requirements for Host-Port Interface Cycles ..................................................................... 115
11-24 Switching Characteristics for Host-Port Interface Cycles ................................................................. 116
11-25 Timing Requirements for McBSP ............................................................................................ 119
11-26 Switching Characteristics for McBSP ........................................................................................ 120
11-27 Timing Requirements for FSR When GSYNC = 1 ......................................................................... 121
11-28 Timing Requirements for McBSP as SPI Master or Slave:
CLKSTP = 10b, CLKXP = 0 .................................................................................................... 121
11-29 Switching Characteristics for McBSP as SPI Master or Slave:
CLKSTP = 10b, CLKXP = 0 .................................................................................................... 122
11-30 Timing Requirements for McBSP as SPI Master or Slave:
CLKSTP = 11b, CLKXP = 0 .................................................................................................... 122
11-31 Switching Characteristics for McBSP as SPI Master or Slave:
CLKSTP = 11b, CLKXP = 0 .................................................................................................... 123
11-32 Timing Requirements for McBSP as SPI Master or Slave:
CLKSTP = 10b, CLKXP = 1 .................................................................................................... 124
11-33 Switching Characteristics for McBSP as SPI Master or Slave:
CLKSTP = 10b, CLKXP = 1 .................................................................................................... 124
11-34 Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 ............................. 125
11-35 Switching Characteristics for McBSP as SPI Master or Slave:
CLKSTP = 11b, CLKXP = 1 .................................................................................................... 125
11-36 Timing Requirements for Timer Inputs ...................................................................................... 126
11-37 Switching Characteristics for Timer Inputs ................................................................................. 126
11-38 Timing Requirements for GPIO Inputs ...................................................................................... 127
11-39 Switching Characteristics for GPIO Inputs .................................................................................. 127
11-40 Timing Requirements for JTAG Test Port .................................................................................. 128
Copyright © 2003–2011, Texas Instruments Incorporated List of Tables 7
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
11-41 Switching Characteristics for JTAG Test Port .............................................................................. 128
12-1 Thermal Resistance Characteristics (S-PBGA Package) for GDP....................................................... 129
www.ti.com
8 List of Tables Copyright © 2003–2011, Texas Instruments Incorporated
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
FLOATING-POINT DIGITAL SIGNAL PROCESSORS
Check for Samples: SM320C6713-EP

1 FEATURES

1 2
Highest Performance Floating Point Digital 32 Bit External Memory Interface (EMIF)
Signal Processors (DSPs): C6713/C6713B
Eight 32 Bit Instructions/Cycle SBSRAM, and SDRAM32/64 Bit Data Word 512M Byte Total Addressable External200 and 300 MHz Clock Rate5 Instruction Cycle Times2400/1800 and 1600/1200 MIPS/MFLOPSRich Peripheral Set, Optimized for AudioHighly Optimized C/C++ Compiler
Advanced Very Long Instruction Word (VLIW)
320C67xDSP CoreEight Independent Functional Units:
Two ALUs (Fixed Point)
Four ALUs (Floating Point and Fixed
Point)
Two Multipliers (Floating Point and Fixed Point)
– Load Store Architecture With 32 32-Bit
General Purpose Registers
Instruction Packing Reduces Code SizeAll Instructions Conditional
Instruction Set FeaturesNative Instructions for IEEE 754Byte Addressable (8/16/32 Bit Data)8 Bit Overflow ProtectionSaturation; Bit-Field Extract, Set, Clear;
Bit-Counting; Normalization
L1/L2 Memory Architecture4K Byte L1P Program Cache (Direct-Mapped)4K Byte L1D Data Cache (2-Way)256K Byte L2 Memory Total: 64K-Byte L2
Unified Cache/Mapped RAM, and 192K Byte Additional L2 Mapped RAM
Device ConfigurationBoot Mode: HPI, 8/16/32 Bit ROM BootEndianness: Little Endian, Big Endian
Glueless Interface to SRAM, EPROM, Flash,
Memory Space
Enhanced Direct Memory Access (EDMA) Controller (16 Independent Channels)
16 Bit Host Port Interface (HPI)
Two Multichannel Audio Serial Ports (McASPs)Two Independent Clock Zones Each
(One TX and One RX)
– Eight Serial Data Pins Per Port: Individually
Assignable to any of the Clock Zones
– Wide Variety of I2Sand Similar Bit Stream
Formats
– Integrated Digital Audio Interface Transmitter
(DIT)
Extensive Error Checking and Recovery
Two Inter-Integrated Circuit Bus (I2C™ Bus)
Multi-Master and Slave Interfaces
Two Multichannel Buffered Serial Ports:Serial Peripheral Interface (SPI)High Speed TDM InterfaceAC97 Interface
Two 32 Bit General Purpose Timers
Dedicated GPIO Module With 16 Pins (External
Interrupt Capable)
Flexible Phase Locked Loop (PLL) Based Clock Generator Module
IEEE-1149.1 (JTAG)
(1)
Boundary-Scan
Compatible
272 Ball, Ball Grid Array Package (GDP)
0.13 μm/6 Level Copper Metal ProcessCMOS Technology
3.3 V I/Os, 1.26 V Internal
(1) IEEE Standard 1149.1-1990 Standard-Test-Access Port and
Boundary Scan Architecture.
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2320C67x, TMS320C6000, TMS320C67x, eXpressDSP, Code Composer Studio, DSP/BIOS, C6000, XDS, TMS320, PowerPAD, C62x, C67x
are trademarks of Texas Instruments.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Copyright © 2003–2011, Texas Instruments Incorporated
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011

2 SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS

3
Controlled Baseline
One Assembly/Test Site
One Fabrication Site
Available in Military (55°C/125°C) Temperature
Range
(2) Custom temperature ranges available
(2)
break
Extended Product Life Cycle
Extended Product-Change Notification
Product Traceability
www.ti.com
3320C67x, TMS320C6000, TMS320C67x, eXpressDSP, Code Composer Studio, DSP/BIOS, C6000, XDS, TMS320, PowerPAD, C62x, C67x
are trademarks of Texas Instruments.
10 SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
V
SSVSSVSSVSS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
EA20
DV
DD
EA18EA16
EA14
V
SS
CLKOUT2/
GP[2]
ECLKIN
ECLKOUT
EA9
EA7DV
DD
EA2ARDY
BE2
ED18
V
SS
V
SS
V
SS
CVDDDV
DD
ED17
V
SS
CE2
EA4
EA6
DV
DD
AOE
SDRAS
SSOE
/
/
AWE
SDWE
SSWE
/
/
ARE SDCAS SSADS
/
/
V
SS
DV
DD
EA11
EA13 EA15
V
SS
EA19
CE1
CV
DD
V
SS
BE0
DV
DD
CV
DD
CE0
EA17
DV
DD
EA12
DV
DD
EA10EA8EA5EA3
CE3
BE3
ED16
CV
DD
ED19ED20
ED22
ED28
SCL0
FSX1
CLKR1/ AXR0[6]
DR1/
SDA1
DR0/
AXR0[0]
DX0/
AXR0[1]
FSR1/
AXR0[7]
DV
DD
ED24
ED21
ED29
SDA0
DX1
AXR0[5]
CLKX1/
AMUTE0
CLKS1/
SCL1
GP[5] (EXT_INT5) AMUTEIN0
GP[4] (EXT_INT4) AMUTEIN1
GP[7]
(EXT_INT7)
GP[6] (EXT_INT6)
CLKS0
AHCLKR0
ED27
ED25
ED23
ED30
ED31
ED26
DV
DD
EA21
BE1
V
SS
V
SS
V
SS
V
SS
CV
DD
V
SS
CV
DD
V
SS
DV
DD
CV
DD
DVDDVSSV
SS
V
SS
V
SS
CV
DD
CV
DD
CV
DD
CV
DD
DV
DD
DV
DD
V
SS
V
SS
V
SS
CV
DD
CV
DD
CV
DD
V
SS
ED13
ED6
ED9
DV
DD
ED2
ED0
DV
DD
ED15
ED7
V
SS
ED11
ED3
ED1
ED4
ED14
ED8
ED10
ED12
CV
DD
V
SS
ED5
HOLD
HINT/ GP[1]
HRDY/
ACLKR[1]
HCS/
AXR1[1]
HAS/
ACLKX1
HDS/
AXR1[6]
HDS2/
AXR1[5]
HCNTL1/
AXR1[1]
HCNTL0/
AXR1[3]
HD6/
AHCLKR1
HD9/
GP[9]
HD5/
AHCLKX1
HD12/
GP[12]
HD14/
GP[14]
HD15/
GP[15]
HD13/
GP[13]
HD11/
GP[11]
HD10/
GP[10]
HD8/ GP[8]
HD7/ GP[3]
HD4/
GP[0]
HD2/
AFSX1
HD3/
AMUTE1
HD1/
AXR1[7]
HHWIL/
AFSR[1]
HD0/
AXR1[4]
HR/ /
AXR1[0]
W
HOLDA
BUS REQ
V
SS
V
SS
V
SS
V
SS
V
SS
DV
DD
CV
DD
CV
DD
V
SS
CV
DD
DV
DD
FSR0/
AFSR0
CLKR0/
ACLKR0
CLKX0/
ACLKX0
TOUT0/ AXR0[2]
TOUT1/
AXR0[4]
TINP0/
AXR0[3]
TINP1/
AHCLKX0
FSX0/
AFSX0
V
SS
V
SS
V
SS
DV
DD
DV
DD
CV
DD
CV
DD
CV
DD
CV
DD
CV
DD
DV
DD
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
EMU2
CLKIN
CLK
MODE0
PLLHV
RSV
RSV
CV
DD
V
SS
TRST
TCK
TDI
TMS
CV
DD
CV
DD
CVDDCV
DD
CV
DD
CV
DD
DV
DD
DV
DD
DV
DD
DV
DD
RSV RSV
RSV
RSV
V
SS
V
SSVSS
TD0
CV
DD
EMU1
EMU0
CLKOUT3
DV
DD
EMU3
CV
DD
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
RSV
EMU4
EMU5
NMI
RESET
DV
DD
1 2
3
4
5 6
7
8 9 10
11 12
13
14
15 16
17
18 19 20
ShadingdenotestheGDPpackagepinfunctionsthatdropoutonthePYPpackage.
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011

3 DEVICE INFORMATION

GDP 272-BALL BGA PACKAGE
(BOTTOM VIEW)
Copyright © 2003–2011, Texas Instruments Incorporated DEVICE INFORMATION 11
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 3-1. Terminal Assignments for 272-Ball GDP Package (in Order of Ball No.)
BALL NO. SIGNAL NAME BALL NO. SIGNAL NAME
A1 V A2 V A3 CLKIN C3 CV A4 CV A5 RSV C5 PLLHV A6 TCK C6 V A7 TDI C7 CV A8 TDO C8 V
A9 CV A10 CV A11 V A12 RSV (connected directly to CVDD) C12 RSV A13 RESET C13 NMI A14 V A15 HD13/GP[13] C15 HD12/GP[12] A16 HD11/GP[11] C16 HD9/GP[9] A17 DV A18 HD7/GP[3] C18 CV A19 V A20 V
B1 V
B2 CV
B3 DV
B4 V
B5 RSV D5 CV
B6 TRST D6 CV
B7 TMS D7 RSV
B8 DV
B9 EMU1 D9 EMU0 B10 EMU3 D10 CLKOUT3 B11 RSV (connected directly to VSS) D11 CV B12 EMU5 D12 RSV B13 DV B14 HD15/GP[15] D14 CV B15 V B16 HD10/GP[10] D16 DV B17 HD8/GP[8] D17 V B18 HD5/AHCLKX1 D18 HD2/AFSX1 B19 CV B20 V
E1 CLKS1/SCL1 J17 HOLD
E2 V
E3 GP[7]/(EXP_INT7) J19 BUSREQ
E4 V E17 V E18 HAS/ACLKX1 K2 V E19 HDS1/AXR1[6] K3 CLKS0/AHCLKR0 E20 HD0/AXR1[4] K4 CV
F1 TOUT1/AXR0[4] K9 V
F2 TINP1/AHCLKX0 K10 V
F3 DV
SS SS
DD
DD DD
SS
SS
DD
SS SS SS
DD DD
SS
DD
DD
SS
DD
SS
SS
SS SS
DD
www.ti.com
C1 GP[5](EXT_INT5)/AMUTEIN0 C2 GP[4](EXT_INT4)/AMUTEIN1
DD
C4 CLKMODE0
SS
DD
SS
C9 V
C10 DV
SS
DD
C11 EMU4
C14 HD14/GP[14]
C17 HD6/AHCLKR1
DD
C19 HD4/GP[0] C20 HD3/AMUTE1
D1 DV
DD
D2 GP[6](EXT_INT6) D3 EMU2 D4 V
D8 V
D13 V
D15 CV
D19 DV
SS
DD DD
SS
DD
SS
DD DD DD
SS
DD
D20 HD1/AXR1[7]
J18 HOLDA
J20 HINT/GP[1]
K1 CV
K11 V
DD
SS
DD SS SS SS
12 DEVICE INFORMATION Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
Table 3-1. Terminal Assignments for 272-Ball GDP Package (in Order of Ball No.) (continued)
SGUS049K–AUGUST 2003– REVISED APRIL 2011
BALL NO. SIGNAL NAME BALL NO. SIGNAL NAME
F4 CV
F17 CV
DD DD
K12 V K17 CV
SS
DD
F18 HDS2/AXR1[5] K18 ED0 F19 V
SS
F20 HCS/AXR1[2] K20 V
K19 ED1
SS
G1 TOUT0/AXR0[2] L1 FSX1 G2 TINP0/AXR0[3] L2 DX1/AXR0[5] G3 CLKX0/ACLKX0 L3 CLKX1/AMUTE0 G4 V
G17 V
SS SS
G18 HCNTL0/AXR1[3] L10 V G19 HCNTL1/AXR1[1] L11 V G20 HR/W/AXR1[0] L12 V
H1 FSX0/AFSX0 L17 CV
L4 CV L9 V
DD SS SS SS SS
DD
H2 DX0/AXR0[1] L18 ED2 H3 CLKR0/ACLKR0 L19 ED3
H4 V H17 V H18 DV
SS SS
DD
L20 CV
DD
M1 CLKR1/AXR0[6]
M2 DR1/SDA1 H19 HRDY/ACLKR1 M3 FSR1/AXR0[7] H20 HHWIL/AFSR1 M4 V
J1 DR0/AXR0[0] M9 V J2 DV
DD
M10 V J3 FSR0/AFSR0 M11 V J4 V J9 V
J10 V J11 V J12 V
SS SS SS SS SS
M12 V
M17 V
M18 DV
M19 ED4
M20 ED5 N1 SCL0 U9 V N2 SDA0 U10 CV N3 ED31 U11 CV N4 V
N17 V
SS SS
U12 DV
U13 V
N18 ED6 U14 CV N19 ED7 U15 CV N20 ED8 U16 DV
P1 ED28 U17 V
SS SS SS SS SS SS
DD
SS
DD DD DD
SS
DD DD DD
SS
P2 ED29 U18 EA21 P3 ED30 U19 BE1 P4 V
P17 V
SS SS
U20 V
SS
V1 ED20 P18 ED9 V2 ED19 P19 V
SS
V3 CV
DD
P20 ED10 V4 ED16
R1 DV
DD
V5 BE3
R2 ED27 V6 CE3 R3 ED26 V7 EA3
R4 CV R17 CV R18 DV
DD DD DD
V8 EA5 V9 EA8
V10 EA10
Copyright © 2003–2011, Texas Instruments Incorporated DEVICE INFORMATION 13
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 3-1. Terminal Assignments for 272-Ball GDP Package (in Order of Ball No.) (continued)
BALL NO. SIGNAL NAME BALL NO. SIGNAL NAME
R19 ED11 V11 ARE/SDCAS/SSADS R20 ED12 V12 AWE/SDWE/SSWE
T1 ED24 V13 DV
T2 ED25 V14 EA17
T3 DV
T4 V T17 V T18 ED13 V18 CV T19 ED15 V19 DV T20 ED14 V20 BE0
U1 ED22 W1 V
U2 ED21 W2 CV
U3 ED23 W3 DV
U4 V
U5 DV
U6 CV
U7 DV
U8 V
W9 DV W10 AOE/SDRAS/SSOE Y6 EA2 W11 V W12 DV W13 EA11 Y9 EA9 W14 EA13 Y10 ECLKOUT W15 EA15 Y11 ECLKIN W16 V W17 EA19 Y13 V W18 CE1 Y14 EA14 W19 CV W20 V
Y1 V Y2 V Y3 ED18 Y19 V Y4 BE2 Y20 V
DD SS SS
SS
DD
DD
DD SS
DD
SS
DD
SS
DD SS SS SS
DD
V15 DV V16 EA V17 CE0
W4 ED17 W5 V W6 CE2 W7 EA4 W8 EA6
Y5 ARDY
Y7 DV Y8 EA7
Y12 CLKOUT2/GP[2]
Y15 EA16 Y16 EA18 Y17 DV Y18 EA20
DD
DD DD
SS
DD DD
SS
DD
SS
DD
SS SS
www.ti.com

3.1 Description

The TMS320C67xDSPs (including the SM320C6713 and SM320C6713B devices) compose the floating-point DSP generation in the TMS320C6000DSP platform. The C6713 and C6713B devices are based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. Throughout the remainder of this document, the SM320C6713 and SM320C6713B are referred to as 320C67x or C67x or 13/13B where generic, and where specific, their individual full device part numbers are used or abbreviated as C6713, C6713B, 13, or 13B, and so forth.
Operating at 225 MHz, the C6713/13B delivers up to 1350 million floating-point operations per second (MFLOPS), 1800 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 450 million multiply-accumulate operations per second (MMACS).
Operating at 300 MHz, the C6713B delivers up to 1800 million floating-point operations per second (MFLOPS), 2400 million instructions per second (MIPS), and with dual fixed-/floating-point multipliers up to 600 million multiply-accumulate operations per second (MMACS).
14 DEVICE INFORMATION Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
The C6713/13B has a rich peripheral set that includes two multichannel audio serial ports (McASPs), two multichannel buffered serial ports (McBSPs), two inter-integrated circuit (I2C) buses, one dedicated general-purpose input/output (GPIO) module, two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals.
The two McASP interface modules each support one transmit and one receive clock zone. Each of the McASPs has eight serial data pins that can be individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin from 2 to 32 time slots. The C6713/13B has sufficient bandwidth to support all 16 serial data pins transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format.
In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, and CP-430 encoded data channels simultaneously, with a single RAM containing the full implementation of user data and channel status fields.
The McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit for each high-frequency master clock, which verifies that the master clock is within a programmed frequency range.
The two I2C ports on the 320C6713/13B allow the DSP to easily control peripheral devices and communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
SGUS049K–AUGUST 2003– REVISED APRIL 2011
The 320C6713/13B device has two boot modesfrom the HPI or from external asynchronous ROM. For more detailed information, see the Bootmode section of this data sheet.
The TMS320C67x DSP generation is supported by the TI eXpressDSPset of industry benchmark development tools, including a highly optimizing C/C++ Compiler, the Code Composer StudioIntegrated Development Environment (IDE), JTAG-based emulation and real-time debugging, and the DSP/BIOS kernel.
Copyright © 2003–2011, Texas Instruments Incorporated DEVICE INFORMATION 15
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com

3.2 Device Characteristics

Table 3-2 provides an overview of the C6713/C6713B DSPs. The table shows significant features of each
device, including the capacity of on-chip RAM, the peripherals, the execution time, and the package type with pin count. For more details on the C67xDSP device part numbers and part numbering, see
Table 6-1 and Figure 6-1.
Table 3-2. Characteristics of the C6713 and C6713B Processor
HARDWARE FEATURES
EMIF SYSCLK3 or ECLKIN 1 (32 bit) EDMA
(16 channels)
Peripherals Not all peripheral pins are available at the same time. (For more details, see the
Device Configurations section.)
Peripheral performance is dependent on chip-level configuration.
On-chip memory Size (Bytes) 264K
CPU ID+CPU Rev ID Control Status Register (CSR[31:16]) 0x0203 BSDL file For the C6713/13B BSDL file, contact your field sales representative. Frequency MHz 200 Time ns 5 ns
Voltage
Clock generator options Multiplier ×4, ×5, ×6, ..., ×25
Package 27 mm × 27 mm 272-ball BGA (GDP) Process technology μm 0.13 Product status
Product preview (PP) Advance information (AI) Production data (PD)
(1) AUXCLK is the McASP internal high-frequency clock source for serial transfers. SYSCLK2 is the McASP system clock used for the clock
check (high-frequency) circuit.
(2) PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice. ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
(2)
HPI (16 bit) SYSCLK2 1 McASPs 2 I2Cs SYSCLK2 2
McBSPs SYSCLK2 2 32-bit timers of SYSCLK2 2 GPIO module SYSCLK2 1
Organization
Core (V) 1.26 V (C6713/C6713B) I/O (V) 3.3 V Prescaler /1, /2, /3, ..., /32
Postscaler /1, /2, /3, ..., /32
INTERNAL CLOCK
SOURCE
CPU clock frequency 1
AUXCLK, SYSCLK2
(1)
4K-Byte (KB) L1 program (L1P) cache 4KB L1 data (L1D) cache 64KB unified L2 cache/mapped RAM 192KB L2 mapped RAM
C6713/C6713B
(FLOATING-POINT DSPs)
GDP
PD (13)
16 DEVICE INFORMATION Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
Test
C67xä CPU
DataPath B
BRegisterFile
InstructionFetch
InstructionDispatch
InstructionDecode
DataPath A
ARegisterFile
Power-Down
Logic
.L1
(A) (A) (A) (A) (A) (A)
.S1 .M1 .D1. D2 .M2 .S2 .L2
L1PCache DirectMapped 4KBytesTotal
Control
Registers
Control
Logic
L1DCache
2-Way
SetAssociative
4KBytes
In-Circuit
Emulation
Interrupt
Control
C6713/13B DigitalSignalProcessors
Enhanced
DMA
Controller
(16 channel)
L2Cache/
Memory 4Banks
64KBytes
Total
(upto
4-Way)
ClockGeneratorandPLL
x4throughx25Multiplier
/1through/32Dividers
L2
Memory
192K Bytes
EMIF
McASP1
McASP0
McBSP1
McBSP0
I2C1
I2C0
Timer1
Timer0
GPIO
HPI
PinMultiplexing
32
16
NOTEA: Inadditiontofixed-pointinstructions,thesefunctionalunitsexecutefloating-pointinstructions.
EMIFinterfacesto: McBSPsinterfaceto: McASPsinterfaceto:
SDRAM- - -
- - -
- -
- -
SPIcontrolport I SmultichannelADC,DAC,codec,DIR SBSRAM High-speedTDMcodecs DIT:Multipleoutputs SRAM AC97codecs ROM/flashand SerialEEPROM I/Odevices
2
SM320C6713-EP
SM320C6713B-EP
www.ti.com

3.3 Functional Block and CPU (DSP Core) Diagram

SGUS049K–AUGUST 2003– REVISED APRIL 2011
Copyright © 2003–2011, Texas Instruments Incorporated DEVICE INFORMATION 17
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011

4 OVERVIEW

4.1 CPU (DSP Core) Description

The 320C6713/13B floating-point digital signal processor is based on the C67x CPU. The CPU fetches advanced very-long instruction words (VLIW) (256 bits wide) to supply up to eight 32-bit instructions to the eight functional units during every clock cycle. The VLIW architecture features controls by which all eight units do not have to be supplied with instructions if they are not ready to execute. The first bit of every 32-bit instruction determines if the next instruction belongs to the same execute packet as the previous instruction, or whether it should be executed in the following clock as a part of the next execute packet. Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The variable-length execute packets are a key memory-saving feature, distinguishing the C67x CPU from other VLIW architectures.
The CPU features two sets of functional units. Each set contains four units and a register file. One set contains functional units .L1, .S1, .M1, and .D1. The other set contains units .D2, .M2, .S2, and .L2. The two register files each contain 16 32-bit registers for a total of 32 general-purpose registers. The two sets of functional units, along with two register files, compose sides A and B of the CPU (see the Functional
Block and CPU (DSP Core) Diagram and Figure 4-1). The four functional units on each side of the CPU
can freely share the 16 registers belonging to that side. Additionally, each side features a single data bus connected to all the registers on the other side, by which the two sets of functional units can access data from the register files on the opposite side. While register access by functional units on the same side of the CPU as the register file can service all the units in a single clock cycle, register access using the register file across the CPU supports one read and one write per cycle.
www.ti.com
The C67x CPU executes all C62x instructions. In addition to C62x fixed-point instructions, the six out of eight functional units (.L1, .S1, .M1, .M2, .S2, and .L2) also execute floating-point instructions. The remaining two functional units (.D1 and .D2) also execute the new LDDW instruction, which loads 64 bits per CPU side for a total of 128 bits per cycle.
Another key feature of the C67x CPU is the load/store architecture, where all instructions operate on registers (as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data transfers between the register files and the memory. The data address driven by the .D units allows data addresses generated from one register file to be used to load or store data to or from the other register file. The C67x CPU supports a variety of indirect addressing modes using either linear- or circular-addressing modes with 5- or 15-bit offsets. All instructions are conditional, and most can access any one of the 32 registers. Some registers, however, are singled out to support specific addressing or to hold the condition for conditional instructions (if the condition is not automatically true). The two .M functional units are dedicated for multiplies. The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results available every clock cycle.
The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory. The 32-bit instructions destined for the individual functional units are chained together by 1 bits in the least significant bit (LSB) position of the instructions. The instructions that are chained together for simultaneous execution (up to eight in total) compose an execute packet. A 0 in the LSB of an instruction breaks the chain, effectively placing the instructions that follow it in the next execute packet. If an execute packet crosses the fetch-packet boundary (256 bits wide), the assembler places it in the next fetch packet, while the remainder of the current fetch packet is padded with NOP instructions. The number of execute packets within a fetch packet can vary from one to eight. Execute packets are dispatched to their respective functional units at the rate of one per clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch packet have been dispatched. After decoding, the instructions simultaneously drive all active functional units for a maximum execution rate of eight instructions every clock cycle. While most results are stored in 32-bit registers, they can be subsequently moved to memory as bytes or half-words as well. All load and store instructions are byte, half-word, or word addressable.
18 OVERVIEW Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
8
8
long src
dst
src2
src1
src1
src1
src1
src1
src1
src1
src1
longdst
longdst
dst
dst
dst
dst
dst
dst
dst
src2
src2
src2
src2
src2
src2
src2
longsrc
longsrc
longdst
longdst
longsrc
8
8
8
2X
1X
.L2
.S2
.M2
.D2
.D1
.M1
.S1
.L1
Control
RegisterFile
DA1
DA2
ST1
LD132LSB
LD232LSB
LD232MSB
32
32
DataPathA
DataPathB
Register
FileA
(A0−A15)
Register
FileB
(B0−B15)
LD132MSB
32
ST2
32
8
8
8
(A)
(A)
(A)
(A)
(A)
(A)
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
A. In addition to fixed-point instructions, these functional units execute floating-point instructions.
Figure 4-1. 320C67xCPU (DSP Core) Data Paths

