Philips 32HFL5561H/27 Schematic

Color Television Chassis
ME7
LA
ME7
18440_000_090205.eps
090226

Contents Page Contents Page

1. Revision List 2
2. Technical Specifications and Connections 2
3. Precautions, Notes, and Abbreviation List 5
4. Mechanical Instructions 9
5. Service Modes, Error Codes, and Fault Finding 15
6. Alignments 34
7. Circuit Descriptions 36
8. IC Data Sheets 39
9. Block Diagrams Wiring Diagram 26" (ME7 styling) 49 Wiring Diagram 32" (P&S styling) 50 Wiring Diagram 42" (P&S styling) 51 Block Diagram Video 52 Block Diagram Audio 53 Block Diagram Control & Clock Signals 54 I2C IC Overview 55
10. Circuit Diagrams and PWB Layouts Drawing PWB SSB: DC / DC SSB: Pro:iDIOM (B02A) 60 104-105 SSB: PNX 85xx: Power (B03) 61-68 104-105 SSB: TCON Pwr. & Backl. Contr. (B04A) 69 104-105 SSB: Audio Left / Right (B05) 70-71 104-105 SSB: SPDIF/Debug/RS232 Int. (B06) 72-74 104-105 SSB: Analog Externals (B07) 75-77 104-105 SSB: USB 2.0 (B08) 78-79 104-105 SSB: IR LED (B09) 80-85 104-105 SSB: Pacific 3: LVDS (B10) 86-88 104-105 SSB: Control STI7100 (B11) 89-96 104-105 SSB: i-Board (B12) 97-98 104-105 SSB: Supply (B13A) 99 104-105 SSB: SRP List Explanation 100 SSB: SRP List Part 1 101 SSB: SRP List Part 2 102 SSB: SRP List Part 3 103
©
Copyright 2009 Koninklijke Electronics Philips N.V. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise without the prior permission of Philips.
(B01) 57-59 104-105
Side Facing Side AV 26" (D) 106 107 Side Facing Side AV 37" - 42" (D) 108 109 Tuner Std: Chnl. Dec. (T01A) 110 112 Tuner Std: Main Tuner (T01B) 111 112
H_16770_000.eps
190207
Published by ER/CC 0970 BU TV Consumer Care Printed in the Netherlands Subject to modification EN 3122 785 18740
2009-Oct-09
EN 2 PB52.3HU LA1.
Revision List

1. Revision List

Manual xxxx xxx xxxx.0
First release.

2. Technical Specifications and Connections

Index of this chapter:

2.1 Technical Specifications

2.2 Directions for Use

2.3 Connections
2.4 Chassis Overview
Notes:
Figures can deviate due to the different set executions.
Specifications are indicative (subject to change).
2.1 Technical Specifications
For on-line product support please use the links in Table 2-1. Here is product information available, as well as getting started, user manuals, frequently asked questions and software & drivers.

Table 2-1 Described Model numbers

CTN Styling Published in:
26HFL5561H/27
32HFL5561H/27
42HFL5581H/27
ME7 3122 785 18740
P&S 3122 785 18740
P&S 3122 785 18740
2.2 Directions for Use
You can download this information from the following websites:
http://www.philips.com/support http://www.p4c.philips.com
2009-Oct-09

2.3 Connections

Technical Specifications and Connections
6 8
EN 3PB52.3HU LA 2.
1 2 3 4 5 7 9
Note: The following connector color abbreviations are used
(acc. to DIN/IEC 757): Bk= Black, Bu= Blue, Gn= Green, Gy= Grey, Rd= Red, Wh= White, Ye= Yellow.

