Siemens SC 5000, SC6000P, SC 6002 User manual

s
SC 6002XL Patient Monitor
Field Service Manual
Field Service Manual
Field Service ManualField Service Manual
E331.E551U.719.01.01.02 Replaces/Ersetzt: ASK-T941-04-7600
EM Guidelines, 1997-04-02
Product Drawing
ADVISORY
Siemens is liable for the safety of its equipment only if maintenance, repair, and modifications are performed by authorized personnel, and if components affecting the equipment's safety are replaced with Siemens spare parts.
Any modification or repair not done by Siemens personnel must be documented. Such documentation must:
• be signed and dated
• contain the name of the company performing the work
• describe the changes made
• describe any equipment performance changes.
It is the responsibility of the user to contact Siemens to determine warranty status and/or liabilities if other than an authorized Siemens Service Representative repairs or makes modifications to medical devices.
Field Service Manual SC 6002XL Patient Monitor

Table of Contents

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Service Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Replaceable Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Technical Manual Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Product Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1 Monitored Patient Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 SC 6002XL Monitor Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 TFT-LCD Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.4 Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.5 Monitor/Software Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Preventative Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4 Technical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 1-1 General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Environmental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 1-2 Environmental Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.3 Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 1-3 Display Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.4 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 1-4 Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.5 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 1-5 Connector Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Monitor Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.1 Main Screen Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.2 Menu Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.3 Alarm Limits Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.4 Alarm Silence Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.5 All Alarms Off Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.6 NBP Start/Stop Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.7 Zoom Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.8 Record Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers i
6k2XLSMftcvr.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor
Chapter 2: Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2-1 SC6002XL Patient Monitor Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Parameter Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Main PC Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 LCD Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Network Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Front Panel Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Pod Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Battery Control and ON/OFF Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.6 BOOT Process, Flash Memory, and DRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7 SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.8 68HC11 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 NIBP Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2-2 Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Physiological Parameter Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1 ECG/Resp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 2-1 Parameter Sampling Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
5.1.1 ECG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2-3 Lead-Forming Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.2 Lead Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.3 Lead-Off Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.4 Low-Pass Filtering and Common Mode Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Respiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 2-4 SpO2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 SpO
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2
5.3.1 SpO
Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2
Figure 2-5 Sensor LED Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3.2 Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3.3 Brightness Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3.4 Ambient Light Rejection Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2-6 IBP Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
5.4 Invasive Blood Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5 Non-Invasive Blood Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5.1 NBP Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 2-7 NBP Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers ii
6k2XLSMftcvr.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor
5.5.2 NBP System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
5.5.3 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5.4 NBP Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5.5 Valve Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5.6 Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5.7 Power Supply Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.5.8 Safety Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.5.9 Pressure Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 2-8 Temperature Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.6 Temperature Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.6.1 Reference Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.6.2 A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 2-9 etCO2 Sensing Process Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 etCO2 Pod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 2-10 Power System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1 Power Supply System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.1 Main Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1.2 AC Power Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Chapter 3: Subassembly Replacement Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2 Safety Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Service Policy and Replaceable Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4 Non-Invasive Replacement Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1 Replacing Rotary Knob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Replacing Foot Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Accessing Replaceable Subassemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 3-1 Right Side Panel Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1 Removing Side Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.1 Removing Right-Hand Side Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 3-2 Removing Left Side Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Removing Left Side Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
5.1.3 Reinstalling Side Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 3-3 Bezel Retaining Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Front Bezel Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 3-4 Front Bezel Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Replacing Optical Encoder Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 3-5 Optical Encoder Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers iii
6k2XLSMftcvr.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor
5.4 Front Bezel Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 3-6 TFT-LCD Display Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Removing/Installing TFT-LCD Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
5.5.1 Removing TFT-LCD Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5.2 Installing TFT-LCD Display Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 3-7 Speaker Subasssembly Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 Speaker Replacement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 3-8 TFT-LCD Display Subassembly (Back View). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.7 Front Panel PC Board Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.8 Inverter Board Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 3-9 Backlight Retaining Tabs Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.9 TFT-LCD Display Backlight Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.10PodPort PC Board Removal/Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.10.1 Removing PodPort PC Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 3-10 Removing PodPort PC Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.10.2 Installing PodPort PC Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 3-11 Removing Intermediate Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.11Replacing Intermediate Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.11.1 Removing Intermediate Subssembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.11.2 Installing Intermediate Subssembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.12Replacing Main Processor Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.12.1 Removing Main Processor Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 3-12 Securing Screw Access Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 3-13 Accessing Main Processor Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 3-14 Connector Locations on Main Processor Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.12.2 Installing Main Processor Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.13Monitor Handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.13.1 Removing Handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 3-15 Removing Handle retaining Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.13.2 Installing Handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 3-16 Location of NBP Subassembly in Rear Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.14Replacing NBP Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.14.1 Removing NBP Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.14.2 Installing NBP Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
5.15Replacing NBP Air Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 3-17 NBP Air Intake Filter Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.15.1 Replacing Air Intake Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 3-18 NBP Manifold Filter Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers iv
6k2XLSMftcvr.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor
5.15.2 Replacing Manifold Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.16Replacing Battery Connector Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 3-19 Battery Connector Subassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 3-20 Battery Connector Subassembly Access Inside Rear Housing . . . . . . . . . . . . . . . . . . . . 43
5.17Correcting Hardware Revision Number Stored in Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.17.1 Windows 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.17.2 Windows 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.17.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 3-21 Support Menu (Item numbers may differ in different versions of installed software.) . . 45
Chapter 4: Functional Verification and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1 Functional Verification Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.1 Power Circuits and Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.2 Optical Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.3 TFT-LCD Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.4 Fixed Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.5 ECG/RESP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.6 Asystole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.7 SpO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.8 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.8.1 Functional Verification Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.8.2 Temperature Calibration Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 4-1 Resistance Value vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.9 etCO2 (if installed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 4-1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.10Non-Invasive Blood Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.10.1 System Setup and Pneumatics Leakage Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.10.2 Functional and Calibration Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Figure 4-2 IBP Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.11Invasive Blood Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2 Leakage Current Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 4-2 Leakage Current Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 4-3 Block Diagram: Earth Leakage Current (AC/DC Power Adapter) . . . . . . . . . . . . . . . . . . . 56
Figure 4-4 Block Diagram: Earth Leakage Current (CPS/Docking Station) . . . . . . . . . . . . . . . . . . . . 56
Figure 4-5 Block Diagram: Earth Leakage Current (Infinity Docking Station) . . . . . . . . . . . . . . . . . . 56
3 Calibrating NBP System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 4-3 NBP Calibration Test Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers v
6k2XLSMftcvr.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor
3.2 Calibration Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 4-6 Calibration Potentiometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 4-7 NBP Characterization Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
3.3.1 Characterization Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.2 Windows 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.3 Windows 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.4 Complete Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Figure 4-8 Support Menu (Item numbers may differ between versions of installed software.) . . . . 61
Chapter 5: Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.1 Power Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.1.1 No Response When POWER ON/OFF Key Pressed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 5-1 Power-On Problems 63
1.1.2 Power On/Off Piezo Tone Fails to Sound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 5-2 Power-off Alarm Malfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.1.3 Power-Up Sequence Fails to Complete Properly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 5-3 Power-up Process Malfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.2 Optical Encoder Malfunction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 5-4 Rotary Knob Malfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.3 TFT-LCD Display Malfunction.Fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 5-5 LCD Display Malfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.4 Fixed Key Fails to Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 5-6 Fixed Key Malfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
1.5 Visual or Audible Alarm Reporting Failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 5-7 Alarm Malfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
1.6 NBP Malfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 5-8 NBP Malfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.7 etCO2 Malfunction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 5-9 etCO2 Malfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.8 No Printout from Recorder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 5-10Recorder Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.9 Isolating Cable Malfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.10Patient-Related Data Not Retained or Monitor Fails to Compute Trends . . . . . . . . . . . . . . . . . . . . . 69
Appendix A: Replaceable Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table A-1 SC 6000XL - Replaceable Parts and Subassemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure A-1 SC 6002XL Exploded View 73
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers vi
6k2XLSMftcvr.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor
Figure A-2 NBP Subassembly (shown with filters exposed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Appendix B: Connector Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure B-1 IBP Connector (see Table B-1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Figure B-2 MultiMed Pod Connector (see Table B-2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table B-1 IBP Connector Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table B-2 MultiMed Pod Connector Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure B-3 Docking Station Connector (see Table B-3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure B-4 SHP ACC CBL ALARM UNTERM 5M (see Table B-4) . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table B-3 Docking Station Connector Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table B-4 Remote Alarm Cable Color Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure B-5 Interface Plate Connector (see Table B-5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure B-6 SHP ACC CBL Y RECORDER/ALARM (see Table B-6) . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table B-5 Interface Plate Connectors Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table B-6 Remote Alarm Cable Color Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure B-7 Basic/Device CPS Connectors - Infinity Network (see Table B-7) . . . . . . . . . . . . . . . . . . 78
Table B-7 InfinityNet CPS Connector Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure B-8 Infinity Docking Station Connectors(Refer to Table B-8.) . . . . . . . . . . . . . . . . . . . . . . . . 79
Table B-8 Infinity Docking Station Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure B-9 PodPort Connector (see Table B-9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table B-9 PodPort Connector Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Appendix C: Error and Diagnostic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
1.1 Startup Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
1.2 Diagnostic Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table C-1 Support Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
1.3 Severity Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
1.4 Reset Causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2 Diagnostic Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table C-2 Startup Diagnostic Log Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table C-3 Exception Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table C-4 Hardware-related Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table C-5 Intertask Mail Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table C-6 Miscellaneous Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Table C-7 Alternative Memory Manager to PSOS OSL Messages . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table C-8 NP Subsystem Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table C-9 Diagnostic Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table C-10INTER Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table C-11Print Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers vii
6k2XLSMftcvr.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor
Table C-12MAIN Processor Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table C-13ACT Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table C-14Audio Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table C-15Database Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table C-16Front End Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table C-17Alarm Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table C-18Monitoring Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table C-19SpO2 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table C-20HCOM Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table C-21LCOM Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table C-22NET Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table C-23etCO2 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Appendix D: Functional Verification Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Appendix E: Supplemental Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Software Installation Instructions - Software Version VE0 . . . . . . . . . . . . . 109
Service Setup Instructions - Software Version VE0 . . . . . . . . . . . . . . . . . . . 110
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers viii
6k2XLSMftcvr.cd-rom.fm/06-00/kaupp