4.2 Memory Map Summary

Table 4-1 shows the memory map address ranges of the C6713/13B devices.
Copyright © 2003–2011, Texas Instruments Incorporated OVERVIEW 19
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 4-1. 320C6713/13B Memory Map Summary
MEMORY BLOCK DESCRIPTION BLOCK SIZE (BYTES) HEX ADDRESS RANGE
Internal RAM (L2) 192K 0000 0000 0002 FFFF
Internal RAM/Cache 64K 0003 0000 0003 FFFF
Reserved 24M – 256K 0004 0000 017F FFFF
External Memory Interface (EMIF) Registers 256K 0180 0000 0183 FFFF
L2 Registers 128K 0184 0000 0185 FFFF
Reserved 128K 0186 0000 0187 FFFF
HPI Registers 256K 0188 0000 018B FFFF McBSP 0 Registers 256K 018C 0000 018F FFFF McBSP 1 Registers 256K 0190 0000 0193 FFFF
Timer 0 Registers 256K 0194 0000 0197 FFFF Timer 1 Registers 256K 0198 0000 019B FFFF
Interrupt Selector Registers 512 019C 0000 019C 01FF
Device Configuration Registers 4 019C 0200 019C 0203
Reserved 256K 516 019C 0204 019F FFFF
EDMA RAM and EDMA Registers 256K 01A0 0000 01A3 FFFF
Reserved 768K 01A4 0000 01AF FFFF
GPIO Registers 16K 01B0 0000 01B0 3FFF
Reserved 240K 01B0 4000 01B3 FFFF I2C0 Registers 16K 01B4 0000 01B4 3FFF I2C1 Registers 16K 01B4 4000 01B4 7FFF
Reserved 16K 01B4 8000 01B4 BFFF
McASP0 Registers 16K 01B4 C000 01B4 FFFF McASP1 Registers 16K 01B5 0000 01B5 3FFF
Reserved 160K 01B5 4000 01B7 BFFF
PLL Registers 8K 01B7 C000 01B7 DFFF
Reserved 264K 01B7 E000 01BB FFFF
Emulation Registers 256K 01BC 0000 01BF FFFF
Reserved 4M 01C0 0000 01FF FFFF
QDMA Registers 52 0200 0000 0200 0033
Reserved 16M 52 0200 0034 02FF FFFF
Reserved 720M 0300 0000 2FFF FFFF
McBSP0 Data Port 64M 3000 0000 33FF FFFF McBSP1 Data Port 64M 3400 0000 37FF FFFF
Reserved 64M 3800 0000 3BFF FFFF
McASP0 Data Port 1M 3C00 0000 3C0F FFFF McASP1 Data Port 1M 3C10 0000 3C1F FFFF
Reserved 1G + 62M 3C20 0000 7FFF FFFF
EMIF CE0 EMIF CE1 EMIF CE2 EMIF CE3
(1) The number of EMIF address pins (EA[21:2]) limits the maximum addressable memory (SDRAM) to 128MB per CE space.
(1) (1) (1) (1)
Reserved 1G C000 0000 FFFF FFFF
256M 8000 0000 8FFF FFFF 256M 9000 0000 9FFF FFFF 256M A000 0000 AFFF FFFF 256M B000 0000 BFFF FFFF
www.ti.com
20 OVERVIEW Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
0x00000000
011010001 111
0x00030000
000
L2Mode L2Memory BlockBase Address
0x0003C000
0x00038000
0x00034000
0x0003FFFF
16K
1-Way
Cache
32K
2-WayCache
48K3-W
ayCache
64K4-W
ayCache
256KSRAM(All)
240KSRAM
224KSRAM
208KSRAM
192KSRAM
192K-ByteRAM
16K-ByteRAM
16K-ByteRAM
16K-ByteRAM
16K-ByteRAM
SM320C6713-EP
SM320C6713B-EP
www.ti.com

4.3 L2 Memory Structure Expanded

Figure 4-2 shows the detail of the L2 memory structure.
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Figure 4-2. L2 Memory Configuration
Copyright © 2003–2011, Texas Instruments Incorporated OVERVIEW 21
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011

4.4 Peripheral Register Descriptions

Table 4-2 through Table 4-15 identify the peripheral registers for the C6713/C6713B devices by their
register names, acronyms, and hex address or hex address range. For more detailed information on the register contents and bit names and their respective descriptions, see the specific peripheral reference guide listed in the TMS320C6000 DSP Peripherals Overview Reference Guide (literature number
SPRU190).
Table 4-2. EMIF Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0180 0000 GBLCTL EMIF global control 0180 0004 CECTL1 EMIF CE1 space control 0180 0008 CECTL0 EMIF CE0 space control 0180 000C Reserved 0180 0010 CECTL2 EMIF CE2 space control 0180 0014 CECTL3 EMIF CE3 space control 0180 0018 SDCTL EMIF SDRAM control 0180 001C SDTIM EMIF SDRAM refresh control 0180 0020 SDEXT EMIF SDRAM extension
0180 00240183 FFFF Reserved
www.ti.com
22 OVERVIEW Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 4-3. L2 Cache Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0184 0000 CCFG Cache configuration 0184 4000 L2WBAR L2 writeback base address register 0184 4004 L2WWC L2 writeback word count 0184 4010 L2WIBAR L2 writeback-invalidate base address register 0184 4014 L2WIWC L2 writeback-invalidate word count 0184 4020 L1PIBAR L1P invalidate base address register 0184 4024 L1PIWC L1P invalidate word count 0184 4030 L1DWIBAR L1D writeback-invalidate base address register 0184 4034 L1DWIWC L1D writeback-invalidate word count 0184 5000 L2WB L2 writeback all 0184 5004 L2WBINV L2 writeback-invalidate all 0184 8200 MAR0 Memory attribute register 0. Controls CE0 range 8000 0000 80FF FFFF 0184 8204 MAR1 Memory attribute register 1. Controls CE0 range 8100 0000 81FF FFFF 0184 8208 MAR2 Memory attribute register 2. Controls CE0 range 8200 0000 82FF FFFF 0184 820C MAR3 Memory attribute register 3. Controls CE0 range 8300 0000 83FF FFFF 0184 8240 MAR4 Memory attribute register 4. Controls CE1 range 9000 0000 90FF FFFF 0184 8244 MAR5 Memory attribute register 5. Controls CE1 range 9100 0000 91FF FFFF 0184 8248 MAR6 Memory attribute register 6. Controls CE1 range 9200 0000 92FF FFFF 0184 824C MAR7 Memory attribute register 7. Controls CE1 range 9300 0000 93FF FFFF 0184 8280 MAR8 Memory attribute register 8. Controls CE2 range A000 0000 A0FF FFFF 0184 8284 MAR9 Memory attribute register 9. Controls CE2 range A100 0000 A1FF FFFF 0184 8288 MAR10 Memory attribute register 10. Controls CE2 range A200 0000 A2FF FFFF 0184 828C MAR11 Memory attribute register 11. Controls CE2 range A300 0000 A3FF FFFF 0184 82C0 MAR12 Memory attribute register 12. Controls CE3 range B000 0000 B0FF FFFF 0184 82C4 MAR13 Memory attribute register 13. Controls CE3 range B100 0000 B1FF FFFF 0184 82C8 MAR14 Memory attribute register 14. Controls CE3 range B200 0000 B2FF FFFF
0184 82CC MAR15 Memory attribute register 15. Controls CE3 range B300 0000 B3FF FFFF
0184 82D00185 FFFF Reserved
Table 4-4. Interrupt Selector Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
019C 0000 MUXH Interrupt multiplexer high
019C 0004 MUXL Interrupt multiplexer low
019C 0008 EXTPOL External interrupt polarity
019C 000C019F FFFF Reserved
Copyright © 2003–2011, Texas Instruments Incorporated OVERVIEW 23
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
Selects which interrupts drive CPU interrupts 10–15 (INT10INT15)
Selects which interrupts drive CPU interrupts 49 (INT04INT09)
Sets the polarity of the external interrupts (EXT_INT4EXT_INT7)
31 0 EDMA Parameter
Word0 EDMAChannelOptionsParameter(OPT) OPT
Word1 EDMAChannelSourceAddress(SRC) SRC
Word2 Array/FrameCount(FRMCNT) ElementCount(ELECNT) CNT
Word3 EDMAChannelDestinationAddress(DST) DST
Word4 Array/FrameIndex(FRMIDX) ElementIndex(ELEIDX) IDX
Word5 ElementCountReload(ELERLD) LinkAddress(LINK) RLD
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 4-5. Device Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
Allows the user to control peripheral selection. This register also offers the user
019C 0200 DEVCFG Device configuration
019C 0204019F FFFF Reserved
N/A CSR CPU control status register
Table 4-6. EDMA Parameter RAM
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01A0 0000 01A0 0017 Parameters for Event 0 (6 words) or Reload/Link parameters for other event 01A0 0018 01A0 002F Parameters for Event 1 (6 words) or Reload/Link parameters for other event 01A0 0030 01A0 0047 Parameters for Event 2 (6 words) or Reload/Link parameters for other event 01A0 0048 01A0 005F Parameters for Event 3 (6 words) or Reload/Link parameters for other event 01A0 0060 01A0 0077 Parameters for Event 4 (6 words) or Reload/Link parameters for other event 01A0 0078 01A0 008F Parameters for Event 5 (6 words) or Reload/Link parameters for other event
01A0 0090 01A0 00A7 Parameters for Event 6 (6 words) or Reload/Link parameters for other event 01A0 00A8 01A0 00BF Parameters for Event 7 (6 words) or Reload/Link parameters for other event 01A0 00C0 01A0 00D7 Parameters for Event 8 (6 words) or Reload/Link parameters for other event 01A0 00D8 01A0 00EF Parameters for Event 9 (6 words) or Reload/Link parameters for other event
01A0 00F0 01A0 00107 Parameters for Event 10 (6 words) or Reload/Link parameters for other event
01A0 0108 01A0 011F Parameters for Event 11 (6 words) or Reload/Link parameters for other event
01A0 0120 01A0 0137 Parameters for Event 12 (6 words) or Reload/Link parameters for other event
01A0 0138 01A0 014F Parameters for Event 13 (6 words) or Reload/Link parameters for other event
01A0 0150 01A0 0167 Parameters for Event 14 (6 words) or Reload/Link parameters for other event
01A0 0168 01A0 017F Parameters for Event 15 (6 words) or Reload/Link parameters for other event
01A0 0180 01A0 0197 Reload/link parameters for Event 015 01A0 0198 01A0 01AF Reload/link parameters for Event 015
... ... ...
01A0 07E0 01A0 07F7 Reload/link parameters for Event 015 01A0 07F8 01A0 07FF Scratch pad area (two words)
(1) The C6713/13B device has 85 EDMA parameters total: 16 Event/Reload parameters and 69 Reload-only parameters.
control of the EMIF input clock source. For more detailed information on the device configuration register, see the Device
Configurations section of this data sheet.
Identifies which CPU and defines the silicon revision of the CPU. This register also offers the user control of device operation. For more detailed information on the CPU Control Status Register, see the CPU CSR Register description section of this data sheet.
(1)
www.ti.com
For more details on the EDMA parameter RAM six-word parameter entry structure, see Figure 4-3.
24 OVERVIEW Copyright © 2003–2011, Texas Instruments Incorporated
Figure 4-3. EDMA Channel Parameter Entries (Six Words) for Each EDMA Event
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
Table 4-7. EDMA Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01A0 080001A0 FEFC Reserved
01A0 FF00 ESEL0 EDMA event selector 0 01A0 FF04 ESEL1 EDMA event selector 1
01A0 FF0801A0 FF0B Reserved
01A0 FF0C ESEL3 EDMA event selector 3
01A0 FF1F01A0 FFDC Reserved
01A0 FFE0 PQSR Priority queue status register 01A0 FFE4 CIPR Channel interrupt pending register 01A0 FFE8 CIER Channel interrupt enable register 01A0 FFEC CCER Channel chain enable register 01A0 FFF0 ER Event register 01A0 FFF4 EER Event enable register 01A0 FFF8 ECR Event clear register 01A0 FFFC ESR Event set register
01A1 000001A3 FFFF Reserved
Table 4-8. Quick DMA (QDMA) and Pseudo Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0200 0000 QOPT QDMA options parameter 0200 0004 QSRC QDMA source address 0200 0008 QCNT QDMA frame count 0200 000C QDST QDMA destination address 0200 0010 QIDX QDMA index
0200 00140200 001C Reserved
0200 0020 QSOPT QDMA pseudo options 0200 0024 QSSRC QDMA pseudo source address 0200 0028 QSCNT QDMA pseudo frame count 0200 002C QSDST QDMA pseudo destination address 0200 0030 QSIDX QDMA pseudo index
(1) All the QDMA and Pseudo registers are write accessible only.
SGUS049K–AUGUST 2003– REVISED APRIL 2011
(1)
Table 4-9. PLL Controller Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01B7 C000 PLLPID Peripheral identification
01B7 C00401B7 C0FF Reserved
01B7 C100 PLLCSR PLL control/status register
01B7 C10401B7 C10F Reserved
01B7 C110 PLLM PLL multiplier control 01B7 C114 PLLDIV0 PLL controller divider 0 01B7 C118 PLLDIV1 PLL controller divider 1 01B7 C11C PLLDIV2 PLL controller divider 2 01B7 C120 PLLDIV3 PLL controller divider 3 01B7 C124 OSCDIV1 Oscillator divider 1
01B7 C12801B7 DFFF Reserved
Copyright © 2003–2011, Texas Instruments Incorporated OVERVIEW 25
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
(C6713/13B value: 0x00010801 for PLL Controller)
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 4-10. McASP0 and McASP1 Registers
HEX ADDRESS RANGE
McASP0 McASP1
3C00 00003C00 FFFF 3C10 00003C10 FFFF RBUF/XBUFx data bus. Used when RSEL or XSEL bits = 0 (these bits are located
01B4 C000 01B5 0000 MCASPPIDx 01B4 C004 01B5 0004 PWRDEMUx Power down and emulation management
01B4 C008 01B5 0008 Reserved 01B4 C00C 01B5 000C Reserved 01B4 C010 01B5 0010 PFUNCx Pin function 01B4 C014 01B5 0014 PDIRx Pin direction 01B4 C018 01B5 0018 PDOUTx Pin data out
01B4 C01C 01B5 001C PDIN/PDSETx Read returns: PDIN
01B4 C020 01B5 0020 PDCLRx Pin data clear
01B4 C02401B4 C040 01B5 002401B5 0040 Reserved
01B4 C044 01B5 0044 GBLCTLx Global control 01B4 C048 01B5 0048 AMUTEx Mute control 01B4 C04C 01B5 004C DLBCTLx Digital loopback control 01B4 C050 01B5 0050 DITCTLx DIT mode control
01B4 C05401B4 C05C 01B5 005401B5 005C Reserved
01B4 C060 01B5 0060 RGBLCTLx 01B4 C064 01B5 0064 RMASKx Receiver format unit bit mask
01B4 C068 01B5 0068 RFMTx Receive bit stream format 01B4 C06C 01B5 006C AFSRCTLx Receive frame sync control 01B4 C070 01B5 0070 ACLKRCTLx Receive clock control 01B4 C074 01B5 0074 AHCLKRCTLx High-frequency receive clock control 01B4 C078 01B5 0078 RTDMx Receive TDM slot 031 01B4 C07C 01B5 007C RINTCTLx Receiver interrupt control 01B4 C080 01B5 0080 RSTATx Status receiver 01B4 C084 01B5 0084 RSLOTx Current receive TDM slot 01B4 C088 01B5 0088 RCLKCHKx Receiver clock check control
01B4 C08C01B4 C09C 01B5 008C01B5 009C Reserved
01B4 C0A0 01B5 00A0 XGBLCTLx 01B4 C0A4 01B5 00A4 XMASKx Transmit format unit bit mask
01B4 C0A8 01B5 00A8 XFMTx Transmit bit stream format
01B4 C0AC 01B5 00AC AFSXCTLx Transmit frame sync control
01B4 C0B0 01B5 00B0 ACLKXCTLx Transmit clock control 01B4 C0B4 01B5 00B4 AHCLKXCTLx High-frequency Transmit clock control 01B4 C0B8 01B5 00B8 XTDMx Transmit TDM slot 031
01B4 C0BC 01B5 00BC XINTCTLx Transmit interrupt control
01B4 C0C0 01B5 00C0 XSTATx Status transmitter 01B4 C0C4 01B5 00C4 XSLOTx Current transmit TDM slot 01B4 C0C8 01B5 00C8 XCLKCHKx Transmit clock check control
01B4 C0D001B4 C0FC 01B5 00CC01B5 00FC Reserved
01B4 C100 01B5 0100 DITCSRA0x Left (even TDM slot) channel status register file 01B4 C104 01B5 0104 DITCSRA1x Left (even TDM slot) channel status register file 01B4 C108 01B5 0108 DITCSRA2x Left (even TDM slot) channel status register file 01B4 C10C 01B5 0108 DITCSRA3x Left (even TDM slot) channel status register file 01B4 C110 01B5 0110 DITCSRA4x Left (even TDM slot) channel status register file
ACRONYM REGISTER NAME AND DESCRIPTION
McASPx receive buffer or McASPx transmit buffer via the peripheral in the RFMT or XFMT registers, respectively).
Peripheral identification [13/13B value: 0x00100101 for McASP0 and for McASP1]
Pin data in/data set Writes affect: PDSET
Alias of GBLCTL containing only Receiver Reset bits; allows transmit to be reset independently from receive
Alias of GBLCTL containing only Transmitter Reset bits; allows transmit to be reset independently from receive
www.ti.com
26 OVERVIEW Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 4-10. McASP0 and McASP1 Registers (continued)
HEX ADDRESS RANGE
McASP0 McASP1
01B4 C114 01B5 0114 DITCSRA5x Left (even TDM slot) channel status register file 01B4 C118 01B5 0118 DITCSRB0x Right (odd TDM slot) channel status register file 01B4 C11C 01B5 011C DITCSRB1x Right (odd TDM slot) channel status register file 01B4 C120 01B5 0120 DITCSRB2x Right (odd TDM slot) channel status register file 01B4 C124 01B5 0124 DITCSRB3x Right (odd TDM slot) channel status register file 01B4 C128 01B5 0128 DITCSRB4x Right (odd TDM slot) channel status register file 01B4 C12C 01B5 012C DITCSRB5x Right (odd TDM slot) channel status register file 01B4 C130 01B5 0130 DITUDRA0x Left (even TDM slot) user data register file 01B4 C134 01B5 0134 DITUDRA1x Left (even TDM slot) user data register file 01B4 C138 01B5 0138 DITUDRA2x Left (even TDM slot) user data register file 01B4 C13C 01B5 013C DITUDRA3x Left (even TDM slot) user data register file 01B4 C140 01B5 0140 DITUDRA4x Left (even TDM slot) user data register file 01B4 C144 01B5 0144 DITUDRA5x Left (even TDM slot) user data register file 01B4 C148 01B5 0148 DITUDRB0x Right (odd TDM slot) user data register file 01B4 C14C 01B5 014C DITUDRB1x Right (odd TDM slot) user data register file 01B4 C150 01B5 0150 DITUDRB2x Right (odd TDM slot) user data register file 01B4 C154 01B5 0154 DITUDRB3x Right (odd TDM slot) user data register file 01B4 C158 01B5 0158 DITUDRB4x Right (odd TDM slot) user data register file 01B4 C15C 01B5 015C DITUDRB5x Right (odd TDM slot) user data register file
01B4 C16001B4 C17C 01B5 016001B5 017C Reserved
01B4 C180 01B5 0180 SRCTL0x Serializer 0 control 01B4 C184 01B5 0184 SRCTL1x Serializer 1 control 01B4 C188 01B5 0188 SRCTL2x Serializer 2 control 01B4 C18C 01B5 018C SRCTL3x Serializer 3 control 01B4 C190 01B5 0190 SRCTL4x Serializer 4 control 01B4 C194 01B5 0194 SRCTL5x Serializer 5 control 01B4 C198 01B5 0198 SRCTL6x Serializer 6 control 01B4 C19C 01B5 019C SRCTL7x Serializer 7 control
01B4 C1A001B4 C1FC 01B5 01A001B5 01FC Reserved
01B4 C200 01B5 0200 XBUF0x Transmit buffer for serializer 0 through configuration bus 01B4 C204 01B5 0204 XBUF1x Transmit buffer for serializer 1 through configuration bus 01B4 C208 01B5 0208 XBUF2x Transmit buffer for serializer 2 through configuration bus 01B4 C20C 01B5 020C XBUF3x Transmit buffer for serializer 3 through configuration bus 01B4 C210 01B5 0210 XBUF4x Transmit buffer for serializer 4 through configuration bus 01B4 C214 01B5 0214 XBUF5x Transmit buffer for serializer 5 through configuration bus 01B4 C218 01B5 0218 XBUF6x Transmit buffer for serializer 6 through configuration bus 01B4 C21C 01B5 021C XBUF7x Transmit buffer for serializer 7 through configuration bus
01B4 C22001B4 C27C 01B5 C22001B5 027C Reserved
01B4 C280 01B5 0280 RBUF0x Receive buffer for serializer 0 through configuration bus 01B4 C284 01B5 0284 RBUF1x Receive buffer for serializer 1 through configuration bus 01B4 C288 01B5 0288 RBUF2x Receive buffer for serializer 2 through configuration bus 01B4 C28C 01B5 028C RBUF3x Receive buffer for serializer 3 through configuration bus 01B4 C290 01B5 0290 RBUF4x Receive buffer for serializer 4 through configuration bus 01B4 C294 01B5 0294 RBUF5x Receive buffer for serializer 5 through configuration bus 01B4 C298 01B5 0298 RBUF5x Receive buffer for serializer 6 through configuration bus 01B4 C29C 01B5 029C RBUF7x Receive buffer for serializer 7 through configuration bus
01B4 C2A001B4 FFFF 01B5 02A001B5 3FFF Reserved
(1) The transmit buffers for serializers 07 are accessible to the CPU via the peripheral bus if the XSEL bit = 1 (XFMT register). (2) The receive buffers for serializers 07 are accessible to the CPU via the peripheral bus if the RSEL bit = 1 (RFMT register).
ACRONYM REGISTER NAME AND DESCRIPTION
(1) (1) (1) (1) (1) (1) (1) (1)
(2) (2) (2) (2) (2) (2) (2) (2)
Copyright © 2003–2011, Texas Instruments Incorporated OVERVIEW 27
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 4-11. I2C0 and I2C1 Registers
HEX ADDRESS RANGE
I2C0 I2C1
01B4 0000 01B4 4000 I2COARx I2Cx own address register 01B4 0004 01B4 4004 I2CIERx I2Cx interrupt enable register 01B4 0008 01B4 4008 I2CSTRx I2Cx interrupt status register
01B4 000C 01B4 400C I2CCLKLx I2Cx clock low-time divider
01B4 0010 01B4 4010 I2CCLKHx I2Cx clock high-time divider 01B4 0014 01B4 4014 I2CCNTx I2Cx data count 01B4 0018 01B4 4018 I2CDRRx I2Cx data receive register
01B4 001C 01B4 401C I2CSARx I2Cx slave address register
01B4 0020 01B4 4020 I2CDXRx I2Cx data transmit register 01B4 0024 01B4 4024 I2CMDRx I2Cx mode register 01B4 0028 01B4 4028 I2CISRCx I2Cx interrupt source
01B4 002C 01B4 402C Reserved
01B4 0030 01B4 4030 I2CPSCx I2Cx prescaler 01B4 0034 01B4 4034
01B4 0038 01B4 4038
01B4 003C01B4 3FFF 01B4 403C01B4 7FFF Reserved
ACRONYM REGISTER NAME AND DESCRIPTION
I2CPID10 I2Cx peripheral identification 1 I2CPID11 (C6713/13B value: 0x0000 0103)
I2CPID20 I2Cx peripheral identification 2 I2CPID21 (C6713/13B value: 0x0000 0005)
www.ti.com
Table 4-12. HPI Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
HPID HPI data register Host read/write access only HPIA HPI address register Host read/write access only
0188 0000 HPIC HPI control register Both Host/CPU read/write access
0188 0004018B FFFF Reserved
Table 4-13. Timer 0 and Timer 1 Registers
HEX ADDRESS RANGE
TIMER 0 TIMER 1
0194 0000 0198 0000 CTLx Timer x control register timer, monitors the timer status, and
0194 0004 0198 0004 PRDx Timer x period register clock cycles to count. This number
0194 0008 0198 0008 CNTx Timer x counter register
0194 000C0197 FFFF 0198 000C019B FFFF Reserved
ACRONYM REGISTER NAME COMMENTS
Determines the operating mode of the controls the function of the TOUT pin.
Contains the number of timer input controls the TSTAT signal frequency.
Contains the current value of the incrementing counter.
Table 4-14. McBSP0 and McBSP1 Registers
HEX ADDRESS RANGE
McBSP0 McBSP1
018C 0000 0190 0000 DRRx The CPU and EDMA controller can only read this register; they
3000 000033FF FFFF 3400 000037FF FFFF DRRx McBSPx data receive register via peripheral data bus
018C 0004 0190 0004 DXRx McBSPx data transmit register via configuration bus
3000 000033FF FFFF 3400 000037FF FFFF DXRx McBSPx data transmit register via peripheral data bus
018C 0008 0190 0008 SPCRx McBSPx serial port control register
018C 000C 0190 000C RCRx McBSPx receive control register
ACRONYM REGISTER NAME AND DESCRIPTION
McBSPx data receive register via configuration bus. cannot write to it.
28 OVERVIEW Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
Table 4-14. McBSP0 and McBSP1 Registers (continued)
HEX ADDRESS RANGE
McBSP0 McBSP1
018C 0010 0190 0010 XCRx McBSPx transmit control register 018C 0014 0190 0014 SRGRx McBSPx sample rate generator register 018C 0018 0190 0018 MCRx McBSPx multichannel control register
018C 001C 0190 001C RCERx McBSPx receive channel enable register
018C 0020 0190 0020 XCERx McBSPx transmit channel enable register 018C 0024 0190 0024 PCRx McBSPx pin control register
018C 0028018F FFFF 0190 00280193 FFFF Reserved
ACRONYM REGISTER NAME AND DESCRIPTION
Table 4-15. GPIO Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01B0 0000 GPEN GPIO enable 01B0 0004 GPDIR GPIO direction 01B0 0008 GPVAL GPIO value
01B0 000C Reserved
01B0 0010 GPDH GPIO delta high 01B0 0014 GPHM GPIO high mask 01B0 0018 GPDL GPIO delta low
01B0 001C GPLM GPIO low mask
01B0 0020 GPGC GPIO global control 01B0 0024 GPPOL GPIO interrupt polarity
01B0 002801B0 3FFF Reserved
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Copyright © 2003–2011, Texas Instruments Incorporated OVERVIEW 29
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
TRST
GP[7](EXT_INT7)
IEEE Standard
1149.1 (JTAG)
Emulation
Resetand Interrupts
Control/Status
TDI
TDO
TMS
TCK
EMU0 EMU1
NMI
GP[6](EXT_INT6) GP[5](EXT_INT5)/AMUTEIN0 GP[4](EXT_INT4)/AMUTEIN1
RESET
Clock/PLL
Oscillator
CLKIN
CLKMODE0
PLLHV
CLKOUT2/GP[2]
EMU2 EMU3 EMU4 EMU5
HHWIL/AFSR1
HCNTL0/AXR1[3]
HCNTL1/AXR1[1]
Data
RegisterSelect
Half-Word
Select
Control
HPI
(Host-PortInterface)
HAS
/ACLKX1
HR/W
/AXR1[0]
HCS
/AXR1[2]
HDS1
/AXR1[6]
HDS2
/AXR1[5]
HRDY
/ACLKR1
HINT
/GP[1]
HD15/GP[15] HD14/GP[14] HD13/GP[13] HD12/GP[12]
HD11/GP[11]
HD10/GP[10]
HD9/GP[9] HD8/GP[8] HD7/GP[3]
HD6/AHCLKR1 HD5/AHCLKX1
HD4/GP[0]
HD3/AMUTE1
HD2/AFSX1 HD1/AXR1[7] HD0/AXR1[4]
CLKOUT3
HD4/GP[0]
(A)
(A)
(A)
(A)
(B)
(B)
(B)
(B)
(B)
(C)
(C)
(C)
(C)
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011

