ST STM32F101RF, STM32F101VF, STM32F101ZF, STM32F101RG, STM32F101VG User Manual

...
LQFP144
20 × 2
0 mm
LQFP64
10
× 10 mm
LQFP100
14
× 14 mm
to 1 MB Flash, 15 timers, 1 ADC and 10 communication interfaces
Features
Core: ARM 32-bit Cortex™-M3 CPU with MPU
– 36 MHz maximum frequency,
1.25 DMIPS/MHz (Dhrystone 2.1) performance
– Single-cycle multiplication and hardware
division
Memories
– 768 Kbytes to 1 Mbyte of Flash memory
(dual bank with read-while-write capability) – 80 Kbytes of SRAM – Flexible static memory controller with 4
Chip Select. Supports Compact Flash,
SRAM, PSRAM, NOR and NAND
memories – LCD parallel interface, 8080/6800 modes
Clock, reset and supply management
– 2.0 to 3.6 V application supply and I/Os – POR, PDR, and programmable voltage
detector (PVD) – 4-to-16 MHz crystal oscillator – Internal 8 MHz factory-trimmed RC – Internal 40 kHz RC with calibration
capability – 32 kHz oscillator for RTC with calibration
Low power
– Sleep, Stop and Standby modes –V
1 x 12-bit, 1 µs A/D converters (up to 16
channels) – Conversion range: 0 to 3.6 V – Temperature sensor
2 × 12-bit D/A converters
DMA
– 12-channel DMA controller – Peripherals supported: timers, ADC, DAC,
Up to 112 fast I/O ports
supply for RTC and backup registers
BAT
2
SPIs, I
Cs and USARTs
STM32F101xF
STM32F101xG
Preliminary data
– 51/80/112 I/Os, all mappable on 16
external interrupt vectors and almost all 5 V-tolerant
Debug mode
– Serial wire debug (SWD) & JTAG interfaces – Cortex-M3 Embedded Trace Macrocell™
Up to 15 timers
– Up to ten 16-bit timers, with up to 4
IC/OC/PWM or pulse counters
– 2 × watchdog timers (Independent and
Window) – SysTick timer: a 24-bit downcounter – 2 × 16-bit basic timers to drive the DAC
Up to 10 communication interfaces
– Up to 2 x I – Up to 5 USARTs (ISO 7816 interface, LIN,
IrDA capability, modem control) – Up to 3 SPIs (18 Mbit/s)
CRC calculation unit, 96-bit unique ID
ECOPACK

Table 1. Device summary

Reference Part number
STM32F101xF
STM32F101xG
2
C interfaces (SMBus/PMBus)
®
packages
STM32F101RF STM32F101VF STM32F101ZF
STM32F101RG STM32F101VG STM32F101ZG
November 2010 Doc ID 17143 Rev 2 1/108
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
www.st.com
1
STM32F101xF, STM32F101xG
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 15
2.3.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15
2.3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.6 FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.7 LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.8 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16
2.3.9 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.10 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.11 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.12 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.13 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.14 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.15 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.16 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.17 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 19
2.3.18 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.19 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.20 Universal synchronous/asynchronous receiver transmitters (USARTs) 21
2.3.21 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.22 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.23 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.24 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.25 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.26 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.27 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 38
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 38
5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.10 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.12 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 78
5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.16 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.18 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.19 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Doc ID 17143 Rev 2 3/108
STM32F101xF, STM32F101xG
6.2.2 Evaluating the maximum junction temperature for an application . . . . 105
7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F101xF and STM32F101xG features and peripheral counts . . . . . . . . . . . . . . . . . 11
Table 3. STM32F101xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. STM32F101xF and STM32F101xG timer feature comparison . . . . . . . . . . . . . . . . . . . . . . 19
Table 5. STM32F101xF and STM32F101xG pin definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 6. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 7. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 8. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 9. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 10. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 11. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 12. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 13. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 14. Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 15. Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 16. Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 43
Table 17. Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 43
Table 18. Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 19. Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 47
Table 20. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 21. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 22. Low-speed user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 23. HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 24. LSE oscillator characteristics (f
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
LSE
Table 25. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 26. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 27. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 28. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 29. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 30. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 58
Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 59
Table 33. Asynchronous multiplexed NOR/PSRAM read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 34. Asynchronous multiplexed NOR/PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 35. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 36. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 37. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 38. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 39. Switching characteristics for PC Card/CF read and write cycles . . . . . . . . . . . . . . . . . . . . 73
Table 40. Switching characteristics for NAND Flash read and write cycles . . . . . . . . . . . . . . . . . . . . 76
Table 41. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 42. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 43. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 44. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 45. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 46. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 47. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 48. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 49. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Doc ID 17143 Rev 2 5/108
STM32F101xF, STM32F101xG
Table 50. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 51. I Table 52. SCL frequency (f
2
C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
= 36 MHz, VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
PCLK1
Table 53. STM32F10xxx SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 54. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 55. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 56. R
max for f
AIN
= 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
ADC
Table 57. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 58. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 59. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 60. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 61. LQFP144, 20 x 20 mm, 144-pin thin quad flat package mechanical data . . . . . . . . . . . . 101
Table 62. LQPF100 – 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . 102
Table 63. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package mechanical data . . . . . . . . 103
Table 64. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 65. STM32F101xF and STM32F101xG ordering information scheme . . . . . . . . . . . . . . . . . . 106
6/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG List of figures
List of figures
Figure 1. STM32F101xF and STM32F101xG access line block diagram . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. STM32F101xF and STM32F101xG access line LQFP144 pinout . . . . . . . . . . . . . . . . . . . 23
Figure 4. STM32F101xF and STM32F101xG LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 5. STM32F101xF and STM32F101xG LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 6. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 7. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 8. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 9. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 10. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 11. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 42
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 42
Figure 13. Typical current consumption on V
different V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
BAT
Figure 14. Typical current consumption in Stop mode with regulator in run mode
versus temperature at different V Figure 15. Typical current consumption in Stop mode with regulator in low-power
mode versus temperature at different V Figure 16. Typical current consumption in Standby mode versus temperature at
different V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DD
Figure 17. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 18. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 19. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 20. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 21. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . . 58
Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . . 59
Figure 23. Asynchronous multiplexed NOR/PSRAM read waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 24. Asynchronous multiplexed NOR/PSRAM write waveforms . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 25. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 26. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 27. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 28. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 29. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . . 69
Figure 30. PC Card/CompactFlash controller waveforms for common memory write access . . . . . . . 70
Figure 31. PC Card/CompactFlash controller waveforms for attribute memory read
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 32. PC Card/CompactFlash controller waveforms for attribute memory write
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 33. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . . 72
Figure 34. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . . 73
Figure 35. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 36. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 37. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . . 75
Figure 38. NAND controller waveforms for common memory write access . . . . . . . . . . . . . . . . . . . . . 76
Figure 39. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 40. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
with RTC on vs. temperature at
BAT
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
DD
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DD
Doc ID 17143 Rev 2 7/108
List of figures STM32F101xF, STM32F101xG
Figure 41. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 42. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 43. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 44. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 45. I
Figure 46. SPI timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 47. SPI timing diagram - slave mode and CPHA=1 Figure 48. SPI timing diagram - master mode
2
C bus AC waveforms and measurement circuit
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 49. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 50. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 51. Power supply and reference decoupling (V
not connected to V
REF+
). . . . . . . . . . . . . . 96
DDA
Figure 52. Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . . 97
Figure 53. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 54. LQFP144, 20 x 20 mm, 144-pin thin quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 55. Recommended footprint
Figure 56. LQFP100 – 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . 102
Figure 57. Recommended footprint
Figure 58. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 103
Figure 59. Recommended footprint Figure 60. LQFP64 P
max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
D
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Introduction

