Sharp PC81710NSZ, PC81711NSZ, PC81712NSZ, PC81713NSZ, PC81715NSZ Datasheet

...
PC8171XNSZ Series
PC8171X NSZ Series
Features
1. Low input current type(IF=0.5mA)
2. High resistance to noise due to high common rejection
voltage (CMR:MIN. 10kV/µs)
3. Compact dual-in line package
4. Isolation voltage(Viso:5kVrms)
5. Recognized by UL, file No. E64380
Applications
2. Facsimiles
3. Telephones
Rank Table
Model No. Rank mark Ic (mA) Conditions
PC81710NSZ PC81711NSZ PC81712NSZ PC81713NSZ PC81715NSZ PC81716NSZ PC81718NSZ
A, B, C or no mark
A B
C A or B B or C
A, B or C
Absolute Maximum Ratings
Parameter Symbol Rating Unit
Forward current
*1
Input
Output
*1 Pulse width<=100µs, Duty ratio=0.001 *2 40 to 60%RH, AC for 1 minute, f=60Hz *3 For 10s
Peak forward current Reverse voltage Power dissipation Collector-emitter voltage Emitter-collector voltage Collector current Collector power dissipation Total power dissipation Operating temperature Storage temperature
*2
Isolation voltage
*3
Soldering temperature
0.5 to 3.0
0.6 to 1.5
0.8 to 2.0
1.0 to 2.5
0.6 to 2.0
I
F=0.5mA
VCE=5V
a=25°C
T
0.8 to 2.5
0.6 to 2.5
(Ta=25°C)
IF IFM VR
10
200
6
P 15
VCEO
ECO
V
IC
PC
P
tot
Topr
T
stg
Viso kVrms Tsol
70
6
50 150 170
30 to +100
55 to +125
5
260
mA mA
mW
mA
mW mW
°C °C
°C
V
V V
Low Input Current Type Photocoupler
Outline Dimensions
Anode mark
±0.3
±0.2
1.2
0.6
1
2
θ
8 1 7 1
±0.5
6.5
7.62
Epoxy resin
θ : 0 to 13°
1
2
4
±0.5
3
4.58
±0.25
2.54
±0.3
±0.5
±0.1
0.26
θ
Internal connection diagram
2.7
1
4
2 3
3
4
AnodeAnode Cathode Emitter Collector
4.58
(Unit : mm)
±0.5
0.5
±0.5
±0.5
±0.1
TYP.
3.5
0.5
3.0
Notice In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet Internet address for Electronic Components Group http://www.sharp.co.jp/ecg/
PC8171XNSZ Series
Electro-optical Characteristics
Parameter Symbol Forward voltage Reverse current
InputOutputTransfer characteristics
Terminal capacitance Collector dark current Collector-emitter breakdown voltage Emitter-collector breakdown voltage Collector current Collector-emitter saturation voltage Isolation resistance Floating capacitance
Response time
*1
Common mode rejection voltage
*1 Refer to Fig.1.
Rise time Fall time
F
V
IR Ct
ICEO BVCEO BVECO
IC
VCE (sat)
RISO
Cf tr tf
CMR
Ta=25°C, RL=470Ω, VCM=1.5kV (peak),
I
F=0mA, VCC=9V, Vnp=100mV
Conditions
I
F=10mA
R=4V
V
V=0, f=1kHz
CE=50V, IF=0
V
I
C=0.1mA, IF=0
I
E=10µA, IF=0
F=0.5mA, VCE=5V
I
F=10mA, IC=1mA
I
DC500V 40 to 60%RH
V=0, f=1MHz
CE=2V, IC=2mA, RL=100Ω
V
Fig.1 Test Circuit for Common Mode Rejection Voltage
V
CM
V
R
L
V
V
np
CM
CC
V
CM :
pulse
=470
R
L
=9V
V
CC
High wave
VO
1) V capacitance between primary and secondary side.
1)
(Vcp Nearly = dV/dt×Cf×RL)
: Voltage which is generated by displacement current in floating
cp
(Ta=25°C)
MIN.