Chapter 1: Introduction

1Introduction

1.1 Service Strategy

1.2 Replaceable Parts

In keeping with the service strategy for the SC6002XL, this service manual provides the necessary information required to service an SC 6002XL patient monitor in the field. The SC 6002XL is both a stationary and a portable monitor designed to monitor patient vital signs (refer to user’s guide for monitoring options). For stationary operation near a bedside, the monitor is connected to an AC/DC power adapter or placed on a specially designed docking station attached to a shelf, wall, or rolling stand that securely locks it into place. While on the docking station, the monitor is powered by a CPS or an IDS power supply. When the monitor is detached from a CPS or IDS, it is powered by a lead acid battery or by an optional Lithium ion battery. The monitor is reattached to the AC/DC Power Adapter or placed back on a CPS or IDS to recharge the battery.
The monitor has been designed for high reliability, with an estimated MTBF of 50,000 hours (5.7 yrs.) of continuous operation.
Therefore, the service strategy is based on few failures in the field, a clear definition of failure analysis by field service personnel, and a quick repair turnaround. The field repair philosophy is based on the distributed and approved spare parts list. Refer to Appendix A: Replaceable Parts.
This manual is intended to serve as a source of technical information, for qualified field service personnel to use in servicing SC6002XL patient monitor in accordance with the Siemens Service Strategy. Field service is expected to be successful “First-Time Every Time.”
SC 6002XL monitors have several replaceable subassemblies, each of which also has replaceable subassemblies and/or components.

1.3 Technical Manual Conventions

• Front Bezel Subassembly
• Front Panel PC Board
• TFT-LCD Display Subassembly,
• Main Processor Subassembly,
• NBP Subassembly, and
• Rear Housing Subassembly with integrated serial number chip.
Individual “consumable” replaceable parts include the battery, fluorescent backlight, and NBP filters. A complete listing of spare parts is included in
Appendix A: Replaceable Parts of this manual. Replacement of components
other than those listed in Appendix A should be performed only at Siemens service depots in Danvers, MA, U.S.A. or in Solna, Sweden, where specialized repair and testing equipment can assure product reliability.
The following conventions are employed in this manual:
A NOTE calls attention to items of special interest or provides additional related information about a specific topic:
Note: Attempting to repair any PC board to the component level may void any warranty, either express or implied.
A Caution indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate property damage. It may also alert against unsafe practices.
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers 1
6k2XLSMC1.cd-rom.fm/06-00/kaupp
SC 6002XL Patient Monitor Field Service Manual
Caution
3
Printed circuit boards in these monitors contain components that are easily damaged by static electricity. Open monitors only in a static-protected environment. Observe proper procedures to prevent damage to the equipment resulting from static discharge.
A Warning indicates a potentially hazardous situation which, if not avoided, may result in death or serious injury.
Warning
Do not operate this product in the presence of flammable gasses or liquids. If this device is operated where flammable anesthetics, skin cleansers, or disinfectants are used, the possibility of an explosion cannot be excluded. This product must be operated only in strict conformance with local fire prevention regulations.