4.5 Signal Groups Description

www.ti.com
A. These external pins are applicable to the GDP package only. B. The GP[15:0] pins, through interrupt sharing, are external interrupt capable via GPINT0. For more details, see the
external interrupt sources section of this data sheet. For more details on interrupt sharing, see the TMS320C6000 DSP Interrupt Selector Reference Guide (literature number SPRU646).
C. All of these pins are external interrupt sources. For more details see the External Interrupt Sources section of this
data sheet.
D. On multiplexed pins, boldface text denotes the active function of the pin for that particular peripheral module.
Figure 4-4. CPU (DSP Core) and Peripheral Signals
30 OVERVIEW Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
General-Purpose Input/Output(GPIO)Port
GP[7](EXT_INT7) GP[6](EXT_INT6) GP[5](EXT_INT5)/AMUTEIN0 GP[4](EXT_INT4)/AMUTEIN1
HD7/GP[3] CLKOUT2/GP[2] HINT
/GP[1]
HD4/GP[0]
GPIO
HD15/GP[15] HD14/GP[14] HD13/GP[13] HD12/GP[12] HD11/GP[11]
HD10/GP[10]
HD9/GP[9]
HD8/GP[8]
TOUT1/AXR0[4]
TOUT0/AXR0[2]
Timer 1
Timer
0
Timers
TINP1/AHCLKX0
TINP0/AXR0[3]
CLKS1/SCL1
SCL0
I2C1 I2C0
I Cs
2
DR1/SDA1
SDA0
(A)
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
A. The GP[15:0} pins, through interrupt sharing, are external interrupt capable via GPINT0. GP[15:0] are also external
EDMA event source capable. For more details, see the External Interrupt Sources and External EDMA Event Sources sections of this data sheet.
B. On multiplexed pins, boldface text denotes the active function of the pin for that particular peripheral module.
Figure 4-5. Peripheral Signals
Copyright © 2003–2011, Texas Instruments Incorporated OVERVIEW 31
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
CE3
ECLKOUT
ED[31:16]
CE2 CE1 CE0
EA[21:2]
BE3 BE2
BE1
BE0
CLKX1/AMUTE0
FSX1
DX1/AXR0[5]
CLKR1/AXR0[6]
FSR1/AXR0[7]
DR1/SDA1
CLKS1/SCL1
AOE
/SDRAS/SSOE AWE/SDWE/SSWE ARDY
CLKX0/ACLKX0 FSX0/AFSX0 DX0/AXR0[1]
CLKR0/ACLKR0 FSR0/AFSR0 DR0/AXR0[0]
CLKS0/AHCLKR0
Data
Memory Map
SpaceSelect
Address
ByteEnables
16
20
Memory Control
EMIF
(ExternalMemoryInterface)
Receive Receive
McBSP1 McBSP0
Transmit Transmit
Clock Clock
McBSPs
(MultichannelBufferedSerialPorts)
ECLKIN
HOLD HOLDA
BUSREQ
Bus
Arbitration
ARE/SDCAS/SSADS
ED[15:0]
16
(A)
(A)
(A)
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com
A. These external pins are applicable to the GDP package only. B. On multiplexed pins, boldface text denotes the active function of the pin for that particular peripheral module.
Figure 4-6. Peripheral Signals
32 OVERVIEW Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
McASP0
(Multichannel AudioSerialPort0)
CLKX0/ACLKX0
CLKS0/AHCLKR0
Transmit
Clock
Generator
GP[5](EXT_INT5)/AMUTEIN0
AutoMute
Logic
CLKX1/AMUTE0
FSX0/AFSX0
Transmit
FrameSync
FSR0/AFSR0
Receive
FrameSync
CLKR0/ACLKR0
TINP1/AHCLKX0
ReceiveClock
Generator
TOUT1/AXR0[4]
TOUT0/AXR0[2]
DX0/AXR0[1] DR0/AXR0[0]
DX1/AXR0[5]
TINP0/AXR0[3]
CLKR1/AXR0[6]
FSR1/AXR0[7]
8-SerialPorts
Flexible
Partitioning
Tx,Rx,OFF
Transmit
ClockCheck
Circuit
ReceiveClock
CheckCircuit
ErrorDetect
(seeNoteA)
(Transmit/ReceiveDataPins)
(ReceiveBitClock) (TransmitBitClock)
(ReceiveMasterClock) (TransmitMasterClock)
(ReceiveFrameSyncor
Left/RightClock)
(TransmitFrameSyncor Left/RightClock)
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
A. The McASP Error Detect function detects underruns, overruns, early/late frame syncs, DMA errors, and external mute
input. B. On multiplexed pins, boldface text denotes the active function of the pin for that particular peripheral module. C. Boldface and italicized text within parentheses denotes the function of the pins in an audio system.
Figure 4-7. Peripheral Signals
Copyright © 2003–2011, Texas Instruments Incorporated OVERVIEW 33
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
HD0/AXR1[4]
HCS
/AXR1[2]
HCNTL1/AXR1[1]
HR/W
/AXR1[0]
McASP1
(Multichannel AudioSerialPort1)
HDS2
/AXR1[5]
HAS/ACLKX1
HD5/AHCLKX1
Transmit
Clock
Generator
HCNTL0/AXR1[3]
GP[4](EXT_INT4)/AMUTEIN1
AutoMute
Logic
HD3/AMUTE1
HD2/AFSX1
Transmit
FrameSync
HHWIL/AFSR1
Receive
FrameSync
HDS1/AXR1[6]
HD1/AXR1[7]
HRDY/ACLKR1 HD6/AHCLKR1
ReceiveClock
Generator
8-SerialPorts
Flexible
Partitioning
Tx,Rx,OFF
Transmit
ClockCheck
Circuit
ReceiveClock
CheckCircuit
ErrorDetect (seeNoteA)
(Transmit/ReceiveDataPins)
(ReceiveBitClock) (TransmitBitClock)
(ReceiveMasterClock) (TransmitMasterClock)
(ReceiveFrameSyncor
Left/RightClock)
(TransmitFrameSyncor Left/RightClock)
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com
A. The McASP Error Detect function detects underruns, overruns, early/late frame syncs, DMA errors, and external mute
input. B. On multiplexed pins, boldface text denotes the active function of the pin for that particular peripheral module. C. Boldface and italicized text within parentheses denotes the function of the pins in an audio system.
Figure 4-8. Peripheral Signals
34 OVERVIEW Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011

5 DEVICE CONFIGURATIONS

On the C6713/13B devices, bootmode and certain device configurations/peripheral selections are determined at device reset, while other device configurations/peripheral selections are software-configurable via the device configurations register (DEVCFG) [address location 0x019C0200] after device reset.

5.1 Device Configurations at Device Reset

Table 5-1 describes the C6713 and C6713B device configuration pins, which are set up via internal or
external pullup/pulldown resistors through the HPI data pins (HD[4:3], HD8, HD12 [13B only]), and CLKMODE0 pin. These configuration pins must be in the desired state until reset is released. For proper device operation, do not oppose the HD [13, 11:9, 7, 1, 0] pins with external pullups/pulldowns at reset. For more details on these device configuration pins, see the Terminal Functions table and the Debugging
Considerations section of this data sheet.
Table 5-1. Device Configurations Pins at Device Reset (HD[4:3], HD8, HD12 [13B only], and CLKMODE0)
CONFIGURATION
PIN
(2)
HD12
HD8 B17 0 – System operates in Big Endian mode
HD[4:3]
(BOOTMODE)
CLKMODE0 C4
(1) All other HD pins [HD [15, 13:9, 7:5, 2:0] (for 13) or HD [15, 13, 11:9, 7:5, 2:0] (for 13B)] have pullups/pulldowns (IPUs or IPDs). For
proper device operation of the HD [15, 13:9, 7, 1, 0] (for 13) or HD [13, 11:9, 7, 1, 0] (for 13B), do not oppose these pins with external pullups/pulldowns at reset; however, the HD[6, 5, 2] (for 13) or HD[15, 6, 5, 2] (for 13B) pins can be opposed and driven during reset.
(2) IPD = Internal pulldown, IPU = Internal pullup. To oppose the supply rail on these IPD/IPU signal pins, use external pullup or pulldown
resistors no greater than 4.4 kΩ and 2.0 kΩ, respectively.
(2)
GDP FUNCTIONAL DESCRIPTION
EMIF Big Endian mode correctness (EMIFBE) [C6713B only] For a C6713BGDP:
0 – The EMIF data will always be presented on the ED[7:0] side of the bus, regardless of the
endianess mode (Little/Big Endian).
1 – In Little Endian mode (HD8 = 1), the 8-bit or 16-bit EMIF data will be present on the
ED[7:0] side of the bus.
C15
For a C6713BPYP, when Big Endian mode is selected (LENDIAN = 0), for proper device operation the EMIFBE pin must be externally pulled low. This enhancement is not supported on the C6713 device. For proper C6713 device operation, do not oppose the internal pullup (IPU) resistor on this pin. This new functionality does not affect systems using the current default value of HD12 = 1. For more detailed information on the big endian mode correctness, see the EMIF Big Endian Mode Correctness [C6713B only] portion of this data sheet.
Device Endian mode (LEND)
Bootmode Configuration pins (BOOTMODE)
C19, C20
For more detailed information on these bootmode configurations, see the Bootmode section of this data sheet.
Clock generator input clock source select
This pin must be pulled to the correct level even after reset.
In Big Endian mode (HD8 = 0), the 8-bit or 16-bit EMIF data will be present on the ED[31:24] side of the bus [default].
1 – System operates in Little Endian mode (default)
00 – HPI boot/Emulation boot 01 – CE1 width 8-bit, asynchronous external ROM boot with default timings (default mode) 10 – CE1 width 16-bit, asynchronous external ROM boot with default timings 11 – CE1 width 32-bit, asynchronous external ROM boot with default timings
0 – Reserved. Do not use. 1 – CLKIN square wave [default]
(1)
Copyright © 2003–2011, Texas Instruments Incorporated DEVICE CONFIGURATIONS 35
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011

5.2 Peripheral Pin Selection at Device Reset

Some C6713/13B peripherals share the same pins (internally MUXed) and are mutually exclusive (that is, HPI, general-purpose input/output pins GP[15:8, 3, 1, 0], and McASP1).
HPI, McASP1, and GPIO peripherals The HPI_EN (HD14 pin) is latched at reset. This pin selects whether the HPI peripheral pins or
McASP1 peripheral pins and GP[15:8, 3, 1, 0] pins are functionally enabled (see Table 5-2).
Table 5-2. HPI_EN (HD14 Pin) Peripheral Selection (HPI or McASP1, and Select GPIO Pins)
PERIPHERAL PERIPHERAL
PIN SELECTION PINS SELECTED
HPI_EN McASP1 and
(HD14 Pin) [173, C14] GP[15:8, 3, 1, 0]
0 are enabled. All multiplexed HPI/McASP1 and HPI/GPIO pins function as
1
(1) The HPI_EN (HD[14]) pin cannot be controlled via software.
HPI
www.ti.com
(1)
DESCRIPTION
HPI_EN = 0 HPI pins are disabled; McASP1 peripheral pins and GP[15:8, 3, 1, 0] pins
McASP1 and GPIO pins, respectively. To use the GPIO pins, the appropriate bits in the GPEN and GPDIR registers need to be configured.
HPI_EN = 1 HPI pins are enabled; McASP1 peripheral pins and GP[15:8, 3, 1, 0] pins are disabled [default]. All multiplexed HPI/McASP1 and HPI/GPIO pins function as HPI pins.

5.3 Peripheral Selection/Device Configurations Via the DEVCFG Control Register

The device configuration register (DEVCFG) allows the user to control the pin availability of the McBSP0, McBSP1, McASP0, I2C1, and timer peripherals. The DEVCFG register also offers the user control of the EMIF input clock source and the timer output pins. For more detailed information on the DEVCFG register control bits, see Table 5-3 and Table 5-4.
Table 5-3. Device Configuration Register (DEVCFG) [Address Location: 0x019C02000x019C02FF]
31 16
Reserved
15 5 4 3 2 1 0
Reserved
LEGEND: R = Read, W = Write, --n = value at reset
(1) Do not write non-zero values to these bit locations.
(1)
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
(1)
R/W-0
EKSRC TOUT1SEL TOUT0SEL MCBSP0DIS MCBSP1DIS
36 DEVICE CONFIGURATIONS Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 5-4. Device Configuration Register (DEVCFG) Selection Bit Descriptions
BIT NO. NAME DESCRIPTION
31:5 Reserved Reserved. Do not write non-zero values to these bit locations.
EMIF input clock source bit.
4 EKSRC
3 TOUT1SEL
2 TOUT0SEL
1 MCBSP0DIS ACLKX0, AXR0[0], AXR0[1], AFSR0, and AFSX0) are disabled (default).
0 MCBSP1DIS
Determines which clock signal is used as the EMIF input clock.
0 = SYSCLK3 (from the clock generator) is the EMIF input clock source (default). 1 = ECLKIN external pin is the EMIF input clock source.
Timer 1 output (TOUT1) pin function select bit. Selects the pin function of the TOUT1/AXR0[4] external pin independent of the rest of the peripheral selection bits in the DEVCFG register.
0 = The pin functions as a Timer 1 output (TOUT1) pin (default). 1 = The pin functions as the McASP0 transmit/receive data pin 4 (AXR0[4]). The Timer 1 module
is still active.
Timer 0 output (TOUT0) pin function select bit. Selects the pin function of the TOUT0/AXR0[2] external pin independent of the rest of the peripheral selection bits in the DEVCFG register.
0 = The pin functions as a Timer 0 output (TOUT0) pin (default). 1 = The pin functions as the McASP0 transmit/receive data pin 2 (AXR0[2]). The Timer 0 module
is still active.
Multichannel Buffered Serial Port 0 (McBSP0) disable bit. Selects whether McBSP0 or the McASP0 multiplexed peripheral pins are enabled or disabled.
0 = McBSP0 peripheral pins are enabled, McASP0 peripheral pins (AHCLKR0, ACLKR0,
If the McASP0 data pins are available, the McASP0 peripheral is functional for DIT mode only.
1 = McBSP0 peripheral pins are disabled, McASP0 peripheral pins (AHCLKR0, ACLKR0,
ACLKX0, AXR0[0], AXR0[1], AFSR0, and AFSX0) are enabled.
Multichannel Buffered Serial Port 1 (McBSP1) disable bit. Selects whether McBSP1 or I2C1 and McASP0 multiplexed peripheral pins are enabled or disabled.
0 = McBSP1 peripheral pins are enabled, I2C1 peripheral pins (SCL1 and SDA1) and McASP0
peripheral pins (AXR0[7:5] and AMUTE0) are disabled (default)
1 = McBSP1 peripheral pins are disabled, I2C1 peripheral pins (SCL1 and SDA1) and McASP0
peripheral pins (AXR0[7:5] and AMUTE0) are enabled.

5.4 Multiplexed Pins

Multiplexed (MUXed) pins are pins that are shared by more than one peripheral and are internally multiplexed. Most of these pins are configured by software via the device configuration register (DEVCFG), and the others (specifically, the HPI pins) are configured by external pullup/pulldown resistors only at reset. The MUXed pins that are configured by software can be programmed to switch functionalities at any time. The MUXed pins that are configured by external pullup/pulldown resistors are mutually exclusive; only one peripheral has primary control of the function of these pins after reset.
Table 5-5 summarizes the peripheral pins affected by the HPI_EN (HD14 pin) and DEVCFG register. Table 5-6 identifies the multiplexed pins on the C6713/13B devices, shows the default (primary) function
and the default settings after reset, and describes the pins, registers, etc., necessary to configure the specific multiplexed functions.
Copyright © 2003–2011, Texas Instruments Incorporated DEVICE CONFIGURATIONS 37
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 5-5. Peripheral Pin Selection Matrix
SELECTION BITS PERIPHERAL PIN AVAILABILITY
BIT BIT GPIO
NAME VAL PINS
HPI_EN (boot config 0 None pin)
HPI_EN (boot config 1 None All pin)
0 None All
ACLKX0
MCBSP0DI S (DEVCFG bit)
MCBSP1DI S (DEVCFG bit)
TOUT0SEL
(DEVCFG
bit)
TOUT1SEL
(DEVCFG
bit)
HD12 (boot
config pin)
[13BGDP]
(3)
ACLKR0 AFSX0 AFSR0
1 None
AHCLKR 0 AXR0[0] AXR0[1]
NO
AMUTE0
0 AXR0[5] None All
AXR0[6] AXR0[7]
AMUTE0 AXR0[5]
1 All None
AXR0[6] AXR0[7]
NO
0 TOUT0
AXR0[2]
1 AXR0[2]
NO TOUT1
0
AXR0[4]
1 AXR0[4]
0
1
MCASP0
(2)
MCASP1 MCBSP0 MCBSP1 TIMER0 TIMER1 HPI EMIF
AHCLKX1 AHCLKR1 GP[0:1], ACLKX1 GP[3], ACLKR1 GP[8:15] AFSX1 abc AFSR1 Plus: AMUTE1 GP[2] AXR1[0] ctrld by to GP2EN bit AXR1[7]
I2C0 I2C1
NO
TOUT0
(1)
NO
TOUT1
NO
GP[0:1], GP[3], GP[8:15]
www.ti.com
ED[7:0]; HD8 = 1/0
ED[7:0} side [HD8 = 1 (Little)] ED[31:24] side [HD8 = 0 (Big)]
(1) Gray blocks indicate that the peripheral is not affected by the selection bit. (2) The McASP0 pins, AXR0[3] and AHCLKX0, are shared with the timer input pins, TINP0 and TINP1, respectively. See Table 5-6 for
more detailed information.
(3) For more detailed information on endianness correction, see the EMIF Big Endian Mode Correctness [C6713B only] section of this data
sheet.
Table 5-6. C6713/13B Device Multiplexed/Shared Pins
MULTIPLEXED PIN
NAME GDP FUNCTION DEFAULT SETTING DESCRIPTION
CLKOUT2/GP[2] Y12 CLKOUT2
38 DEVICE CONFIGURATIONS Copyright © 2003–2011, Texas Instruments Incorporated
DEFAULT
GP2EN = 0 (GPEN register bit) When the CLKOUT2 pin is enabled, the CLK2EN bit in the GP[2] function disabled, CLKOUT2 EMIF global control register (GBLCTL) controls the enabled CLKOUT2 pin.
CLK2EN = 0: CLKOUT2 held high CLK2EN = 1: CLKOUT2 enabled to clock [default].
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 5-6. C6713/13B Device Multiplexed/Shared Pins (continued)
MULTIPLEXED PIN
NAME GDP FUNCTION DEFAULT SETTING DESCRIPTION
GP[5](EXT_INT5)/AMUTEIN 0 C1 GP[5](EXT_INT5) GP[4](EXT_INT4)/AMUTEIN C2 GP[4](EXT_INT4) 1
CLKS0/AHCLKR0 K3 By default, McBSP0 peripheral pins are enabled upon DR0/AXR0[0] J1 DX0/AXR0[1] H2 FSR0/AFSR0 J3 McBSP0 pin function FSX0/AFSX0 H1 CLKR0/ACLKR0 H3 CLKX0/ACLKX0 G3 CLKS1/SCL1 E1 DR1/SDA1 M2 DX1/AXR0[5] L2 FSR1/AXR0[7] M3 CLKR1/AXR0[6] M1 CLKX1/AMUTE0 L3 HINT/GP[1] J20 HD15/GP[15] B14 HD14/GP[14] C14 HD13/GP[13] A15 HD12/GP[12] C15 HD11/GP[11] A16 HD10/GP[10] B16 HD9/GP[9] C16 HD8/GP[8] B17 GPIO pins, an external pulldown resistor must be provided HD7/GP[3] A18 HD4/GP[0] C19 HD1/AXR1[7] D20 HD0/AXR1[4] E20 HCNTL1/AXR1[1] G19 HCNTL0/AXR1[3] G18 GPxEN = 1: GP[x] pin enabled. HR/W/AXR1[0] G20 GPxDIR = 0: GP[x] pin is an input. HDS1/AXR1[6] E19 GPxDIR = 1: GP[x] pin is an output. HDS2/AXR1[5] F18 HCS/AXR1[2] F20 McASP1 pin direction is controlled by the PDIR[x] bits in HD6/AHCLKR1 C17 HD5/AHCLKX1 B18 HD3/AMUTE1 C20 HD2/AFSX1 D18 HHWIL/AFSR1 H20 HRDY/ACLKR1 H19 HAS/ACLKX1 E18
DEFAULT
No Function To use these software-configurable GPIO pins, the GPxDIR = 0 (input) GPxEN bits in the GP Enable Register and the GPxDIR GP5EN = 0 (disabled) bits in the GP Direction Register must be properly GP4EN = 0 (disabled) configured. [(GPEN register bits) GP[x] function disabled]
MCBSP0DIS = 0 (DEVCFG register bit) McASP0 pins disabled, McBSP0 pins enabled
MCBSP1DIS = 0 reset (I2C1 and McASP0 pins are disabled).
McBSP1 pin function
HPI (HPI enabled) pin function McASP1 pins and 11 GPIO pins
(DEVCFG register bit) abc I2C1 and McASP0 pins To enable the I2C1 and McASP0 peripheral pins, the disabled, McBSP1 pins enabled MCBSP1DIS bit in the DEVCFG register must be set to 1
HPI_EN (HD14 pin) = 1
are disabled.
GPxEN = 1: GP[x] pin enabled. GPxDIR = 0: GP[x] pin is an input. GPxDIR = 1: GP[x] pin is an output.
To use AMUTEIN0/1 pin function, the GP[5]/GP[4] pins must be configured as an input, the INEN bit set to 1, and the polarity through the INPOL bit selected in the associated McASP AMUTE register.
reset (McASP0 pins are disabled).
abc
To enable the McASP0 peripheral pins, the MCBSP0DIS bit in the DEVCFG register must be set to 1 (disabling the McBSP0 peripheral pins).
By default, McBSP1 peripheral pins are enabled upon
(disabling the McBSP1 peripheral pins).
By default, the HPI peripheral pins are enabled at reset. McASP1 peripheral pins and eleven GPIO pins are disabled.
To enable the McASP1 peripheral pins and the eleven on the HD14 pin setting HPI_EN = 0 at reset.
GP enable register and the GPxDIR bits in the GP direction register must be properly configured. To use these software-configurable GPIO pins, the GPxEN bits in the
the McASP1PDIR register.
Copyright © 2003–2011, Texas Instruments Incorporated DEVICE CONFIGURATIONS 39
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 5-6. C6713/13B Device Multiplexed/Shared Pins (continued)
MULTIPLEXED PIN
NAME GDP FUNCTION DEFAULT SETTING DESCRIPTION
TINP0/AXR0[3] G2
TOUT0/AXR0[2] G1 bit) [TOUT0 pin enabled and
TINP1/AHCLKX0 F2 abc
TOUT1/AXR0[4] F1 bit) [TOUT1 pin enabled and
DEFAULT
Timer 0 McASP0PDIR = 0 (input) input until the McASP0 peripheral forces an output). input function [specifically AXR0[3] bit] abc
Timer 0 output function
Timer 1 McASP0PDIR = 0 (input) input function [specifically AHCLKX bit]
Timer 1 output function
TOUT0SEL = 0 (DEVCFG register McASP0 AXR0[2] pin disabled]
TOUT1SEL = 0 (DEVCFG register McASP0 AXR0[4] pin disabled]
By default, the Timer 0 input pin is enabled (and a shared
McASP0PDIR = 0 input, = 1 output By default, the Timer 0 output pin is enabled.
abc
To enable the McASP0 AXR0[2] pin, the TOUT0SEL bit in the DEVCFG register must be set to 1 (disabling the Timer 0 peripheral output pin function).
abc
The AXR2 bit in the McASP0PDIR register controls the direction (input/output) of the AXR0[2] pin.
McASP0PDIR = 0 input, = 1 output By default, the Timer 1 input and McASP0 clock function
are enabled as inputs. For the McASP0 clock to function as an output:
McASP0PDIR = 1 (specifically the AHCLKX bit). By default, the Timer 1 output pin is enabled.
abc
To enable the McASP0 AXR0[4] pin, the TOUT1SEL bit in the DEVCFG register must be set to 1 (disabling the Timer 1 peripheral output pin function).
abc
The AXR4 bit in the McASP0PDIR register controls the direction (input/output) of the AXR0[4] pin.
McASP0PDIR = 0 input, = 1 output
www.ti.com
40 DEVICE CONFIGURATIONS Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
EMIF
ED[31:16],
ED[15:0]
CE[3:0],BE[3:0],
HOLDA
,HOLD,
BUSREQ,ECLKIN,
ECLKOUT,
ARE
/SDCAS/SSADS,
AWE
/SDWE/SSWE,
AOE
/SDRAS/SSOE,
ARDY
HPI
I2C1
McBSP1
McBSP0
TIMER1
TIMER0
Clock,
System,
EMU,and
Reset
I2C0
GPIO
and
EXT_INT
McASP1
CLKIN,CLKOUT3,CLKMODE0, PLLHV,TMS,TDO,TDI,TCK, TRST
,EMU[5:3,1,0],RESET,
NMI
GP[0], GP[4](EXT_INT4)/AMUTEIN1, GP[5](EXT_INT5)/AMUTEIN0, GP[6](EXT_INT6), GP[7](EXT_INT7)
GP[15:8,3:1]
McASP0
SCL0,SDA0
32
20
8
DEVCFGRegisterValue: 0x0000000F
MCBSP0DIS= 1 MCBSP1DIS= 1 TOUT0SEL=1 TOUT1SEL=1 EKSRC=0
HPI_EN(HD14)=0 GP2ENBIT=1(enablingGPEN.[2])
EA[21:2]
Shadingdenotesaperipheralmodulenotavailableforthisconfiguration.
SCL1,SDA1
8
AXR0[7:0]
{TINP0/AXR0[3]}
AXR1[7:0]
AFSX1,AFSR1,ACLKX1, ACLKR1,AHCLKR1, AHCLKX1,AMUTE1
AMUTE0, TINP1/AHCLKX0, AHCLKR0, ACLKR0, ACLKX0,AFSR0, AFSX0
SM320C6713-EP
SM320C6713B-EP
www.ti.com