70
6
0.5
5×10
10
(dV/d
t)
V
cp
TYP. MAX. Unit
1.2
30
10
1×10
11
0.6 4 3
1.4 10
250 100
3.0
0.2
1.0 18 18
V
V
µA
pF
nA
V V
mA
V
pF
µs µs
kV/µs
np
Fig.2 Forward Current vs. Ambient
Temperature
10
(mA)
F
5
Forward current I
0
30 0 25 50 75 100 125
Ambient temperature Ta (°C)
Fig.3
Diode Power Dissipation vs. Ambient
Temperature
15
10
5
Diode power dissipation P (mW)
0
30 0 25 50 75 100 125
Ambient temperature Ta (°C)
PC8171XNSZ Series
Fig.4 Collector Power Dissipation vs.
Ambient Temperature
200
(mW)
C
150
100
50
Collector power dissipation P
0
30 0 25 50 75 100 125
Ambient temperature Ta (°C)
Fig.5
Total Power Dissipation vs. Ambient Temperature
200
(mW)
tot
170 150
100
50
Total power dissipation P
0
30 0 25 50 75 100 125
Ambient temperature Ta (°C)
Fig.6 Peak Forward Current vs. Duty Ratio Fig.7 Forward Current vs. Forward Voltage
100
10
(mA)
F
Ta=100°C
Ta=75°C
1
Forward current I
0.1
Ta=50°C
0 0.5 1.0 1.5 2.0
Forward voltage V
Ta=25°C Ta=0°C
Ta=−25°C
(V)
F
(mA)
FM
Peak forward current I
2000
1000
500
200
100
Pulse width <=100µs
=25°C
T
a
50
20 10
3
10
2
10
Duty ratio
1
10
22 2555 5 1
Fig.8 Current Transfer Ratio vs. Forward
Current
800
700
600
500
400
300
200
Current transfer ratio CTR (%)
100
0
0.1 1 10 Forward current IF (mA)
VCE=5V
=25°C
T
a
Fig.9 Collector Current vs. Collector-emitter
Voltage
40
30
(mA)
C
20
Collector current I
10
0
0 2 4 6 8 10
IF=7mA
IF=5mA
Collector-emitter voltage VCE (V)
PC (MAX.)
IF=3mA
IF=2mA
IF=1mA
Ta=25°C
IF=0.5mA
PC8171XNSZ Series
Fig.10 Relative Current Transfer Ratio vs.
Ambient Temperature
150
VCE=5V
=0.5mA
I
F
100
50
Relative current transfer ratio (%)
0
30 1009080706050403020100−10−20
Ambient temperature Ta (°C)
Fig.12 Collector Dark Current vs. Ambient
Temperature
5
10
VCE=50V
6
10
(A)
7
CEO
10
8
10
9
10
Collector dark current I
10
10
11
10
30 1009080706050403020100−10−20
Ambient temperature Ta (°C)
Fig.14
Response Time vs. Load Resistance
(Saturation)
1000
VCC=5V
=16mA
I
F
=25°C
T
a
100
10
Response time (µs)
1
t
f
t
s
t
d
Fig.11 Collector - emitter Saturation Voltage
vs. Ambient Temperature
0.16
(V)
0.14
CE (sat)
0.12
0.10
0.08
0.06
0.04
0.02
Collector-emitter saturation voltage V
0
30 1009080706050403020100−10−20
Ambient temperature Ta (°C)
IF=10mA
=1mA
I
C
Fig.13 Response Time vs. Load Resistance
1000
VCE=2V
=2mA
I
C
=25°C
T
a
100
t
f
t
d
10
t
t
r
s
Response time (µs)
1
0.1
0.1 1 10 Load resistance R
(k)
L
Fig.15 Test Circuit for Response Time
V
CC
R
L
Output
Input
Output
10%
90%
t
t
d
t
r
s
t
f
Input
R
D
t
r
0.1 1 10 100
Load resistance R
L
(k)
PC8171XNSZ Series
Fig.16
Voltage Gain vs Frequency
5
0
5
(dB)
V
10
15
Voltage gain A
20
25
RL=10kΩ
0.1 1 10 100 1000 Frequency f (kHz)
VCE=2V
=2mA
I
C
=25°C
T
a
1k
100
Fig.18 Reflow Soldering
Only one time soldering is recommended within the temperature profile shown below.
230°C
200°C
180°C
Fig.17 Collector-emitter Saturation Voltage
vs. Forward Current
5
(V)
4
CE (sat)
3
2
1
Collector-emitter saturation voltage V
0
0 2 4 6 8 10
IC=7mA IC=5mA IC=3mA IC=2mA
IC=1mA IC=0.5mA
Forward current IF (mA)
Ta=25°C
25°C
2min
10s 30s
1min
1min
Loading...