2Product Overview

2.1 Monitored Patient Parameters

2.2 SC 6002XL Monitor Controls

SC 6002XL Patient Monitors are light-weight, battery-equipped, hand-held or semi-permanently mounted devices for general purpose monitoring of a preconfigured set of physiological parameters. When not connected to a hospital’s main ac power, they use a battery with approximately 1¼ hours (3 hrs. for Li option battery) of operating time. A power adapter, CPS/ docking station combination, or IDS, which also charges the battery, can be used to operate the monitor from the hospital’s main ac power circuit.
The SC6002XL monitors the following physiological parameters:
• ECG (three-lead, five-lead, or six-lead pod)
• Respiration
• Pulse Oximetry (SpO
• Temperature
•NBP
• IBP1, IBP2 (locked option)
•etCO
•Arrythmia
• OCRG (locked option)
• Dual Lead S-T Segment Analysis (locked option, VF0 SW required)
All functions are controlled by a 16-position rotary knob and nine front panel fixed keys - Alarm Silence, Record, Alarm Limits, NBP Start/Stop, All Alarms Off, Zoom, Main Screen, Menu, and ON/OFF. Turning the rotary knob locates different menu items, and pressing the knob in selects the item. Depending on the item selected, pressing the knob in may either bring up another menu or initiate an action. See Section 5. For detailed operating instructions, consult the SC 6002XL Patient Monitor User Guide applicable to the installed software.
via PodComm Port (locked option)
2
and PR)
2

2.3 TFT-LCD Display

2 Siemens Medical Systems, EM-PCS, Danvers ASK-T941-04-7600
The SC 6002XL monitor has a 6.5 inch (16.5cm), 3-channel color TFT-LCD display. Waveforms display in Erase Bar mode at 25 ±20% mm/s (except for respiration and etCO All displays for a given parameter (label, unit of measure, and waveform) are in the same color. If a waveform is not displayed for a parameter, its label is gray.
waveforms which display at 6.25 ±20% mm/s).
2
6k2XLSMC1.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor

2.4 Alarms

2.5 Monitor/Software Tracking

3Preventative
Maintenance

3.1 General

Alarm limits can be set either on a user-definable setup table, or automatically based on current parameter values. Three alarm grades, each with a distinct alarm tone, announce alarm situations of varying severity:
• life-threatening (asystole or ventricular fibrillation - red)
• serious (parameter limit alarms - yellow)
• advisory (technical alarms - white)
The message field background and parameter field of the parameter in alarm are displayed in the color associated with the alarm grade as given above.
Each monitor has a unique ID chip installed in its rear housing for diagnostic and tracking purposes, and un/locking optional software features.
SC 6002XL monitors require replacement of the lead-acid battery (12 months), NBP air intake filter (24 months) and fluorescent bulb (45K - 50K hours).
Siemens recommends that a full functional verification be performed annually. See Chapter 4: Functional Verification and Calibration. Also, some national jurisdictions require that a temperature calibration (see Section
1.8.2 in Chapter 4) and an NBP calibration be performed at least every two
years. Refer to Section 3, Calibrating NBP System in Chapter 4 for the NBP calibration procedure.

3.2 Battery

Note: Replace the internal manifold filter on the NBP subassembly only if the NBP subassembly should fail characterization.
To obtain maximum life from a new lead-acid battery, install the battery into the monitor and run the monitor on battery power for a period of 15 minutes. After the 15 minute period, either plug in the monitor’s power adapter or lock the monitor onto a powered docking station and charge the battery, or remove the battery from the monitor and connect the battery to an external charger. (This initial sequence is not needed for Li batteries.)
When in storage or not in use for an extended period of time, lead-acid batteries self-discharge and develop a “float-charge” as a characteristic of the self-discharge process. The “float charge” must be drained off before the battery can be properly charged. If a new battery is immediately placed on a charger, the “float charge” provides an incorrect indication of the battery’s charge condition, and the charger may not fully charge the battery.
Between discharges, the lead-acid battery must be recharged as soon as possible. Once charged, it can be stored for ª 4 months without recharging. Siemens recommends that the battery charge be maintained at >80% to maximize the battery’s capacity and cycle life. Starting at a 100% charge level, at room temperature the battery will self-discharge below the acceptable minimum in about 6 months on a shelf and in about 2 months in an unpowered spare monitor.
Warning
Dispose of used batteries in accordance with local regulations governing disposal of hazardous materials.
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers 3
6k2XLSMC1.cd-rom.fm/06-00/kaupp
SC 6002XL Patient Monitor Field Service Manual

4Technical Data

Technical Data included in this Section is as of publication date of this Manual. Changes are reported in User Guide applicable to installed SW.

4.1 General

Table 1-1 General Specifications
Parameter Specification
Power Requirements 100-250 VAC through AC power adapter
Mains Frequency 50/60 Hz
AC Power Consumption 60 VA AC
Battery Type Lead-acid: PANASONIC LC-T121R8PU or equivalent
Lithium-ion: Siemens Li+ Battery Pack
DC Input 11 - 14 V; 32 W continuous, 49 W peak
Battery Operating Time (means running with NBP measurement every 15 min @ 25°C temperature, no etCO
Battery Recharging Time Lead-acid: 5 ½ hours, typical
Battery Charge/Discharge/Charge: Lithium-ion only (operating as defined above): 2 hours, charging for 2
running
2
Lead-acid: 75 mins Lithium-ion: 180 mins
Lithium-ion: 8 hours, typical
hours, operating 2 hours
Patient Leakage Current <10 µA @ 110 V and 60 Hz (per UL 544)
<10 µA @ 220 V and 50 Hz (per IEC 601-1)
Chassis Leakage Current with battery eliminator
<100 µA @ 110 V and 60 Hz (per UL 544) <500 µA @ 220 V and 50 Hz (per IEC 601-1)