5.5 Configuration Examples

SGUS049K–AUGUST 2003– REVISED APRIL 2011
Figure 5-1 through Figure 5-6 illustrate examples of peripheral selections that are configurable on this
device.
Figure 5-1. Configuration Example A (Two I2C + Two McASP + GPIO)
Copyright © 2003–2011, Texas Instruments Incorporated DEVICE CONFIGURATIONS 41
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
EMIF
ED[31:16],
ED[15:0]
CE[3:0],BE[3:0],
HOLDA
,HOLD,
BUSREQ,ECLKIN,
ECLKOUT,
ARE
/SDCAS/SSADS,
AWE
/SDWE/SSWE,
AOE
/SDRAS/SSOE,
ARDY
HPI
I2C1
McBSP1
McBSP0
TIMER1
TIMER0
Clock,
System,
EMU,and
Reset
I2C0
GPIO
and
EXT_INT
McASP1
CLKIN,CLKOUT3,CLKMODE0, PLLHV,TMS,TDO,TDI,TCK, TRST
,EMU[5:3,1,0],RESET,
NMI
GP[0], GP[4](EXT_INT4)/AMUTEIN1, GP[5](EXT_INT5)/AMUTEIN0, GP[6](EXT_INT6), GP[7](EXT_INT7)
GP[15:8,3:1]
McASP0
SCL0,SDA0
AFSX1,AFSR1,ACLKX1, ACLKR1,AHCLKR1, AHCLKX1,AMUTE1
32
20
8
DEVCFGRegisterValue: 0x0000000E
MCBSP0DIS= 1 MCBSP1DIS= 0 TOUT0SEL=1 TOUT1SEL=1 EKSRC=0
HPI_EN(HD14)=0 GP2ENBIT=1(enablingGPEN.[2])
EA[21:2]
Shadingdenotesaperipheralmodulenotavailableforthisconfiguration.
DR1,CLKS1,
CLKR1,CLKX1,
FSR1,DX1,
FSX1
5
AXR1[7:0]
AXR0[4:0]
{TINP0/AXR0[3]}
TINP1/AHCLKX0, AHCLKR0, ACLKR0, ACLKX0,AFSR0, AFSX0
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com
Figure 5-2. Configuration Example B (One I2C + One McBSP + Two McASP + GPIO)
42 DEVICE CONFIGURATIONS Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
EMIF
ED[31:16],
ED[15:0]
CE[3:0],BE[3:0],
HOLDA
,HOLD,
BUSREQ,ECLKIN,
ECLKOUT,
ARE
/SDCAS/SSADS,
AWE
/SDWE/SSWE,
AOE
/SDRAS/SSOE,
ARDY
HPI
I2C1
McBSP1
SCL1,SDA1
McBSP0
TIMER1
TIMER0
Clock,
System,
EMU,and
Reset
I2C0
GPIO
and
EXT_INT
McASP1
CLKIN,CLKOUT3,CLKMODE0, PLLHV,TMS,TDO,TDI,TCK, TRST
,EMU[5:3,1,0],RESET,
NMI
GP[0], GP[4](EXT_INT4)/AMUTEIN1, GP[5](EXT_INT5)/AMUTEIN0, GP[6](EXT_INT6), GP[7](EXT_INT7)
GP[15:8,3:1]
McASP0
(DITMode)
SCL0,SDA0
AFSX1,AFSR1,ACLKX1, ACLKR1,AHCLKR1, AHCLKX1,AMUTE1
32
20
8
DEVCFGRegisterValue: 0x0000000D
MCBSP0DIS= 0 MCBSP1DIS= 1 TOUT0SEL=1 TOUT1SEL=1 EKSRC=0
HPI_EN(HD14)=0 GP2ENBIT=1(enablingGPEN.[2])
EA[21:2]
Shadingdenotesaperipheralmodulenotavailableforthisconfiguration.
DR0,CLKS0,
CLKR0,CLKX0,
FSR0,DX0,
FSX0
6
AXR1[7:0]
AXR0[7:2]
{TINP0/AXR0[3]}
AMUTE0, TINP1/AHCLKX0
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Figure 5-3. Configuration Example C [2 I2C + 1 McBSP + 1 McASP + 1 McASP (DIT) + GPIO]
Copyright © 2003–2011, Texas Instruments Incorporated DEVICE CONFIGURATIONS 43
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
EMIF
ED[31:16],
ED[15:0]
CE[3:0],BE[3:0],
HOLDA
,HOLD,
BUSREQ,ECLKIN,
ECLKOUT,
ARE
/SDCAS/SSADS,
AWE
/SDWE/SSWE,
AOE
/SDRAS/SSOE,
ARDY
HPI
I2C1
McBSP1
DR1,CLKS1,
CLKR1,CLKX1,
FSR1,DX1,
FSX1
McBSP0
TIMER1
TIMER0
Clock,
System,
EMU,and
Reset
I2C0
GPIO
and
EXT_INT
McASP1
CLKIN,CLKOUT3,CLKMODE0, PLLHV,TMS,TDO,TDI,TCK, TRST
,EMU[5:3,1,0],RESET,
NMI
GP[0], GP[4](EXT_INT4)/AMUTEIN1, GP[5](EXT_INT5)/AMUTEIN0, GP[6](EXT_INT6), GP[7](EXT_INT7)
GP[15:8,3:1]
McASP0
(DITMode)
SCL0,SDA0
AFSX1,AFSR1,ACLKX1, ACLKR1,AHCLKR1, AHCLKX1,AMUTE1
32
20
8
DEVCFGRegisterValue: 0x0000000C
MCBSP0DIS= 0 MCBSP1DIS= 0 TOUT0SEL=1 TOUT1SEL=1 EKSRC=0
HPI_EN(HD14)=0 GP2ENBIT=1(enablingGPEN.[2])
EA[21:2]
Shadingdenotesaperipheralmodulenotavailableforthisconfiguration.
DR0,CLKS0,
CLKR0,CLKX0,
FSR0,DX0,
FSX0
3
AXR1[7:0]
AXR0[4:2]
{TINP0/AXR0[3]}
TINP1/AHCLKX0
TOUT0/AXR0[2]
TOUT1/AXR0[4]
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com
Figure 5-4. Configuration Example D [1 I2C + 2 McBSP + 1 McASP + 1 McASP (DIT) + GPIO + Timers]
44 DEVICE CONFIGURATIONS Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
EMIF
ED[31:16],
ED[15:0]
CE[3:0],BE[3:0],
HOLDA
,HOLD,
BUSREQ,ECLKIN,
ECLKOUT,
ARE
/SDCAS/SSADS,
AWE
/SDWE/SSWE,
AOE
/SDRAS/SSOE,
ARDY
HPI
I2C1
McBSP1
SCL1,SDA1
McBSP0
TIMER1
TIMER0
Clock,
System,
EMU,and
Reset
GPIO
and
EXT_INT
McASP1
CLKIN,CLKOUT3,CLKMODE0, PLLHV,TMS,TDO,TDI,TCK, TRST
,EMU[5:3,1,0],RESET,
NMI
GP[4](EXT_INT4)/AMUTEIN1, GP[5](EXT_INT5)/AMUTEIN0, GP[6](EXT_INT6), GP[7](EXT_INT7)
McASP0
AXR0[7:0],
{TINP0/AXR0[3]}
32
20
8
DEVCFGRegisterValue: 0x0000000F
MCBSP0DIS= 1 MCBSP1DIS= 1 TOUT0SEL=1 TOUT1SEL=1 EKSRC=0
HPI_EN(HD14)=1 GP2ENBIT=0(enablingGPEN.[2])
EA[21:2]
Shadingdenotesaperipheralmodulenotavailableforthisconfiguration.
CLKOUT2
HD[15:0]
16
HINT,HHWIL,
HRDY
,HR/W,
HCNTRL1,
HCNTRL0,HCS
,
HDS2
,HDS1,
HAS
I2C0
AMUTE0, TINP1/AHCLKX0, AHCLKR0, ACLKR0, ACLKX0,AFSR0, AFSX0
SCL0,SDA0
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Figure 5-5. Configuration Example E (1 I2C + HPI + 1 McASP)
Copyright © 2003–2011, Texas Instruments Incorporated DEVICE CONFIGURATIONS 45
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
EMIF
ED [31:16],
ED[15:0]
CE[3:0] , BE[3:0] ,
HOLDA
, HOLD,
BUSREQ, ECLKIN ,
ECLKOUT,
ARE
/SDCAS/SSADS,
AWE
/SDWE/SSWE,
AOE
/SDRAS/SSOE,
ARDY
HPI
I2C1
McBSP1
McBSP0
TIMER1
TIMER0
Clock,
System ,
EMU, and
Reset
GPIO
and
EXT_INT
McASP1
CLKIN, CLKOUT3, CLKMODE0 , PLLHV, TMS, TDO, TDI, TCK, TRST
, EMU[5:3,1,0], RESET,
NMI
GP[4](EXT_INT4)/AMUTEIN1, GP[5](EXT_INT5)/AMUTEIN0, GP[6](EXT_INT6), GP[7](EXT_INT7)
McASP0
32
20
5
DEVCFG Register V alue: 0x0000 000E
MCBSP0DIS = 1 MCBSP1DIS = 0 TOUT0SEL = 1 TOUT1SEL = 1 EKSRC = 0
HPI_EN(HD14) = 1 GP2EN BIT = 0 (enabling GPEN.[2])
EA[21:2]
Shading denotes a peripheral module not available for this configuration.
DR1, CLKS1,
CLKR1, CLKX1 ,
FSR1, DX1,
FSX1
CLKOUT2
HD[15:0]
16
HINT, HHWIL,
HRDY
, HR/W,
HCNTRL1,
HCNTRL0, HCS
,
HDS2
, HDS1,
HAS
AXR0[4:0]
{TINP0/AXR0[3]}
I2C0
TINP1/AHCLKX0, AHCLKR0 , ACLKR0 , ACLKX0, AFSR0 , AFSX0
SCL0, SDA0
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com
Figure 5-6. Configuration Example F (One McBSP + HPI + One McASP)
46 DEVICE CONFIGURATIONS Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com

5.6 Debugging Considerations

It is recommended that external connections be provided to peripheral selection/device configuration pins, including HD[14, 8, 12 (for 13B only), 4, 3], and CLKMODE0. Although internal pullup resistors exist on these pins, providing external connectivity adds convenience to the user in debugging and flexibility in switching operating modes.
Internal pullup/pulldown resistors also exist on the nonconfiguration pins on the HPI data bus (HD[15, 13:9, 7:5, 2:0] (for 13) and HD[15, 13, 11:9, 7:5, 2:0] (for 13B)). For proper device operation of the HD[15, 13:9, 7, 1, 0] (for13) or HD[13, 11:9, 7, 1, 0] (for 13B), do not oppose the internal pullup/pulldown resistors on these non-configuration pins with external pullup/pulldown resistors at reset. If an external controller provides signals to these HD[15, 13:9, 7, 1, 0] (for 13) or HD[13, 11:9, 7, 1, 0] (for 13B) non-configuration pins, these signals must be driven to the default state of the pins at reset, or not be driven at all. For the list of routed out, 3-stated, or not-driven pins recommended for external pullup/pulldown resistors, and internal pullup/pulldown resistors for all devices pins, etc., see Terminal Functions. However, the HD[6, 5, 2] (for 13) or HD[15, 6, 5, 2] (for 13B) non-configuration pins can be opposed and driven during reset.
For the internal pullup/pulldown resistors for all device pins, see the Terminal Functions table.

6 TERMINAL FUNCTIONS

The Terminal Functions table identifies the external signal names, the associated pin (ball) numbers along with the mechanical package designator, the pin type (I, O/Z, or I/O/Z), whether the pin has any internal pullup/pulldown resistors and a functional pin description. For more detailed information on device configuration, peripheral selection, multiplexed/shared pins, and debugging considerations, see the Device
Configurations section of this data sheet.
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Copyright © 2003–2011, Texas Instruments Incorporated TERMINAL FUNCTIONS 47
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
TERMINAL FUNCTIONS
PIN
SIGNAL NAME TYPE
CLKIN A3 I IPD Clock input CLKOUT2/GP[2] Y12 O/Z IPD CLKOUT3 D10 O IPD Clock output programmable by OSCDIV1 register in the PLL controller
CLKMODE0 C4 I IPU
PLLHV C5 A
TMS B7 I IPU JTAG test-port mode select TDO A8 O/Z IPU JTAG test-port data out TDI A7 I IPU JTAG test-port data in TCK A6 I IPU JTAG test-port clock
TRST B6 I IPD EMU5 B12 I/O/Z IPU Emulation pin 5. Reserved for future use, leave unconnected.
EMU4 C11 I/O/Z IPU Emulation pin 4. Reserved for future use, leave unconnected. EMU3 B10 I/O/Z IPU Emulation pin 3. Reserved for future use, leave unconnected. EMU2 D3 I/O/Z IPU Emulation pin 2. Reserved for future use, leave unconnected.
EMU1 B9 EMU0 D9
RESET A13 I Device reset. When using boundary scan mode, drive the EMU[1:0] and RESET pins low.
NMI C13 I IPD
GP[7](EXT_INT7) E3 General-purpose input/output pins (I/O/Z), which also function as external interrupts
GP[6](EXT_INT6) D2
GP[5](EXT_INT5)/ AMUTEIN0
GP[4](EXT_INT4)/ AMUTEIN1
HINT/GP[1] J20 O/Z IPU Host interrupt (from DSP to host) (O) [default] or this pin can be programmed as a GP[1] pin (I/O/Z) HCNTL1/AXR1[1] G19 I IPU Host control: Selects between control, address, or data registers (I) [default] or McASP1 data pin 1 (I/O/Z) HCNTL0/AXR1[3] G18 I IPU Host control: Selects between control, address, or data registers (I) [default] or McASP1 data pin 3 (I/O/Z)
HHWIL/AFSR1 H20 I IPU HR/W/AXR1[0] G20 I IPU Host read or write select (I) [default] or McASP1 data pin 0 (I/O/Z)
NO.
GDP
C1
C2
(1)
IPD/IPU
(3)
I/O/Z IPU
I/O/Z IPU
(2)
CLOCK/PLL CONFIGURATION
Clock output at half of device speed (O/Z) [default] (SYSCLK2 internal signal from the clock generator) or this pin can be programmed as GP[2] pin (I/O/Z).
Clock generator input clock source select
0: Reserved, do not use
1: CLKIN square wave [default] For proper device operation, this pin must be either left unconnected or externally pulled up with a 1-kresistor. Analog power (3.3 V) for PLL (PLL filter)
JTAG EMULATION
JTAG test-port reset. For IEEE Std 1149.1 JTAG compatibility, see the IEEE 1149.1 JTAG Compatibility Statement section of this data sheet.
Emulation [1:0]
Select the device functional mode of operation
Operation: EMU[1:0]:
00 Boundary Scan/Functional Mode (see note)
01 Reserved
10 Reserved
11 Emulation/Functional Mode [default] (see the IEEE 1149.1 JTAG Compatibility Statement of this data
sheet) The DSP can be placed in Functional mode when the EMU[1:0] pins are configured for either boundary scan or emulation. Note: When the EMU[1:0] pins are configured for boundary scan mode, the internal pulldown (IPD) on the TRST signal must not be
opposed to operate in functional mode. For the boundary scan mode, drive EMU[1:0] and RESET pins low.
RESETS AND INTERRUPTS
Nonmaskable interrupt
Edge-driven (rising edge)
Edge-driven
Polarity independently selected via the external interrupt polarity register bits (EXTPOL.[3:0]), in addition to the GPIO registers.
GP[4] and GP[5] pins also function as AMUTEIN1 McASP1 mute input and AMUTEIN0 McASP0 mute input, respectively, if enabled by the INEN bit in the associated McASP AMUTE register.
HOST-PORT INTERFACE (HPI)
Host half-word select: First or second half-word (not necessarily high or low order) (I) [default] or McASP1 receive frame sync or left/right clock (LRCLK) (I/O/Z).
DESCRIPTION
www.ti.com
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground (2) IPD = Internal pulldown, IPU = Internal pullup. [These IPD/IPU signal pins feature a 13-kresistor (approximate) for the IPD or 18-k
resistor (approximate) for the IPU. An external pullup or pulldown resistor no greater than 4.4 kand 2.0 k, respectively, should be used to pull a signal to the opposite supply rail.]
(3) A = Analog signal 48 TERMINAL FUNCTIONS Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
TERMINAL FUNCTIONS (continued)
PIN
SIGNAL NAME TYPE
HD15/GP[15] B14 HD14/GP[14] C14 HD13/GP[13] A15 HD12/GP[12] C15 HD11/GP[11] A16 I/O/Z IPU HD10/GP[10] B16 HD9/GP[9] C16 HD8/GP[8] B17 HD7/GP[3] A18
HD6/AHCLKR1 C17 I/O/Z IPU Host-port data pin 6 (I/O/Z) [default] or McASP1 receive high-frequency master clock (I/O/Z) HD5/AHCLKX1 B18 I/O/Z IPU Host-port data pin 5 (I/O/Z) [default] or McASP1 transmit high-frequency master clock (I/O/Z) HD4/GP[0] C19 I/O/Z IPD Host-port data pin 4 (I/O/Z) [default] or this pin can be programmed as a GP[0] pin (I/O/Z) HD3/AMUTE1 C20 I/O/Z IPU Host-port data pin 3 (I/O/Z) [default] or McASP1 mute output (O/Z) HD2/AFSX1 D18 I/O/Z IPU Host-port data pin 2 (I/O/Z) [default] or McASP1 transmit frame sync or left/right clock (LRCLK) (I/O/Z) HD1/AXR1[7] D20 I/O/Z IPU Host-port data pin 1 (I/O/Z) [default] or McASP1 data pin 7 (I/O/Z) HD0/AXR1[4] E20 I/O/Z IPU Host-port data pin 0 (I/O/Z) [default] or McASP1 data pin 4 (I/O/Z) HAS/ACLKX1 E18 I IPU Host address strobe (I) [default] or McASP1 transmit bit clock (I/O/Z) HCS/AXR1[2] F20 I IPU Host chip select (I) [default] or McASP1 data pin 2 (I/O/Z) HDS1/AXR1[6] E19 I IPU Host data strobe 1 (I) [default] or McASP1 data pin 6 (I/O/Z) HDS2/AXR1[5] F18 I IPU Host data strobe 2 (I) [default] or McASP1 data pin 5 (I/O/Z) HRDY/ACLKR1 H19 O/Z IPD Host ready (from DSP to host) (O) [default] or McASP1 receive bit clock (I/O/Z)
CE3 V6 CE2 W6 CE1 W18 CE0 V17 BE3 V5 BE2 Y4 BE1 U19 BE0 V20
HOLDA J18 O/Z IPU Hold-request-acknowledge to the host HOLD J17 I IPU Hold request from the host BUSREQ J19 O/Z IPU Bus request output
ECLKIN Y11 I IPD External EMIF input clock source
ECLKOUT Y10 O/Z IPD EKSRC = 1 ECLKOUT is based on the external EMIF input clock source pin (ECLKIN)
ARE/SDCAS/ SSADS
AOE/SDRAS/ SSOE W10 O/Z IPU Asynchronous memory output enable/SDRAM row-address strobe/SBSRAM output enable AWE/SDWE/ SSWE V12 O/Z IPU Asynchronous memory write enable/SDRAM write enable/SBSRAM write enable ARDY Y5 I IPU Asynchronous memory ready input
NO.
GDP
V11 O/Z IPU Asynchronous memory read enable/SDRAM column-address strobe/SBSRAM address strobe
(1)
O/Z IPU Enabled by bits 28 through 31 of the word address
O/Z IPU
(2)
IPD/IPU
Host-port data pins (I/O/Z) [default] or general-purpose input/output pins (I/O/Z)
Used for transfer of data, address, and control
Also controls initialization of DSP modes at reset via pullup/pulldown resistors
Device Endian mode (HD8)
0: Big Endian 1: Little Endian
– Boot mode (HD[4:3]) 00: HPI boot/emulation boot 01: CE1 width 8-bit, asynchronous external ROM boot with default timings (default mode) 10: CE1 width 16-bit, asynchronous external ROM boot with default timings 11: CE1 width 32-bit, asynchronous external ROM boot with default timings
– HPI_EN (HD14)
0: HPI disabled, McASP1 enabled 1: HPI enabled, McASP1 disabled (default)
Other HD pins (HD [15, 13:9, 7:5, 2:0] have pullups/pulldowns (IPUs/IPDs). For proper device operation, do not oppose these pins with external pullups/pulldowns at reset; however, the HD[15, 6, 5, 2] pins can be opposed and driven at reset. For more details, see the Device Configurations section of this data sheet.
EMIFCOMMON SIGNALS TO ALL TYPES OF MEMORY
Memory space enables
Only one asserted during any external data access
Byte-enable control
Decoded from the two lowest bits of the internal address
Byte-write enables for most types of memory
Can be directly connected to SDRAM read and write mask signal (SDQM)
EMIFBUS ARBITRATION
EMIFASYNCHRONOUS/SYNCHRONOUS MEMORY CONTROL
EMIF output clock depends on the EKSRC bit (DEVCFG.[4]) and on EKEN bit (GBLCTL.[5]).
EKSRC = 0 ECLKOUT is based on the internal SYSCLK3 signal from the clock generator (default).
EKEN = 0 ECLKOUT held low EKEN = 1 ECLKOUT enabled to clock (default)
DESCRIPTION
(4)
(4)
(4)
(4) To maintain signal integrity for the EMIF signals, serial termination resistors should be inserted into all EMIF output signal lines.
Copyright © 2003–2011, Texas Instruments Incorporated TERMINAL FUNCTIONS 49
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com
TERMINAL FUNCTIONS (continued)
PIN
SIGNAL NAME TYPE
EA21 U18 EA20 Y18 EA19 W17 EA18 Y16 EA17 V16 EA16 Y15 EA15 W15 EA14 Y14 EA13 W14 The EMIF adjusts the address based on memory width: EA12 V14 Width Pins Address EA11 W13 32 21:2 21 through 2 EA10 V10 16 21:2 20 through 1 EA9 Y9 8 21:2 19 through 0 EA8 V9 EA7 Y8 For more details on address width adjustments, see the External Memory Interface (EMIF) chapter of the TMS320C6000 Peripherals EA6 W8 EA5 V8 EA4 W7 EA3 V7 EA2 Y6
NO.
GDP
(1)
IPD/IPU
O/Z IPU
(2)
EMIFADDRESS
External address (word, half-word, and byte address)
Reference Guide (literature number SPRU190)
DESCRIPTION
(4)
50 TERMINAL FUNCTIONS Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
TERMINAL FUNCTIONS (continued)
PIN
SIGNAL NAME TYPE
ED31 N3 ED30 P3 ED29 P2 ED28 P1 ED27 R2 ED26 R3 ED25 T2 ED24 T1 ED23 U3 ED22 U1 ED21 U2 ED20 V1 ED19 V2 ED18 Y3 ED17 W4 ED16 V4 ED15 T19 ED14 T20 ED13 T18 ED12 R20 ED11 R19 ED10 P20 ED9 P18 ED8 N20 ED7 N19 ED6 N18 ED5 M20 ED4 M19 ED3 L19 ED2 L18 ED1 K19 ED0 K18
GP[4](EXT_INT4)/ AMUTEIN1
HD3/AMUTE1 C20 I/O/Z IPU Host-port data pin 3 (I/O/Z) [default] or McASP1 mute output (O/Z) HRDY/ACLKR1 H19 I/O/Z IPU Host ready (from DSP to host) (O) [default] or McASP1 receive bit clock (I/O/Z) HD6/AHCLKR1 C17 I/O/Z IPU Host-port data pin 6 (I/O/Z) [default] or McASP1 receive high-frequency master clock (I/O/Z) HAS/ACLKX1 E18 I/O/Z IPU Host address strobe (I) [default] or McASP 1 transmit bit clock (I/O/Z) HD5/AHCLKX1 B18 I/O/Z IPU Host-port data pin 5 (I/O/Z) [default] or McASP1 transmit high-frequency master clock (I/O/Z)
HHWIL/AFSR1 H20 I/O/Z IPU HD2/AFSX1 D18 I/O/Z IPU Host-port data pin 2 (I/O/Z) [default] or McASP1 transmit frame sync or left/right clock (LRCLK) (I/O/Z)
HD1/AXR1[7] D20 I/O/Z IPU Host-port data pin 1 (I/O/Z) [default] or McASP1 TX/RX data pin 7 (I/O/Z) HDS1/AXR1[6] E19 I/O/Z IPU Host data strobe 1 (I) [default] or McASP1 TX/RX data pin 6 (I/O/Z) HDS2/AXR1[5] F18 I/O/Z IPU Host data strobe 2 (I) [default] or McASP1 TX/RX data pin 5 (I/O/Z) HD0/AXR1[4] E20 I/O/Z IPU Host-port data pin 0 (I/O/Z) [default] or McASP1 TX/RX data pin 4 (I/O/Z) HCNTL0/AXR1[3] G18 I/O/Z IPU Host control selects between control, address, or data registers (I) [default] or McASP1 TX/RX data pin 3 (I/O/Z) HCS/AXR1[2] F20 I/O/Z IPU Host chip select (I) [default] or McASP1 TX/RX data pin 2 (I/O/Z) HCNTL1/AXR1[1] G19 I/O/Z IPU Host control selects between control, address, or data registers (I) [default] or McASP1 TX/RX data pin 1 (I/O/Z) HR/W/AXR1[0] G20 I/O/Z IPU Host read or write select (I) [default] or McASP1 TX/RX data pin 0 (I/O/Z)
NO.
GDP
C2 I/O/Z IPU General-purpose input/output pin 4 and external interrupt 4 (I/O/Z) [default] or McASP1 mute input (I/O/Z)
(1)
I/O/Z IPU External data pins (ED[31:16] pins applicable to GDP package only)
(2)
IPD/IPU
EMIFDATA
MULTICHANNEL AUDIO SERIAL PORT 1 (McASP1)
Host half-word select first or second half-word (not necessarily high or low order) (I) [default] or McASP1 receive frame sync or left/right clock (LRCLK) (I/O/Z)
(5)
DESCRIPTION
(5) To maintain signal integrity for the EMIF signals, serial termination resistors should be inserted into all EMIF output signal lines.
Copyright © 2003–2011, Texas Instruments Incorporated TERMINAL FUNCTIONS 51
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com
TERMINAL FUNCTIONS (continued)
PIN
SIGNAL NAME TYPE
GP[5](EXT_INT5)/ AMUTEIN0
CLKX1/AMUTE0 L3 I/O/Z IPD McBSP1 transmit clock (I/O/Z) [default] or McASP0 mute output (O/Z) CLKR0/ACLKR0 H3 I/O/Z IPD McBSP0 receive clock (I/O/Z) [default] or McASP0 receive bit clock (I/O/Z) TINP1/AHCLKX0 F2 I/O/Z IPD Timer 1 input (I) [default] or McBSP0 transmit high-frequency master clock (I/O/Z) CLKX0/ACLKX0 G3 I/O/Z IPD McBSP0 transmit clock (I/O/Z) [default] or McASP0 transmit bit clock (I/O/Z) CLKS0/AHCLKR0 K3 I/O/Z IPD McBSP0 external clock source (as opposed to internal) (I) [default] or McASP0 receive high-frequency master clock (I/O/Z) FSR0/AFSR0 J3 I/O/Z IPD McBSP0 receive frame sync (I/O/Z) [default] or McASP0 receive frame sync or left/right clock (LRCLK) (I/O/Z) FSX0/AFSX0 H1 I/O/Z IPD McBSP0 transmit frame sync (I/O/Z) [default] or McASP0 transmit frame sync or left/right clock (LRCLK) (I/O/Z) FSR1/AXR0[7] M3 I/O/Z IPD McBSP1 receive frame sync (I/O/Z) [default] or McASP0 TX/RX data pin 7 (I/O/Z) CLKR1/AXR0[6] M1 I/O/Z IPD McBSP1 receive clock (I/O/Z) [default] or McASP0 TX/RX data pin 6 (I/O/Z) DX1/AXR0[5] L2 I/O/Z IPU McBSP1 transmit data (O/Z) [default] or McASP0 TX/RX data pin 5 (I/O/Z) TOUT1/AXR0[4] F1 I/O/Z IPD Timer 1 output (O) [default] or McASP0 TX/RX data pin 4 (I/O/Z) TINP0/AXR0[3] G2 I/O/Z IPD Timer 0 input (I) [default] or McASP0 TX/RX data pin 3 (I/O/Z) TOUT0/AXR0[2] G1 I/O/Z IPD Timer 0 output (O) [default] or McASP0 TX/RX data pin 2 (I/O/Z) DX0/AXR0[1] H2 I/O/Z IPU McBSP0 transmit data (O/Z) [default] or McASP0 TX/RX data pin 1 (I/O/Z) DR0/AXR0[0] J1 I/O/Z IPU McBSP0 receive data (I) [default] or McASP0 TX/RX data pin 0 (I/O/Z)
TOUT1/AXR0[4] F1 O IPD Timer 1 output (O) [default] or McASP0 TX/RX data pin 4 (I/O/Z) TINP1/AHCLKX0 F2 I IPD
TOUT0/AXR0[2] G1 O IPD Timer 0 output (O) [default] or McASP0 TX/RX data pin 2 (I/O/Z) TINP0/AXR0[3] G2 I IPD Timer 0 input (I) [default] or McASP0 TX/RX data pin 3 (I/O/Z)
CLKS1/SCL1 E1 I
CLKR1/AXR0[6] M1 I/O/Z IPD McBSP1 receive clock (I/O/Z) [default] or McASP0 TX/RX data pin 6 (I/O/Z) CLKX1/AMUTE0 L3 I/O/Z IPD McBSP1 transmit clock (I/O/Z) [default] or McASP0 mute output (O/Z)
DR1/SDA1 M2 I
DX1/AXR0[5] L2 O/Z IPU McBSP1 transmit data (O/Z) [default] or McASP0 TX/RX data pin 5 (I/O/Z) FSR1/AXR0[7] M3 I/O/Z IPD McBSP1 receive frame sync (I/O/Z) [default] or McASP0 TX/RX data pin 7 (I/O/Z) FSX1 L1 I/O/Z IPD McBSP1 transmit frame sync
CLKS0/AHCLKR0 K3 I IPD McBSP0 external clock source (as opposed to internal) (I) [default] or McASP0 receive high-frequency master clock (I/O/Z) CLKR0/ACLKR0 H3 I/O/Z IPD McBSP0 receive clock (I/O/Z) [default] or McASP0 receive bit clock (I/O/Z) CLKX0/ACLKX0 G3 I/O/Z IPD McBSP0 transmit clock (I/O/Z) [default] or McASP0 transmit bit clock (I/O/Z) DR0/AXR0[0] J1 I IPU McBSP0 receive data (I) [default] or McASP0 TX/RX data pin 0 (I/O/Z) DX0/AXR0[1] H2 O/Z IPU McBSP0 transmit data (O/Z) [default] or McASP0 TX/RX data pin 1 (I/O/Z) FSR0/AFSR0 J3 I/O/Z IPD McBSP0 receive frame sync (I/O/Z) [default] or McASP0 receive frame sync or left/right clock (LRCLK) (I/O/Z) FSX0/AFSX0 H1 I/O/Z IPD McBSP0 transmit frame sync (I/O/Z) [default] or McASP0 transmit frame sync or left/right clock (LRCLK) (I/O/Z)
CLKS1/SCL1 E1 I/O/Z this pin is used as an I2C pin, the value of the pullup resistor depends on the number of devices connected to the I2C bus. For more
DR1/SDA1 M2 I/O/Z
SCL0 N1 I/O/Z
NO.
GDP
C1 I/O/Z IPU General-purpose input/output pin 5 and external interrupt 5 (I/O/Z) [default] or McASP0 mute input (I/O/Z)
(1)
(2)
IPD/IPU
MULTICHANNEL AUDIO SERIAL PORT 0 (McASP0)
TIMER1
Timer 1 input (I) [default] or McBSP0 transmit high-frequency master clock (I/O/Z). This pin defaults as Timer 1 input (I) and McASP transmit highfrequency master clock input (I).
TIMER0
MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1)
McBSP1 external clock source (as opposed to internal) (I) [default] or I2C1 clock (I/O/Z). This pin does not have an internal pullup or pulldown. When this pin is used as a McBSP pin, this pin should either be driven externally at all times or be pulled up with a 10-k resistor to a valid logic level. Because it is common for some ICs to 3-state their outputs at times, a 10-kpullup resistor may be desirable even when an external device is driving the pin.
McBSP1 receive data (I) [default] or I2C1 data (I/O/Z). This pin does not have an internal pullup or pulldown. When this pin is used as a McBSP pin, this pin should either be driven externally at all times or be pulled up with a 10-kresistor to a valid logic level. Because it is common for some ICs to 3-state their outputs at times, a 10-kpullup resistor may be desirable even when an external device is driving the pin.
MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0)
INTER-INTEGRATED CIRCUIT 1 (I2C1)
McBSP1 external clock source (as opposed to internal) (I) [default] or I2C1 clock (I/O/Z). This pin must be externally pulled up. When
details, see the Philips I2C Specification Revision 2.1 (January 2000). McBSP1 receive data (I) [default] or I2C1 data (I/O/Z). This pin must be externally pulled up. When this pin is used as an I2C pin, the
value of the pullup resistor depends on the number of devices connected to the I2C bus. For more details, see the Philips I2C Specification Revision 2.1 (January 2000).
INTER-INTEGRATED CIRCUIT 0 (I2C0)
I2C0 clock. This pin must be externally pulled up. When this pin is used as an I2C pin, the value of the pull-up resistor depends on the number of devices connected to the I2C bus. For more details, see the Philips I2C Specification Revision 2.1 (January 2000).
DESCRIPTION
52 TERMINAL FUNCTIONS Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
TERMINAL FUNCTIONS (continued)
PIN
SIGNAL NAME TYPE
SDA0 N2 I/O/Z
HD15/GP[15] B14 I/O/Z IPU Host-port data pins (I/O/Z) [default] or general-purpose input/output pins (I/O/Z) and some function as boot configuration pins at reset. HD14/GP[14] C14 I/O/Z IPU HD13/GP[13] A15 I/O/Z IPU HD12/GP[12] C15 I/O/Z IPU HD11/GP[11] A16 I/O/Z IPU HD10/GP[10] B16 I/O/Z IPU HD9/GP[9] C16 I/O/Z IPU
HD8/GP[8] B17 I/O/Z IPU
GP[7](EXT_INT7) E3 I/O/Z IPU GP[6](EXT_INT6) D2 I/O/Z IPU GP[5](EXT_INT5)/AM
UTEIN0 GP[4](EXT_INT4)/
AMUTEIN1 HD7/GP[3] A18 I/O/Z IPU Host-port data pin 7 (I/O/Z) [default] or general-purpose input/output pin 3 (I/O/Z) CLKOUT2/GP[2] Y12 I/O/Z IPD Clock output at half of device speed (O/Z) [default] or this pin can be programmed as GP[2] pin HINT/GP[1] J20 O IPU Host interrupt (from DSP to host) (O) [default] or this pin can be programmed as a GP[1] pin (I/O/Z) HD4/GP[0] C19 I/O/Z IPD Host-port data pin 4 (I/O/Z) [default] or this pin can be programmed as a GP[0] pin (I/O/Z)
RSV A5 O/Z IPU Reserved. (Leave unconnected; do not connect to power or ground.) RSV B5 A RSV C12 O Reserved. (Leave unconnected; do not connect to power or ground.) RSV D7 O/Z IPD Reserved. (Leave unconnected; do not connect to power or ground.)
RSV D12 I
RSV A12
RSV B11
DV
DD
NO.
GDP
C1 I/O/Z IPU
C2 I/O/Z IPU
A17
B3 B8
B13
C10
D1 D16 D19
F3 H18
J2
M18
R1 R18 S
T3
U5
U7 U12 U16 V13 V15 V19
W3 W9
W12
Y7 Y17
(1)
(6)
(2)
IPD/IPU
I2C0 data. This pin must be externally pulled up. When this pin is used as an I2C pin, the value of the pull-up resistor depends on the number of devices connected to the I2C bus. For more details, see the Philips I2C Specification Revision 2.1 (January 2000).
GENERAL-PURPOSE INPUT/OUTPUT (GPIO)
Used for transfer of data, address, and control
Also controls initialization of DSP modes at reset via pullup/pulldown resistors
abc
As general-purpose input/output (GP[x]) functions, these pins are software configurable through registers. The GPxEN bits in the GP Enable register and the GPxDIR bits in the GP Direction register must be properly configured:
abc
GPxEN = 1; GP[x] pin is enabled. GPxDIR = 0; GP[x] pin is an input. GPxDIR = 1; GP[x] pin is an output.
abc
For the functionality description of the Host-port data pins or the boot configuration pins, see the Host-Port Interface (HPI) portion of this table.
General-purpose input/output pins (I/O/Z) that also function as external interrupts
Edge-driven
Polarity independently selected via the External Interrupt Polarity Register bits (EXTPOL.[3:0])
abc
GP[4] and GP[5] pins also function as AMUTEIN1 McASP1 mute input and AMUTEIN0 McASP0 mute input, respectively, if enabled by the INEN bit in the associated McASP AMUTE register.
RESERVED FOR TEST
Reserved. (Leave unconnected; do not connect to power or ground.)
Reserved. This pin does not have an IPU. For proper C6713 device operation, the D12 pin must be externally pulled down with a 10-kresistor.
Reserved. For new designs, it is recommended that this pin be connected directly to CVDD(core power). For old designs, this can be left unconnected.
Reserved. For new designs, it is recommended that this pin be connected directly to VSS(ground). For old designs, this pin can be left unconneced.
SUPPLY VOLTAGE PINS
3.3-V supply voltage (see the Power-Supply Decoupling section of this data sheet)
DESCRIPTION
(6) A = Analog signal
Copyright © 2003–2011, Texas Instruments Incorporated TERMINAL FUNCTIONS 53
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
PIN
SIGNAL NAME TYPE
CV
DD
NO.
GDP
A4
A9 A10
B2 B19
C3
C7 C18
D5
D6 D11 D14 D15
F4 F17
K1 1.26-V supply voltage
K4 (see the Power-Supply Decoupling section of this data sheet) K17
L4 L17 L20
R4 R17
U6 U10 U11 U14 U15
V3 V18
W2
W19
(1)
IPD/IPU
S
(2)
www.ti.com
TERMINAL FUNCTIONS (continued)
DESCRIPTION
54 TERMINAL FUNCTIONS Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
TERMINAL FUNCTIONS (continued)
PIN
SIGNAL NAME TYPE
V
SS
NO.
GDP
A1
A2 A11 A14 A19 A20
B1
B4 B15 B20
C6
C8
C9
D4
D8 D13 D17
E2
E4 E17 F19
G4
G17
H4 H17
J4
J9 J10 J11 J12
K2
K9 K10 K11 K12 GND K20
L9 L10 L11 L12
M4
M9 M10 M11 M12 M17
N4
N17
P4 P17 P19
T4 T17
U4
U8
U9 U13 U17 U20
W1
W5 W11 W16 W20
Y1
Y2 Y13 Y19 Y20
(1) Shaded pin numbers denote the center thermal balls.
(1)
(2)
IPD/IPU
Ground pins grounds and thermal relief (thermal dissipation).
(1)
. The center thermal balls (J9J12, K9K12, L9L12, M9M12) [shaded] are all tied to ground and act as both electrical
SGUS049K–AUGUST 2003– REVISED APRIL 2011
DESCRIPTION
GROUND PINS