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of
the STM32F101xF and STM32F101xG XL-density access line microcontrollers. For more
details on the whole STMicroelectronics STM32F101xx family, please refer to Section 2.2:
Full compatibility throughout the family.
The XL-density STM32F101xx datasheet should be read in conjunction with the
STM32F10xxx reference manual.
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM32F10xxx Flash programming manual.
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical
Reference Manual, available from the www.arm.com website at the following address:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.
Doc ID 17143 Rev 2 9/108
Description STM32F101xF, STM32F101xG

2 Description

The STM32F101xF and STM32F101xG access line family incorporates the high-
performance ARM
®
Cortex™-M3 32-bit RISC core operating at a 36 MHz frequency, high­speed embedded memories (Flash memory up to 1 Mbyte and SRAM of 80 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer one 12-bit ADC, ten general-purpose 16-bit timers, as well as standard and advanced communication interfaces: up to two I
2
Cs, three SPIs and five USARTs.
The STM32F101xx XL-density access line family operates in the –40 to +85 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.
These features make the STM32F101xx XL-density access line microcontroller family suitable for a wide range of applications such as medical and handheld equipment, PC peripherals and gaming, GPS platforms, industrial applications, PLC, printers, scanners alarm systems , power meters, and video intercom.
10/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Description

2.1 Device overview

The STM32F101xx XL-density access line family offers devices in 3 different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.
Figure 1 shows the general block diagram of the device family.

Table 2. STM32F101xF and STM32F101xG features and peripheral counts

Peripherals STM32F101Rx STM32F101Vx STM32F101Zx
Flash memory 768 KB 1 MB 768 KB 1 MB 768 KB 1 MB
SRAM in Kbytes 80 80 80
FSMC No Yes Yes
Timers
General-purpose 10
Basic 2
SPI 3 Communication interfaces
2
C2
I
USART 5
GPIOs 51 80 112
12-bit ADC Number of channels
12-bit DAC Number of channels
2
16
2
16
2 2
CPU frequency 36 MHz
Operating voltage 2.0 to 3.6 V
Operating temperatures
Package LQFP64 LQFP100
1. For the LQFP100 package, only FSMC Bank1 and Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.
Ambient temperature: –40 to +85 °C (see Ta bl e 1 0)
Junction temperature: –40 to +105 °C (see Ta bl e 1 0 )
(1)
LQFP144
2
16
Doc ID 17143 Rev 2 11/108
Description STM32F101xF, STM32F101xG