4.2 Environmental

Table 1-2 Environmental Specifications
Parameter Environmental Specification
Cooling Method Convection and cooling chimney (no fan)
Temperature: Operating Storage
Relative Humidity: Operating Storage
Altitude: Operating
Storage
0°C to +40°C (without recorder)
-20°C to +50°C
>30% and <95%, non-condensing >10% and <95% non-condensing
-381 to +3048 m (-1250 to 10,000 ft.) 525 to 795 mmHg (70.0 to 106 kPa)
-381 to 5486 m (-1250 to 18,000 ft.) 375 to 795 mmHg (50.0 to 106 kPa)
Water Resistance Drip-Proof
Dimensions (H x W x D): 196 x 223 x 134 mm (7.7 x 8.8 x 5.3 in) (w/ rotary knob)
4 Siemens Medical Systems, EM-PCS, Danvers ASK-T941-04-7600
6k2XLSMC1.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor
Table 1-2 Environmental Specifications (Continued)
Parameter Environmental Specification
Weight:
SC 6002XL (w/o etCO
)
2
3.42 kg (7.54 lb) w/ lead-acid battery
3.22 kg (7.10 lb) w/ lithium-ion battery
2.87 kg (6.32 lb)) w/o battery
Battery
Lead-acid: 0.55 kg (1.22 lb) Lithium-ion: 0.35 kg (0.78 lb)
Finish:
according to Siemens Corporate Design Guidelines
Front: white Rear and Handle: anthracite gray Material: ABS Polycarbonate Blend (injection molded plastic)

4.3 Display

Table 1-3 Display Specifications
Parameter Specification
Type Color Thin Film Transistor - Liquid Crystal Display (TFT-LCD)
Size 170 mm (6.7 in) diagonal
Resolution 640 x 480 pixels
Active Viewing Area 132.5 x 99.4 mm
Pixel pitch 0.207 mm x 0.207 mm
Sweep Speeds fixed 25 mm/s ±20% for ECG, SpO
fixed 6.25 mm/s ±20% for Rsp and etCO
, and IBP curves
2
curves
2
Display Mode Erase bar (updates waveforms from left to right)

4.4 Outputs

Table 1-4 Output Specifications
Parameter Specification
QRS Synchronization:
Timing:
Output Pulse:
Alarm Output 12 V Open collector output for external alarm indicator
Recorder UART interface w/ recorder through interface plate or docking station
Debug Port UART interface w/ a PC to retrieve diagnostic information through
External VGA Video signals sent to external VGA display for remote viewing of
Export Protocol UART interface w/ external devices using proprietary export protocol. --
Network Serial connection to Infinity Network through Infinity Serial Hub interface
For heart rates from 30 to 250 [1/min], with QRS widths from 40 to 120 msec and QRS amplitudes from 0.5 to 5 mV, a sync pulse is delayed no more than 35 msec from peak of R-wave for each valid QRS complex. +12 V, 100 ms duration
connector
interface plate or docking station connector
SC6002XL screen. -- not available when Infinity Serial Hub interface plate in use.
not available when Infinity Serial Hub interface plate in use.
plate or docking station connector.
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers 5
6k2XLSMC1.cd-rom.fm/06-00/kaupp
SC 6002XL Patient Monitor Field Service Manual

4.5 Connectors

Table 1-5 Connector Specifications
Parameter Specification
DC Input Siemens 2-pin power connector
Docking Station Siemens 28-pin connector to provide Alarm Output, Recorder, Debug
Port, Network, External VGA and Power
Memory Card PCMCIA slot
QRS Sync Phone jack connector
MultiMed Pod 16-pin shielded female input connector
IBP 7-pin shielded female input connector
NBP Hose One-hand coupling system
etCO
2
Note: For patient parameter specifications, refer to User Guide applicable to installed software version.
7-pin shielded female PodComm connector

5Monitor Controls

5.1 Main Screen Key

5.2 Menu Key

The rotary knob in the lower right corner of the front panel is a pointing and selecting device. Turn the knob to select a screen area or menu item or to change a default value, and press the knob in to confirm your selection and to set a default value. Press Main Screen key to return to the MAIN screen.
Note: Instructions in this chapter are intended to provide only a cursory overview of basic monitor controls for accessing and performing service-related functions. Refer to the User Guide for the installed software version for complete operating information.
Pressing the Main Screen key exits the current menu or screen and displays the home screen.
-- provides access to the Main menu. In general, functions of direct
concern to the CSE or Biomed are accessed via Monitor Setup
Biomed on the Main menu. Password-protected service-related
functions are to be performed by only authorized technical personnel. Use Biomed password (375) to access the following:
• Save Setups - Confirm or Cancel
• Locked Options - four locks into which monitor-specific 2-digit codes must be entered to enable locked options
• Diagnostic Logs
•Units
- Temperature - °C or °F
- Pressure - mmHg or kPa
• Service - requires Service password. (The password is given on the Service Setup Instructions for the installed software version.)
- Update Software
- Line Frquency - set the frequency equal to the ac mains line according to local conditions (50 or 60 Hz).
Note: An incorrect setting of line frequency can cause arti­fact or excessive waveform noise on the ECG waveform.
- Language - selection appropriate for clinical site
6 Siemens Medical Systems, EM-PCS, Danvers ASK-T941-04-7600
6k2XLSMC1.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor
- Test Pulse - Confirm or Cancel, one-shot test pulses for ECG (1mV spike) and Temp (–5°C and +50°C, respectively). An additional test is performed for IBP, Resp Pulse, and SpO indication is reported in the trend table.)
•Exit
. Test
2

5.3 Alarm Limits Key

5.4 Alarm Silence Key

5.5 All Alarms Off Key

5.6 NBP Start/Stop Key

5.7 Zoom Key

5.8 Record Key

-- calls up a setup table for alarms.
1) Turn rotary knob to select desired parameter field and limits, and press knob in to activate your selection.
2) The number representing the limit value turns black on a blue back­ground, indicating that you can change it. Turn knob to change value.
3) When desired setting is displayed, press knob in to set value.
4) Press MAIN Screen key to return to MAIN screen.
-- silences an active alarm tone for 1 minute ±5 seconds, and turns active
blinking parameter areas into active steady parameter areas
-- suspends alarms for a fixed 3-minute ±5 second period.
-- starts and stops non-invasive blood pressure measurement.
-- used for fast access to all parameters or NBP parameter box bottom
channel screen setups, choice made from a user menu.
With an R50™ recorder connected, press the Record fixed key to start a manual, timed recording.
Note: If a recorder is not connected, pressing the Record fixed key writes 15 seconds of waveform and vital signs information to internal memory. SC 6002XL monitors can store up to five recordings, which are automatically printed as soon as the recorder is connected.
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers 7
6k2XLSMC1.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor
This page intentionally left blank.
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers 8
6k2XLSMC1.cd-rom.fm/06-00/kaupp