2.3.1 Rear Connections

Figure 2-1 Connection overview

6 - External Control Connector (RS232-UART) Out - In
11
12
13
14
1
6
10000_005_090121.eps
10
18730_001_090914.eps
5
9
090121
091002
1 - RJ12: SmartPort In/Out
1 -SPI Clock TTL out k 2 -SPI Data in TTL in j 3 - +5V Vcc j 4 - SPI Data out TTL out k 5 - GND Gnd H 6 - IR_data TTL out k
2 - Aerial - In
- - F-type (US) Coax, 75 ohm D
3 - AV1: Cinch: Video CVBS - In, Audio - In
Ye - Video CVBS 1 V Wh - Audio L 0.5 V Rd - Audio R 0.5 V
/ 75 ohm jq
PP
/ 10 kohm jq
RMS
/ 10 kohm jq
RMS
4 - CVI: Video YPbPr - In; Audio - In
Gn - Video Y 1 V Bu - Video Pb 0.7 V Rd - Video Pr 0.7 V Rd - Audio - R 0.5 V Wh - Audio - L 0.5 V
/ 75 ohm jq
PP
/ 75 ohm jq
PP
/ 75 ohm jq
PP
/ 10 kohm jq
RMS
/ 10 kohm jq
RMS
5 - Cinch: S/PDIF - Out
Bk - Coaxial 0.4 - 0.6 V
/ 75 ohm kq
PP
Figure 2-2 9-pin Sub-D Connector
1 - DCD Carrier Detect j 2 - RxD Receive j 3 - TxD Transmit k 4 - DTR Data Terminal Ready k 5 - Gnd Ground H 6 - DSR Data Set Ready j 7 - RTS Request To Send k 8 - CTS Clear To Send j 9 - RI Ring Indicator j
7 - VGA OUT: Video RGB - In, Out
1
5
6
11
10000_002_090121.eps
10
15
090127
Figure 2-3 VGA Connector
1 - Video Red 0.7 V 2 - Video Green 0.7 V 3 - Video Blue 0.7 V 4-n.c.
/ 75 ohm jk
PP
/ 75 ohm jk
PP
/ 75 ohm jk
PP
5 - Ground Gnd H 6 - Ground Red Gnd H 7 - Ground Green Gnd H 8 - Ground Blue Gnd H
2009-Oct-09
EN 4 PB52.3HU LA2.
Technical Specifications and Connections
9-+5VDC +5 V jk 10 - Ground Sync Gnd H 11 - n.c. 12 - DDC_SDA DDC data jk 13 - H-sync 0 - 5 V jk 14 - V-sync 0 - 5 V jk 15 - DDC_SCL DDC clock jk
8 - Mini Jack: Bathroom Speaker out
Bk - Audio - + 8 ohm j Bk - Audio - - 8 ohm j
9 - Service Connector (UART)
1 - UART_TX Transmit k 2 - Ground Gnd H 3 - UART_RX Receive j
10 - HDMI 1, 2 & 3: Digital Video, Digital Audio - In
19
18 2
10000_017_090121.eps
1
090428
Figure 2-4 HDMI (type A) connector
1. - D2+. Data channel. j
2. - Shield. Gnd. H
3. - D2-. Data channel. j
4. - D1+. Data channel. j
5. - Shield. Gnd. H
6. - D1-. Data channel. j
7. - D0+. Data channel. j
8. - Shield. Gnd. H
9. - D0-. Data channel. j
10. - CLK+. Data channel. j
11. - Shield. Gnd. H
12. - CLK-. Data channel. j
13. - Easylink/CEC. Control channel. jk
14. - n.c.. .
15. - DDC_SCL. DDC clock. j
16. - DDC_SDA. DDC data. jk
17. - Ground. Gnd. H
18. - +5V. . j
19. - HPD. Hot Plug Detect. j
20. - Ground. Gnd. H

2.3.2 Side Connections

11 - USB 2.0
1 2 3 4
10000_022_090121.eps
090121
Figure 2-5 USB (type A)
1. - +5V. . k
2. - Data (-). jk
3. - Data (+). jk
4. - Ground. Gnd. H
12 - Mini Jack: Audio Head phone - Out
Bk. - Head phone. 32 - 600 ohm / 10 mW. ot
13 - Cinch: Video CVBS - In, Audio - In
Ye. - Video CVBS. 1 V Wh. - Audio L. 0.5 V Rd. - Audio R. 0.5 V
/ 75 ohm. jq
PP
/ 10 kohm. jq
RMS
/ 10 kohm. jq
RMS
14 - S-Video (Hosiden): Video Y/C - In
1. - Ground Y. Gnd. H
2. - Ground C. Gnd. H
3. - Video Y. 1 V
4. - Video C. 0.3 V
/ 75 ohm. j
PP
/ 75 ohm. j
PP

2.4 Chassis Overview

Refer to chapter Block Diagrams for PWB/CBA locations.
2009-Oct-09
Precautions, Notes, and Abbreviation List

3. Precautions, Notes, and Abbreviation List

EN 5PB52.3HU LA 3.
Index of this chapter:

3.1 Safety Instructions

3.2 Warnings

3.3 Notes

3.4 Abbreviation List
3.1 Safety Instructions
Safety regulations require the following during a repair:
Connect the set to the Mains/AC Power via an isolation transformer (> 800 VA).
Replace safety components, indicated by the symbol h, only by components identical to the original ones. Any other component substitution (other than original type) may increase risk of fire or electrical shock hazard. Of de set ontploft!
Safety regulations require that after a repair, the set must be returned in its original condition. Pay in particular attention to the following points:
Route the wire trees correctly and fix them with the mounted cable clamps.
Check the insulation of the Mains/AC Power lead for external damage.
Check the strain relief of the Mains/AC Power cord for proper function.
Check the electrical DC resistance between the Mains/AC Power plug and the secondary side (only for sets that have a Mains/AC Power isolated power supply):
1. Unplug the Mains/AC Power cord and connect a wire
between the two pins of the Mains/AC Power plug.
2. Set the Mains/AC Power switch to the “on” position
(keep the Mains/AC Power cord unplugged!).
3. Measure the resistance value between the pins of the
Mains/AC Power plug and the metal shielding of the tuner or the aerial connection on the set. The reading should be between 4.5 MΩ and 12 MΩ.
4. Switch “off” the set, and remove the wire between the
two pins of the Mains/AC Power plug.
Check the cabinet for defects, to prevent touching of any inner parts by the customer.
picture carrier at 475.25 MHz for PAL, or 61.25 MHz for NTSC (channel 3).
Where necessary, measure the waveforms and voltages
with (D) and without (E) aerial signal. Measure the voltages in the power supply section both in normal operation (G) and in stand-by (F). These values are indicated by means of the appropriate symbols.