Figure 1. STM32F101xF and STM32F101xG access line block diagram

TRACECLK TRACED[0:3] as AS
NJTRST
JTDI JTCK/SWCLK JTMS/SWDIO
JTDO as AF
A[25:0] D[15:0]
CLK NOE NWE
NE[4:1]
NBL[1:0]
NWAIT
NL
as AF
112AF
PA[15:0]
PB[15:0]
PC[15:0]
PD[15:0]
PE[15:0]
PF[15:0]
PG[15:0]
2 channels as AF
1 channel as AF
1 channel as AF
MOSI, MISO, SCK, NSS as AF
RX, TX, CTS, RTS as AF
ADC_IN[0:15]
V
REF–
V
REF+
TPIU
Trace/trig
SW/JTAG
MPU
Cortex-M3 CPU
F
: 36 MHz
max
NVIC
GP DMA1
7 channels
GP DMA2
5 channels
EXT.IT WKUP
GPIO port A
GPIO port B
GPIO port C
GPIO port D
GPIO port E
GPIO port F
GPIO port G
TIM9
TIM10
TIM11
SPI1
USART1
Temp. sensor
12-bit ADC
@ V
DDA
ETM
FSMC
IF
Pbus
Dbus
System
Ibus
APB2: Fmax = 24/36 MHz
Trace controller
Bus matrix
AHB2
APB2
SRAM
80 Kbyte
AHB2
APB1
obl
Flash 512 Kbyte
Flash
interface
obl
Flash 512 Kbyte
Flash
interface
Reset & clock control
WWDG
TIM6
TIM7
64 bit
64 bit
@V
RC 8 MHz
RC 40 kHz
PCLK1 PCLK2 HCLK FCLK
PLL
DDA
POR
Reset
Int
= 24/36 MHz
max
APB1: F
V
DD
Volt. reg.
3.3 V to 1.8 V
Supply supervision
POR / PDR
IWDG
Standby
interface
XTAL 32kHz
RTC
AWU
Backup interface
TIM2
TIM12
TIM13
TIM14
USART 2
USART 3
UART4
UART5
12bit DAC1
IFIF IF
12bit DAC 2
@V
@V
DD
Power
@V
DDA
PVD
@V
XTAL OSC 4-16 MHz
V
@
BAT
Backup
reg
TIM3
TIM4
TIM5
SPI2
SPI3
I2C1
I2C2
DDA
DD
V
SS
NRST V
DDA
V
SSA
OSC_IN OSC_OUT
V
=1.8 V to 3.6 V
BAT
OSC32_IN OSC32_OUT
TAMPER-RTC/ ALARM/SECOND OUT
4 channels as AF
4 channels as AF
4 channels as AF
4 channels as AF
2 channels as AF
1 channel as AF
1 channel as AF
RX, TX, CTS, RTS CK, as AF RX, TX, CTS, RT S, CK, as AF
RX,TX as AF
RX,TX as AF
MOSI, MISO SCK, NSS as AF
MOSI, MISO
SCK, NSS as AF
SCL, SDA, SMBA as AF
SCL, SDA, SMBA as AF
DAC_OUT1 as AF
DAC_OUT2 as AF
V
REF+
,
ai15830
1. TA = –40 °C to +85 °C (junction temperature up to 105 °C).
2. AF = alternate function on I/O port pin.
12/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Description
(3%/3#
-(Z
/3#?).
/3#?/54
/3#?).
/3#?/54
,3%/3# K(Z
(3)2#
-(Z
,3)2# K(Z
TOINDEPENDENTWATCHDOG)7$'
0,,
XXX
0,,-5,
(3%(IGHSPEEDEXTERNALCLOCKSIGNALIG
,3%
,3)
(3)
,EGEND
-#/
#LOCK/UTPUT
-AIN
0,,8402%

X
!(" 0RESCALER 

0,,#,+
(3)
(3%
!0"
0RESCALER

!$# 0RESCALER 
!$##,+
0#,+
(#,+
0,,#,+
TO!("BUSCORE MEMORYAND$-!
TO!$#
,3%
,3)
(3)


(3)
(3%
PERIPHERALS
TO!0"
0ERIPHERAL#LOCK
%NABLE
%NABLE
0ERIPHERAL#LOCK
!0"
0RESCALER

0#,+
TO!0"PERIPHERALS
0ERIPHERAL#LOCK
%NABLE
-(ZMAX
-(Z
-(ZMAX
-(ZMAX
TO24#
0,,32#
37
-#/
#33
TO#ORTEX3YSTEMTIMER

#LOCK
%NABLE
393#,+
MAX
24##,+
24#3%,;=
4)-X#,+
)7$'#,+
393#,+
&#,+#ORTEX FREERUNNINGCLOCK
4)-
TO4)- AND
TO&3-#
&3-##,+
0ERIPHERALCLOCK ENABLE
AI
)F!0"PRESCALERX
ELSEX
(IGHSPEEDINTERNALCLOCKSIGNAL
,OWSPEEDEXTERNALCLOCKSIGNAL
,OWSPEEDINTERNALCLOCKSIGNAL
0ERIPHERAL#LOCK %NABLE
4)-X#,+
4)-
TO4)-4)- AND4)-
)F!0"PRESCALERX
ELSEX
&,)4&#,+
TO&LASHPROGRAMMING INTERFACE

Figure 2. Clock tree

1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 36 MHz.
2. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz or 28 MHz.
Doc ID 17143 Rev 2 13/108
Description STM32F101xF, STM32F101xG