6.1 Development Support

TI offers an extensive line of development tools for the TMS320C6000DSP platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules.
The following products support development of C6000DSP-based applications:
Copyright © 2003–2011, Texas Instruments Incorporated TERMINAL FUNCTIONS 55
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Software Development Tools
Code Composer StudioIntegrated Development Environment (IDE), including Editor
C/C++/Assembly Code Generation, and Debug plus additional development tools
Scalable, Real-Time Foundation Software ( DSP/BIOS), which provides the basic run-time target
software needed to support any DSP application.
Hardware Development Tools
Extended Development System ( XDS) Emulator (supports C6000 DSP multiprocessor system debug)
EVM (evaluation module)
For a complete listing of development-support tools for the TMS320C6000 DSP platform, visit the Texas Instruments web site at www.ti.com. For information on pricing and availability, contact the nearest TI field sales office or authorized distributor.

6.2 Device and Development-Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320DSP devices and support tools. Each TMS320 DSP commercial family member has one of three prefixes: SMX, TMP, or SM/SMJ. TI recommends two of three possible prefix designators for support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (SMX/TMDX) through fully qualified production devices/tools (SM/SMJ/TMDS).
www.ti.com

6.2.1 Device Development Evolutionary Flow

SMX Preproduction device that is not necessarily representative of the final device
electrical specifications
TMP Final silicon die that conforms to the device electrical specifications but has not
completed quality and reliability verification
SM/SMJ Fully qualified production device

6.2.2 Support Tool Development Evolutionary Flow

TMDX Development-support product that has not yet completed Texas Instruments
internal qualification testing
TMDS Fully qualified development-support product
SMX and TMP devices and TMDX development-support tools are shipped with appropriate disclaimers describing their limitations and intended uses. Experimental devices (SMX) may not be representative of a final product and TI reserves the right to change or discontinue these products without notice.
SM/SMJ devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TIs standard warranty applies.
Predictions show that prototype devices (SMX or TMP) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, GDP), the temperature range (for example, blank is the default commercial temperature range), and the device speed range in megahertz (for example, 20 is 200 MHz).
Figure 6-1 provides a legend for reading the complete device name for any TMS320C6000 DSP family
member.
56 TERMINAL FUNCTIONS Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
PREFIX ENHANCED PLASTIC INDICA TOR
SM 320 C 6713 GDP 20
SMX= Experimental device TMP= Prototype device TMS= Qualified device SMJ= MIL-PRF-38535, QML SM High Rel (non-38535)
DEVICE FAMILY
320 = TMS320 ä DSP family
TECHNOLOGY
PACKAGE TYPE (See Note 1)
C CMOS
DEVICE
TEMPERATURE RANGE (DEFAULT: 0°C TO 90°C)
( )
C6000 DSP:
C6713 C6713B
GDP = 272-pin plastic BGA GFN= 256-pin plastic BGA GGP = 352-pin plastic BGA GJC= 352-pin plastic BGA GJL= 352-pin plastic BGA GLS= 384-pin plastic BGA GLW= 340-pin plastic BGA GNY = 384-pin plastic BGA GNZ = 352-pin plastic BGA GLZ= 532-pin plastic BGA GHK = 288-pin plastic MicroStar BGA
TM
PYP = 208-pin PowerP
AD
TM
plastic QFP
20 = 200 MHz
EP
DEVICE SPEED RANGE
Blank = 0°C to 90°C (commercial temperature) A = 40°C to 105°C (extended temperature) M = –55°C to 125°C (extended temperature) S = -55°C to 105°C (extended temperature)
-
=
=
NOTE (1): BGA = Ball Grid Array
QFP = Quad Flatpack
For actual device part numbers (P/Ns) and ordering information, see the Mechanical Data section of this the TI website (www.ti.com).
document or
SM320C6713-EP
SM320C6713B-EP
www.ti.com
Table 6-1. 320C6713 and C6713B Device Part Numbers (P/Ns) and Ordering Information
DEVICE ORDERABLE P/N
C6713B
SM32C6713BGDPA20EP 200 MHz/1200 MFlops 1.26 V 3.3 V –40°C to 105°C
SM32C6713BGDPM30EP 300 MHz/1800 MFlops 1.4V 3.3V –55°C to 125°C
SM32C6713BGDPS20EP 200 MHz/1200 MFlops 1.26 V 3.3 V –55°C to 105°C
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
Web site at www.ti.com.
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package
(2)
DEVICE SPEED TEMPERATURE
CORE AND I/O VOLTAGE OPERATING CASE
CVDD(CORE) DVDD(I/O)
SGUS049K–AUGUST 2003– REVISED APRIL 2011
(1)
RANGE

6.3 Ordering Nomenclature

Figure 6-1. TMS320C6000DSP Device Nomenclature (Including SM320C6713 and C6713B Devices)

6.4 Documentation Support

Extensive documentation supports all the TMS320 DSP family generations of devices from product announcement through applications development. The types of documentation available include data sheets, such as this document with design specifications complete users reference guides for all devices and tools, technical briefs, development-support tools, on-line help, and hardware and software applications. The following is a brief, descriptive list of support documentation specific to the C6000 DSP devices, except where noted, all documents are accessible through the TI web site at www.ti.com.
TMS320C6000CPU and Instruction Set Reference Guide (literature number SPRU189) describes the C6000 CPU (DSP core) architecture, instruction set, pipeline, and associated interrupts.
Copyright © 2003–2011, Texas Instruments Incorporated TERMINAL FUNCTIONS 57
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049KAUGUST 2003REVISED APRIL 2011
TMS320C6000DSP Peripherals Overview Reference Guide [hereafter referred to as the C6000 PRG Overview] (literature number SPRU190) provides an overview and briefly describes the
functionality of the peripherals available on the C6000 DSP platform of devices. This document also includes a table listing the peripherals available on the C6000 devices along with literature numbers and hyperlinks to the associated peripheral documents. These C6713/13B peripherals are similar to the peripherals on the TMS320C6711 and TMS320C64x devices; therefore, see the TMS320C6711 (C6711 or C67x) peripheral information and, in some cases (where indicated), see the TMS320C6711 (C6711 or C671x) peripheral information and, in some cases (where indicated), see the C64x information in the C6000PRG Overview (literature number SPRU190).
TMS320DA6000DSP Multichannel Audio Serial Port (McASP) Reference Guide (literature number
SPRU041) describes the functionality of the McASP peripherals available on the C6713/13B device.
TMS320C6000DSP Software-Programmable Phase-Locked Loop (PLL) Controller Reference Guide
(literature number SPRU233) describes the functionality of the PLL peripheral available on the C6713/13B device.
TMS320C6000DSP Inter-Integrated Circuit (I2C) Module Reference Guide (literature number
SPRU175) describes the functionality of the I2C peripherals available on the C6713/13B device.
The PowerPAD Thermally-Enhanced Package Technical Brief (literature number SLMA002) focuses on the specifics of integrating a PowerPAD package into the printed circuit board (PCB) design to make optimum use of the thermal efficiencies designed into the PowerPAD package.
TMS320C6000Technical Brief (literature number SPRU197) gives an introduction to the C62x/ C67xdevices, associated development tools, and third-party support.
Migrating from TMS320C6211(B)/C6711(B) to TMS320C6713 application report (literature number
SPRA851) indicates the differences and describes the issues of interest related to the migration from
the TI TMS320C6211(B)/C6711(B) GFN package to the TMS320C6713 GDP package.
TMS320C6713, TMS320C6713B Digital Signal Processors Silicon Errata (literature number SPRZ191) describes the known exceptions to the functional specifications for particular silicon revisions of the TMS320C6713 and TMS320C6713B devices.
TMS320C6713/12C/11C Power Consumption Summary application report (literature number
SPRA889) discusses the power consumption for user applications with the TMS320C6713/13B,
TMS320C6712C/12D, and TMS320C6711C/11D DSP devices.
Using IBIS Models for Timing Analysis application report (literature number SPRA839) describes how to properly use IBIS models to attain accurate timing analysis for a given system.
www.ti.com
The tools support documentation is electronically available within the Code Composer Studio Integrated Development Environment (IDE). For a complete listing of C6000 DSP latest documentation, visit the Texas Instruments web site at www.ti.com. Also, see the TI web site for the application report, How To Begin Development Today With the TMS320C6713 Floating-Point DSP (literature number SPRA809), which describes in more detail the similarities/differences between the C6713 and C6711 C6000 DSP devices.
58 TERMINAL FUNCTIONS Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
31 24 23 16
CPUID
REVISIONID
R-0x02 R-0x03[13/13B]
15 10 98 76 54 21 0
PWRD
SAT EN PCC DCC PGIE GIE
R/W-0R /C-0 R-1R /W-0 R/W-0R /W-0 R/W-0
Legend: R=ReadablebytheMVCinstruction,R/W=Readable/WriteablebytheMVCinstruction;W=Read/write;-n=valueafterreset,-x=undefinedvalueafter
reset,C=ClearablebytheMVCinstruction
SM320C6713-EP
SM320C6713B-EP
www.ti.com

7 REGISTER INFORMATION

This section provides the register information for the device.

7.1 CPU Control Status Register (CSR) Description

The CPU CSR contains the CPU ID and CPU Revision ID (bits 1631), as well as the status of the device power-down modes [PWRD field (bits 1510)], program and data cache control modes, the endian bit (EN, bit 8), and the global interrupt enable (GIE, bit 0) and previous GIE (PGIE, bit 1). Figure 7-1 and
Table 7-1 identify the bit fields in the CPU CSR.
For more detailed information on the bit fields in the CPU CSR, see the TMS320C6000 DSP Peripherals
Overview Reference Guide (literature number SPRU190) and the TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189).
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Figure 7-1. CPU Control Status Register (CPU CSR)
Copyright © 2003–2011, Texas Instruments Incorporated REGISTER INFORMATION 59
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 7-1. CPU CSR Bit Field Description
Bit NO. NAME DESCRIPTION
31:24 CPU ID 23:16 REVISION ID 15:10 PWRD Control power-down modes. The values are always read as zero.
9 SAT Saturate bit.
8 EN Endian bit. This bit is read-only. Depicts the device endian mode.
7:5 PCC Program cache control mode.
4:2 DCC Data cache control mode.
1 PGIE Previous GIE (global interrupt enable); saves the Global Interrupt Enable (GIE) when an interrupt is taken.
0 GIE Global interrupt enable bit.
CPU ID + REV ID. Read only. Identifies which CPU is used and defines the silicon revision of the CPU. CPU ID + REVISION ID (31:16) are combined for a value of: 0x0203 for C6713/13B
000000 = No power down (default) 001001 = PD1, wake up by an enabled interrupt 010001 = PD1, wake up by an enabled or not enabled interrupt 011010 = PD2, wake up by a device reset 011100 = PD3, wake up by a device reset
Others = Reserved
Set when any unit performs a saturate. This bit can be cleared only by the MVC instruction and can be set only by a functional unit. The set by the a functional unit has priority over a clear (by the MVC instruction) if they occur on the same cycle. The saturate bit is set one full cycle (one delay slot) after a saturate occurs. This bit will not be modified by a conditional instruction whose condition is false.
0 = Big Endian mode 1 = Little Endian mode [default]
L1D, Level 1 program cache
000/010 = Cache enabled/cache accessed and updated on reads
All other PCC values are reserved.
L1D, Level 1 data cache
000/010 = Cache enabled/2-way cache
All other DCC values are reserved.
Allows for proper nesting of interrupts.
0 = Previous GIE value is 0 (default). 1 = Previous GIE value is 1.
Enables (1) or disables (0) all interrupts except the reset interrupt and NMI (nonmaskable interrupt).
0 = Disables all interrupts (except the reset interrupt and NMI) [default]. 1 = Enables all interrupts (except the reset interrupt and NMI).
www.ti.com

7.2 Cache Configuration (CCFG) Register Description (13B)

The C6713B device includes an enhancement to the CCFG register. A P bit (CCFG.31) allows the programmer to select the priority of accesses to L2 memory originating from the transfer crossbar (TC) over accesses originating from the L1D memory system. An important class of TC accesses is EDMA transfers, which move data to or from the L2 memory. While the EDMA normally has no issue accessing L2 memory because of the high hit rates on the L1D memory system, there are pathological cases where certain CPU behavior could block the EDMA from accessing the L2 memory for long enough to cause a missed deadline when transferring data to a peripheral such as the McASP or McBSP. This can be avoided by setting the P bit to 1 because the EDMA will assume a higher priority than the L1D memory system when accessing L2 memory.
For more detailed information on the P-bit function and for silicon advisories concerning EDMA L2 memory accesses blocked, see the TMS320C6713, TMS320C6713B Digital Signal Processors Silicon Errata (literature number SPRZ191).
60 REGISTER INFORMATION Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
31 30 10 98
7
32 0
P Reserved IP ID Reserved L2MODE
R/W-0 R-x W-0 W-0 R-00000 R/W-000
(1)
A:UnliketheC6713device,theC6713BdeviceincludesaPbit.
Legend: R=Readable;R/W=Readable/Writeable;-n=valueafterreset,-x=undefinedvalueafterreset
SM320C6713-EP
SM320C6713B-EP
www.ti.com
A. Unlike the C6713 device, the C6713B device includes a P bit.
Figure 7-2. Cache Configuration (CCFG) Register
Table 7-2. CCFG Register Bit Field Description
BIT NO. NAME DESCRIPTION
L1D requestor priority to L2 bit
31 P P = 0: L1D requests to L2 higher priority than TC requests
P = 1: TC requests to L2 higher priority than L1D requests
30:10 Reserved Reserved. Read only, writes have no effect.
Invalidate L1P bit
9 IP 0 = Normal L1P operation
1 = All L1P lines are invalidated Invalidate L1D bit
8 ID 0 = Normal L1D operation
1 = All L1D lines are invalidated
7:3 Reserved Reserved. Read only, writes have no effect.
L2 operation mode bits (L2MODE)
000b = L2 cache disabled (All SRAM mode) [256K SRAM] 001b = 1-way cache (16K L2 cache) / [240K SRAM]
2:0 L2MODE 010b = 2-way cache (32K L2 cache) / [224K SRAM]
011b = 3-way cache (48K L2 cache) / [208K SRAM] 111b = 4-way cache (64K L2 cache) / [192K SRAM]
All others are reserved.
SGUS049K–AUGUST 2003– REVISED APRIL 2011