3.3.2 Schematic Notes

All resistor values are in ohms, and the value multiplier is often used to indicate the decimal point location (e.g. 2K2 indicates 2.2 kΩ).
Resistor values with no multiplier may be indicated with either an “E” or an “R” (e.g. 220E or 220R indicates 220 Ω).
All capacitor values are given in micro-farads (μ=× 10 nano-farads (n =× 10
Capacitor values may also use the value multiplier as the decimal point indication (e.g. 2p2 indicates 2.2 pF).
An “asterisk” (*) indicates component usage varies. Refer to the diversity tables for the correct values.
The correct component values are listed on the Philips Spare Parts Web Portal.

3.3.3 Spare Parts

For the latest spare part overview, consult your Philips Spare Part web portal.

3.3.4 BGA (Ball Grid Array) ICs

Introduction
For more information on how to handle BGA devices, visit this URL: http://www.atyourservice-magazine.com “Magazine”, then go to “Repair downloads”. Here you will find Information on how to deal with BGA-ICs.
BGA Temperature Profiles
For BGA-ICs, you must use the correct temperature-profile. Where applicable and available, this profile is added to the IC Data Sheet information section in this manual.
-9
), or pico-farads (p =× 10
. Select
-12
-6
),
).
3.2 Warnings
All ICs and many other semiconductors are susceptible to
electrostatic discharges (ESD w). Careless handling during repair can reduce life drastically. Make sure that, during repair, you are connected with the same potential as the mass of the set by a wristband with resistance. Keep components and tools also at this same potential.
Be careful during measurements in the high voltage section.
Never replace modules or other components while the unit is switched “on”.
When you align the set, use plastic rather than metal tools. This will prevent any short circuits and the danger of a circuit becoming unstable.
3.3 Notes

3.3.1 General

Measure the voltages and waveforms with regard to the chassis (= tuner) ground (H), or hot ground (I), depending on the tested area of circuitry. The voltages and waveforms shown in the diagrams are indicative. Measure them in the Service Default Mode with a colour bar signal and stereo sound (L: 3 kHz, R: 1 kHz unless stated otherwise) and

3.3.5 Lead-free Soldering

Due to lead-free technology some rules have to be respected by the workshop during a repair:
Use only lead-free soldering tin. If lead-free solder paste is required, please contact the manufacturer of your soldering equipment. In general, use of solder paste within workshops should be avoided because paste is not easy to store and to handle.
Use only adequate solder tools applicable for lead-free soldering tin. The solder tool must be able: – To reach a solder-tip temperature of at least 400°C. – To stabilize the adjusted temperature at the solder-tip. – To exchange solder-tips for different applications.
Adjust your solder tool so that a temperature of around 360°C - 380°C is reached and stabilized at the solder joint. Heating time of the solder-joint should not exceed ~ 4 sec. Avoid temperatures above 400°C, otherwise wear-out of tips will increase drastically and flux-fluid will be destroyed. To avoid wear-out of tips, switch “off” unused equipment or reduce heat.
Mix of lead-free soldering tin/parts with leaded soldering tin/parts is possible but PHILIPS recommends strongly to avoid mixed regimes. If this cannot be avoided, carefully clear the solder-joint from old tin and re-solder with new tin.
2009-Oct-09
EN 6 PB52.3HU LA3.
Precautions, Notes, and Abbreviation List

3.3.6 Alternative BOM identification

It should be noted that on the European Service website, “Alternative BOM” is referred to as “Design variant”.
The third digit in the serial number (example: AG2B0335000001) indicates the number of the alternative B.O.M. (Bill Of Materials) that has been used for producing the specific TV set. In general, it is possible that the same TV model on the market is produced with e.g. two different types of displays, coming from two different suppliers. This will then result in sets which have the same CTN (Commercial Type Number; e.g. 28PW9515/12) but which have a different B.O.M. number. By looking at the third digit of the serial number, one can identify which B.O.M. is used for the TV set he is working with. If the third digit of the serial number contains the number “1” (example: AG1B033500001), then the TV set has been manufactured according to B.O.M. number 1. If the third digit is a “2” (example: AG2B0335000001), then the set has been produced according to B.O.M. no. 2. This is important for ordering the correct spare parts! For the third digit, the numbers 1...9 and the characters A...Z can be used, so in total: 9 plus 26= 35 different B.O.M.s can be indicated by the third digit of the serial number.
Identification: The bottom line of a type plate gives a 14-digit serial number. Digits 1 and 2 refer to the production centre (e.g. AG is Bruges), digit 3 refers to the B.O.M. code, digit 4 refers to the Service version change code, digits 5 and 6 refer to the production year, and digits 7 and 8 refer to production week (in example below it is 2006 week 17). The 6 last digits contain the serial number.
MODEL :
PROD.NO:
32PF9968/10
AG 1A0617 000001
MADE IN BELGIUM
220-240V 50/60Hz
~
VHF+S+H+UHF
BJ3.0E LA
S
10000_024_090121.eps
Figure 3-1 Serial number (example)

3.3.7 Board Level Repair (BLR) or Component Level Repair (CLR)

If a board is defective, consult your repair procedure to decide if the board has to be exchanged or if it should be repaired on component level. If your repair procedure says the board should be exchanged completely, do not solder on the defective board. Otherwise, it cannot be returned to the O.E.M. supplier for back charging!