2.2 Full compatibility throughout the family

The STM32F101xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F101x4 and STM32F101x6 are identified as low-density devices, the STM32F101x8 and STM32F101xB are referred to as medium-density devices, the STM32F101xC, STM32F101xD, STM32F101xE are referred to as high-density devices, and the STM32F101xF and STM32F101xG are referred to as XL-density devices.
Low-, high-density and XL-density devices are an extension of the STM32F101x8/B medium-density devices, they are specified in the STM32F101x4/6, STM32F101xC/D/E and STM32F101xF/G datasheets, respectively.
Low-density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High-density devices have higher Flash memory and RAM densities, and additional peripherals like FSMC and DAC. XL-density devices bring greater Flash and RAM capacities, and more features, namely an MPU, a higher number of timers and a dual bank Flash memory, while remaining fully compatible with the other members of the family.
The STM32F101x4, STM32F101x6, STM32F101xC, STM32F101xD, STM32F101xE, STM32F101xF and STM32F101xG are a drop-in replacement for the STM32F101x8/B devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.
Moreover, the STM32F101xx access line family is fully compatible with all existing STM32F103xx performance line and STM32F102xx USB access line devices.

Table 3. STM32F101xx family

Pinout
144
100
64
48
36
1. For orderable part numbers that do not show the A internal code after the temperature range code (6), the reference datasheet for electrical characteristics is that of the STM32F101x8/B medium-density devices.
Memory size
Low-density devices Medium-density devices High-density devices XL-density devices
16 KB
Flash
4 KB RAM 6 KB RAM 10 KB RAM 16 KB RAM
32 KB
Flash
(1)
64 KB
Flash
128 KB
Flash
256 KB
Flash
32 KB
RAM
384 KB
Flash
48 KB
RAM
512 KB
Flash
48 KB
RAM
768 KB
80 KB
5 × USARTs 10 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I 1 × ADC, 1 × DAC FSMC (100 and 144 pins), Cortex-M3 with MPU, Dual bank Flash memory
2 × USARTs 2 × 16-bit timers 1 × SPI, 1 × I
2
C
1 × ADC
3 × USARTs 3 × 16-bit timers 2 × SPIs, 2 × I2Cs, 1 × ADC
5 × USARTs 4 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I
2
Cs, 1 × ADC, 1 × DAC FSMC (100 and 144 pins)
Flash
RAM
1 MB
Flash
80 KB
RAM
2
Cs,
14/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Description

2.3 Overview

2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM

The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.
The STM32F101xF and STM32F101xG access line family having an embedded ARM core, is therefore compatible with all ARM tools and software.
Figure 1 shows the general block diagram of the device family.

2.3.2 Memory protection unit

The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.
The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.

2.3.3 Embedded Flash memory

768 Kbytes to 1 Mbyte of embedded Flash are available for storing programs and data. The Flash memory is organized as two banks. The first bank has a size of 512 Kbytes. The second bank is either 256 or 512 Kbytes depending on the device. This gives the device the capability of writing to one bank while executing code from the other bank (read-while-write capability).

2.3.4 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.
Doc ID 17143 Rev 2 15/108
Description STM32F101xF, STM32F101xG

2.3.5 Embedded SRAM

80 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.3.6 FSMC (flexible static memory controller)

The FSMC is embedded in the STM32F101xF and STM32F101xG access line family. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR and NAND.
Functionality overview:
The three FSMC interrupt lines are ORed in order to be connected to the NVIC
Write FIFO
Code execution from external memory except for NAND Flash and PC Card
The targeted frequency is HCLK/2, so external access is at 18 MHz when HCLK is at
36 MHz

2.3.7 LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost­effective graphic applications using LCD modules with embedded controllers or high­performance solutions using external controllers with dedicated acceleration.

2.3.8 Nested vectored interrupt controller (NVIC)

The STM32F101xF and STM32F101xG access line embeds a nested vectored interrupt controller able to handle up to 60 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3) and 16 priority levels.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.9 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected to the 16 external interrupt lines.
16/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Description

2.3.10 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock is available when necessary (for example with failure of an indirectly used external oscillator).
Several prescalers are used to configure the AHB frequency, the high-speed APB (APB2) domain and the low-speed APB (APB1) domain. The maximum frequency of the AHB and APB domains is 36 MHz. See Figure 2 for details on the clock tree.

2.3.11 Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from user Flash: you have an option to boot from any of two memory banks. By
default, boot from Flash memory bank 1 is selected. You can choose to boot from Flash memory bank 2 by setting a bit in the option bytes.
Boot from system memory
Boot from embedded SRAM
The bootloader is located in system memory. It is used to reprogram the Flash memory by using USART1.

2.3.12 Power supply schemes

V
V
V
For more details on how to connect power pins, refer to Figure 9: Power supply scheme.
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.
DD
Provided externally through V
, V
SSA
= 2.0 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks,
DDA
RCs and PLL (minimum voltage to be applied to V used). V
= 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup
BAT
DDA
and V
registers (through power switch) when V

2.3.13 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the V
DD/VDDA
generated when V than the V message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to
Table 12: Embedded reset and power control block characteristics for the values of
V
POR/PDR
power supply and compares it to the V
DD/VDDA
threshold. The interrupt service routine can then generate a warning
PVD
and V
PVD
pins.
DD
must be connected to VDD and VSS, respectively.
SSA
DD
is below a specified threshold, V
DD
drops below the V
PVD
.
is 2.4 V when the ADC or DAC is
DDA
is not present.
POR/PDR
threshold. An interrupt can be
PVD
, without the need for an
threshold and/or when VDD/V
is higher
DDA
Doc ID 17143 Rev 2 17/108
Description STM32F101xF, STM32F101xG

2.3.14 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.
MR is used in the nominal regulation mode (Run)
LPR is used in the Stop modes.
Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode.

