11.2Typical characteristics of LCD outputs
12APPLICATION INFORMATION
12.1Chip-on-glass cascadability in single plane
13BONDING PAD INFORMATION
14TRAY INFORMATION: PCF8576U
15TRAY INFORMATION: PCF8576U/2
16PACKAGE OUTLINES
17SOLDERING
17.1Introduction to soldering surface mount
packages
17.2Reflow soldering
17.3Wave soldering
17.4Manual soldering
17.5Suitability of surface mount IC packages for
wave and reflow soldering methods
18DATA SHEET STATUS
19DEFINITIONS
20DISCLAIMERS
21PURCHASE OF PHILIPS I2C COMPONENTS
2001 Oct 022
Philips SemiconductorsProduct specification
Universal LCD driver for low multiplex ratesPCF8576
1FEATURES
• Single-chip LCD controller/driver
• Selectable backplanedrive configuration: static or 2/3/4
• Very low external component count (at most one
resistor, even in multiple device applications)
• Compatible with chip-on-glass technology
• Manufactured in silicon gate CMOS process.
2GENERAL DESCRIPTION
The PCF8576 is a peripheral device which interfaces to
almost any Liquid Crystal Display (LCD) with low multiplex
rates. It generates the drive signals for any static or
multiplexed LCD containing up to four backplanes and up
to40 segmentsandcaneasily be cascaded for larger LCD
applications. The PCF8576 is compatible with most
microprocessors/microcontrollersandcommunicatesvia a
two-line bidirectional I2C-bus. Communication overheads
are minimized by a display RAM with auto-incremented
addressing, by hardware subaddressing and by display
memory switching (static and duplex drive modes).
3ORDERING INFORMATION
TYPE NUMBER
NAMEDESCRIPTIONVERSION
PCF8576TVSO56plastic very small outline package; 56 leadsSOT190-1
PCF8576U−chip in tray−
PCF8576U/2−chip with bumps in tray−
PCF8576U/5−unsawn wafer−
PCF8576U/10FFCchip on film frame carrier (FFC)−
PCF8576U/12FFCchip with bumps on film frame carrier (FFC)−
2001 Oct 023
PACKAGE
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
2001 Oct 024
4BLOCK DIAGRAM
Philips SemiconductorsProduct specification
Universal LCD driver for low multiplex ratesPCF8576
Universal LCD driver for low multiplex ratesPCF8576
5PINNING
SYMBOLPINDESCRIPTION
2
SDA1I
SCL2I
SYNC3cascade synchronization input/output
CLK4external clock input/output
V
DD
5supply voltage
OSC6oscillator input
A0 to A27 to 9I
SA010I
V
V
SS
LCD
11logic ground
12LCD supply voltage
BP0, BP2, BP1 and BP313 to 16LCD backplane outputs
S0 to S3917 to 56LCD segment outputs
C-bus serial data input/output
2
C-bus serial clock input
2
C-bus subaddress inputs
2
C-bus slave address input; bit 0
2001 Oct 025
Philips SemiconductorsProduct specification
Universal LCD driver for low multiplex ratesPCF8576
handbook, halfpage
SDA
SCL
SYNC
CLK
V
DD
OSC
A0
A1
A2
SA0
V
SS
V
LCD
BP0
BP2
BP1
BP3
S0
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
PCF8576T
15
16
17
18
19
20
21
22
23
24
25
26
27
28
MBK278
56
S39
55
S38
54
S37
53
S36
52
S35
51
S34
50
S33
49
S32
48
S31
47
S30
46
S29
45
S28
44
S27
43
S26
42
S25
41
S24
40
S23
39
S22
38
S21
37
S20
36
S19
35
S18
34
S17
33
S16
32
S15
31
S14
30
S13
29
S12
Fig.2 Pin configuration; SOT190-1.
2001 Oct 026
Philips SemiconductorsProduct specification
Universal LCD driver for low multiplex ratesPCF8576
6FUNCTIONAL DESCRIPTION
The PCF8576 is a versatile peripheral device designed to
interface to any microprocessor/microcontroller to a wide
variety of LCDs. It can directly drive any static or
multiplexed LCD containing up to four backplanes and up
to 40 segments. The display configurations possible with
the PCF8576 depend on the number of active backplane
outputs required; a selection of display configurations is
The host microprocessor/microcontroller maintains the
2-line I2C-bus communication channel with the PCF8576.