3.3.8 Practical Service Precautions

It makes sense to avoid exposure to electrical shock.
While some sources are expected to have a possible dangerous impact, others of quite high potential are of limited current and are sometimes held in less regard.
Always respect voltages. While some may not be
dangerous in themselves, they can cause unexpected reactions that are best avoided. Before reaching into a powered TV set, it is best to test the high voltage insulation. It is easy to do, and is a good service precaution.
128W
090121

3.4 Abbreviation List

0/6/12 SCART switch control signal on A/V
board. 0 = loop through (AUX to TV), 6 = play 16 : 9 format, 12 = play 4 : 3 format
AARA Automatic Aspect Ratio Adaptation:
algorithm that adapts aspect ratio to remove horizontal black bars; keeps the original aspect ratio
ACI Automatic Channel Installation:
algorithm that installs TV channels directly from a cable network by
means of a predefined TXT page ADC Analogue to Digital Converter AFC Automatic Frequency Control: control
signal used to tune to the correct
frequency AGC Automatic Gain Control: algorithm that
controls the video input of the feature
box AM Amplitude Modulation AP Asia Pacific AR Aspect Ratio: 4 by 3 or 16 by 9 ASF Auto Screen Fit: algorithm that adapts
aspect ratio to remove horizontal black
bars without discarding video
information ATSC Advanced Television Systems
Committee, the digital TV standard in
the USA ATV See Auto TV Auto TV A hardware and software control
system that measures picture content,
and adapts image parameters in a
dynamic way AV External Audio Video AVC Audio Video Controller AVIP Audio Video Input Processor B/G Monochrome TV system. Sound
carrier distance is 5.5 MHz BDS Business Display Solutions (iTV) BLR Board-Level Repair BTSC Broadcast Television Standard
Committee. Multiplex FM stereo sound
system, originating from the USA and
used e.g. in LATAM and AP-NTSC
countries B-TXT Blue TeleteXT C Centre channel (audio) CEC Consumer Electronics Control bus:
remote control bus on HDMI
connections CL Constant Level: audio output to
connect with an external amplifier CLR Component Level Repair ComPair Computer aided rePair CP Connected Planet / Copy Protection CSM Customer Service Mode CTI Color Transient Improvement:
manipulates steepness of chroma
transients CVBS Composite Video Blanking and
Synchronization DAC Digital to Analogue Converter DBE Dynamic Bass Enhancement: extra
low frequency amplification DCM Data Communication Module. Also
referred to as System Card or
Smartcard (for iTV). DDC See “E-DDC” D/K Monochrome TV system. Sound
carrier distance is 6.5 MHz DFI Dynamic Frame Insertion
2009-Oct-09
Precautions, Notes, and Abbreviation List
EN 7PB52.3HU LA 3.
DFU Directions For Use: owner's manual DMR Digital Media Reader: card reader DMSD Digital Multi Standard Decoding DNM Digital Natural Motion DNR Digital Noise Reduction: noise
reduction feature of the set DRAM Dynamic RAM DRM Digital Rights Management DSP Digital Signal Processing DST Dealer Service Tool: special remote
control designed for service
technicians DTCP Digital Transmission Content
Protection; A protocol for protecting
digital audio/video content that is
traversing a high speed serial bus,
such as IEEE-1394 DVB-C Digital Video Broadcast - Cable DVB-T Digital Video Broadcast - Terrestrial DVD Digital Versatile Disc DVI(-d) Digital Visual Interface (d= digital only) E-DDC Enhanced Display Data Channel
(VESA standard for communication
channel and display). Using E-DDC,
the video source can read the EDID
information form the display. EDID Extended Display Identification Data
(VESA standard) EEPROM Electrically Erasable and
Programmable Read Only Memory EMI Electro Magnetic Interference EPG Electronic Program Guide EPLD Erasable Programmable Logic Device EU Europe EXT EXTernal (source), entering the set by
SCART or by cinches (jacks) FDS Full Dual Screen (same as FDW) FDW Full Dual Window (same as FDS) FLASH FLASH memory FM Field Memory or Frequency
Modulation FPGA Field-Programmable Gate Array FTV Flat TeleVision Gb/s Giga bits per second G-TXT Green TeleteXT H H_sync to the module HD High Definition HDD Hard Disk Drive HDCP High-bandwidth Digital Content
Protection: A “key” encoded into the
HDMI/DVI signal that prevents video
data piracy. If a source is HDCP coded
and connected via HDMI/DVI without
the proper HDCP decoding, the
picture is put into a “snow vision” mode
or changed to a low resolution. For
normal content distribution the source
and the display device must be
enabled for HDCP “software key”
decoding. HDMI High Definition Multimedia Interface HP HeadPhone I Monochrome TV system. Sound
2
I
C Inter IC bus
2
I
D Inter IC Data bus
2
I
S Inter IC Sound bus
carrier distance is 6.0 MHz
IF Intermediate Frequency IR Infra Red IRQ Interrupt Request ITU-656 The ITU Radio communication Sector
(ITU-R) is a standards body
subcommittee of the International
Telecommunication Union relating to
radio communication. ITU-656 (a.k.a.