2.3.15 Low-power modes

The STM32F101xF and STM32F101xG access line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.

2.3.16 DMA

The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to­peripheral transfers.
The two DMA controllers support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.
18/108 Doc ID 17143 Rev 2
Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.
DMA can be used with the main peripherals: SPI, I
2
C, USART, general-purpose and basic
timers TIMx, DAC and ADC.
STM32F101xF, STM32F101xG Description

2.3.17 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V
supply when present or through the V
DD
registers used to store 84 bytes of user application data when V
pin. The backup registers are forty-two 16-bit
BAT
power is not present.
DD
They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.
The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.18 Timers and watchdogs

The XL-density STM32F101xx access line devices include up to ten general-purpose timers, two basic timers, two watchdog timers and a SysTick timer.
Table 4: STM32F101xF and STM32F101xG timer feature comparison compares the
features of the general-purpose and basic timers.
Table 4. STM32F101xF and STM32F101xG timer feature comparison
Timer
TIM2, TIM3, TIM4, TIM5
TIM9, TIM12 16-bit Up
TIM10, TIM11, TIM13, TIM14
TIM6, TIM7 16-bit Up
Counter
resolution
16-bit
16-bit Up
Counter
type
Up, down,
up/down
Prescaler factor
Any integer between
1 and 65536
Any integer between
1 and 65536
Any integer between
1 and 65536
Any integer between
1 and 65536
DMA
request
generation
Ye s 4 No
No 2 No
No 1 No
Ye s 0 No
General-purpose timers (TIMx)
There are 10 synchronizable general-purpose timers embedded in the STM32F101xF and STM32F101xG XL-density access line devices (see Ta bl e 4 for differences).
TIM2, TIM3, TIM4, TIM5
There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5) embedded in the STM32F101xF and STM32F101xG access line devices.
These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or
Capture/compare
channels
Complementary
outputs
Doc ID 17143 Rev 2 19/108
Description STM32F101xF, STM32F101xG
one-pulse mode output. This gives up to 16 input captures / output compares / PWMs on the largest packages.
Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.
TIM10, TIM11 and TIM9
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.
TIM13, TIM14 and TIM12
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13 and TIM14 feature one independent channel, whereas TIM12 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source
20/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Description

2.3.19 I²C bus

Up to two I²C bus interfaces can operate in multi-master and slave modes. They support standard and fast modes. They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded. They can be served by DMA and they support SMBus 2.0/PMBus.

2.3.20 Universal synchronous/asynchronous receiver transmitters (USARTs)

The STM32F101xF and STM32F101xG access line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).
These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The five interfaces are able to communicate at speeds of up to 2.25 Mbit/s.
USART1, USART2 and USART3 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller except for UART5.

2.3.21 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.
All SPIs can be served by the DMA controller.

2.3.22 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current­capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

2.3.23 ADC (analog to digital converter)

A 12-bit analog-to-digital converter is embedded into STM32F101xF and STM32F101xG access line devices. It has up to 16 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
Doc ID 17143 Rev 2 21/108
Description STM32F101xF, STM32F101xG
The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

2.3.24 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel
external triggers for conversion
input voltage reference V
Seven DAC trigger inputs are used in the STM32F101xF and STM32F101xG access line family. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.
REF+

2.3.25 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

2.3.26 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.3.27 Embedded Trace Macrocell™

The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F10xxx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.
< 3.6 V. The temperature sensor is internally
DDA
22/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Pinouts and pin descriptions
V
DD_3VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
V
DD_11VSS_11
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
V
DD_10VSS_10
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
PE2
V
DD_2
PE3
V
SS_2
PE4
NC
PE5
PA13
PE6
PA12
VBAT
PA11
PC13-TAMPER-RTC
PA10
PC14-OSC32_IN
PA9
PC15-OSC32_OUT
PA8
PF0
PC9
PF1
PC8
PF2
PC7
PF3
PC6
PF4
V
DD_9
PF5
V
SS_9
V
SS_5
PG8
V
DD_5
PG7
PF6
PG6
PF7
PG5
PF8
PG4
PF9
PG3
PF10
PG2
OSC_IN
PD15
OSC_OUT
PD14
NRST
V
DD_8
PC0
V
SS_8
PC1
PD13
PC2
PD12
PC3
PD11
V
SSA
PD10
V
REF-
PD9
V
REF+
PD8
V
DDA
PB15
PA0-WKUP
PB14
PA1
PB13
PA2
PB12
PA3
V
SS_4
V
DD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS_6
V
DD_6
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
V
SS_7
V
DD_7
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
V
SS_1
V
DD_1
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
109
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
108 107 106 105 104 103 102 101 100
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84
3738394041424344454647484950515253545556575859
60
72
LQFP144
120
119
118
117
116
115
114
113
112
111
110
6162636465666768697071
26 27 28 29 30 31 32 33 34 35 36
83 82 81 80 79 78 77 76 75 74 73
ai14667

