Stanford Research Systems FS700 Data Sheet

Frequency Standards
FS700  LORAN-C frequency standard
· 10
12
long-term stability
· 10
10
11
opt. )
· NIST traceable frequency standard
· Reception throughout most of the northern hemisphere
· Four 10 MHz outputs
· Phase detector with analog output
· 0.01 Hz to 10 MHz TTL output
· FS700 ... $2950
(U.S. list)
Stanford Research Systems phone: (408)744-9040
www.thinkSRS.com
Many complex electronic systems require a stable, highly accurate timebase. Communication, automatic test and measurement, and precision time-measurement systems all require accurate frequency standards. Traditionally, users have looked to atomic clocks (cesium) for high stability and accuracy. With the FS700 LORAN-C Frequency Standard, cesium-clock stability is now available at a fraction of the cost of atomic standards. The FS700 serves as a NIST traceable frequency reference in the US, Europe and Asia.
Cesium Stability
More than 50 LORAN-C transmitters are maintained throughout the Northern Hemisphere by the US Coast Guard. The timing of their transmissions is controlled by cesium clocks located at each transmitter site. The FS700 extracts the timing information from the transmitted signal and uses it to frequency-lock its own highly stable oscillator. The result is a 10 MHz output signal with the same stability as the cesium clock used to generate the LORAN-C transmissions.
Frequency Outputs and Phase Detector
Four 10 MHz sine wave outputs are available at the rear panel of the instrument, and an additional front-panel, adjustable frequency TTL source is also provided. A built-in phase detector measures the phase shift between an external timebase and the internal frequency source, allowing you to easily calibrate precision oscillators between 100 kHz and 10 MHz.
FS700 LORAN-C Frequency Standard
www.thinkSRS.com
West Coast USA Fallon, Nevada, USA 99400 µs George, Washington, USA
Middletown, California, USA
Searchlight, Nevada, USA Canadian West Coast Williams Lake, BC, Canada 59900 µs Shoal Cove, Alaska, USA
George, Washington, USA
Port Hardy, BC, Canada North Central USA Havre, Montana, USA 82900 µs Baudette, Minnesota, USA
Gillette, Wyoming, USA
Williams Lake, BC, Canada South Central USA Boise City, Oklahoma, USA 96100 µs Gillette, Wyoming, USA
Searchlight, Nevada, USA
Las Cruces, New Mexico, USA
Raymondville, Texas, USA
Grangeville, Louisiana, US Great Lakes Dana, Indiana, USA 89700 µs Malone, Florida, USA
Seneca, New York, USA
Baudette, Minnesota, USA
Boise City, Oklahoma, USA Southeast USA Malone, Florida, USA 79800 µs Grangeville, Louisiana, USA
Raymondsville, Texas, USA
Jupiter, Florida, USA
Carolina Beach, NC, USA Northeast USA Seneca, New York, USA 99600 µs Caribou, Maine, USA
Nantucket, Massachusetts, USA
Carolina Beach, NC, USA
Dana, Indiana, USA Canadian East Coast Caribou, Maine, USA 59300 µs Nantucket, Mass., USA
Cape Race, Newfoundland,
Fox Harbor, Labrador, Canada Newfoundland Coast Comfort Cove, Canada 72700 µs Cape Race, Canada
Fox Harbor, Canada Bo Bo Norway 70010 µs Jan Mayen, Norway
Berlevag, Norway Eidi Eidi, Faeroe Island, Denmark 90070 µs Jan Mayen, Norway
Bo, Norway
Vaerlandet, Norway
Loop Head, Ireland Leassay Leassay, France 67310 µs Soustons, France
Loop Head, Ireland
Sylt, Germany Sylt Sylt, Germany 74990 µs Lessay, France
Vaerlandet, Norway Mediterranean Sea Sellia Marina, Italy 79900 µs Lampedusa, Italy
Estartit, Spain
Kargabaruu, Turkey
LORAN-C Station List
Stanford Research Systems phone: (408)744-9040
www.thinkSRS.com
Saudi Arabia North Afif, SA 88300 µs Salwa, SA
Al Hamasin, SA Ash Shaykh Humayd, SA
Al Muwassam, SA Saudi Arabia South Al Khamasin, SA 70300µs Salwa, SA
Afif, SA