SDI), is a digitized video format used for broadcast grade video. Uncompressed digital component or digital composite signals can be used. The SDI signal is self-synchronizing, uses 8 bit or 10 bit data words, and has a maximum data rate of 270 Mbit/s, with a minimum bandwidth of 135 MHz.
ITV Institutional TeleVision; TV sets for
hotels, hospitals etc.
LS Last Status; The settings last chosen
by the customer and read and stored in RAM or in the NVM. They are called at start-up of the set to configure it according to the customer's
preferences LATAM Latin America LCD Liquid Crystal Display LED Light Emitting Diode L/L' Monochrome TV system. Sound
carrier distance is 6.5 MHz. L' is Band
I, L is all bands except for Band I LPL LG.Philips LCD (supplier) LS Loudspeaker LVDS Low Voltage Differential Signalling Mbps Mega bits per second M/N Monochrome TV system. Sound
carrier distance is 4.5 MHz MHEG Part of a set of international standards
related to the presentation of
multimedia information, standardised
by the Multimedia and Hypermedia
Experts Group. It is commonly used as
a language to describe interactive
television services MIPS Microprocessor without Interlocked
Pipeline-Stages; A RISC-based
microprocessor MOP Matrix Output Processor MOSFET Metal Oxide Silicon Field Effect
Transistor, switching device MPEG Motion Pictures Experts Group MPIF Multi Platform InterFace MUTE MUTE Line MTV Mainstream TV: TV-mode with
Consumer TV features enabled (iTV) NC Not Connected NICAM Near Instantaneous Compounded
Audio Multiplexing. This is a digital
sound system, mainly used in Europe. NTC Negative Temperature Coefficient,
non-linear resistor NTSC National Television Standard
Committee. Color system mainly used
in North America and Japan. Color
carrier NTSC M/N= 3.579545 MHz,
NTSC 4.43= 4.433619 MHz (this is a
VCR norm, it is not transmitted off-air) NVM Non-Volatile Memory: IC containing
TV related data such as alignments O/C Open Circuit OSD On Screen Display OAD Over the Air Download. Method of
software upgrade via RF transmission.
Upgrade software is broadcasted in
TS with TV channels. OTC On screen display Teletext and
Control; also called Artistic (SAA5800) P50 Project 50: communication protocol
between TV and peripherals PAL Phase Alternating Line. Color system
mainly used in West Europe (color
carrier= 4.433619 MHz) and South
America (color carrier PAL M=
2009-Oct-09
EN 8 PB52.3HU LA3.
Precautions, Notes, and Abbreviation List
3.575612 MHz and PAL N= 3.582056
MHz) PCB Printed Circuit Board (same as “PWB”) PCM Pulse Code Modulation PDP Plasma Display Panel PFC Power Factor Corrector (or Pre-
conditioner) PIP Picture In Picture PLL Phase Locked Loop. Used for e.g.
FST tuning systems. The customer
can give directly the desired frequency POD Point Of Deployment: a removable
CAM module, implementing the CA
system for a host (e.g. a TV-set) POR Power On Reset, signal to reset the uP PTC Positive Temperature Coefficient,
non-linear resistor PWB Printed Wiring Board (same as “PCB”) PWM Pulse Width Modulation QRC Quasi Resonant Converter QTNR Quality Temporal Noise Reduction QVCP Quality Video Composition Processor RAM Random Access Memory RGB Red, Green, and Blue. The primary
color signals for TV. By mixing levels
of R, G, and B, all colors (Y/C) are
reproduced. RC Remote Control RC5 / RC6 Signal protocol from the remote
control receiver RESET RESET signal ROM Read Only Memory RSDS Reduced Swing Differential Signalling
data interface R-TXT Red TeleteXT SAM Service Alignment Mode S/C Short Circuit SCART Syndicat des Constructeurs
d'Appareils Radiorécepteurs et
SCL Serial Clock I
Téléviseurs
SCL-F CLock Signal on Fast I SD Standard Definition SDA Serial Data I SDA-F DAta Signal on Fast I
2
C
2
C bus
2
C
2
C bus SDI Serial Digital Interface, see “ITU-656” SDRAM Synchronous DRAM SECAM SEequence Couleur Avec Mémoire.
Color system mainly used in France and East Europe. Color carriers=
4.406250 MHz and 4.250000 MHz SIF Sound Intermediate Frequency SMPS Switched Mode Power Supply SoC System on Chip SOG Sync On Green SOPS Self Oscillating Power Supply SPI Serial Peripheral Interface bus; a 4-
wire synchronous serial data link
standard S/PDIF Sony Philips Digital InterFace SRAM Static RAM SRP Service Reference Protocol SSB Small Signal Board STB Set Top Box STBY STand-BY SVGA 800 × 600 (4:3) SVHS Super Video Home System SW Software SWAN Spatial temporal Weighted Averaging
Noise reduction SXGA 1280 × 1024 TFT Thin Film Transistor THD Total Harmonic Distortion TMDS Transmission Minimized Differential
Signalling
TS Transport Stream TXT TeleteXT TXT-DW Dual Window with TeleteXT UI User Interface uP Microprocessor UXGA 1 600 × 1 200 (4:3) V V-sync to the module VESA Video Electronics Standards
Association VGA 640 × 480 (4:3) VL Variable Level out: processed audio
output toward external amplifier VSB Vestigial Side Band; modulation
method WYSIWYR What You See Is What You Record:
record selection that follows main
picture and sound WXGA 1280 × 768 (15:9) XTAL Quartz crystal XGA 1024 × 768 (4:3) Y Luminance signal Y/C Luminance (Y) and Chrominance (C)
signal YPbPr Component video. Luminance and
scaled color difference signals (B-Y
and R-Y) YUV Component video
2009-Oct-09