3 Pinouts and pin descriptions

Figure 3. STM32F101xF and STM32F101xG access line LQFP144 pinout

Doc ID 17143 Rev 2 23/108
Pinouts and pin descriptions STM32F101xF, STM32F101xG
100
9998979695949392919089888786858483828180797877
76
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
VDD_2 VSS_2 NC PA 1 3 PA 1 2 PA 1 1 PA 1 0 PA 9 PA 8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12
PA 3
VSS_4
VDD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS_1
VDD_1
VDD_3
VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
26272829303132333435363738394041424344454647484950
PE2 PE3 PE4 PE5 PE6
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
VSS_5
VDD_5
OSC_IN
OSC_OUT
NRST
PC0 PC1 PC2 PC3
VSSA
VREF-
VREF+
VDDA
PA 0- W K UP
PA 1 PA 2
ai14391
LQFP100

Figure 4. STM32F101xF and STM32F101xG LQFP100 pinout

24/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Pinouts and pin descriptions
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47 46
45 44 43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2 3
4
5 6
7
8
9
10 11 12
13
14 15
16
V
BAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0-OSC_IN
PD1-OSC_OUT
NRST
PC0 PC1 PC2 PC3
V
SSA
V
DDA
PA 0- W K UP
PA 1 PA 2
V
DD_3
V
SS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA 1 5
PA 14
V
DD_2
V
SS_2
PA 1 3 PA 1 2 PA 1 1 PA 1 0 PA 9 PA 8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12
PA 3
V
SS_4
V
DD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
V
SS_1
V
DD_1
LQFP64
ai14392