Ash Shaykh Humayd, SA
Al Muwassam, SA Western Russia Bryansk, Russia 80000 µs Petrozavodsk, Russia
Solnim, Russia
Simferopol, Ukraine
Syzran, Russia Eastern Russia Aleksandrovsk, Russia 79500 µs Petrozavodsk, Russia
Ussuriysk, Russia
Tokachibuto, Japan
Ohotosk, Russia East Asian Pohang, Korea 99300 µs Kwang-Ju, Korea
Gesashi, Okinawa
Niijima, Japan
Ussuriisk, Russia China North Sea Rongcheng, PRC 74300 µs Xuancheng, PRC
Helong, PRC China East Sea Xuancheng, PRC 83900 µs Raoping, PRC
Rongcheng, PRC China South Sea Hexian, PRC 67800 µs Raoping, PRC
Chongzuo, PRC Northwest Pacific Niijima, Japan 89300 µs Gesashi, Okinawa
Miamitorishima, Japan
Tokatibutto, Hokkaido, Japan
Pohang, Korea Russia-American Petropavlo, Russia 59800 µs Attu, Alaska
Aleksandrovsk, Russia North Pacific St. Paul, Pribilof Is, Alaska, USA 99900 µs Attu, Alaska, USA
Point Clarence, Alaska, USA
Narrow Cape, Kodiak Is, USA Gulf of Alaska Tok, Alaska, USA 79600 µs Narrow Cape, Kodiak Is, USA
Shoal Cove, Alaska, USA
Port Clarence, Alaska, USA Bombay Dhrangadhr, India 60420 µs Veraval, India
Billamora, India Calcutta Balasore, India 55430 µs Diamond Harbour, India
Patpur, India
Receiver
Sensitivity Will lock with signal-to-atmospheric
noise ratio of 10 dB or better
LORAN output Filtered and gain controlled antenna
signal, typically 6 Vpp
Station search All available stations programmed,
Auto-Seek finds and tracks strongest station
Notch filters Six adjustable 30 dB notch filters
(three at 40 to 90 kHz, three at 110 to 220 kHz)
Frequency
Frequency stability
Long-term 10
12
(same as LORAN-C
transmitter cesium clock)
Short-term 10
10
(standard oscillator)
10
11
(low phase noise option)
Outputs Four 10 MHz outputs, 1 Vpp sine
into 50
LOCK output Rear-panel TTL indicates
receiver lock
Front-panel output TTL level output from 0.01 Hz to
10 MHz in a 1−2.5−5 sequence
Internal Oscillator
Standard Option 01
Frequency 10.000 MHz 10.000 MHz Type (ovenized) AT-cut SC-cut Aging 5 × 10
10
/day 5 × 10
10
/day
Allan variance (1s) 5 × 10
11
5 × 10
12
Stability (0 to 50 °C) 5 × 10
9
<2 × 10
9
Phase noise
10 Hz 125 dBc/Hz 100 Hz 130 dBc/Hz 155 dBc/Hz 1 kHz 165 dBc/Hz
Phase Meter
Frequency output 0.01 Hz to 10 MHz in 1−2.5−5
sequence, TTL level. Can be 50 terminated.
Oscillator input 1 k, 0.5 V min., 5.0 V max. Phase output 0.01 V/degree, 0 to ±360°. Output
proportional to phase difference between OSC IN and FREQUENCY OUTPUT for frequencies between 100 kHz and 10 MHz.
Computer Interface
GPIB (standard) IEEE-488 compatible interface. All
instrument functions can be controlled.
RS-232 (optional) 300 baud to 19,200 baud DCE serial
interface. All instrument functions may be controlled.
FS700 Specifications
Stanford Research Systems phone: (408)744-9040
www.thinkSRS.com
Antenna
Type 100 kHz active antenna with 40 kHz
bandwidth band-pass filter in base
Height 102" Material Fiberglass whip Base 2" dia. × 7.5", PVC Mounting 3/4" FIPT Output 50 nominal, female BNC Environmental 40 °C to 60 °C, 0 % to 100 % RH Lightning protection module (opt.)
Surge 18,000 A IEEE 8/20 waveform
(based on ANSI C62.1)
Frequency range DC to 30 MHz Throughput energy <16 µJ (based on 1 kV/nS
waveform)
Insertion loss <0.25 dB
General
Operating 0 °C to 50 °C Power 100/120/220/240 VAC,
50/60 Hz, 50 W
Dimensions 17" × 3.5" × 17" (WHD) Weight 14 lbs. Warranty One year parts and labor on defects
in materials and workmanship
Ordering Information
FS700 LORAN-C receiver (w/ GPIB, $2950
rack mount kit and antenna) Option 01 Low phase noise oscillator $450 Option 02 RS-232 interface $350 O700ANT Replacement antenna $250 O700LNG Lightning protection module $100 FS710 10 MHz distribution amplifier $1000
FS700 rear panel
Loading...