4. Mechanical Instructions

Mechanical Instructions
EN 9PB52.3HU LA 4.
Index of this chapter:

4.1 Cable Dressing

4.2 Service Positions
4.3 Assy/Panel Removal
4.4 Set Re-assembly
Notes:
4.1 Cable Dressing
Disassembly instructions for the ME7 styling below are based on the 32” model (chassis PB52.1HU LA), but is comparable for all other models with the ME7 styling.
Disassembly instructions for the PnS styling below are based on the 37” model (chassis PB52.2HU LA), but is comparable for all other models with the PnS styling.
Figures below can deviate slightly from the actual situation, due to the different set executions.

Figure 4-1 Cable dressing 26HFL5561H/27 (ME7 styling)

18740_200_091005.eps
091005
2009-Oct-09
EN 10 PB52.3HU LA4.
Mechanical Instructions
Tape only the HV cable
Tape IR cable onto Speaker

Figure 4-2 Cable dressing 32HFL5561H/27 (PnS styling)

AC groundcable fixing
18740_201_091005.eps
091005
2009-Oct-09
Mechanical Instructions
Grounding cable terminal
EN 11PB52.3HU LA 4.

Figure 4-3 Cable dressing 42HFL5581H/27 (PnS styling)

18740_202_091005.eps
091005
2009-Oct-09
EN 12 PB52.3HU LA4.
Mechanical Instructions

4.2 Service Positions

For easy servicing of this set, there are a few possibilities created:
The buffers from the packaging (see figure “Rear cover”).
Foam bars (created for Service).

4.2.1 Foam Bars

Required for sets
1
42"
10000_018_090121.eps
Figure 4-4 Foam bars
The foam bars (order code 3122 785 90580 for two pieces) can be used for all types and sizes of Flat TVs. See figure “Foam bars” for details. Sets with a display of 42" and larger, require four foam bars [1]. Ensure that the foam bars are always supporting the cabinet and never only the display. Caution: Failure to follow these guidelines can seriously damage the display! By laying the TV face down on the (ESD protective) foam bars, a stable situation is created to perform measurements and alignments. By placing a mirror under the TV, you can monitor the screen.

4.3 Assy/Panel Removal

4.3.3 IR & LED Board

1. Unplug the connectors that lead to the SSB and the Key Board Control Panel.
2. Remove the screws.
3. Lift the board and take it out of the set.
When defective, replace the whole unit.

4.3.4 Key Board Control Panel

1
090121
1. Unplug the key board connector from the IR & LED Board.
2. Release the clamp on the topside using a screwdriver.
3. Lift the unit and take it out of the set.
When defective, replace the whole unit.

4.3.5 Main Supply Panel

1. Unplug the connectors.
2. Remove the fixation screws.
3. Take the board out.
When defective, replace the whole unit.

4.3.6 Small Signal Board (SSB) and Tuner Bolt-on

Refer to next figures for details. Caution: it is mandatory to remount all different screws at their original position during re-assembly. Failure to do so may result in damaging the SSB.
1. Unplug the LVDS connector [1]. Caution: be careful, as this is a very fragile connector! See
figure 4-5 SSB cover
2. Unplug the connectors [2].
3. Remove the screws [3] and remove the top shielding of the SSB.
4. Remove the screws [4] that hold the subframe of the SSB. The subframe can now be taken out of the set, together with the SSB and tuner bolt-on.
5. To remove the tuner bolt-on, release the connectors [5] and remove the cables.
6. Remove the screws [6] and lift the tuner bolt-on from the SSB.
7. Remove the locknuts [7] and screws [8] from the SSB connector plate and take the SSB from the subframe.
.
3
3
2
3
1
2

4.3.1 Rear Cover

Warning: Disconnect the mains power cord before you remove
the rear cover. Note: it is necessary to remove the stand before removing the rear cover.
1. Remove all screws from the back cover.
2. Lift the back cover from the TV. Make sure that wires and flat coils are not damaged while lifting the rear cover from the set.

4.3.2 Speakers

1. Remove the speaker connector on the SSB.
2. Remove the screws that hold the speaker and take the speaker out.
When defective, replace the whole unit.
2009-Oct-09
3
Figure 4-5 SSB cover
18730_207_090915.eps
090915
Mechanical Instructions
EN 13PB52.3HU LA 4.
5
6
4
Figure 4-6 SSB

4.3.7 LCD Panel ME7 styling

Refer to Figure 4-8
for details. This particular photo is taken from another chassis with different boards but with a similar construction.
1. Unplug the LVDS connector [1].
Caution: be careful, as this is a very fragile connector!
4
18730_208_090916.eps
090916
3
7
8
Figure 4-7 SSB connector plate
2. Unplug the connectors [2].
3. Remove the fixation screws [3] and [4].
4. Lift the subframe from the set.
5. The LCD panel can now be lifted from the front cabinet.
3
3
4
18730_209_090916.eps
090916
2
4
1
4
2
3
3
3
3
3
3
I_17500_064.eps
091002
Figure 4-8 LCD Panel ME7 styling
2009-Oct-09
EN 14 PB52.3HU LA4.
Mechanical Instructions

4.3.8 LCD Panel PnS Styling

Refer to Figure 4-9 (slightly) different mechanical construction (some have the boards directly mounted on the LCD display, others use brackets), we only describe one model. Disassembly method of other LCD panels is similar to the one described below. This particular photo is taken from another chassis with different boards but with a similar construction.
for details. As every screen size has a
3
1. Remove the Main Supply Panel and Small Signal Board as earlier described and remove their subframes.
2. Unplug the connectors to and from the Speakers, IR & LED Board and Key Board Control Panel.
3. Remove the speaker boxes.
4. Remove the stand [1].
5. Release the subframe from the stand [2].
6. Remove the brackets [3] that secure the LCD Panel.
7. The LCD panel can now be lifted from the front cabinet.
3
3