Figure 5. STM32F101xF and STM32F101xG LQFP64 pinout

Table 5. STM32F101xF and STM32F101xG pin definitions

Pins
LQFP64
LQFP144
LQFP100
Pin name
(1)
(2)
Typ e
Main
function
(after reset)
I / O level
(3)
Alternate functions
Default Remap
(4)
1 - 1 PE2 I/O FT PE2 TRACECLK / FSMC_A23
2 - 2 PE3 I/O FT PE3 TRACED0 / FSMC_A19
3 - 3 PE4 I/O FT PE4 TRACED1 / FSMC_A20
4 - 4 PE5 I/O FT PE5 TRACED2 / FSMC_A21 TIM9_CH1
5 - 5 PE6 I/O FT PE6 TRACED3 / FSMC_A22 TIM9_CH2
616 V
BAT
7 2 7 PC13-TAMPER-RTC
8 3 8 PC14-OSC32_IN
9 4 9 PC15-OSC32_OUT
SV
(5)
I/O PC13
(5)
I/O PC14
(5)
I/O PC15
BAT
(6)
(6)
(6)
TAMPER-RTC
OSC32_IN
OSC32_OUT
10 - - PF0 I/O FT PF0 FSMC_A0
11 - - PF1 I/O FT PF1 FSMC_A1
12 - - PF2 I/O FT PF2 FSMC_A2
13 - - PF3 I/O FT PF3 FSMC_A3
14 - - PF4 I/O FT PF4 FSMC_A4
15 - - PF5 I/O FT PF5 FSMC_A5
16 - 10 V
17 - 11 V
SS_5
DD_5
SV
SV
SS_5
DD_5
Doc ID 17143 Rev 2 25/108
Pinouts and pin descriptions STM32F101xF, STM32F101xG
Table 5. STM32F101xF and STM32F101xG pin definitions (continued)
Pins
LQFP144
LQFP64
(2)
Pin name
(1)
Typ e
LQFP100
Main
function
(after reset)
I / O level
(3)
Alternate functions
Default Remap
18 - - PF6 I/O PF6 FSMC_NIORD TIM10_CH1
19 - - PF7 I/O PF7 FSMC_NREG TIM11_CH1
20 - - PF8 I/O PF8 FSMC_NIOWR TIM3_CH1
21 - - PF9 I/O PF9 FSMC_CD TIM14_CH1
22 - - PF10 I/O PF10 FSMC_INTR
23 5 12 OSC_IN I OSC_IN
24 6 13 OSC_OUT O OSC_OUT
25 7 14 NRST I/O NRST
26 8 15 PC0 I/O PC0 ADC_IN10
27 9 16 PC1 I/O PC1 ADC_IN11
28 10 17 PC2 I/O PC2 ADC_IN12
29 11 18 PC3 I/O PC3 ADC_IN13
30 12 19 V
31 - 20 V
32 - 21 V
33 13 22 V
SSA
REF-
REF+
DDA
34 14 23 PA0-WKUP I/O PA0
35 15 24 PA1 I/O PA1
36 16 25 PA2 I/O PA2
37 17 26 PA3 I/O PA3
SV
SV
SV
SV
SSA
REF-
REF+
DDA
USART2_RX
WKUP/ USART2_CTS
ADC_IN0 / TIM5_CH1/
TIM2_CH1_ETR
USART2_RTS
ADC_IN1 / TIM5_CH2
TIM2_CH2
USART2_TX
TIM5_CH3 / ADC_IN2/
TIM2_CH3
(7)
(7)
(7)
(7)
/
(7)
(7)
/
/ TIM9_CH1
/ TIM5_CH4/
ADC_IN3 / TIM2_CH4
(7)
(7)
/
TIM9_CH2
38 18 27 V
39 19 28 V
SS_4
DD_4
40 20 29 PA4 I/O PA4
41 21 30 PA5 I/O PA5
42 22 31 PA6 I/O PA6
SV
SV
SS_4
DD_4
SPI1_NSS/ DAC_OUT1 /
ADC_IN4 / USART2_CK
SPI1_SCK / DAC_OUT2 /
ADC_IN5
SPI1_MISO / ADC_IN6 /
TIM3_CH1
(7)
/ TIM13_CH1
(7)
(4)
/
26/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Pinouts and pin descriptions
Table 5. STM32F101xF and STM32F101xG pin definitions (continued)
Pins
Pin name
LQFP64
LQFP144
LQFP100
43 23 32 PA7 I/O PA7
(2)
(1)
Typ e
Main
function
(3)
(after reset)
I / O level
SPI1_MOSI / ADC_IN7 /
TIM3_CH2
44 24 33 PC4 I/O PC4 ADC_IN14
45 25 34 PC5 I/O PC5 ADC_IN15
46 26 35 PB0 I/O PB0 ADC_IN8 / TIM3_CH3
47 27 36 PB1 I/O PB1 ADC_IN9 / TIM3_CH4
48 28 37
PB2 I/O FT PB2/BOOT1
49 - - PF11 I/O FT PF11 FSMC_NIOS16
50 - - PF12 I/O FT PF12 FSMC_A6
51 - - V
52 - - V
SS_6
DD_6
53 - - PF13 I/O
SV
SV
FT
SS_6
DD_6
PF13 FSMC_A7
54 - - PF14 I/O FT PF14 FSMC_A8
55 - - PF15 I/O
FT
PF15 FSMC_A9
56 - - PG0 I/O FT PG0 FSMC_A10
57 - - PG1 I/O
FT
PG1 FSMC_A11
58 - 38 PE7 I/O FT PE7 FSMC_D4
59 - 39 PE8 I/O FT PE8 FSMC_D5
60 - 40 PE9 I/O FT PE9 FSMC_D6
61 - - V
62 - - V
SS_7
DD_7
SV
SV
SS_7
DD_7
63 - 41 PE10 I/O FT PE10 FSMC_D7
64 - 42 PE11 I/O FT PE11 FSMC_D8
65 - 43 PE12 I/O FT PE12 FSMC_D9
66 - 44 PE13 I/O FT PE13 FSMC_D10
67 - 45 PE14 I/O FT PE14 FSMC_D11
68 - 46 PE15 I/O FT PE15 FSMC_D12
69 29 47 PB10 I/O FT PB10 I2C2_SCL / USART3_TX
70 30 48 PB11 I/O FT PB11 I2C2_SDA / USART3_RX
71 31 49 V
72 32 50 V
SS_1
DD_1
73 33 51 PB12 I/O FT PB12
SV
SV
SS_1
DD_1
SPI2_NSS
USART3_CK
Alternate functions
Default Remap
(7)
/ TIM14_CH1
(7)
(7)
(7)
(7)
(7)
/ I2C2_SMBA /
(7)
(4)
TIM2_CH3
TIM2_CH4
Doc ID 17143 Rev 2 27/108
Pinouts and pin descriptions STM32F101xF, STM32F101xG
Table 5. STM32F101xF and STM32F101xG pin definitions (continued)
Pins
LQFP144
LQFP64
Pin name
LQFP100
(2)
(1)
Typ e
Main
function
(after reset)
I / O level
74 34 52 PB13 I/O FT PB13
75 35 53 PB14 I/O FT PB14
(3)
USART3_RTS
Alternate functions