Chapter 2: Functional Description

Overview

1
SC 6002XL monitors are configured patient monitors running on one processor, an MPC821 Power PC processor, which attends to all monitoring functions, controls all graphics functions, generates video and timing signals for the LCD screen, and interfaces with the PCMCIA. It also performs several peripheral control functions, such as NIBP control, audio volume control, and timing generation for the front end. See Figure 2-1.
SpO
IBP1
IBP2
Temp
Resp
2
ECG
M U
X
LED Drive
M
U
X
NIBP
A
D C
Front End
Record
Debug Export
To
etCO
2
Front Panel
Double Xducer
Meas.
Safety
A
S
I
I
s
C
o
l a
t
i
o n
CUFF
NIBP
Driver
µController
(68HC11)
832 16
SRAM
Memory (512KB)
Audio Keyboard
LCD
Control
CP
Processor
(MPC821)
DRAM
Memory
(4MB)
Video
DAC
Network
(HDLC/
CEPT)
PCMCIA
Card
Flash
Memory
(2MB)
LCD
(640 x 480)
X F
M
R
Quad
UART
PodCom
Option
RGB
Network
+12
11 - 15v
POWER CONVERSION
+3.3V +5V +18 +42
-5V
BATTERY CHARGER (Li or Pb)
Main Board

Figure 2-1 SC6002XL Patient Monitor Block Diagram

2 Parameter Inputs

The data acquisition front end acquires and digitizes signals derived from a three-, five-, or six-electrode ECG patient lead set, a Nellcor® SpO
2
transducer, an Impedance respiration measurement system, a thermistor­based Temperature transducer, and two strain-gauge IBP transducers (IBP2 = locked option). The NIBP main transducer signal is digitized together with the rest of the front end parameters. See Section 4 and
Section 5 for more detailed information.

3 Main PC Board

The Main MPC821 Power PC processor not only attends to monitoring functions, but also controls all graphics functions, generates the video and timing signals for the LCD screen, interfaces with the PCMCIA, and controls the network link. In addition, it performs a host of peripheral control functions, such as NIBP control, audio volume control, and timing generation for the front end.
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers 9
6k2XLSMC2.cd-rom.fm/06-00/kaupp
SC 6002XL Patient Monitor Field Service Manual

3.1 LCD Control

3.2 Network Interface

3.3 Front Panel Circuitry

3.4 Pod Interface

3.5 Battery Control and ON/OFF Control

A set of buffer/drivers are used to drive the 6.5” screen. In parallel, a triple video DAC generates analog RGB signals for an external monitor (typically a CRT).
The SC 6002XL monitor interfaces with the physical interface device (e.g., CPS, IDS or IHUB) automatically when connection to the device has been detected. Connections to I maintained by software components resident on both the SC 6002XL and the physical interface device.
The front panel circuit processes the audio information, drives the fluorescent tubes on the LCD, implements a secondary alarm in case the unit resets or turns off, and routes the video and timing signals to the screen. It also routes the UART signal coming from the Pod interface to the main board Quad UART.
The Pod Interface generates an isolated voltage to power the pod and also converts the Pod Comm protocol from the pod into a UART stream that can be interpreted by the microprocessor.
The Pb-acid or Lithium battery charging and discharging cycles are controlled by a special charger circuit. The circuit initiates a charge cycle when commanded by the microcontroller. The charge cycle for a Pb-acid consists of a bulk charge period in which the battery is being supplied a constant current of ~400mA, a constant voltage period in which the battery voltage is held constant at ~14.8V and the current is allowed to diminish as the charge approaches 100%, and a float cycle in which the voltage is maintained at ~13.7V. For Lithium batteries, the charger circuit acts as a constant voltage source of 16.8V. The battery is charged from a switching supply controlled by the charger chip. The microcontroller also reads the front panel keys and the rotary knob, encodes the information coming from them, and routes it to the main processor. When the On/Stdby key is pressed, it turns the monitor on and off. In addition, the microcontroller controls the NIBP safety timer.
NFINITY
network services are established and

3.6 BOOT Process, Flash Memory, and DRAM

3.7 SRAM

3.8 68HC11 Microcontroller

10 Siemens Medical Systems, EM-PCS, Danvers ASK-T941-04-7600
The BOOT EPROM contains the boot code and must be preprogrammed at the factory. It cannot be programmed after being installed on the Main board, and therefore cannot be updated in the field via a software download.
The executable software normally resides as compressed operational code in Flash memory. When the 68HC11 microprocessor senses that the on/ off switch on the front panel has been pressed, it turns on (or turns off) the
3.3V and 5V supplies. As the 3.3V supply turns on, it wakes up the MPC821 main processor, which begins execution from the BOOT PROM. During boot initialization, the main processor attempts to read the Memory Card to detect legal software. If a legal software memory card is present, the software is loaded from the card. Otherwise, the main processor loads software from the Flash to the main processor DRAM, from which it completes initialization and enters operational mode. DRAM contains expanded operational code, and data space variables and stacks.
The 512K x 8 SRAM is battery backed up and is used for error logs, trends, recordings and other non-volatile memory uses.
The 68HC11 Microcontroller, with 2K of EEPROM and 256 bytes of RAM, is powered as long as there is a main supply plugged into the system or when the user presses the ON/OFF button. The code is stored in its
6k2XLSMC2.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor
internal flash memory, but can be downloaded from the MPC821. The microcontroller performs the following functions:
On/Off control When the ON/OFF pushbutton (either local or remote is pressed), the
microcontroller activates the 3.3V and 5V supplies, which wakes up the MPC821 through a power-on reset. In addition, the microcontroller has control over a flyback supply, which comes on any time the unit is plugged into AC power (in order to charge the battery) or is turned on.
The microcontroller also reads the front panel keys and the rotary knob, encodes the information coming from them, and routes it to the main processor.
NBP Valve modulation When directed by the main processor, the microcontroller supplies
modulation signals for the two NBP manifold valves.
NBP Safety Timer When the pump or the valve V2 are turned on, the microcontroller initiates
a 128 sec. timer (90 sec. or 60 sec. for neonates) which, if exceeded, produces an NBP fault and results in cut off of main 12V power to the NBP manifold.
Battery Charger The microcontroller initiates a battery charge when needed, and stops the
charging process when the battery reaches full capacity. It can recognize whether a Pb or Lithium battery is connnected into the sytem, and directs the battery controller chip to charge to different levels depending on the battery type. See Section 3.5. The microcontroller also acquires the battery voltage and current for monitoring purposes.
Recorder Power The microcontroller controls the power applied to a stand-alone R50
Recorder.
Main Audio Generator The microcontroller generates the fundamental audio frequency of the
unit’s tone generator, as directed by the main microprocessor.