7.3 Interrupts and Interrupt Selector

The C67x DSP core supports 16 prioritized interrupts, which are listed in Table 7-3. The highest priority interrupt is INT_00 (dedicated to RESET), while the lowest priority is INT_15. The first four interrupts are non-maskable and fixed. The remaining interrupts (415) are maskable and default to the interrupt source listed in Table 7-3. However, their interrupt source may be reprogrammed to any one of the sources listed in Table 7-4 (Interrupt Selector). Table 7-4 lists the selector value corresponding to each of the alternate interrupt sources. The selector choice for interrupts 415 is made by programming the corresponding fields (listed in Table 7-3) in the MUXH (address 0x019C0000) and MUXL (address 0x019C0004) registers.
Table 7-3. DSP Interrupts
INTERRUPT NUMBER
Copyright © 2003–2011, Texas Instruments Incorporated REGISTER INFORMATION 61
DSP
INT_00 RESET INT_01 NMI INT_02 Reserved INT_03 Reserved
INTERRUPT DEFAULT DEFAULT
SELECTOR CONTROL SELECTOR VALUE INTERRUPT
REGISTER (BINARY) EVENT
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
DSP
INTERRUPT NUMBER
INT_04 MUXL[4:0] 00100 GPINT4 INT_05 MUXL[9:5] 00101 GPINT5 INT_06 MUXL[14:10] 00110 GPINT6 INT_07 MUXL[20:16] 00111 GPINT7 INT_08 MUXL[25:21] 01000 EDMAINT INT_09 MUXL[30:26] 01001 EMUDTDMA INT_10 MUXH[4:0] 00011 SDINT INT_11 MUXH[9:5] 01010 EMURTDXRX INT_12 MUXH[14:10] 01011 EMURTDXTX INT_13 MUXH[20:16] 00000 DSPINT INT_14 MUXH[25:21] 00001 TINT0 INT_15 MUXH[30:26] 00010 TINT1
(1) Interrupt events GPINT4, GPINT5, GPINT6, and GPINT7 are outputs from the GPIO module (GP).
They originate from the device pins GP[4](EXT_INT4)/AMUTEIN1, GP[5](EXT_INT5)/AMUTEIN0, GP[6](EXT_INT6), and GP[7](EXT_INT7). These pins can be used as edge-sensitive EXT_INTx with polarity controlled by the External Interrupt Polarity Register (EXTPOL.[3:0]). The corresponding pins must first be enabled in the GPIO module by setting the corresponding enable bits in the GP Enable Register (GPEN.[7:4]), and configuring them as inputs in the GP Direction Register (GPDIR.[7:4]). These interrupts can be controlled through the GPIO module in addition to the simple EXTPOL.[3:0] bits. For more information on interrupt control via the GPIO module, see the TMS320C6000DSP General-Purpose Input/Output (GPIO) Reference Guide (literature number SPRU584).
www.ti.com
Table 7-3. DSP Interrupts (continued)
INTERRUPT DEFAULT DEFAULT
SELECTOR CONTROL SELECTOR VALUE INTERRUPT
REGISTER (BINARY) EVENT
(1) (1) (1) (1)
62 REGISTER INFORMATION Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 7-4. Interrupt Selector
INTERRUPT SELECTOR VALUE
(BINARY)
00000 DSPINT HPI 00001 TINT0 Timer 0 00010 TINT1 Timer 1 00011 SDINT EMIF 00100 GPINT4 00101 GPINT5 00110 GPINT6 00111 GPINT7 01000 EDMAINT EDMA 01001 EMUDTDMA Emulation 01010 EMURTDXRX Emulation 01011 EMURTDXTX Emulation 01100 XINT0 McBSP0 01101 RINT0 McBSP0 01110 XINT1 McBSP1 01111 RINT1 McBSP1 10000 GPINT0 GPIO 10001 Reserved 10010 Reserved 10011 Reserved 10100 Reserved 10101 Reserved 10110 I2CINT0 I2C0 10111 I2CINT1 I2C1 11000 Reserved 11001 Reserved 11010 Reserved 11011 Reserved 11100 AXINT0 McASP0 11101 ARINT0 McASP0 11110 AXINT1 McASP1 11111 ARINT1 McASP1
(1) Interrupt events GPINT4, GPINT5, GPINT6, and GPINT7 are outputs from the GPIO module (GP).
They originate from the device pins GP[4](EXT_INT4)/AMUTEIN1, GP[5](EXT_INT5)/AMUTEIN0, GP[6](EXT_INT6), and GP[7](EXT_INT7). These pins can be used as edge-sensitive EXT_INTx with polarity controlled by the External Interrupt Polarity Register (EXTPOL.[3:0]). The corresponding pins must first be enabled in the GPIO module by setting the corresponding enable bits in the GP Enable Register (GPEN.[7:4]), and configuring them as inputs in the GP Direction Register (GPDIR.[7:4]). These interrupts can be controlled through the GPIO module in addition to the simple EXTPOL.[3:0] bits. For more information on interrupt control via the GPIO module, see the TMS320C6000DSP General-Purpose Input/Output (GPIO) Reference Guide (literature number SPRU584).
INTERRUPT EVENT MODULE
(1) (1) (1) (1)
GPIO GPIO GPIO GPIO

7.4 External Interrupt Sources

The C6713/13B device supports many external interrupt sources as indicated in Table 7-5. Control of the interrupt source is done by the associated module and is made available by enabling the corresponding binary interrupt selector value (see Table 7-4 shaded rows). Because of pin multiplexing and module usage, not all external interrupt sources are available at the same time.
Copyright © 2003–2011, Texas Instruments Incorporated REGISTER INFORMATION 63
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 7-5. External Interrupt Sources and Peripheral Module Control
PIN NAME INTERRUPT EVENT MODULE
GP[15] GPINT0 GPIO GP[14] GPINT0 GPIO
GP[13 GPINT0 GPIO GP[12] GPINT0 GPIO GP[11] GPINT0 GPIO GP[10] GPINT0 GPIO
GP[9] GPINT0 GPIO GP[8] GPINT0 GPIO GP[7] GPINT0 or GPINT7 GPIO GP[6] GPINT0 or GPINT6 GPIO GP[5] GPINT0 or GPINT5 GPIO GP[4] GPINT0 or GPINT4 GPIO GP[3] GPINT0 GPIO GP[2] GPINT0 GPIO GP[1] GPINT0 GPIO GP[0] GPINT0 GPIO

7.5 EDMA Module and EDMA Selector

www.ti.com
The C67x EDMA supports up to 16 EDMA channels. Four of the 16 channels (channels 811) are reserved for EDMA chaining, leaving 12 EDMA channels available to service peripheral devices.
The EDMA selector registers that control the EDMA channels servicing peripheral devices are located at addresses 0x01A0FF00 (ESEL0), 0x01A0FF04 (ESEL1), and 0x01A0FF0C (ESEL3). These EDMA selector registers control the mapping of the EDMA events to the EDMA channels. Each EDMA event has an assigned EDMA selector code (see Table 7-7). By loading each EVTSELx register field with an EDMA selector code, users can map any desired EDMA event to any specified EDMA channel. Table 7-6 lists the default EDMA selector value for each EDMA channel.
See Table 7-8 and Table 7-11 for the EDMA Event Selector registers and their associated bit descriptions.
64 REGISTER INFORMATION Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 7-6. EDMA Channels
EDMA CHANNEL DEFAULT EDMA EVENT
0 ESEL0[5:0] 000000 DSPINT 1 ESEL0[13:8] 000001 TINT0 2 ESEL0[21:16] 000010 TINT1 3 ESEL0[29:24] 000011 SDINT 4 ESEL1[5:0] 000100 GPINT4 5 ESEL1[13:8] 000101 GPINT5 6 ESEL1[21:16] 000110 GPINT6 7 ESEL1[29:24] 000111 GPINT7 8 TCC8 (Chaining)
9 TCC9 (Chaining) 10 TCC10 (Chaining) 11 TCC11 (Chaining) 12 ESEL3[5:0] 001100 XEVT0 13 ESEL3[13:8] 001101 REVT0 14 ESEL3[21:16] 001110 XEVT1 15 ESEL3[29:24] 001111 REVT1
EDMA SELECTOR DEFAULT SELECTOR
CONTROL REGISTER VALUE (BINARY)
Copyright © 2003–2011, Texas Instruments Incorporated REGISTER INFORMATION 65
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
EDMA SELECTOR CODE
(BINARY)
000000 DSPINT HPI 000001 TINT0 TIMER0 000010 TINT1 TIMER1 000011 SDINT EMIF 000100 GPINT4 GPIO 000101 GPINT5 GPIO 000110 GPINT6 GPIO 000111 GPINT7 GPIO 001000 GPINT0 GPIO 001001 GPINT1 GPIO 001010 GPINT2 GPIO 001011 GPINT3 GPIO 001100 XEVT0 McBSP0 001101 REVT0 McBSP0 001110 XEVT1 McBSP1 001111 REVT1 McBSP1
010000011111 Reserved
100000 AXEVTE0 McASP0 100001 AXEVTO0 McASP0 100010 AXEVT0 McASP0 100011 AREVTE0 McASP0 100100 AREVTO0 McASP0 100101 AREVT0 McASP0 100110 AXEVTE1 McASP1 100111 AXEVTO1 McASP1 101000 AXEVT1 McASP1 101001 AREVTE1 McASP1 101010 AREVTO1 McASP1 101011 AREVT1 McASP1 101100 I2CREVT0 I2C0 101101 I2CXEVT0 I2C0 101110 I2CREVT1 I2C1 101111 I2CXEVT1 I2C1 110000 GPINT8 GPIO 110001 GPINT9 GPIO 110010 GPINT10 GPIO 110011 GPINT11 GPIO 110100 GPINT12 GPIO 110101 GPINT13 GPIO 110110 GPINT14 GPIO 110111 GPINT15 GPIO
111000111111 Reserved
www.ti.com
Table 7-7. EDMA Selector
EDMA EVENT MODULE
66 REGISTER INFORMATION Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 7-8. EDMA Event Selector Registers (ESEL0 Register (0x01A0 FF00)
31 30 29 28 27 24 23 22 21 20 19 16
Reserved EVTSEL3 Reserved EVTSEL2
R–0 R/W00 0011b R0 R/W00 0010b
15 14 13 12 11 8 7 6 5 4 3 0
Reserved EVTSEL1 Reserved EVTSEL0
R–0 R/W00 0001b R0 R/W00 0000b
Legend: R = Read only, R/W = Read/write, -n = value at reset
Table 7-9. EDMA Event Selector RegistersESEL1 Register (0x01A0 FF04)
31 30 29 28 27 24 23 22 21 20 19 16
Reserved EVTSEL7 Reserved EVTSEL6
R–0 R/W00 0111b R0 R/W00 0110b
15 14 13 12 11 8 7 6 5 4 3 0
Reserved EVTSEL5 Reserved EVTSEL4
R–0 R/W00 0101b R0 R/W00 0100b
Legend: R = Read only, R/W = Read/write, -n = value at reset
Table 7-10. EDMA Event Selector RegistersESEL3 Register (0x01A0 FF0C)
31 30 29 28 27 24 23 22 21 20 19 16
Reserved EVTSEL15 Reserved EVTSEL14
R–0 R/W00 1111b R0 R/W00 1110b
15 14 13 12 11 8 7 6 5 4 3 0
Reserved EVTSEL13 Reserved EVTSEL12
R–0 R/W00 1101b R0 R/W00 1100b
Legend: R = Read only, R/W = Read/write, -n = value at reset
Table 7-11. EDMA Event Selection Registers (ESEL0, ESEL1, and ESEL3) Description
BIT NO. NAME DESCRIPTION
31:30 23:22 15:14
7:6
29:24 The EVTSEL0 through EVTSEL15 bits correspond to channels 0 to 15, respectively. These EVTSELx 21:16 fields are user selectable. By configuring the EVTSELx fields to the EDMA selector value of the desired
13:8 EDMA sync event number (see Table 7-7), users can map any EDMA event to the EDMA channel.
5:0 abc
Reserved Reserved. Read only, writes have no effect.
EDMA event selection bits for channel x. Allows mapping of the EDMA events to the EDMA channels.
abc
EVTSELx
For example, if EVTSEL15 is programmed to 00 0001b (the EDMA selector code for TINT0), channel 15 is triggered by Timer 0 TINT0 events.
Copyright © 2003–2011, Texas Instruments Incorporated REGISTER INFORMATION 67
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
CLKIN
CLKOUT3
ForUse
inSystem
/1,/2, ...,/32
...,/32
/1,/2,
PLL
x4tox25
PLLEN(PLL_CSR.[0])
...,/32
/1,/2,
/1,/2,
...,/32
/1,/2,
...,/32
(DSPCore)
SYSCLK1
(Peripherals)
SYSCLK2
ECLKIN
EKSRCBit (DEVCFG.[4])
EMIF
SYSCLK3
CLKMODE0
(EMIFClockInput)
C6713/13BDSPs
PLLOUT
PLLREF
DIVIDER D0
OSCDIV1
DIVIDERD1
DIVIDERD2
DIVIDERD3
ECLKOUT
AUXCLK (InternalClockSource toMcASP0andMcASP1)
1
0
10
1
0
PLLHV
C2C1
EMIfilter
+3.3 V
10 mF0 .1 mF
D0EN(PLLDIV0.[15])
ENA
ENA
OD1EN(OSCDIV1.[15])
ENAENA
ENA
D1EN(PLLDIV1.[15])
ENAD2EN(PLLDIV2.[15])
ENA
D3EN(PLLDIV3.[15])
Reserved
(A)
(A)
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011

8 PLL and PLL Controller

The 320C6713/13B includes a PLL and a flexible PLL controller peripheral consisting of a prescaler (D0) and four dividers (OSCDIV1, D1, D2, and D3). The PLL controller is able to generate different clocks for different parts of the system (that is, DSP core, peripheral data bus, external memory interface, McASP, and other peripherals). Figure 8-1 shows the PLL, the PLL controller, and the clock generator logic.
www.ti.com
A. Dividers D1 and D2 must never be disabled. Never write a '0' to the D1EN or D2EN bits in the PLLDIV1 and PLLDIV2
registers.
B. Place all PLL external components (C1, C2, and the EMI filter) as close to the C67x DSP device as possible. For the
best performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or components other than the ones shown.
C. For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (C1, C2,
and the EMI filter). D. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DVDD. E. EMI filter manufacturer TDK part number ACF451832-333, -223, -153, -103. Panasonic part number EXCCET103U.
Figure 8-1. PLL and Clock Generator Logic
68 PLL and PLL Controller Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com

8.1 PLL Registers

The PLL reset time is the amount of wait time needed when resetting the PLL (writing PLLRST = 1), for the PLL to properly reset, before bringing the PLL out of reset (writing PLLRST = 0). For the PLL reset time value, see Table 8-1. The PLL lock time is the amount of time from when PLLRST = 0 with PLLEN = 0 (PLL out of reset, but still bypassed) to when the PLLEN bit can be safely changed to 1 (switching from bypass to the PLL path); see Table 8-1 and Figure 8-1.
Under some operating conditions, the maximum PLL lock time may vary from the specified typical value. For the PLL lock time values, see Table 8-1.
Table 8-1. PLL Lock and Reset Times
MIN TYP MAX UNIT
PLL lock time 75 187.5 μs PLL reset time 125 ns
Table 8-2 shows the C6713/13B device CLKOUT signals, how and by what register control bits they are
derived, and what is the default settings. For more details on the PLL, see the PLL and Clock Generator Logic diagram (Figure 8-1).
Table 8-2. CLKOUT Signals, Default Settings, and Control
CLOCK OUTPUT DEFAULT SETTING CONTROL BIT(s)
SIGNAL NAME (ENABLED or DISABLED) (Register)
CLKOUT2 ON (ENABLED) SYSCLK2 selected [default] CLKOUT3 ON (ENABLED) OD1EN = 1 (OSCDIV1.[15]) Derived from CLKIN
ECLKOUT
ON (ENABLED); EKSRC = 0 (DEVCFG.[4]) To select ECLKIN source:
derived from SYSCLK3 EKEN = 1 (EMIF GBLCTL.[5]) EKSRC = 1 (DEVCFG.[4]) and
D2EN = 1 (PLLDIV2.[15])
CK2EN = 1 (EMIF GBLCTL.[3])
SGUS049K–AUGUST 2003– REVISED APRIL 2011
DESCRIPTION
SYSCLK3 selected [default].
EKEN = 1 (EMIF GBLCTL.[5])
The input clock (CLKIN) is directly available to the McASP modules as AUXCLK for use as an internal high-frequency clock source. The input clock (CLKIN) may also be divided down by a programmable divider OSCDIV1 (/1, /2, /3, ..., /32) and output on the CLKOUT3 pin for other use in the system.
Figure 8-1 shows that the input clock source may be divided down by divider PLLDIV0 (/1, /2, ..., /32) and
then multiplied up by a factor of x4, x5, x6, and so on, up to x25. Either the input clock (PLLEN = 0) or the PLL output (PLLEN = 1) then serves as the high-frequency
reference clock for the rest of the DSP system. The DSP core clock, the peripheral bus clock, and the EMIF clock may be divided down from this high-frequency clock (each with a unique divider). For example, with a 30-MHz input if the PLL output is configured for 450 MHz, the DSP core may be operated at 225 MHz (/2), while the EMIF may be configured to operate at a rate of 75 MHz (/6). Note that there is a specific minimum and maximum reference clock (PLLREF) and output clock (PLLOUT) for the block labeled PLL in Figure 8-1, as well as for the DSP core, peripheral bus, and EMIF. The clock generator must not be configured to exceed any of these constraints (certain combinations of external clock input, internal dividers, and PLL multiply ratios might not be supported). See Table 8-3 for the PLL clocks input and output frequency ranges.
Copyright © 2003–2011, Texas Instruments Incorporated PLL and PLL Controller 69
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 8-3. PLL Clock Frequency Ranges
CLOCK SIGNAL MIN MAX UNIT
PLLREF (PLLEN = 1) 12 100 MHz PLLOUT 140 600 MHz SYSCLK1 Device speed (DSP core) MHz SYSCLK3 (EKSRC = 0) 100 MHz AUXCLK 50
(1) SYSCLK2 rate must be exactly half of SYSCLK1. (2) See also the Electrical Specification (timing requirements and switching characteristics parameters) in
the Input and Output Clocks section of this data sheet.
(3) When the McASP module is not used, the AUXCLK maximum frequency can be any frequency up to
the CLKIN maximum frequency.
The EMIF itself may be clocked by an external reference clock via the ECLKIN pin or can be generated on-chip as SYSCLK3. SYSCLK3 is derived from divider D3 off of PLLOUT (see Figure 8-1). The EMIF clock selection is programmable via the EKSRC bit in the DEVCFG register.
The settings for the PLL multiplier and each of the dividers in the clock generation block may be reconfigured via software at run time. If either the input to the PLL changes due to D0, CLKMODE0, or CLKIN, or if the PLL multiplier is changed, then software must enter bypass first and stay in bypass until the PLL has had enough time to lock (see electrical specifications). For the programming procedure, see the TMS320C6000DSP Software-Programmable Phase-Locked Loop (PLL) Controller Reference Guide (literature number SPRU233).
(1) (2)
www.ti.com
(3)
MHz
SYSCLK2 is the internal clock source for peripheral bus control. SYSCLK2 (Divider D2) must be programmed to be half of the SYSCLK1 rate. For example, if D1 is configured to divide-by-2 mode (/2), then D2 must be programmed to divide-by-4 mode (/4). SYSCLK2 is also tied directly to CLKOUT2 pin (see Figure 8-1).
During the programming transition of Divider D1 and Divider D2 (resulting in SYSCLK1 and SYSCLK2 output clocks, see Figure 8-1), the order of programming the PLLDIV1 and PLLDIV2 registers must be observed to ensure that SYSCLK2 always runs at half the SYSCLK1 rate or slower. For example, if the divider ratios of D1 and D2 are to be changed from /1, /2 (respectively) to /5, /10 (respectively) then, the PLLDIV2 register must be programmed before the PLLDIV1 register. The transition ratios become /1, /2; /1, /10; and then /5, /10. If the divider ratios of D1 and D2 are to be changed from /3, /6 to /1, /2, then the PLLDIV1 register must be programmed before the PLLDIV2 register. The transition ratios, for this case, become /3, /6; /1, /6; and then /1, /2. The final SYSCLK2 rate must be exactly half of the SYSCLK1 rate.
Note that Divider D1 and Divider D2 must always be enabled (that is, D1EN and D2EN bits are set to 1 in the PLLDIV1 and PLLDIV2 registers).
The PLL Controller registers should be modified only by the CPU or via emulation. The HPI should not be used to directly access the PLL Controller registers.
For detailed information on the clock generator (PLL Controller registers) and the associated software bit descriptions, see Table 8-4 through Table 8-11.
Table 8-4. PLL Control/Status Register (PLLCSR) (0x01B7 C100)
31 28 27 24 23 20 19 16
Reserved
R-0
15 12 11 8 7 6 5 4 3 2 1 0
Reserved Stable Reserved PLLRS Reserv PLLPWRD PLLEN
R-0 R–x R-0 RW1 R/W0 R/W0b RW0
Legend: R = Read only, R/W = Read/write, -n = value at reset
T ed N
70 PLL and PLL Controller Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 8-5. PLL Control/Status Register (PLLCSR) Description
BIT NO. NAME DESCRIPTION
31:7 Reserved Reserved. Read only, writes have no effect.
Clock input stable. This bit indicates if the clock input has stabilized.
6 STABLE 0: Clock input not yet stable. Clock counter is not finished counting (default).
1: Clock input stable
5:4 Reserved Reserved. Read only, writes have no effect.
Asserts RESET to PLL
3 PLLRST 0: PLL reset released
1: PLL reset asserted (default)
2 Reserved Reserved. The user must write a 0 to this bit.
Select PLL power down
1 PLLPWRDN 0: PLL operational (default)
1: PLL placed in power-down state
PLL mode enable
0 PLLEN SYSCLK1/SYSCLK2/SYSCLK3 are divided down directly from input reference clock.
0: Bypass mode (default). PLL disabled Divider D0 and PLL are bypassed.
1: PLL enabled Divider D0 and PLL are not bypassed. SYSCLK1/SYSCLK2/SYSCLK3 are
divided down from PLL output.
Table 8-6. PLL Multiplier (PLLM) Control Register (0x01B7 C110)
31 28 27 24 23 20 19 16
Reserved
R-0
15 12 11 8 7 5 4 0
Reserved PLLM
R-0 R/W0 0111
Legend: R = Read only, R/W = Read/write, -n = value at reset
Copyright © 2003–2011, Texas Instruments Incorporated PLL and PLL Controller 71
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 8-7. PLL Multiplier (PLLM) Control Register Description
BIT NO. NAME DESCRIPTION
31:5 Reserved Reserved. Read only, writes have no effect.
PLL multiply mode [default is x7 (0 0111)]
00000 = Reserved 10000 = x16 00001 = Reserved 10001 = x17 00010 = Reserved 10010 = x18 00011 = Reserved 10011 = x19 00100 = x4 10100 = x20 00101 = x5 10101 = x21 00110 = x6 10110 = x22
4:0 PLLM
PLLM select values 00000 through 00011 and 11010 through 11111 are not supported.
00111 = x7 10111 = x23 01000 = x8 11000 = x24 01001 = x9 11001 = x25 01010 = x10 11010 = Reserved 01011 = x11 11011 = Reserved 01100 = x12 11100 = Reserved 01101 = x13 11101 = Reserved 01110 = x14 11110 = Reserved 01111 = x15 11111 = Reserved
www.ti.com
Table 8-8. PLL Wrapper Divider x Registers (PLLDIV0, PLLDIV1, PLLDIV2, and PLLDIV3)
(0x01B7 C114, 0x01B7 C118, 0x01B7 C11C, and 0x01B7 C120, respectively)
31 28 27 24 23 20 19 16
Reserved
R-0
15 14 12 11 8 7 5 4 0
DxEN Reserved PLLDIVx R/W1 R0 R/Wx xxxx Legend: R = Read only, R/W = Read/write, -n = value at reset
(1) Default values for the PLLDIV0, PLLDIV1, PLLDIV2, and PLLDIV3 bits are /1 (0 0000), /1 (0 0000), /2 (0 0001), and /2 (0 0001),
respectively.
(1)
CAUTION
D1 and D2 should never be disabled. D3 should only be disabled if ECLKIN is used.
Table 8-9. PLL Wrapper Divider x Registers
(Prescaler Divider D0 and Post-Scaler Dividers D1, D2, and D3) Description
BIT NO. NAME DESCRIPTION
31:16 Reserved Reserved. Read only, writes have no effect.
Divider Dx enable (where x denotes 0 through 3).
15 DxEN
These divider-enable bits are device specific and must be set to 1 to enable.
0: Divider x disabled. No clock output 1: Divider x enabled (default)
(1)
(1) Note that SYSCLK2 must run at half the rate of SYSCLK1. Therefore, the divider ratio of D2 must be two times slower than D1. For
example, if D1 is set to /2, then D2 must be set to /4.
72 PLL and PLL Controller Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
Table 8-9. PLL Wrapper Divider x Registers
(Prescaler Divider D0 and Post-Scaler Dividers D1, D2, and D3) Description
BIT NO. NAME DESCRIPTION
14:5 Reserved Reserved. Read only, writes have no effect.
PLL divider ratio (default values for the PLLDIV0, PLLDIV1, PLLDIV2, and PLLDIV3 bits are /1, /1, /2, and /2, respectively).
00000 = /1 10000 = /17 00001 = /2 10001 = /18 00010 = /3 10010 = /19 00011 = /4 10011 = /20 00100 = /5 10100 = /21 00101 = /6 10101 = /22
4:0 PLLDIVx
00110 = /7 10110 = /23 00111 = /8 10111 = /24 01000 = /9 11000 = /25 01001 = /10 11001 = /26 01010 = /11 11010 = /27 01011 = /12 11011 = /28 01100 = /13 11100 = /29 01101 = /14 11101 = /30 01110 = /15 11110 = /31 01111 = /16 11111 = /32
SGUS049K–AUGUST 2003– REVISED APRIL 2011
(1)
(continued)
Table 8-10. Oscillator Divider 1 (OSCDIV1) Register (0x01B7 C124)
31 28 27 24 23 20 19 16
Reserved
R-0
15 14 12 11 8 7 5 4 0
OD1EN Reserved OSCDIV1
R/W1 R0 R/W0 0111
Legend: R = Read only, R/W = Read/write, -n = value at reset
Copyright © 2003–2011, Texas Instruments Incorporated PLL and PLL Controller 73
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 8-11. Oscillator Divider 1 (OSCDIV1) Register Description
BIT NO. NAME DESCRIPTION
31:16 Reserved Reserved. Read-only; writes have no effect.
Oscillator Divider 1 enable.
15 OD1EN 0: Oscillator Divider 1 disabled
1: Oscillator Divider 1 enabled (default)
14:5 Reserved Reserved. Read only, writes have no effect.
Oscillator Divider 1 ratio [default is /8 (0 0111)]
00000 = /1 10000 = /17 00001 = /2 10001 = /18 00010 = /3 10010 = /19 00011 = /4 10011 = /20 00100 = /5 10100 = /21 00101 = /6 10101 = /22 00110 = /7 10110 = /23
4:0 OSCDIV1 00111 = /8 10111 = /24
01000 = /9 11000 = /25 01001 = /10 11001 = /26 01010 = /11 11010 = /27 01011 = /12 11011 = /28 01100 = /13 11100 = /29 01101 = /14 11101 = /30 01110 = /15 11110 = /31 01111 = /16 11111 = /32
www.ti.com
74 PLL and PLL Controller Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011

9 MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS

The 320C6713/13B device includes two multichannel audio serial port (McASP) interface peripherals (McASP1 and McASP0). The McASP is a serial port optimized for the needs of multichannel audio applications. With two McASP peripherals, the 320C6713/13B device is capable of supporting two completely independent audio zones simultaneously.
Each McASP consists of a transmit and receive section. These sections can operate completely independently with different data formats, separate master clocks, bit clocks, and frame syncs or alternatively, the transmit and receive sections may be synchronized. Each McASP module also includes a pool of 16 shift registers that may be configured to operate as either transmit data, receive data, or general-purpose I/O (GPIO).
The transmit section of the McASP can transmit data in either a time division multiplexed (TDM) synchronous serial format or in a digital audio interface (DIT) format where the bit stream is encoded for S/PDIF, AES-3, IEC-60958, and CP-430 transmission. The receive section of the McASP supports the TDM synchronous serial format.
Each McASP can support one transmit data format (either a TDM format or DIT format) and one receive format at a time. All transmit shift registers use the same format and all receive shift registers use the same format. However, the transmit and receive formats need not be the same.
Both the transmit and receive sections of the McASP also support burst mode, which is useful for non-audio data (for example, passing control information between two DSPs).
The McASP peripherals have additional capability for flexible clock generation, and error detection/handling, as well as error management.