The internal oscillator is selected by connecting pin OSC
to pin VSS. The appropriate biasing voltages for the
multiplexed LCD waveforms are generated internally. The
only other connections required to complete the system
are to the power supplies (VDD, VSS and V
) and the
LCD
LCD panel chosen for the application.
given in Table .
All of the display configurations given in Table can be
Universal LCD driver for low multiplex ratesPCF8576
6.1Power-on reset
At power-on the PCF8576 resets to a starting condition as
follows:
1. All backplane outputs are set to VDD.
2. All segment outputs are set to VDD.
3. Thedrive mode ‘1 : 4 multiplex with1⁄3bias’ is selected.
4. Blinking is switched off.
5. Input and output bank selectors are reset (as defined
in Table 4).
6. The I2C-bus interface is initialized.
7. The data pointer and the subaddress counter are
cleared.
Data transfers on the I2C-bus should be avoided for 1 ms
following power-on to allow completion of the reset action.
6.2LCD bias generator
The full-scale LCD voltage (Vop) is obtained from
VDD− V
compensatedexternallythroughtheV
. The LCD voltage may be temperature
LCD
supplytopin 12.
LCD
Fractional LCD biasing voltages are obtained from an
internal voltage divider of the three series resistors
connectedbetween VDDandV
.The centre resistor can
LCD
be switched out of the circuit to provide a1⁄2bias voltage
level for the 1 : 2 multiplex configuration.
6.3LCD voltage selector
The LCD voltage selector co-ordinates the multiplexing of
the LCD in accordance with the selected LCD drive
configuration. The operation of the voltage selector is
controlled by MODE SET commands from the command
decoder. The biasing configurations that apply to the
preferred modes of operation, together with the biasing
characteristics as functions of Vop=VDD− V
LCD
and the
resulting discrimination ratios (D), are given in Table 1.
A practical value for Vopis determined by equating V
off(rms)
with a defined LCD threshold voltage (Vth), typically when
the LCD exhibits approximately 10% contrast. In the static
drive mode a suitable choice is Vop>3Vth approximately.
1
Multiplex drive ratios of 1 : 3 and 1 : 4 with
⁄2bias are
possible but the discrimination and hence the contrast
ratios are smaller (= 1.732 for 1 : 3 multiplex or
21
= 1.528 for 1 : 4 multiplex).
---------3
3
The advantage of these modes is a reduction of the LCD
full-scale voltage V
• 1 : 3 multiplex (
Vop== 2.449 V
6V
×
as follows:
op
1
⁄2bias):
off rms〈〉
off(rms)
• 1 : 4 multiplex (1⁄2bias):
43×()
== 2.309 V
V
op
--------------------- 3
These compare with Vop=3V
off(rms)
when1⁄3bias is used.
off(rms)
Table 1 Preferred LCD drive modes: summary of characteristics
LCD DRIVE MODE
NUMBER OF
BACKPLANESLEVELS
LCD BIAS
CONFIGURATION
V
off(rms)
-------------------- V
op
V
on(rms)
-------------------- V
op
D
static12static01∞
1:223
1:224
1:334
1:444
1
⁄
2
1
⁄
3
1
⁄
3
1
⁄
3
0.3540.7912.236
0.3330.7452.236
0.3330.6381.915
0.3330.5771.732
V
=
-------------------- V
on(rms)
off(rms)
2001 Oct 028
Philips SemiconductorsProduct specification
Universal LCD driver for low multiplex ratesPCF8576
6.4LCD drive mode waveforms
The static LCD drive mode is used when a single
backplaneisprovidedintheLCD.Backplaneandsegment
drive waveforms for this mode are shown in Fig.4.
When two backplanes are provided in the LCD, the 1 : 2
multiplex mode applies. The PCF8576 allows use of
1
⁄2bias or1⁄3bias in this mode as shown in Figs 5 and 6.
V
DD
BP0
V
LCD
V
DD
S
n
V
LCD
V
DD
S
n 1
V
LCD
(a) waveforms at driver
V
op
When three backplanes are provided in the LCD, the 1 : 3
multiplex drive mode applies, as shown in Fig.7.