4Front End All physiological signals (except etCO

multiplexing system and a common 16 bit ADC. The data is then transferred through the isolation barrier to an HDLC port in the main processor, where it is digitally filtered and processed.

4.1 NIBP Control

4.2 Safety

The NIBP main transducer signal is digitized together with the rest of the front end parameters. However, the redundant (overpressure) transducer is processed separately on the grounded end of the board, and the pump on/off signal and valve enable signals are generated off of the MPC 821 microprocessor. The PWM signals for the valve flow control and the redundant safety timer are implemented in a separate microcontroller (MC68HC11).
• Patient isolation withstands 5kV during defib.
• Leakage currents are limited to safe values normally and during single fault conditions.
• Patient is protected against electrosurgical burns at the electrodes.
• Defibrillation protection does not drain excessive current away from the patient.
) are digitized through a high speed
2
• Specially shielded connectors and cables are used to provide excellent immunity up to 1000MHz and can not be touched by the patient even when disconnected.
• Single cable from MultiMed Pod to main SC6002XL unit reduces clutter between bed and monitor.
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers 11
6k2XLSMC2.cd-rom.fm/06-00/kaupp
SC 6002XL Patient Monitor Field Service Manual
Temp
ECG
Resp
SpO
MultiMed
Protection
2
Defib
ESU
NBP
Hose
RF Filter
Lead Off
Neutral
SW
Modulator
Pressure
Transducer
Pre-
Amp
Modulator
Demodulator
LED Drive
Linearizer
Low-Pass
Filter
Bandpass
Filter
Current
Sources
Bandpass
Filter
Power Monitor
Amp
Amp
Amp
NBP
Amp
Temp
Temp Ref.
ECG
Pace
Resp
Amp
Cal Resistor
4
2
2
6
4
2
M
U X
2
Converter
Control
Power
16 Bit
A / D
Asic
Data Control
Figure 2-2 Front End
5 Physiological
Parameter Data Acquisition

5.1 ECG/Resp

Differential
I/V
Converter
Red
Ambient
Light
Rejection
Demodulator
I/R
HDLC (to MPC821)
Transducers gather physiological data at the patient and feed them into the small MultiMed Pod at the bed. The MultiMed Pod in turn is connected via a 3-meter cable to the front end in the main unit where analog ECG, Respiration, Temperature, and SpO
signals are converted to digital form
2
and sent through isolators for processing.
The MultiMed Pod located close to the patient accepts a set of 3, 5 or 6 shielded ECG electrode leads, an SpO
(Nellcor) cable adapter, and a
2
temperature sensor. The ECG section contains RF filters, and overvoltage clamps that include 1k series resistors to limit shunting of defibrillator current. The SpO
and temperature sections also contain RF filters.
2
Impedance respiration is sensed through the ECG electodes. Void-free potting and internal shielding enable compact containment of high voltage defibrillator and electrosurgery pulses. The small interconnecting cable to the main assembly is captive at the MultiMed POD but plugs into the MultiMed front end via a specially shielded connector.
The front end accepts physiological signals from the MultiMed POD connector and feeds temperature, respiration, and ECG signals via RF filters, configuration multiplexers, and pre-amplifiers to a high-speed
12 Siemens Medical Systems, EM-PCS, Danvers ASK-T941-04-7600
6k2XLSMC2.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor
multiplexer driving a 16-bit analog-to-digital (A/D) converter. The data stream is sent to the Main Processor board via an opto-isolator. Control commands from the Processor are sent out to the front end on a similar isolating link. Isolated DC power is also provided.
The ECG signals are conductively coupled to the isolated circuits via current-limiting series resistors, whereas the SpO isolated at the transducer. Temperature signals are doubly insulated at the patient by disposable boots on the sensors. AC (40kHz) excitation currents for respiration monotoring are dc-isolated by high-voltage ceramic capacitors.
The A/D samples the following parameters:
Table 2-1 Parameter Sampling Table
Parameter # of Channels
signals are optically
2
ECG 4
Pace 2
Red 1
SpO
2
IR 1
SpO
2
NBP 1
Resp 1
Temp 2
The hardware pace detector monitors the ECG signal in two of the four channels (those not connected to the chest leads). All other signals are decimated and filtered using digital signal processing in the MPC821. High oversampling rate is required to minimize the requirements (and size) of the analog anti alias filters. Superior rejection to ESU and other types of interference is achieved with this type of design.
5.1.1 ECG • Bandwidth is set flexibly by software filters.
• Reconfigurable neutral selector can drive any electrode.
• Lead-on detection functions with even poor electrodes.
• Calibration voltages can be superimposed on patient wave-forms or onto flat baselines.
See Figure 2-3. Composite electrocardiographic (ECG) signals generated by the heart and by a pacemaker are filtered to reduce RF interference from impedance respiration and electrosurgery and then injected with dc lead-off detection currents. Over-voltage clamps protect the semiconductors from the surges passing the sparkgaps in the MultiMed Pod and also reduce the dc current applied to the patient due to a component fault.
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers 13
6k2XLSMC2.cd-rom.fm/06-00/kaupp
SC 6002XL Patient Monitor Field Service Manual
RA
aVLaVR
LA
aVF
LL
Figure 2-3 Lead-Forming Network
5.1.2 Lead Selection A lead-forming network following the RF filter generates the necessary reference points for electrocardiographic measurements. Both normal leads (I, II, III, V1 and V2) and augmented leads (aVL, avR, and avF) can be obtained. See Figure 2-3.
Four differential channels generate the main axes I, II, V1 and V2. The remaining leads are derived mathematically as indicated in the vector diagram of Figure 2-3.
5.1.3 Lead-Off Detection Lead-off detection is accomplished by introducing a very small current into each patient electrode, which would drive the corresponding input high if it were disconnected. A set of five comparators detects a lead-off condition.
5.1.4 Low-Pass Filtering and
Common Mode Enhancement
The ECG preamplifier has a flat frequency response of 0.5 - 40Hz, with a software notch filter at 50/60 Hz. A 180° combined signal drives the neutral electrode to increase the CMMR.
14 Siemens Medical Systems, EM-PCS, Danvers ASK-T941-04-7600
6k2XLSMC2.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor

5.2 Respiration

5.3 SpO
2
Impedance respiration is monitored by injecting a 40 kHz square wave of current into the RA electrode. The resulting 40 kHz voltage drop between the RA + LL electrodes is proportional to the impedance. Especially balanced true current sources do not load the ECG electrodes or distort the ECG morphology. The returning 40 kHz differential voltage is amplified, synchronously demodulated, and low-pass filtered. An AC-coupled stage with an “autobloc” DC restorer feeds the input to the A/D converter with a nominal output of 60 mV per Ohm.
Figure 2-4 SpO
Functional Block Diagram
2
The pulse oximeter circuit uses a Nellcor® sensor to detect the oxygen saturation level in arterial blood flow. Determination of the concentration of oxygen in the blood is based upon the principle that the absorption of red (R) light depends on the degree of oxygenation of the blood, whereas the absorption of infrared (IR) radiation is relatively independent of oxygenation and causes only constant attenuation. See Figure 2-4. In the SpO
sensor, R and IR light emitting diodes (LEDs) are alternately pulsed
2
ON at a 25% duty cycle. The light is transmitted through a well-perfused part of the body, such as a fingertip or an ear lobe. The intensity of light (including ambient) transmitted through or scattered by the blood is converted to a current by a photodiode in the sensor. The current that appears when both LEDs are OFF depends mainly on the ambient light, which is later subtracted to leave only the R or IR signal levels. The large dynamic range of the light intensities requires constant automatic monitoring and adjustment.
The intensities of the R and IR sources are independently controlled by two digital-to-analog converters (DACs) attenuating the 2.5 V reference. These levels or zero are sequentially selected by a multiplexer, and converted to a driving current which is further guided or inverted by an output multiplexer to the LEDs in the sensor.
5.3.1 SpO
Front End The primary purpose of the SpO2 front end is to convert the sensor’s
2
analog signal into individual digitized signals for the red and infrared analog signals for processing by the microprocessor. See Figure 2-5 on page 16. Circuitry in the front end first eliminates the non-pulsatile component in the input signal, then demultiplexes the resulting pulsatile signal to separate the R and IR signal components, and finally converts the demultiplexed R and IR analog signals into serial digital data streams.
A sequence of light pulses, driven from the chopped current source in the sensor LEDs, are passed through a finger or an earlobe to a photodiode. The sensor LEDs are connected in an anti-parallel fashion on one pair of wires.
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers 15
6k2XLSMC2.cd-rom.fm/06-00/kaupp
SC 6002XL Patient Monitor Field Service Manual
Figure 2-5 Sensor LED Timing Diagram
A timing generator controls the sensor LEDs and signal multiplexing/ demultiplexing (see Figure 2-5) by means of three control signals:
IRONL (infrared LED)
AMBONL (LEDS not lit)
REDONL (red LED)
5.3.2 Input Stage A preamplifier converts the photocurrent to an equivalent voltage, and applies it to a 20 Hz high-pass filter that removes the non-pulsatile component. The output of the preamplifier is fed to a saturation detector.
5.3.3 Brightness Control If the output of the preamplifier is in saturation, the gate array provides a signal to the digital-to-analog converters (DACs), which controls the drive current to increase or decrease the brightness of the LEDs.
Controlling LED brightness extends the system dynamic range. For a very transparent subject it may not be possible to reduce the gain to prevent saturation. In that event, the brightness must be reduced. An additional purpose is to equalize the received amplitude of each wavelength. If both LEDs are turned ON to maximum brightness, and the software finds an extraordinary difference between the two, the microprocessor tends to reduce that difference by equalizing the R or IR brightness signals.
5.3.4 Ambient Light Rejection
Amplifier
The ambient rejection amplifier is a synchronous detector. The signal appied to its inverting input is a composite of R, IR, and ambient signals. The non-inverting input is the same signal gated by the timing generator. This synchronously multiplexes the IR, ambient, and R analog signals.
16 Siemens Medical Systems, EM-PCS, Danvers ASK-T941-04-7600
6k2XLSMC2.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor
+2.6V
-2.6V
Figure 2-6 IBP Functional Block Diagram
5.4 Invasive Blood
Pressure
The IBP circuit has been designed to be used with a strain gauge pressure transducer. See Figure 2-6. The analog portion of the IBP circuit provides excitation voltages for resistance bridge transducers. These voltages are derived from a reference which is also used to derive the A/D converter reference voltage. At the circuit input, a resistor divider network provides for transducer unplugged detection. R-C filtering and protection diodes limit the effects produced during electrosurgery, defibrillation, and other such procedures. A selector multiplexer allows for the insertion of calibration signals into the amplifier stage. The multiplexor feeds the pressure signal to a buffer amplifier, which in turn feeds the AD converter analog input. This allows the monitor to measure pressure signals in a range greater than ±700 mmHg with a resolution of approximately .02mmHg/LSB.
When no pressure transducer is plugged into the monitor, the resistor divider network puts a negative signal into the instrumentation amplifier, which propagates through the system to indicate the unplugged condition.
5.5 Non-Invasive Blood
Refer to Figure 2-7 on page 18.
Pressure
5.5.1 NBP Subsystem The NBP subsystem consists of the following components:
•pump
•two modulating valves
• strain-gauge pressure transducer
• overpressure sensor
• pneumatic manifold
In addition, an electronic data acquisition and control system measures and digitizes the pressure pulses as the cuff inflates and deflates. Pump and valve control circuitry engage these elements as needed in the measurement cycle. Several interlock systems and expiration timers ensure the safety of the equipment in case of single point failures.
The SC6002XL NBP circuit uses a cuff and the oscillometric method to determine blood pressure without using a microphone. A strain-gauge pressure transducer is DC-coupled to a 16-bit A/D converter, so that cuff pressure is measured with adequate resolution to detect blood pressure pulses. This eliminates the need for a separate ac-coupled measurement channel, with its associated distortion and long transient recovery.
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers 17
6k2XLSMC2.cd-rom.fm/06-00/kaupp
SC 6002XL Patient Monitor Field Service Manual
A/D
Figure 2-7 NBP Functional Block Diagram
5.5.2 NBP System Description The combination of high-resolution A/D conversion and digital filtering, together with wide-range linear deflation control allows the circuit to measure blood pressure very rapidly and accurately, and to recover quickly from motion artifacts. The non-invasive pressure system is composed of the following components:
• pneumatic assembly
• electronic circuitry, mounted on the Main CPU Board
Pneumatic Assembly The pneumatic assembly contains a pump, two modulating valves (V1 and
V2), two air filters (intake and manifold), and a manifold assembly which interconnects these components. The pump provides the pressurized air to inflate the blood pressure cuff. V1 and V2 control the air flow during the deflation phase of a blood pressure measurement. V1 is a normally-closed exhaust valve with a relatively small orifice (relative to V2). V2 is a normally­open exhaust valve with a relatively large orifice. The pump speed can be controlled to permit accurate inflation pressures for special applications. The filters prevent potential contamination of pneumatic components by debris coming from the cuff or hose.