9.1 McASP Block Diagram

Figure 9-1 shows the major blocks along with external signals of the 320C6713/13B McASP1 and
McASP0 peripherals, and shows the eight serial data [AXR] pins for each McASP. Each McASP also includes full general-purpose I/O (GPIO) control, so any pins not needed for serial transfers can be used for general-purpose I/O.
Copyright © 2003–2011, Texas Instruments Incorporated MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS 75
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
Receive
Clock
Generator
AHCLKR0 ACLKR0
ClockCheck
Transmit
Generator
Clock
Transmit
ACLKX0
AHCLKX0
DIT
RAM
Transmit
Generator
FrameSync
AFSX0
Detect
Error
Receive
FrameSync
GeneratorFormatter
Transmit
Data
AMUTE0 AMUTEIN0
AFSR0
Serializer0
Serializer1
Serializer3
Serializer2
Serializer6
Serializer7
Serializer5
Serializer4
(High-
Frequency)
Receive
ClockCheck
(High-
Frequency)
Receive
Formatter
Data
Formatter
Data
Receive
Serializer4
Serializer3
Serializer7
Serializer6
Serializer5
Serializer0
Serializer1
FrameSync
Generator
Receive
FrameSync
Generator
Transmit
Transmit
Generator
Receive
Generator
Serializer2
Error
Transmit
Formatter
Data
ClockCheck
Frequency)
(High-
Receive
Detect
Frequency)
ClockCheck
(High-
Transmit
RAM
DIT
AMUTE1
AFSR1
ACLKR1
AMUTEIN1
AHCLKR1
Clock
AFSX1
ACLKX1
AHCLKX1
Clock
AXR1[0]
AXR1[1]
AXR1[3]
AXR1[2]
AXR1[6]
AXR1[7]
AXR1[5]
AXR1[4]
McASP0 McASP1
DMA
Transmit
DMA
Transmit
DMA Receive
DMA
Receive
INDIVIDUAL
LY PROGRAMMABLETX/RX/GPI
O
INDIVIDUAL
LY PROGRAMMABLETX/RX/GPI
O
Control
GPIO
Control
GPIO
AXR0[0]
AXR0[1]
AXR0[3]
AXR0[2]
AXR0[6]
AXR0[7]
AXR0[5]
AXR0[4]
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com
Figure 9-1. McASP0 and McASP1 Configuration
76 MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011

9.2 Multichannel Time Division Multiplexed (TDM) Synchronous Transfer Mode

The McASP supports a multichannel TDM synchronous transfer mode for both transmit and receive. Within this transfer mode, a wide variety of serial data formats are supported, including formats compatible with devices using the Inter-Integrated Sound (IIS) protocol.
TDM synchronous transfer mode is typically used when communicating between integrated circuits, such as between a DSP and one or more ADC, DAC, codec, or S/PDIF receiver devices. In multichannel applications, it is typical to find several devices operating synchronized with each other. For example, to provide six analog outputs, three stereo DAC devices would be driven with the same bit clock and frame sync, but each stereo DAC would use a different McASP serial data pin carrying stereo data (two TDM time slots, left and right).
The TDM synchronous serial transfer mode utilizes several control signals and one or more serial data signals:
A bit clock signal (ACLKX for transmit, ACKLR for receive)
A frame sync signal (AFSX for transmit, AFSR for receive)
An (optional) high-frequency master clock (AHCLKX for transmit, AHCLKR for receive) from which the
bit clock is derived
One or more serial data pins (AXR for transmit and for receive) Except for the optional high-frequency master clock, all of the signals in the TDM synchronous serial
transfer mode protocol are synchronous to the bit clocks (ACLKX and ACLKR). In the TDM synchronous transfer mode, the McASP continually transmits and receives data periodically
(since audio ADCs and DACs operate at a fixed-data rate). The data is organized into frames, and the beginning of a frame is marked by a frame sync pulse on the AFSX, AFSR pin.
In a typical audio system, one frame is transferred per sample period. To support multiple channels, the choices are to either include more time slots per frame (and therefore operate with a higher bit clock) or to keep the bit clock period constant and use additional data pins to transfer the same number of channels. For example, a particular six-channel DAC might require three McASP serial data pins; transferring two channels of data on each serial data pin during each sample period (frame). Another similar DAC may be designed to use only a single McASP serial data pin, but clocked three times faster and transferring six channels of data per sample period. The McASP is flexible enough to support either type of DAC, but a transmitter cannot be configured to do both at the same time.
For multiprocessor applications, the McASP supports any number of time slots per frame (between 2 and
32), and includes the ability to disable transfers during specific time slots. In addition, to support S/PDIF, AES-3, IEC-60958, and CP-430 receiver chips whose natural block
(McASP frame) size is 384 samples; the McASP receiver supports a 384 time slot mode. The advantage to using the 384 time slot mode is that interrupts may be generated synchronous to the S/PDIF, AES-3, IEC-60958, and CP-430 receivers; for example, the last slot interrupt.

9.3 Burst Transfer Mode

The McASP also supports a burst transfer mode, which is useful for non-audio data (for example, passing control information between two DSPs). Burst transfer mode uses a synchronous serial format similar to TDM, except the frame sync is generated for each data word transferred. In addition, frame sync generation is not periodic or time driven as in TDM mode, but rather data driven.
Copyright © 2003–2011, Texas Instruments Incorporated MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS 77
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011

9.4 Supported Bit Stream Formats for TDM and Burst Transfer Modes

The serial data pins support a wide variety of formats. In the TDM and burst synchronous modes, the data may be transmitted/received with the following options:
Time slots per frame: 1 (burst/data driven), or 2,3...32 (TDM/time driven)
Time slot size: 8, 12, 16, 20, 24, 28, 32 bits per time slot
Data size: 8, 12, 16, 20, 24, 28, 32 bits (must be less than or equal to time slot)
Data alignment within time slot: left or right justified
Bit order: MSB or LSB first
Unused bits in time slot: Padded with 0, 1 or extended with value of another bit
Time slot delay from frame sync: 0-, 1-, or 2-bit delay
The data format can be programmed independently for transmit and receive, and for McASP0 versus McASP1. In addition, the McASP can automatically realign the data as processed natively by the DSP (any format on a nibble boundary) adjusting the data in hardware to any of the supported serial bit stream formats (TDM, burst, and DIT modes). This adjustment reduces the amount of bit manipulation that the DSP must perform and simplifies software architecture.

9.5 Digital Audio Interface Transmitter (DIT) Transfer Mode (Transmitter Only)

The McASP transmit section may also be configured in DIT mode where it outputs data formatted for transmission over an S/PDIF, AES-3, IEC-60958, or CP-430 standard link. These standards encode the serial data such that the equivalent of clock and frame sync are embedded within the data stream. DIT transfer mode is used as an interconnect between audio components and can transfer multichannel digital audio data over a single optical or coaxial cable.
www.ti.com
From an internal DSP standpoint, the McASP operation in DIT transfer mode is similar to the two-time-slot TDM mode, but the data transmitted is output as a bi-phase mark encoded bit stream with preamble, channel status, user data, validity, and parity automatically stuffed into the bit stream by the McASP module. The McASP includes separate validity bits for even/odd subframes and two 384-bit register file modules to hold channel status and user data bits.
DIT mode requires (at a minimum):
One serial data pin (if the AUXCLK is used as the reference (see Figure 8-1) OR
One serial data pin plus either the AHCLKX or ACLKX pin (if an external clock is needed)
If additional serial data pins are used, each McASP may be used to transmit multiple encoded bit streams (one per pin). However, the bit streams will all be synchronized to the same clock and the user data, channel status, and validity information carried by each bit stream will be the same for all bit streams transmitted by the same McASP module.
The McASP can also automatically realign the data as processed by the DSP (any format on a nibble boundary) in DIT mode; reducing the amount of bit manipulation that the DSP must perform and simplifying software architecture.
78 MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com

9.6 McASP Flexible Clock Generators

The McASP transmit and receive clock generators are identical. Each clock generator can accept a high-frequency master clock input (on the AHCLKX and AHCLKR pins).
The transmit and receive bit clocks (on the ACLKX and ACLKR pins) can also be sourced externally or can be sourced internally by dividing down the high-frequency master clock input (programmable factor /1, /2, /3, ... /4096). The polarity of each bit clock is individually programmable.
The frame sync pins are AFSX (transmit) and AFSR (receive). A typical usage for these pins is to carry the left-right clock (LRCLK) signal when transmitting and receiving stereo data. The frame sync signals are individually programmable for either internal or external generation, either bit or slot length, and either rising or falling edge polarity.
Some examples of the things that a system designer can use the McASP clocking flexibility for are:
Input a high-frequency master clock (for example, 512 fSof the receiver) and receive with an internally generated bit clock ratio of /8, while transmitting with an internally generated bit clock ratio of /4 or /2. (An example application would be to receive data from a DVD at 48 kHz but output up-sampled or decoded audio at 96 kHz or 192 kHz.)
Transmit/receive data based on sample rate (for example, 44.1 kHz) using McASP0 while transmitting and receiving at a different sample rate (for example, 48 kHz) on McASP1.
Use the DSP on-board AUXCLK to supply the system clock when the input source is an A/D converter.

9.7 McASP Error Handling and Management

SGUS049K–AUGUST 2003– REVISED APRIL 2011
To support the design of a robust audio system, the McASP module includes error-checking capability for the serial protocol, data underrun, and data overrun. In addition, each McASP includes a timer that continually measures the high-frequency master clock every 32 SYSCLK2 clock cycles. The timer value can be read to get a measurement of the high-frequency master clock frequency and has a min-max range setting that can raise an error flag if the high-frequency master clock goes out of a specified range. The user would read the high-frequency transmit master clock measurement (AHCLKX0 or AHCLKX1) by reading the XCNT field of the XCLKCHK register and the user would read the high-frequency receive master clock measurement (AHCLKR0 or AHCLKR1) by reading the RCNT field of the RCLKCHK register.
Upon the detection of any one or more of the above errors (software selectable) or the assertion of the AMUTE_IN pin, the AMUTE output pin may be asserted to a high or low level (selectable) to immediately mute the audio output. In addition, an interrupt may be generated if enabled based on any one or more of the error sources.
Copyright © 2003–2011, Texas Instruments Incorporated MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS 79
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011

9.8 McASP Interrupts and EDMA Events

The McASP transmitter and receiver sections each generate an event on every time slot. This event can be serviced by an interrupt or by the EDMA controller.
When using interrupts to service the McASP, each shift register buffer has a unique address in the McASP registers space (see Table 4-1).
When using the EDMA to service the McASP, the McASP DATA Port space, shown in Table 4-1, is accessed. In this case, the address least-significant bits are ignored. Writes to any address in this range access the transmitting buffers in order from lowest (serializer 0) to highest (serializer 15), skipping over disabled and receiving serializers. Likewise, reads from any address in this space access the receiving buffers in the same order but skip over disabled and transmitting buffers.

9.9 I2C

Having two I2C modules on the 320C6713/13B simplifies system architecture, since one module may be used by the DSP to control local peripherals ICs (DACs, ADCs, etc.) while the other may be used to communicate with other controllers in a system or to implement a user interface.
I2C ports are compatible with Philips I2C Specification Revision 2.1 (January 2000).
The 320C6713/13B also includes two I2C serial ports for control purposes. Each I2C port supports:
Fast mode up to 400 Kbps (no fail-safe I/O buffers)
Noise filter to remove noise 50 ns or less
7- and 10-bit device addressing modes
Master (transmit/receive) and slave (transmit/receive) functionality
Events: DMA, interrupt, or polling
Slew-rate limited open-drain output buffers
www.ti.com
NOTE
Figure 9-2 shows a block diagram of the I2Cx module.
80 MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
Clock
Prescale
I2CPSCx
SYSCLK2 FromPLL ClockGenerator
I2CCLKHx
Generator
BitClock
I2CCLKLx
Noise
Filter
I2CClock
SCL
I2CXSRx
I2CDXRx
Transmit
Transmit Shift
Transmit Buffer
I2CDRRx
Shift
I2CRSRx
Receive Buffer
Receive
Receive
Filter
SDA
I2CData
Noise
I2COARx
I2CSARx
Slave Address
Control
Address
Own
I2CMDRx
I2CCNTx
Mode
Data Count
Source
Interrupt
Interrupt Status
I2CISRCx
I2CSTRx
Enable
Interrupt
I2CIERx
Interrupt/DMA
I2CxModule
NOTE:Shadingdenotescontrol/statusregisters.
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Figure 9-2. I2Cx Module Block Diagram
Copyright © 2003–2011, Texas Instruments Incorporated MULTICHANNEL AUDIO SERIAL PORT (McASP) PERIPHERALS 81
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com

10 LOGIC AND POWER SUPPLY

This section discusses the logic and power-supply configuration of the SM320C6713-EP and SM320C6713B-EP.

10.1 General-Purpose Input/Output (GPIO)

To use the GP[15:0] software-configurable GPIO pins, the GPxEN bits in the GP enable (GPEN) register and the GPxDIR bits in the GP direction (GPDIR) register must be properly configured.
GPxEN = 1 GP[x] pin is enabled. GPxDIR = 0 GP[x] pin is an input. GPxDIR = 1 GP[x] pin is an output.
where x represents one of the 15 through 0 GPIO pins.
Figure 10-1 shows the GPIO enable bits in the GPEN register for the C6713/13B device. To use any of
the GPx pins as general-purpose input/output functions, the corresponding GPxEN bit must be set to 1 (enabled). Default values are device-specific, so refer to Figure 10-1 for the C6713/13B default configuration.
31 24 23 16
Reserved
R-0
15 14 13 12 11 10 9 8
GP15EN GP14EN GP13EN GP12EN GP11EN GP10EN GP9EN GP8EN
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
7 6 5 4 3 2 1 0
GP7EN GP6EN GP5EN GP4EN GP3EN GP2EN GP1EN GP0EN
R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-0
Legend: R/W = Readable/Writeable; -n = value after reset, -x = undefined value after reset
Figure 10-1. GPIO Enable (GPEN) Register (Hex Address: 01B0 0000)
Figure 10-2 shows the GPIO direction bits in the GPIO Direction (GPDIR) register. This register
determines if a given GPIO pin is an input or an output providing the corresponding GPxEN bit is enabled (set to 1) in the GPEN register. By default, all the GPIO pins are configured as input pins.
31 24 23 16
Reserved
R-0
15 14 13 12 11 10 9 8
GP15DIR GP14DIR GP13DIR GP12DIR GP11DIR GP10DIR GP9DIR GP8DIR
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
7 6 5 4 3 2 1 0
GP7DIR GP6DIR GP5DIR GP4DIR GP3DIR GP2DIR GP1DIR GP0DIR
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
Legend: R/W = Readable/Writeable; -n = value after reset, -x = undefined value after reset
Figure 10-2. GPIO Direction (GPDIR) Register (Hex Address: 01B0 0004)
82 LOGIC AND POWER SUPPLY Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
PWRD
Internal ClockTree
CPU
IFR
IER
CSR
PD1
PD2
Power-
Down
Logic
Clock
PLL
CLKIN RESET
PD3
Internal
Peripherals
Clock
andDividers
Distribution
320C6713/13B
CLKOUT2
SM320C6713-EP
SM320C6713B-EP
www.ti.com
For more detailed information on general-purpose inputs/outputs (GPIOs), see the TMS320C6000 DSP General-Purpose Input/Output (GPIO) Reference Guide (literature number SPRU584).

10.2 Power-Down Mode Logic

Figure 10-3 shows the power-down mode logic on the C6713/13B.
SGUS049K–AUGUST 2003– REVISED APRIL 2011
A. External input clocks, with the exception of CLKIN and CLKOUT3, are not gated by the power-down mode logic.
Figure 10-3. Power-Down Mode Logic

10.2.1 Triggering, Wake-Up, and Effects

The device includes a programmable PLL which allows software control of PLL bypass via the PLLEN bit in the PLLCSR register. With this enhanced functionality come some additional considerations when entering power-down modes.
The power-down modes (PD2 and PD3) function by disabling the PLL to stop clocks to the C6713 device. However, if the PLL is bypassed (PLLEN = 0), the device will still receive clocks from the external clock input (CLKIN). Therefore, bypassing the PLL makes the power-down modes PD2 and PD3 ineffective.
The PLL needs to be enabled by writing a 1to PLLEN bit (PLLCSR.0) before being able to enter either PD3 (CSR.11) or PD2 (CSR.10) in order for these modes to have an effect.
For the TMS320C6713B device it is recommended to use the PLLPWDN bit (PLLCSR.1) to enter a deep powerdown state equivalent to PD3 since the PLLPWDN bit takes full advantage of the PLL powerdown feature.
The power-down modes (PD1, PD2 and PD3) and their wake-up methods are programmed by setting the PWRD field (bits 1510) of the control status register (CSR). The PWRD field of the CSR is shown in
Figure 10-4 and described in Table 10-1. When writing to the CSR, all bits of the PWRD field should be
set at the same time. Logic 0 should be used when writing to the reserved bit (bit 15) of the PWRD field. The CSR is discussed in detail in the TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189).
Copyright © 2003–2011, Texas Instruments Incorporated LOGIC AND POWER SUPPLY 83
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
31 16
15 14 13 12 11 10 9 8
Reserved Non-Enabled PD3 PD2 PD1
Enable or
Interrupt Wake
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
7 0
Legend: R/W-x = Read/write reset value
Enabled
Interrupt Wake
www.ti.com
Figure 10-4. PWRD Field of the CSR
A delay of up to nine clock cycles may occur after the instruction that sets the PWRD bits in the CSR before the PD mode takes effect. As best practice, NOPs should be padded after the PWRD bits are set in the CSR to account for this delay.
If PD1 mode is terminated by a non-enabled interrupt, the program execution returns to the instruction where PD1 took effect. If PD1 mode is terminated by an enabled interrupt, the interrupt service routine will be executed first, then the program execution returns to the instruction where PD1 took effect. In the case with an enabled interrupt, the GIE bit in the CSR and the NMIE bit in the interrupt enable register (IER) must also be set for the interrupt service routine to execute; otherwise, execution returns to the instruction where PD1 took effect upon PD1 mode termination by an enabled interrupt.
PD2 and PD3 modes can only be aborted by device reset. Table 10-1 summarizes all the power-down modes.
Table 10-1. Characteristics of the Power-Down Modes
PRWD FIELD POWER-DOWN (BITS 1510) MODE
000000 No power down 001001 PD1
010001 PD1
011010 PD2
011100 PD3
All others Reserved
(1) When entering PD2 and PD3, all functional I/Os remain in the previous state. However, for peripherals that are asynchronous in nature
or peripherals with an external clock source, output signals may transition in response to stimulus on the inputs. Under these conditions, peripherals will not operate according to specifications.
(1)
(1)
WAKE-UP METHOD EFFECT ON CHIP OPERATION
Wake by an enabled CPU halted (except for the interrupt logic) interrupt Power-down mode blocks the internal clock inputs at the
Wake by an enabled or non-enabled interrupt
Wake by a device reset halted. All register and internal RAM contents are preserved.
Wake by a device reset
boundary of the CPU, preventing most of the CPU logic from switching. During PD1, EDMA transactions can proceed between peripherals and internal memory.
Output clock from PLL is halted, stopping the internal clock structure from switching and resulting in the entire chip being
All functional I/O freeze in the last state when the PLL clock is turned off.
Input clock to the PLL stops generating clocks. All register and internal RAM contents are preserved. All functional I/O freeze in the last state when the PLL clock is turned off. Following reset, the PLL needs time to relock, just as it does following power up. Wake-up from PD3 takes longer than wake-up from PD2 because the PLL needs to be relocked, just as it does following power up. It is recommended to use the PLLPWDN bit (PLLCSR.1) as an alternative to PD3.

10.3 Power-Supply Sequencing

TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However, systems should be designed to ensure that neither supply is powered up for extended periods of time (>1 second) if the other supply is below the proper operating voltage.
84 LOGIC AND POWER SUPPLY Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
DV
DD
CV
DD
V
SS
C6000
DSP
Schottky
Diode
I/OSupply
CoreSupply
GND
SM320C6713-EP
SM320C6713B-EP
www.ti.com

10.3.1 System-Level Design Considerations

System-level design considerations, such as bus contention, may require supply sequencing to be implemented. In this case, the core supply should be powered up before, and powered down after, the I/O buffers. This is to ensure that the I/O buffers receive valid inputs from the core before the output buffers are powered up, thus preventing bus contention with other chips on the board.

10.3.2 Power-Supply Design Considerations

A dual-power supply with simultaneous sequencing can be used to eliminate the delay between core and I/O power up. A Schottky diode can also be used to tie the core rail to the I/O rail (see Figure 10-5).
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Figure 10-5. Schottky Diode Diagram
Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize inductance and resistance in the power delivery path. Additionally, when designing for high-performance applications utilizing the C6000 platform of DSPs, the printed circuit board (PCB) should include separate power planes for core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors.

10.4 Power-Supply Decoupling

To properly decouple the supply planes from system noise, place as many capacitors (caps) as possible close to the DSP. Assuming 0603 caps, the user should be able to fit a total of 60 caps30 for the core supply and 30 for the I/O supply. These caps need to be close (no more than 1.25-cm maximum distance) to the DSP to be effective. Physically smaller caps are better, such as 0402, but the size needs to be evaluated from a yield/manufacturing point-of-view. Parasitic inductance limits the effectiveness of the decoupling capacitors; therefore, physically smaller capacitors should be used while maintaining the largest available capacitance value. As with the selection of any component, verification of capacitor availability over the products production lifetime needs to be considered.

10.5 IEEE Std 1149.1 JTAG Compatibility Statement

The 320C6713/13B DSP requires that both TRST and RESET resets be asserted upon power up to be properly initialized. While RESET initializes the DSP core, TRST initializes the DSP emulation logic. Both resets are required for proper operation.
NOTE
TRST is synchronous and must be clocked by TCLK; otherwise, BSCAN may not respond as expected after TRST is asserted.
Copyright © 2003–2011, Texas Instruments Incorporated LOGIC AND POWER SUPPLY 85
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
While both TRST and RESET need to be asserted upon power-up, only RESET needs to be released for the DSP to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface and DSP emulation logic in the reset state.
TRST only needs to be released when it is necessary to use a JTAG controller to debug the DSP or exercise the DSP boundary scan functionality.
The TMS320C6713B DSP includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will always be asserted upon power up and the DSPs internal emulation logic will always be properly initialized when this pin is not routed out. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of an external pullup resistor on TRST. When using this type of JTAG controller, assert TRST to initialize the DSP after powerup and externally drive TRST high before attempting any emulation or boundary scan operations.
Following the release of RESET, the low-to-high transition of TRST must be seento latch the state of EMU1 and EMU0. The EMU[1:0] pins configure the device for either boundary scan mode or emulation mode. For more detailed information, see the terminal functions section of this data sheet.
Note: The DESIGNWARNING section of the TMS320C6713B BSDL file contains information and constraints regarding proper device operation while in boundary scan mode.
For more detailed information on the C6713B JTAG emulation, see the TMS320C6000 DSP Designing for JTAG Emulation Reference Guide (literature number SPRU641).
www.ti.com
NOTE

10.6 EMIF Device Speed

The maximum EMIF speed on the C6713/13B device is 100 MHz. TI recommends utilizing I/O buffer information specification (IBIS) to analyze all ac timings to determine if the maximum EMIF speed is achievable for a given board layout. To properly use IBIS models to attain accurate timing analysis for a given system, see the application report Using IBIS Models for Timing Analysis (literature number
SPRA839).
For ease of design evaluation, Table 10-2 contains IBIS simulation results showing the maximum EMIF-SDRAM interface speeds for the given example boards (TYPE) and SDRAM speed grades. Timing analysis should be performed to verify that all ac timings are met for the specified board layout. Other configurations are also possible, but again, timing analysis must be done to verify proper ac timings.
To maintain signal integrity, serial termination resistors should be inserted into all EMIF output signal lines (see the Terminal Functions table for the EMIF output signals).
86 LOGIC AND POWER SUPPLY Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 10-2. C6713/13B Example Boards and Maximum EMIF Speed
BOARD CONFIGURATION
TYPE BOARD TRACE
1-Load Short Traces
2-Loads Short 143-MHz 16-bit SDRAM (7E) 100 MHz Traces
3-Loads One bank of Short two 16-bit SDRAMs 143-MHz 16-bit SDRAM (7E) 100 MHz Traces One bank of buffer
3-Loads 4 to 7 in from EMIF; Long Traces Trace impedance ~63
(1) Results are based on IBIS simulations for the given example boards (TYPE). Timing analysis should be performed to determine if timing
requirements can be met for the particular system.
EMIF INTERFACE EMIF-SDRAM
COMPONENTS INTERFACE SPEED
1- to 3-in traces with
One bank of proper termination
one 32-bit SDRAM resistors;
Trace impedance ~50
1.2 to 3 in from EMIF to
One bank of each load, with proper
two 16-bit SDRAMs termination resistors;
Trace impedance ~78
1.2 to 3 inches from EMIF to each load, with proper termination resistors; Trace impedance ~78
One bank of
one 32-bit-bit SDRAM,
One bank of
one 32-bit-bit SDRAM,
One bank of buffer
SDRAM SPEED GRADE
143-MHz 32-bit SDRAM (7) 100 MHz 166-MHz 32-bit SDRAM (6) For short traces, SDRAM data
183-MHz 32-bit SDRAM (55)
200-MHz 32-bit SDRAM (5) 125-MHz 16-bit SDRAM (8E) 100 MHz 133-MHz 16-bit SDRAM (75) 100 MHz
167-MHz 16-bit SDRAM (6A) 100 MHz
167-MHz 16-bit SDRAM (6) 100 MHz
125-MHz 16-bit SDRAM (8E) meet SDRAM input hold
133-MHz 16-bit SDRAM (75) 100 MHz
167-MHz 16-bit SDRAM (6A) 100 MHz
167-MHz 16-bit SDRAM (6) meet SDRAM input hold
143-MHz 32-bit SDRAM (7) 83 MHz
166-MHz 32-bit SDRAM (6) 83 MHz 183-MHz 32-bit SDRAM (55) 83 MHz
200-MHz 32-bit SDRAM (5) cannot meet EMIF input hold
MAXIMUM ACHIEVABLE
output hold time on these SDRAM speed grades cannot meet EMIF input hold time requirement.
For short traces, EMIF cannot requirement.
For short traces, EMIF cannot requirement.
SDRAM data output hold time requirement.
(1)
(1)
(1)
(1)

10.7 EMIF Big Endian Mode Correctness (C6713B Only)

The HD8 pin device endian mode (LENDIAN) selects the endian mode of operation (Little or Big Endian). For the C6713/13B device Little Endian is the default setting.
The C6713B HD12 pin (EMIF Big Endian Mode Correctness) [EMIFBE] enhancement allows the flexibility to change the EMIF data placement on the EMIF bus.
When using the default setting of HD12 = 1 for the C6713B, the EMIF will present 8-bit or 16-bit data on the ED[7:0] side of the bus if using Little Endian mode (HD8 = 1), and to the ED[31:24] side of the bus if using Big Endian mode. Figure 10-6 shows the mapping of 16-bit and 8-bit C6713B devices.
abc
EMIF DATA LINES (PINS) WHERE DATA PRESENT
ED[31:24] (BE3) ED[23:16] (BE2) ED[15:8] (BE1) ED[7:0] (BE0)
32-Bit Device in Any Endianness Mode
16-Bit Device in Big Endianness Mode 16-Bit Device in Little Endianness Mode
8-Bit Device in 8-Bit Device in
Big Endianness Mode Little Endianness Mode
Figure 10-6. 16/8-Bit EMIF Big Endian Mode Correctness Mapping (HD12 = 1) (C6713B Only)
When HD12 = 0 for the C6713B, enabling EMIF endianness correction, the EMIF will present 8-bit or 16-bit data on the ED[7:0] side of the bus, regardless of the endianess mode (see Figure 10-7)
Copyright © 2003–2011, Texas Instruments Incorporated LOGIC AND POWER SUPPLY 87
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
abc
EMIF DATA LINES (PINS) WHERE DATA PRESENT
ED[31:24] (BE3) ED[23:16] (BE2) ED[15:8] (BE1) ED[7:0] (BE0)
Figure 10-7. 16/8-Bit EMIF Big Endian Mode Correctness Mapping (HD12 = 0) (C6713B Only)
This new C6713B endianness correction functionality does not affect systems using the default value of HD12 = 1.
This new C6713B feature does not affect systems operating in Little Endian mode.