When four backplanes are provided in the LCD, the 1 : 4
multiplex drive mode applies, as shown in Fig.8.
T
frame
LCD segments
state 1
(on)
state 2
(off)
state 10
V
op
V
op
state 20
V
op
(b) resultant waveforms
at LCD segment
V
t() V
t() V
state1
V
on(rms)Vop
t() V
V
state2
V
off(rms)
S
n
=
S
n1+
0V=
BP0
t() V
BP0
t()–=
t()–=
Fig.4 Static drive mode waveforms (Vop=VDD− V
2001 Oct 029
MBE539
LCD
).
Philips SemiconductorsProduct specification
Universal LCD driver for low multiplex ratesPCF8576
T
frame
V
(V)/2V
BP0
V
V
(V)/2V
BP1
V
V
S
n
V
V
S
n 1
V
V
V /2
state 10
V /2
V
V
V /2
state 2
V /2
V
DD
DDLCD
LCD
DD
LCD
DD
LCD
DD
LCD
DD
LCD
op
op
op
op
op
op
0
op
op
(a) waveforms at driver
(b) resultant waveforms
at LCD segment
LCD segments
state 1
state 2
MBE540
V
t() V
t() V
op
t() V
op
BP0
BP1
t()–=
t()–=
state1
V
on(rms)
V
state2
V
off(rms)
0.791V
=
t() V
0.354V
=
S
n
S
n
Fig.5 Waveforms for the 1 : 2 multiplex drive mode with1⁄2bias (Vop=VDD− V
2001 Oct 0210
LCD
).
Philips SemiconductorsProduct specification
Universal LCD driver for low multiplex ratesPCF8576
T
V
DD
V V /3
BP0
BP1
S
n
S
n 1
state 10
state 20
DD
V 2V /3
DD
V
LCD
V
DD
V V /3
DD
V 2V /3
DD
V
LCD
V
DD
V V /3
DD
V 2V /3
DD
V
LCD
V
DD
V V /3
DD
V 2V /3
DD
V
LCD
V
op
2V /3
op
V /3
op
V /3
op
2V /3
op
V
op
V
op
2V /3
op
V /3
op
V /3
op
2V /3
op
V
op
op
op
op
op
op
op
op
op
frame
(a) waveforms at driver
(b) resultant waveforms
at LCD segment
LCD segments
state 1
state 2
MBE541
V
t() V
t() V
op
t() V
op
BP0
BP1
t()–=
t()–=
state1
V
on(rms)
V
state2
V
off(rms)
0.745V
=
t() V
0.333V
=
S
n
S
n
Fig.6 Waveforms for the 1 : 2 multiplex drive mode with1⁄3bias (Vop=VDD− V
2001 Oct 0211
LCD
).
Philips SemiconductorsProduct specification
Universal LCD driver for low multiplex ratesPCF8576
T
V
V V /3
BP0
V 2V /3
V
V
V V /3
BP1
V 2V /3
V
V
BP2/S23
V V /3
V 2V /3
V
V
V V /3
S
n
V 2V /3
V
V
n 1
V V /3
V 2V /3
S
V
V
n 2
V V /3
V 2V /3
S
V
V
2V /3
V /3
state 10
V /3
2V /3
V
V
2V /3
V /3
state 20
V /3
2V /3
V
DD
DD
DD
LCD
DD
DD
DD
LCD
DD
DD
DD
LCD
DD
DD
DD
LCD
DD
DD
DD
LCD
DD
DD
DD
LCD
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
frame
(a) waveforms at driver
(b) resultant waveforms
at LCD segment
LCD segments
state 1
state 2
MBE542
V
t() V
t() V
op
t() V
op
BP0
BP1
t()–=
t()–=
state1
V
on(rms)
V
state2
V
off(rms)
0.638V
=
t() V
0.333V
=
S
n
S
n
Fig.7 Waveforms for the 1 : 3 multiplex drive mode (Vop=VDD− V
2001 Oct 0212
LCD
).