Electronic Circuitry The electronic circuitry, mounted on the Main CPU Board, contains the
electrical drivers for the pump, the valves, and its power supplies. In addition, the readback from the pressure transducer is processed through the floating section ADC. The software data acquisition and algorithm processing is performed in the MPC821 main processor.
5.5.3 Operation The measurement sequence consists of an inflation phase, in which the air pump inflates the cuff, which has been wrapped around the patient’s limb (typically the upper arm or thigh) to a predetermined pressure. At this point, the blood circulation to the limb is occluded. The monitor then linearly deflates the cuff at a software-controlled rate during which time the blood pressure parameters are determined by digital filtering and analysis of waveform data obtained from the pressure transducer during the deflation cycle.
18 Siemens Medical Systems, EM-PCS, Danvers ASK-T941-04-7600
6k2XLSMC2.cd-rom.fm/06-00/kaupp
Field Service Manual SC 6002XL Patient Monitor
Inflation Phase When a blood pressure measurement is initiated (via software or front
panel fixed key), V2 closes, the pump turns ON, and the pressure transducers monitor the ensuing pressure rise. When the pressure has reached the target inflation pressure, the pump turns OFF and a dynamic braking circuit rapidly brings the pump to a halt. The target inflation pressure adapts to the patient’s systolic pressure, just occluding the blood flow. The software monitors the slope of the pressure curve during inflation to estimate the cuff volume, a factor used in the deflation sequence.
Deflation Phase After the pump stops, there is a short delay to allow thermal transients to
settle. Either V1 or V2 is modulated to control the deflation rate. The choice of V1 or V2 and the initial pulse width is made based on the estimated cuff volume determined during the inflation cycle. The chosen valve is modulated at a 20 Hz rate, and the pulse width (open time) is continuously adjusted to provide a linear deflation rate. If initial deflation was started with V1, the software may determine that it needs to switch to V2 to maintain proper deflation. In either case, V2 opens fully (de-energizes) when the measurement cycle is ended to allow for rapid and complete deflation.
5.5.4 NBP Hardware Pump control circuitry provides the following three functions:
• limits the current to the pump when it starts, to prevent power supply overload
• dynamically brakes the pump when the pump is shut off
• provides a closed-loop speed control for special low-flow operations
Speed Control Pump speed is controlled by measuring the back-EMF generated by the
motor winding, which is directly proportional to the speed. However, to obtain a measurement of the back-EMF, the drop caused by copper losses must be added to the voltage appearing on the motor winding. The speed control effectively drives the pump at constant full speed.
Current Limit Dedicated circuitry limits the current to the pump. When the current on the
pump is approx. 363 mA, the current loop takes over and limits its value. The microprocessor and an N-channel FET turn the pump ON.
5.5.5 Valve Control A relatively high pulse voltage is used to drive V1 and V2 to get quick response and extend the pulse-width flow control range.
5.5.6 Power Supplies Separate control logic supplies voltage (+12V) to the pump and V2 to provide them with redundant turn-off capability. Without +12V the pump cannot run, and V2 can neither close nor remain closed. Power supplies necessary for operation of the NBP circuitry are derived as follows:
+5V and -5V Supply The +5V and -5V for the NBP analog circuitry are derived from the floating
section.
+12V Supply The +12V drives the NBP pump and both modulating valves. The 6002XL
flyback supply produces the +12V. This circuit produces several voltages needed for monitor operation. The main flyback regulation loop is closed around the +12V output, therefore making it the best regulated of the multiple voltages generated.
In operation, a resistor network samples the +12V output and feeds it into the controller chip error amplifier, which compares it to an internal reference. The duty cycle of the switching transistor is adjusted to null this reference. A separate current feedback loop is used to stabilize the circuit and provide current limiting protection.
ASK-T941-04-7600 Siemens Medical Systems, EM-PCS Danvers 19
6k2XLSMC2.cd-rom.fm/06-00/kaupp
SC 6002XL Patient Monitor Field Service Manual
+36V Regulator A +36V supply used to accelerate the energizing of the valve coils is
derived from the 42V raw supply generated by the flyback supply.
5.5.7 Power Supply Monitor The power supply monitor circuit provides reset logic to the microprocessor, and the redundant power switch circuit, both at power-up and in the event of a power failure or voltage drop. The heart of the monitor is a power supervisor chip. At power-up, the control line is held low for a period of about 200 ms, after which the voltage rises to the +5V level. After start-up, any dip in the +5V that causes the output to go to less than +4.75V causes the same sequence. A resistor network is used to monitor the +12V supply. When the voltage on the reference signal falls below +1.25V, a reset sequence similar to the one described above ensues. The +5V and -5V are monitored via the floating section ADC.
5.5.8 Safety Timer The safety timer becomes active only after starting the pump at least one time. Once the pump has been activated, the timer circuit operates regardless of whether the pump has been turned off. Starting of the pump is sensed by voltage developed across the pump sense resistor. If as a result of some failure, hardware or software, the pump continues to run longer than the timer expiration period, a microcontroller output rises and opens a redundant switch, which causes the pump to turn off and V2 to open.
The safety timer period is derived from the microcontroller clock. Note that, for redundancy purposes, the safety timer is implemented not in the MPC821 but in the 68HC11 microcontroller.
Among other signals multiplexed into the floating section data stream are power supply monitor voltages. Measuring these voltages gives an indication of the integrity of the power supplies and the A/D converter voltage reference.
5.5.9 Pressure Channels Pressure fluctuations in the cuff change the balance of the pressure measurement bridge, resulting in a differential voltage which is fed into an amplifier. The gain of the amplifier is determined by the setting of a calibration potentiometer. This potentiometer is initially adjusted in the factory, and from then on the calibration should be checked every year.
The overpressure hardware is fed by a single power source. This increases safety of the system, since a failure of the reference voltages does not impact operation of the overpressure channel. An overpressure test is performed at each power-up cycle to ensure that the overpressure circuitry is working. Any error detected in the overpressure comparator circuit is fed to the redundant power switch circuitry described above. The software overpressure detection is completely independent of the overpressure circuitry.
Figure 2-8 Temperature Functional Block Diagram

5.6 Temperature Circuit

Temperature measurements are made using a thermistor probe that is electrically equivalent to YSI
400 series probes. See Figure 2-8.
20 Siemens Medical Systems, EM-PCS, Danvers ASK-T941-04-7600
6k2XLSMC2.cd-rom.fm/06-00/kaupp
Loading...
+ 94 hidden pages