4.4 Set Re-assembly

To re-assemble the whole set, execute all processes in reverse order.
Notes:
While re-assembling, make sure that all cables are placed and connected in their original position. See Figure 4-1
Figure 4-3
Pay special attention not to damage the EMC foams on the SSB shields. Ensure that EMC foams are mounted correctly.
.
2
1
Figure 4-9 LCD Panel PnS styling
to
3
2
18440_103_090223.eps
090709
2009-Oct-09
Service Modes, Error Codes, and Fault Finding

5. Service Modes, Error Codes, and Fault Finding

EN 15PB52.3HU LA 5.
Index of this chapter:

5.1 Test Points

5.2 Hotel mode

5.3 Service Modes

5.4 Stepwise Start-up
5.5 Service Tools
5.6 Error Codes
5.7 The Blinking LED Procedure
5.8 Protections
5.9 Fault Finding and Repair Tips
5.10 Software Upgrading
5.1 Test Points
As most signals are digital, it will be difficult to measure waveforms with a standard oscilloscope. However, several key ICs are capable of generating test patterns, which can be controlled via ComPair. In this way it is possible to determine which part is defective.
Perform measurements under the following conditions:
Service Default Mode.
Video: Color bar signal.
Audio: 3 kHz left, 1 kHz right.
5.2 Hotel mode
Before the service modes can be activated, the set needs to be switched into normal consumer mode (MTV-Mode) first. Use an iTV setup remote control (type: RC2753/01, 12nc: 3139 228 88782) to key in the code ‘024995’ directly followed by the MENU (“M”) button. The text messages “TV Is Now In MTV Mode” and “Please Do A Cold Start!” appears on the screen. Disconnect the set for a few seconds from the mains supply, reconnect the set to the mains supply again. The set is now in the normal consumer mode (MTV-Mode). After repair, place the set into hotel mode (iTV-Mode) again. Key-in the same code on the remote control as described above, followed by the MENU (“M”) button. The text message “TV Is Now In ITV Mode” appears. A cold start must be performed as described above. The set is now in the hotel mode (iTV-Mode) again.
5.3 Service Modes
Service Default mode (SDM) and Service Alignment Mode (SAM) offers several features for the service technician, while the Customer Service Mode (CSM) is used for communication between the call centre and the customer.
This chassis also offers the option of using ComPair, a hardware interface between a computer and the TV chassis. It offers the abilities of structured troubleshooting, error code reading, and software version read-out for all chassis,see division 5.5.1 ComPair.

5.3.1 Service Default Mode (SDM)

Specifications
Table 5-1 SDM default settings
Default
Region Freq. (MHz)
Europe, AP(PAL/Multi) 475.25 PAL B/G
Europe, AP DVB-T 546.00 PID
NAFTA, AP­NTSC,LATAM
Tuning frequency 61.25 MHz for NTSC: The TV shall tune to physical channel 3 only if channel 3 is an analog channel or if there is no channel 3 installed in the channel map. If there is a digital channel installed in channel 3, then the frequency to which the set will tune, would be as specified in the channel map and could be different from the one corresponding to the physical channel 3.
All picture settings at 50% (brightness, color, contrast).
All sound settings at 50%, except volume at 25%.
All service-unfriendly modes (if present) are disabled, like: – (Sleep) timer. – Blue mute/Wall paper. – Auto switch “off” (when there is no “ident” signal). – Hotel or hospital mode. – Child lock or parental lock (manual or via V-chip). – Skipping, blanking of “Not favorite”, “Skipped” or
Locked” presets/channels.
– Automatic storing of Personal Preset or Last Status
settings.
– Automatic user menu time-out (menu switches back/
OFF automatically.
– Automatic volume levelling (AVL).
How to Activate SDM
For this chassis there is one kinds of SDM: an analogue SDM Tuning will happen according table “SDM Default Settings”.
Analogue SDM: use the standard RC-transmitter and key in the code “062596”, directly followed by the “MENU” button. Note: It is possible that, together with the SDM, the main menu will appear. To switch it “off”, push the “MENU” button again.
Analogue SDM can also be activated by shorting for a moment the two solder pads on the SSB, with the indication “SDM”. Activation can be performed in all modes, except when the set has a problem with the Stand­by Processor.
After activating this mode, “SDM” will appear in the upper right corner of the screen (if you have picture).
How to Navigate
When you press the “MENU” button on the RC transmitter, the set will toggle between the SDM and the normal user menu (with the SDM mode still active in the background).
Video: 0B 06 PID PCR: 0B 06 PID Audio: 0B 07
61.25 (ch 3) NTSC M
system
DVB-T
Purpose
To create a pre-defined setting, to get the same measurement results as given in this manual.
To override SW protections detected by stand-by processor and make the TV start up to the step just before protection (a sort of automatic stepwise start up). See paragraph “Stepwise Start Up”.
To override SW protections detected by MIPS. See also paragraph “Error codes”.
To start the blinking LED procedure (not valid for protections detected by standby software).
How to Exit SDM
Use one of the following methods:
Completely remove the power by removing the power plug.
2009-Oct-09
EN 16 PB52.3HU LA5.
Service Modes, Error Codes, and Fault Finding