Philips SemiconductorsProduct specification
Universal LCD driver for low multiplex ratesPCF8576
T
V
DD
V V /3
n
DD
V 2V /3
DD
V
LCD
V
DD
V V /3
DD
V 2V /3
DD
V
LCD
V
DD
V V /3
DD
V 2V /3
DD
V
LCD
V
DD
V V /3
DD
V 2V /3
DD
V
LCD
V
DD
V V /3
DD
V 2V /3
DD
V
LCD
V
DD
V V /3
DD
V 2V /3
DD
V
LCD
V
DD
V V /3
DD
V 2V /3
DD
V
LCD
V
DD
V V /3
DD
V 2V /3
DD
V
LCD
V
op
2V /3
op
V /3
op
V /3
op
2V /3
op
V
op
V
op
2V /3
op
V /3
op
V /3
op
2V /3
op
V
op
BP0
BP1
BP2
BP3
S
S
n 1
S
n 2
S
n 3
state 10
state 20
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
frame
(a) waveforms at driver
(b) resultant waveforms
at LCD segment
state 1
state 2
LCD segments
MBE543
V
state1
V
on(rms)
V
state2
V
off(rms)
t() V
0.577V
=
t() V
0.333V
=
S
S
t() V
n
t() V
n
t()–=
BP0
op
t()–=
BP1
op
Fig.8 Waveforms for the 1 : 4 multiplex drive mode (Vop=VDD− V
2001 Oct 0213
LCD
).
Philips SemiconductorsProduct specification
Universal LCD driver for low multiplex ratesPCF8576
6.5Oscillator
6.5.1INTERNAL CLOCK
The internal logic and the LCD drive signals of the
PCF8576 are timed either by the internal oscillator or from
an external clock. When the internal oscillator is used,
pin OSC should be connected to pin VSS. In this event, the
output from pin CLK provides the clock signal for
cascaded PCF8566s in the system.
WhereresistorR
toVSSispresent,theinternaloscillator
osc
is selected. The relationship between the oscillator
frequency on pin CLK (f
3
10
f
clk
(kHz)
2
10
min
) and R
clk
max
is shown in Fig.9.
osc
MBE531
6.6Timing
ThetimingofthePCF8576organizestheinternaldataflow
of the device. This includes the transfer of display data
from the display RAM to the display segment outputs. In
cascaded applications, the synchronization signal
SYNC
maintains the correct timing relationship between the
PCF8576s in the system. The timing also generates the
LCD frame frequency which it derives as an integer
multiple of the clock frequency (see Table 2). The frame
frequency is set by the MODE SET commands when
internal clock is used, or by the frequency applied to
pin CLK when external clock is used.
The ratio between the clock frequency and the LCD frame
frequency depends on the mode in which the device is
operating. In the power-saving mode the reduction ratio is
six times smaller; this allows the clock frequency to be
reduced by a factor of six. The reduced clock frequency
results in a significant reduction in power dissipation. The
lower clock frequency has the disadvantage of increasing
the response time when large amounts of display data are
transmitted on the I2C-bus.
When a device is unable to digest a display data byte
beforethe next one arrives, it holds the SCL line LOW until
the first display data byte is stored. This slows down the
transmission rate of the I2C-bus but no data loss occurs.
10
2
10
3.4 107×
f
----------------------- -
clk
R
osc
kHz()≈
3
10
R(kΩ)
osc
Fig.9 Oscillator frequency as a function of R
6.5.2E
XTERNAL CLOCK
4
10
.
osc
The condition for external clock is made by connecting
pin OSC to pin VDD; pin CLK then becomes the external
clock input.
The clock frequency (f
) determines the LCD frame
clk
frequency and the maximum rate for data reception from
the I2C-bus. To allow I2C-bus transmissions at their
maximumdata rate of 100 kHz, f
shouldbe chosen to be
clk
above 125 kHz.
A clock signal must always be supplied to the device;
removing the clock may freeze the LCD in a DC state.
Table 2 LCD frame frequencies
NOMINAL
PCF8576 MODE
FRAME
FREQUENCY
FRAME
FREQUENCY
(Hz)
f
Normal mode
Power-saving mode64
clk
------------ 2880
f
clk
--------- 480
64
6.7Display latch
The display latch holds the display data while the
corresponding multiplex signals are generated. There is a
one-to-one relationship between the data in the display
latch, the LCD segment outputs and one column of the
display RAM.
6.8Shift register
The shift register serves to transfer display information
from the display RAM to the display latch while previous
data is displayed.
2001 Oct 0214
Loading...
+ 30 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.