Default Remap
(7)
(7)
(7)
/
(7)
/
/
SPI2_SCK
USART3_CTS
SPI2_MISO
TIM12_CH1
76 36 54 PB15 I/O FT PB15 SPI2_MOSI
(7)
/ TIM12_CH2
77 - 55 PD8 I/O FT PD8 FSMC_D13 USART3_TX
78 - 56 PD9 I/O FT PD9 FSMC_D14 USART3_RX
79 - 57 PD10 I/O FT PD10 FSMC_D15 USART3_CK
80 - 58 PD11 I/O FT PD11 FSMC_A16 USART3_CTS
81 - 59 PD12 I/O FT PD12 FSMC_A17
82 - 60 PD13 I/O FT PD13 FSMC_A18 TIM4_CH2
83 - - V
84 - - V
SS_8
DD_8
SV
SV
SS_8
DD_8
85 - 61 PD14 I/O FT PD14 FSMC_D0 TIM4_CH3
86 - 62 PD15 I/O FT PD15 FSMC_D1 TIM4_CH4
87 - - PG2 I/O FT PG2 FSMC_A12
88 - - PG3 I/O FT PG3 FSMC_A13
89 - - PG4 I/O FT PG4 FSMC_A14
90 - - PG5 I/O FT PG5 FSMC_A15
91 - - PG6 I/O FT PG6 FSMC_INT2
92 - - PG7 I/O FT PG7 FSMC_INT3
93 - - PG8 I/O FT PG8
94 - - V
95 - - V
SS_9
DD_9
SV
SV
SS_9
DD_9
96 37 63 PC6 I/O FT PC6 TIM3_CH1
97 38 64 PC7 I/O FT PC7 TIM3_CH2
98 39 65 PC8 I/O FT PC8 TIM3_CH3
99 40 66 PC9 I/O FT PC9 TIM3_CH4
100 41 67 PA8 I/O FT PA8 USART1_CK / MCO
101 42 68 PA9 I/O FT PA9 USART1_TX
102 43 69 PA10 I/O FT PA10 USART1_RX
(7)
(7)
103 44 70 PA11 I/O FT PA11 USART1_CTS
(4)
TIM4_CH1 /
USART3_RTS
28/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Pinouts and pin descriptions
Table 5. STM32F101xF and STM32F101xG pin definitions (continued)
Pins
LQFP144
LQFP64
Pin name
LQFP100
(2)
(1)
Typ e
Main
function
(3)
(after reset)
I / O level
104 45 71 PA12 I/O FT PA12 USART1_RTS
105 46 72 PA13 I/O FT JTMS-SWDIO
106 - 73 Not connected
107 47 74
108 48 75
109 49 76
110 50 77
111 51 78
112 52 79
113 53 80
114 5 81
115 6 82
116 54 83
117 - 84
118 - 85
119 - 86
120 - -
121 - -
122 - 87
123 - 88
124 - -
125 - -
126 - -
127 - -
128 - -
129 - -
130 - -
131 - -
132 - -
V
SS_2
V
DD_2
PA 1 4 I / O FT
SV
SV
SS_2
DD_2
JTCK-
SWCLK
PA15 I/O FT JTDI SPI3_NSS
PC10 I/O FT PC10 UART4_TX
PC11 I/O FT PC11 UART4_RX
PC12 I/O FT PC12 UART5_TX
PD0 I/O FT OSC_IN
PD1 I/O FT OSC_OUT
(8)
(8)
PD2 I/O FT PD2 TIM3_ETR / UART5_RX
PD3 I/O FT PD3 FSMC_CLK
PD4 I/O FT PD4 FSMC_NOE
PD5 I/O FT PD5 FSMC_NWE
V
SS_10
V
DD_10
SV
SV
SS_10
DD_10
PD6 I/O FT PD6 FSMC_NWAIT
PD7 I/O FT PD7 FSMC_NE1 /
PG9 I/O FT PG9 FSMC_NE2 /
PG10 I/O FT PG10
PG11 I/O FT PG11
FSMC_NCE4_1
FSMC_NCE4_2
PG12 I/O FT PG12 FSMC_NE4
PG13 I/O FT PG13 FSMC_A24
PG14 I/O FT PG14 FSMC_A25
V
SS_11
V
DD_11
SV
SV
SS_11
DD_11
PG15 I/O FT PG15
Alternate functions
Default Remap
FSMC_D2
FSMC_D3
(9)
(9)
FSMC_NCE2 USART2_CK
FSMC_NCE3
FSMC_NE3 /
(4)
TIM2_CH1_ETR/ PA15 /
USART3_TX
USART3_RX
USART3_CK
USART2_CTS
USART2_RTS
USART2_TX
USART2_RX
PA 1 3
PA 1 4
SPI1_NSS
Doc ID 17143 Rev 2 29/108
Pinouts and pin descriptions STM32F101xF, STM32F101xG
Table 5. STM32F101xF and STM32F101xG pin definitions (continued)
Pins
LQFP64
LQFP144
133 55 89
134 56 90
(2)
Pin name
(1)
Typ e
LQFP100
Main
function
(after reset)
I / O level
(3)
PB3 I/O FT JTDO SPI3_SCK
PB4 I/O FT NJTRST SPI3_MISO
Alternate functions
Default Remap
135 57 91 PB5 I/O PB5 I2C1_SMBA/ SPI3_MOSI
136 58 92 PB6 I/O FT PB6 I2C1_SCL / TIM4_CH1
137 59 93 PB7 I/O FT PB7
I2C1_SDA / FSMC_NADV /
TIM4_CH2
(7)
(7)
138 60 94 BOOT0 I BOOT0
139 61 95 PB8 I/O FT PB8 TIM4_CH3
140 62 96 PB9 I/O FT PB9 TIM4_CH4
141 - 97 PE0 I/O FT PE0 TIM4_ETR
(7)
(7)
(7)
/ FSMC_NBL0
142 - 98 PE1 I/O FT PE1 FSMC_NBL1
143 63 99 V
144 64 100 V
SS_3
DD_3
1. I = input, O = output, S = supply.
2. FT = 5 V tolerant.
3. Function availability depends on the chosen device.
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
7. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
8. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and LQFP144 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual
9. For devices delivered in LQFP64 packages, the FSMC function is not available.
SV
SV
SS_3
DD_3
(4)
TIM2_CH2 /
TRACESWO
SPI1_SCK
TIM3_CH1
PB4 /
SPI1_MISO
TIM3_CH2 / SPI1_MOSI
USART1_TX
USART1_RX
I2C1_SCL
I2C1_SDA
PB3
30/108 Doc ID 17143 Rev 2
Loading...
+ 78 hidden pages