10.8 Bootmode

The C6713/13B device resets using the active-low signal RESET and the internal reset signal. While RESET is low, the internal reset is also asserted and the device is held in reset and is initialized to the prescribed reset state. Refer to Reset Timing for reset timing characteristics and states of device pins during reset. The release of the internal reset signal (see the Reset phase 3 discussion in the RESET
Timing section of this data sheet) starts the processor running with the prescribed device configuration
and boot mode.
www.ti.com
32-Bit Device in Any Endianness Mode
16-Bit Device in Any Endianness Mode
8-Bit Device in
Any Endianness Mode
The C6713/13B has three types of boot modes:
Host boot If host boot is selected, upon release of internal reset, the CPU is internally stalled while the remainder
of the device is released. During this period, an external host can initialize the CPU memory space as necessary through the host interface, including internal configuration registers, such as those that control the EMIF or other peripherals. Once the host is finished with all necessary initialization, it must set the DSPINT bit in the HPIC register to complete the boot process. This transition causes the boot configuration logic to bring the CPU out of the stalled state. The CPU then begins execution from address 0. The DSPINT condition is not latched by the CPU, because it occurs while the CPU is still internally stalled. Also, DSPINT brings the CPU out of the stalled state only if the host boot process is selected. All memory may be written to and read by the host. This allows for the host to verify what it sends to the DSP if required. After the CPU is out of the stalled state , the CPU needs to clear the DSPINT; otherwise, no more DSPINTs can be received.
Emulation boot Emulation boot mode is a variation of host boot. In this mode, it is not necessary for a host to load
code or to set DSPINT to release the CPU from the stalled state. Instead, the emulator will set DSPINT if it has not been previously set so that the CPU can begin executing code from address 0. Before beginning execution, the emulator sets a breakpoint at address 0. This prevents the execution of invalid code by halting the CPU before executing the first instruction. Emulation boot is a good tool in the debug phase of development.
EMIF boot (using default ROM timings) Upon the release of internal reset, the 1K-Byte ROM code located in the beginning of CE1 is copied to
address 0 by the EDMA using the default ROM timings, while the CPU is internally stalled. The data should be stored in the endian format that the system is using. The boot process also lets you choose the width of the ROM. In this case, the EMIF automatically assembles consecutive 8-bit bytes or 16-bit half-words to form the 32-bit instruction words to be copied. The transfer is automatically done by the EDMA as a single-frame block transfer from the ROM to address 0. After completion of the block transfer, the CPU is released from the stalled state and start running from address 0.
88 LOGIC AND POWER SUPPLY Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011

11 PARAMETRIC INFORMATION

11.1 Absolute Maximum Ratings

over operating case temperature range (unless otherwise noted)
Supply voltage range, CV Supply voltage range, DV Input voltage range 0.3 to DVDD+ 0.5 V Output voltage range 0.3 to DVDD+ 0.5 V
Operating case temperature range T
Storage temperature range, T
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) All voltage values are with respect to VSS. (3) Long-term high temperature storage and/or extended use at maximum recommended operating conditions may result in a reduction of
overall device life. See http://ti.com/ep_quality for additional information on enhanced product packaging.
DD DD
(2) (2)
C
stg

11.2 Recommended Operating Conditions

CV
DV V
(C – D)
V
(D – C)
V
IH
V
IL
I
OH
I
OL
V
OS
Supply voltage,
DD
core referenced to V Supply voltage, I/O referenced to V
DD
SS
Maximum supply voltage difference, CVDD− DV Maximum supply voltage difference, DVDD− CV
High-level input voltage
Low-level input voltage
(2)
C6713 High-level output mA current
C6713B
C6713
(2)
(2)
Low-level output mA current
C6713B
(2)
Maximum voltage during overshoot (See Figure 11-4) 4
(1)
VALUE UNIT
0.3 to 1.8 V
0.3 to 4 V
A version –40 to 105 S version –55 to 105 M version
(3)
55 to 12560 to 150 °C
(1)
MIN NOM MAX UNIT
C6713B 1.20 1.26 1.32 C6713B 300 MHz only 1.33 1.40 1.47
SS
DD DD
All signals except CLKS1/SCL1, DR1/SDA1, SCL0, SDA0, and RESET
3.13 3.3 3.47 V
1.32 V
2.75 V
2
CLKS1/SCL1, DR1/SDA1, SCL0, SDA0, and RESET 2 All signals except CLKS1/SCL1, DR1/SDA1, SCL0, SDA0, and 0.8
RESET CLKS1/SCL1, DR1/SDA1, SCL0, SDA0, and RESET 0.3 ×
DV
DD
All signals except ECLKOUT, CLKOUT2, CLKOUT3, CLKS1/SCL1, DR1/SDA1, SCL0, and SDA0
–8
ECLKOUT, CLKOUT2, and CLKOUT3 –16 All signals except ECLKOUT, CLKOUT2, CLKS1/SCL1,
DR1/SDA1, SCL0, and SDA0
–8
ECLKOUT and CLKOUT2 –16 All signals except ECLKOUT, CLKOUT2, CLKOUT3,
CLKS1/SCL1, DR1/SDA1, SCL0, and SDA0 ECLKOUT, CLKOUT2, and CLKOUT3 16 CLKS1/SCL1, DR1/SDA1, SCL0, and SDA0 3 All signals except ECLKOUT, CLKOUT2, CLKS1/SCL1,
DR1/SDA1, SCL0, and SDA0 ECLKOUT and CLKOUT2 16 CLKS1/SCL1, DR1/SDA1, SCL0, and SDA0 3
°C
V
V
V
8
8
(3)
V
(1) The core supply should be powered up before, and powered down after, the I/O supply. Systems should be designed to ensure that
neither supply is powered up for an extended period of time if the other supply is below the proper operating voltage. (2) Refers to dc (or steady state) currents only; actual switching currents are higher. For more details, see the device-specific IBIS models. (3) The absolute maximum ratings should not be exceeded for more than 30% of the cycle period.
Copyright © 2003–2011, Texas Instruments Incorporated PARAMETRIC INFORMATION 89
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Recommended Operating Conditions
(1)
(continued)
www.ti.com
MIN NOM MAX UNIT
V
US
Maximum voltage during undershoot (See Figure 11-5) –0.7
(3)
A version –40 105
T
C
Operating case temperature S version –55 105 °C
M version –55 125

11.3 Electrical Characteristics

(1)
over recommended ranges of supply voltage and operating case temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
High-level output All signals except SCL1, SDA1,
V
OH
voltage SCL0, and SDA0
Low-level output
V
OL
voltage
All signals except SCL1, SDA1, SCL0, and SDA0
SCL1, SDA1, SCL0, and SDA0 IOL= MAX 0.4 All signals except SCL1, SDA1,
I
Input current VI= VSSto DV
I
SCL0, and SDA0 SCL1, SDA1, SCL0, and SDA0 ±10 All signals except SCL1, SDA1,
I
Off-state output current VO= DVDDor 0 V μA
OZ
SCL0, and SDA0 SCL1, SDA1, SCL0, and SDA0 ±10
I
Core supply current
DD2V
I
I/O supply current
DD3V
(2)
(2)
CIInput capacitance 7 pF CoOutput capacitance 7 pF
(1) For test conditions shown as MIN, MAX, or NOM, use the appropriate value specified in the recommended operating conditions table. (2) Measured with average activity (50% high/50% low power) at 25°C case temperature and 100-MHz EMIF. This model represents a
device performing high-DSP-activity operations 50% of the time, and the remainder performing low-DSP-activity operations. The
high/low-DSP-activity models are defined as follows:
High DSP activity model:
CPU: 8 instructions/cycle with 2 LDDW instructions [L1 data memory: 128 bits/cycle via LDDW instructions; L1 program memory:
256 bits/cycle; L2/EMIF EDMA: 50% writes, 50% reads to/from SDRAM (50% bit switching)]
McBSP: 2 channels at E1 rate
Timers: 2 timers at maximum rate
Low DSP activity model:
CPU: 2 instructions/cycle with 1 LDH instruction [L1 data memory: 16 bits/cycle; L1 program memory: 256 bits per 4 cycles;
L2/EMIF EDMA: None]
McBSP: 2 channels at E1 rate
Timers: 2 timers at maximum rate
The actual current draw is highly application dependent. For more details on core and I/O activity, refer to the TMS320C6713/12C/11C
Power Consumption Summary application report (literature number SPRA889).
IOH= MAX 2.4 V
IOL= MAX 0.4
±170
DD
±170
13GDPA, CVDD= 1.4 V, CPU clock = 300 MHz
13GDPA, CVDD= 1.26 V, CPU clock = 200 MHz
C6713/13B, DVDD= 3.3 V, EMIF speed = 100 MHz
945
mA
560
75 mA
V
μA
V
90 PARAMETRIC INFORMATION Copyright © 2003–2011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
Transmission Line
4.0pF 1.85pF
Z0=50 (seeNoteA)
TesterPinElectronics
DataSheetTimingReferencePoint
Output Under Test
42 3.5nH
DevicePin (seeNote1)
NOTEA:Thedatasheetprovidestimingatthedevicepin.Foroutputtiminganalysis,thetesterpinelectronicsanditstransmissionlineeffects
mustbetakenintoaccount.Atransmissionlinewithadelayof2nsorlongercanbeusedto producethedesiredtransmissionline effect.Thetransmissionlineisintendedasaloadonly.Itisnotnecessarytoaddorsubtractthetransmissionlinedelay(2nsorlonger) fromthedata-sheettimings.
Inputrequirementsinthisdatasheetaretestedwithaninputslewrateof<4Vpernanosecond(4V/ns)atthedevicepin.
V
ref
=1.5V
V
ref
=VILMAX(orVOLMAX)
V
ref
=VIHMIN(or VOHMIN)
SM320C6713-EP
SM320C6713B-EP
www.ti.com

11.4 Parameter Measurement Information

11.4.1 Timing Information

SGUS049K–AUGUST 2003– REVISED APRIL 2011
Figure 11-1. Test Load Circuit for AC Timing Measurements

11.4.2 Signal Transition Levels

All input and output timing parameters are referenced to 1.5 V for both 0 and 1 logic levels.
Figure 11-2. Input and Output Voltage Reference Levels for AC Timing Measurements
All rise and fall transition timing parameters are referenced to VILMAX and VIHMIN for input clocks, VOLMAX and VOHMIN for output clocks.
Figure 11-3. Rise and Fall Transition Time Voltage Reference Levels
Copyright © 2003–2011, Texas Instruments Incorporated PARAMETRIC INFORMATION 91
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
VOS(max)
VIH(min)
Minimum Risetime
Waveform Valid Region
t = 0.3 tc(max)
Ground
= the peripheral cycle time.
t
c
t = 0.3 tc(max)
VIL(max)
Ground
VUS(max)
= the peripheral cycle time.
t
c
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com

11.4.3 AC Transient Rise/Fall Time Specifications

Figure 11-4 and Figure 11-5 show the AC transient specifications for rise and fall time. For device-specific
information on these values, refer to the Recommended Operating Conditions section of this data sheet.
Figure 11-4. AC Transient Specification Rise Time
92 PARAMETRIC INFORMATION Copyright © 2003–2011, Texas Instruments Incorporated
Figure 11-5. AC Transient Specification Fall Time
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
1
2
3
4
5
6
7
8
10
11
ECLKOUT
(OutputfromDSP)
ECLKOUT
(InputtoExternalDevice)
ControlSignals
(OutputfromDSP)
ControlSignals
(InputtoExternalDevice)
DataSignals
(OutputfromExternalDevice)
DataSignals (InputtoDSP)
9
(A)
(B)
(B)
NOTESA:Controlsignalsincludedataforwrites.
B:Datasignalsaregeneratedduringreadsfromanexternaldevice.
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011

11.4.4 Timing Parameters and Board Routing Analysis

The timing parameter values specified in this data sheet do not include delays by board routings. As a good board design practice, such delays must always be taken into account. Timing values may be adjusted by increasing/decreasing such delays. TI recommends utilizing the available I/O buffer information specification (IBIS) models to analyze the timing characteristics correctly. To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS Models for Timing Analysis application report (literature number SPRA839). If needed, external logic hardware such as buffers may be used to compensate any timing differences.
For inputs, timing is most impacted by the round-trip propagation delay from the DSP to the external device and from the external device to the DSP. This round-trip delay tends to negatively impact the input setup time margin, but also tends to improve the input hold time margins (see Table 11-1 and Figure 11-6).
Figure 11-6 represents a general transfer between the DSP and an external device. The figure also represents
board route delays and how they are perceived by the DSP and the external device.
Table 11-1. Board-Level Timings Example (see
Figure 11-6)
NO. DESCRIPTION
1 Clock route delay 2 Minimum DSP hold time 3 Minimum DSP setup time 4 External device hold time requirement 5 External device setup time requirement 6 Control signal route delay 7 External device hold time 8 External device access time
9 DSP hold time requirement 10 DSP setup time requirement 11 Data route delay
Copyright © 2003–2011, Texas Instruments Incorporated PARAMETRIC INFORMATION 93
Figure 11-6. Board-Level Input/Output Timings
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
CLKIN
1
2
3
4
4
CLKOUT2
1
2
3
4
4
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com

11.5 Input and Output Clocks

Table 11-2. Timing Requirements for CLKIN
See Figure 11-7
NO. UNIT
t
c(CLKIN)
1 Cycle time, CLKIN ns
2 t
w(CLKINH)
3 t
w(CLKINL)
4 t
t(CLKIN)
(1) The reference points for the rise and fall transitions are measured at VILMAX and VIHMIN. (2) C = CLKIN cycle time in nanoseconds (ns). For example, when CLKIN frequency is 40 MHz, use C = 25 ns. (3) See the PLL and PLL Controller section of this data sheet.
Pulse duration, CLKIN high 0.4C 0.4C ns Pulse duration, CLKIN low 0.4C 0.4C ns Transition time, CLKIN 5 5 ns
GDP-200 5 83.3 6.7 GDP-300 4 83.3 6.7
(1) (2) (3)
PLL MODE BYPASS MODE
(PLLEN = 1) (PLLEN = 0)
MIN MAX MIN MAX
Figure 11-7. CLKIN
Table 11-3. Switching Characteristics for CLKOUT2
over recommended operating conditions (see Figure 11-8)
NO. PARAMETER MIN MAX UNIT
1 t 2 t 3 t 4 t
(1) The reference points for the rise and fall transitions are measured at VOLMAX and VOHMIN. (2) C2 = CLKOUT2 period in ns. CLKOUT2 period is determined by the PLL controller output SYSCLK2 period, which must be set to CPU
period divide-by-2.
c(CKO2) w(CKO2H) w(CKO2L) t(CKO2)
Cycle time, CLKOUT2 C2 – 0.8 C2 + 0.8 ns Pulse duration, CLKOUT2 high (C2/2) – 0.8 (C2/2) + 0.8 ns Pulse duration, CLKOUT2 low (C2/2) – 0.8 (C2/2) + 0.8 ns Transition time, CLKOUT2 2 ns
(1) (2)
Figure 11-8. CLKOUT2
94 PARAMETRIC INFORMATION Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
CLKIN
CLKOUT3
3
1
2
4
4
5
5
ECLKIN
1
2
3
4
4
SM320C6713-EP
SM320C6713B-EP
www.ti.com
Table 11-4. Switching Characteristics for CLKOUT3
SGUS049K–AUGUST 2003– REVISED APRIL 2011
(1) (2)
over recommended operating conditions (see Figure 11-9)
NO. PARAMETER UNIT
1 t 2 t 3 t 4 t 5 t
c(CKO3) w(CKO3H) w(CKO3L) t(CKO3) d(CLKINH-CKO3V)
Cycle time, CLKOUT3 C3 – 0.6 C3 + 0.6 C3 – 0.9 C3 + 0.9 ns Pulse duration, CLKOUT3 high (C3/2) – 0.6 (C3/2) + 0.6 (C3/2) – 0.9 (C3/2) + 0.9 ns Pulse duration, CLKOUT3 low (C3/2) – 0.6 (C3/2) + 0.6 (C3/2) – 0.9 (C3/2) + 0.9 ns Transition time, CLKOUT3 2 3 ns Delay time, CLKIN high to CLKOUT3 valid 1.5 6.5 1.5 7.5 ns
(1) The reference points for the rise and fall transitions are measured at VOLMAX and VOHMIN. (2) C3 = CLKOUT3 period in ns. CLKOUT3 period is a divide-down of the CPU clock, configurable via the RATIO field in the PLLDIV3
register.
6713 6713B
MIN MAX MIN MAX
Figure 11-9. CLKOUT3
Table 11-5. Timing Requirements for ECLKIN
(1)
See Figure 11-10
NO. MIN MAX UNIT
1 t 2 t 3 t 4 t
c(EKI) w(EKIH) w(EKIL) t(EKI)
Cycle time, ECLKIN 10 ns Pulse duration, ECLKIN high 4.5 ns Pulse duration, ECLKIN low 4.5 ns Transition time, ECLKIN 3 ns
(1) The reference points for the rise and fall transitions are measured at VILMAX and VIHMIN.
Figure 11-10. ECLKIN
Copyright © 2003–2011, Texas Instruments Incorporated PARAMETRIC INFORMATION 95
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
5
6
1
2
3
ECLKINECLKIN
ECLKOUT
4
4
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Table 11-6. Switching Characteristics for ECLKOUT
(1) (2) (3)
over recommended operating conditions (see Figure 11-11)
NO. PARAMETER MIN MAX UNIT
1 t 2 t 3 t 4 t 5 t 6 t
(1) The reference points for the rise and fall transitions are measured at VOLMAX and VOHMIN. (2) E = ECLKIN period in ns (3) EH is the high period of ECLKIN in ns and EL is the low period of ECLKIN in ns.
c (EKO) w (EKOH) w (EKOL) t (EKO) d (EKIH-EKOH) d (EKIL-EKOL)
Cycle time, ECLKOUT E – 0.9 E + 0.9 ns Pulse duration, ECLKOUT high EH – 0.9 EH + 0.9 ns Pulse duration, ECLKOUT low EL – 0.9 EL + 0.9 ns Transition time, ECLKOUT 2 ns Delay time, ECLKIN high to ECLKOUT high 1 6.5 ns Delay time, ECLKIN low to ECLKOUT low 1 6.5 ns
Figure 11-11. ECLKOUT
www.ti.com
96 PARAMETRIC INFORMATION Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011

11.6 Asynchronous Memory Timing

Table 11-7. Timing Requirements for Asynchronous Memory Cycles
See Figure 11-12 and Figure 11-13
NO. MIN MAX UNIT
3 t 4 t 6 t 7 t
su(EDV-AREH) h(AREH-EDV) su(ARDY-EKOH) h(EKOH-ARDY)
(1) To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. The ARDY signal is
recognized in the cycle for which the setup and hold time is met. To use ARDY as an asynchronous input, the pulse width of the ARDY signal should be wide enough (for example, pulse width = 2E) to ensure setup and hold time is met.
(2) RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters
are programmed via the EMIF CE space control registers.
(3) E = ECLKOUT period in ns
Setup time, EDx valid before ARE high 6.5 ns Hold time, EDx valid after ARE high 1 ns Setup time, ARDY valid before ECLKOUT high 3 ns ARDY valid after ECLKOUT high 2.3 ns
Table 11-8. Switching Characteristics for Asynchronous Memory Cycles
over recommended operating condition (see Figure 11-12 and Figure 11-13)
NO. PARAMETER MIN MAX UNIT
1 t 2 t 5 t 8 t
9 t 10 t 11 t
osu(SELV-AREL) oh(AREH-SELIV) d(EKOH-AREV) osu(SELV-AWEL) oh(AWEH-SELIV) d(EKOH-AWEV) osu(EDV-AWEL)
(1) RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters
are programmed via the EMIF CE space control registers. (2) E = ECLKOUT period in ns (3) Select signals include CEx, BE[3:0], EA[21:2], and AOE.
Output setup time, select signals valid to ARE low RS*E – 1.7 ns Output hold time, ARE high to select signals invalid RH*E – 1.7 ns Delay time, ECLKOUT high to ARE valid 1.5 7 ns Output setup time, select signals valid to AWE low WS*E – 1.7 ns Output hold time, AWE high to select signals and EDx invalid WH*E – 1.7 ns Delay time, ECLKOUT high to AWE valid 1.5 7 ns Output setup time, ED valid to AWE low (WS – 1)*E – 1.7 ns
(1) (2) (3)
(1) (2) (3)
Copyright © 2003–2011, Texas Instruments Incorporated PARAMETRIC INFORMATION 97
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
Setup= 2S trobe=3 NotReady Hold= 2
BE
Address
ReadData
21
21
21
21
5
4
3
ARDY
77
66
5
ECLKOUT
CEx
EA[21:2]
ED[31:0]
AOE
/SDRAS/SSOE
ARE/SDCAS/SSADS
BE[3:0]
AWE/SDWE/SSWE
(A)
(A)
(A)
NOTEA: / / , / / ,and / / operateas (identifiedunderselectsignals), ,and ,
respectively,duringasynchronousmemoryaccesses.
AOESDRASSSOEARESDCASSSADS AWESDWESSWE AOE ARE AWE
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com
Figure 11-12. Asynchronous Memory Read
98 PARAMETRIC INFORMATION Copyright © 20032011, Texas Instruments Incorporated
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
Setup= 2
Strobe=3 NotReady
Hold= 2
BE
Address
WriteData
1010
9
11
9
8
9
8
9
8
77
66
ECLKOUT
CEx
EA[21:2]
ED[31:0]
BE[3:0]
ARDY
AOE/SDRAS/SSOE
ARE/SDCAS/SSADS
AWE/SDWE/SSWE
(A)
(A)
(A)
NOTEA: / / , / / ,and / / operateas (identifiedunderselectsignals), ,and ,
respectively,duringasynchronousmemoryaccesses.
AOESDRASSSOEARESDCASSSADS AWESDWESSWE AOE ARE AWE
SM320C6713-EP
SM320C6713B-EP
www.ti.com
SGUS049K–AUGUST 2003– REVISED APRIL 2011
Figure 11-13. Asynchronous Memory Write
Copyright © 2003–2011, Texas Instruments Incorporated PARAMETRIC INFORMATION 99
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
ECLKOUT
CEx
BE[3:0]
EA[21:2]
ED[31:0]
ARE
/SDCAS/SSADS
AOE/SDRAS/SSOE
AWE/SDWE/SSWE
BE1 BE2 BE3 BE4
EA
Q1 Q2 Q3 Q4
9
1
4
5
8
8
9
6
7
3
1
2
(1)
(1)
(1)
NOTE(1): / / , and / / operateas duringSBSRAMaccesses.ARESDCASSSADS AWESDWESSWE SSADSAO SSOE SSWE, ,and ,respectively,ESDRASSSOE/ / ,
SM320C6713-EP SM320C6713B-EP
SGUS049K–AUGUST 2003– REVISED APRIL 2011
www.ti.com

11.7 Synchronous-Burst Memory Timing

Table 11-9. Timing Requirements for Synchronous-Burst SRAM Cycles
See Figure 11-14
NO. MIN MAX UNIT
6 t 7 t
su(EDV-EKOH) h(EKOH-EDV)
(1) The C6713/13B SBSRAM interface takes advantage of the internal burst counter in the SBSRAM. Accesses default to incrementing
4-word bursts, but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain
continuous data flow.
Setup time, read EDx valid before ECLKOUT high 1.5 ns Hold time, read EDx valid after ECLKOUT high 2.5 ns
Table 11-10. Switching Characteristics for Synchronous-Burst SRAM Cycles
over recommended operating conditions (see Figure 11-14 and Figure 11-15)
NO. PARAMETER MIN MAX UNIT
1 t
d (EKOH-CEV)
2 t
d (EKOH-BEV)
3 t
d (EKOH-BEIV)
4 t
d (EKOH-EAV)
5 t
d (EKOH-EAIV)
8 t
d (EKOH-ADSV)
9 t
d (EKOH-OEV)
10 t 11 t 12 t
d (EKOH-EDV) d (EKOH-EDIV) d (EKOH-WEV)
(1) The C6713/13B SBSRAM interface takes advantage of the internal burst counter in the SBSRAM. Accesses default to incrementing
4-word bursts, but random bursts and decrementing bursts are done by interrupting bursts in progress. All burst types can sustain
continuous data flow. (2) ARE/SDCAS/SSADS, AOE/SDRAS/SSOE, and AWE/SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during
SBSRAM accesses.
Delay time, ECLKOUT high to CEx valid 1.2 7 ns Delay time, ECLKOUT high to BEx valid 7 ns Delay time, ECLKOUT high to BEx invalid 1.2 ns Delay time, ECLKOUT high to EAx valid 7 ns Delay time, ECLKOUT high to EAx invalid 1.2 ns Delay time, ECLKOUT high to ARE/SDCAS/SSADS valid 1.2 7 ns Delay time, ECLKOUT high to AOE/SDRAS/SSOE valid 1.2 7 ns Delay time, ECLKOUT high to EDx valid 7 ns Delay time, ECLKOUT high to EDx invalid 1.2 ns Delay time, ECLKOUT high to AWE/SDWE/SSWE valid 1.2 7 ns
(1)
(1) (2)
100 PARAMETRIC INFORMATION Copyright © 2003–2011, Texas Instruments Incorporated
Figure 11-14. SBSRAM Read Timing
Submit Documentation Feedback
focus.ti.com: SM320C6713-EP
Loading...