5.3.2 Service Alignment Mode (SAM)

Purpose
To perform (software) alignments.
To change option settings.
To easily identify the used software version.
To view operation hours.
To display (or clear) the error code buffer.
How to Activate SAM
Via a standard RC transmitter: key in the code “062596” directly followed by the “INFO” button. After activating SAM with this method a service warning will appear on the screen, you can continue by pressing the red button on the RC.
Contents of SAM:
Hardware Info.A. SW Version. Displays the software version of the
main software (example: P52U1_1.6.12.0 = AAAAB_X.Y.W.Z).
AAAA= the chassis name.
B= the region: A= AP, E= EU, L= LatAm, U = US. For AP sets it is possible that the Europe software version is used.
X.Y.W.Z= the software version, where X is the main version number (different numbers are not compatible with one another) and Y.W.Z is the sub version number (a higher number is always compatible with a lower number).
B. SBY PROC Version. Displays the software version
of the stand-by processor.
C. Production Code. Displays the production code of
the TV, this is the serial number as printed on the back of the TV set. Note that if an NVM is replaced or is initialized after corruption, this production code has to be re-written to NVM. ComPair will foresee in a possibility to do this.
Operation Hours. Displays the accumulated total of operation hours (not the stand-by hours). Every time the TV is switched “on/off”, 0.5 hours is added to this number.
Errors (followed by maximal 10 errors). The most recent error is displayed at the upper left (for an error explanation see paragraph “Error Codes”).
Reset Error Buffer. When you press “cursor right” (or the “OK button) and then the “OK” button, the error buffer is reset.
Alignments. This will activate the “ALIGNMENTS” sub­menu.
Dealer Options. Extra features for the dealers.
Options. Extra features for Service. For more info regarding option codes, see chapter 8 “Alignments”. Note that if you change the option code numbers, you have to confirm your changes with the “OK” button before you store the options. Otherwise you will loose your changes.
Initialize NVM. The moment the processor recognizes a corrupted NVM, the “initialize NVM” line will be highlighted. Now, you can do two things (dependent of the service instructions at that moment): – Save the content of the NVM via ComPair for
development analysis, before initializing. This will give the Service department an extra possibility for diagnosis (e.g. when Development asks for this).
– Initialize the NVM.
Note: When you have a corrupted NVM, or you have replaced the NVM, there is a high possibility that you will not have picture anymore because your display code is not correct. So, before you can initialize your NVM via the SAM, you need to have a picture and therefore you need the correct display option. Refer to chapter 8 for details. To adapt this option, you can use ComPair (the correct HEX values for the options can be found in chapter 8 “Alignments”) or a method via a standard RC (described below).
Changing the display option via a standard RC
: Key in the code “062598” directly followed by the “MENU” button and “XXX”, where XXX is the 3 digit decimal display code (see table “Option code overview” in chapter 8 “Alignments”, or sticker on the side/bottom of the cabinet). Make sure to key in all three digits, also the leading zero’s. If the above action is successful, the front LED will go out as an indication that the RC sequence was correct. After the display option is changed in the NVM, the TV will go to the Stand-by mode. If the NVM was corrupted or empty before this action, it will be initialized first (loaded with default values). This initializing can take up to 20 seconds.
Display Option
Code
39mm
040
PHILIPS
MODEL:
32PF9968/10
27mm
PROD.SERIAL NO:
AG 1A0620 000001
(CTN Sticker)
10000_038_090121.eps
090819
Figure 5-1 Location of Display Option Code sticker
Store. All options and alignments are stored when
pressing “cursor right” (or the “OK” button) and then the “OK”-button.
SW Maintenance.
SW Events. Not useful for Service purposes. In case
of specific software problems, the development department can ask for this info.
HW Events. Not useful for Service purposes. In case
of specific software problems, the development department can ask for this info.
Test settings. For development purposes only.
Upload to USB. To upload several settings from the TV to
a USB stick, which is connected to the Side I/O. The items are “Channel list”, “Personal settings”, “Option codes”, “Display-related alignments” and “History list”. First you have to create a directory “repair” in the root of the USB stick.To upload the settings you have to select each item separately, press “cursor right” (or the “OK button), confirm with “OK” and wait until “Done” appears. In case the download to the USB stick was not successful “Failure” will appear. In this case, check if the USB stick is connected properly and if the directory “repair” is present in the root of the USB stick. Now the settings are stored onto your USB stick and can be used to download onto another TV or other SSB. Uploading is of course only possible if the software is running and if you have a picture. This method is created to be able to save the customer’s TV settings and to store them into another SSB.
Download from USB. To download several settings from
the USB stick to the TV. Same way of working as with uploading. To make sure that the download of the channel list from USB to the TV is executed properly, it is necessary to restart the TV and tune to a valid preset if necessary. Note: The “History list item” can not be downloaded from USB to the TV. This is a “read-only” item. In case of specific problems, the development department can ask for this info.
2009-Oct-09
Service Modes, Error Codes, and Fault Finding
EN 17PB52.3HU LA 5.
How to Navigate
In SAM, you can select the menu items with the “CURSOR UP/DOWN” key on the RC-transmitter. The selected item will be highlighted. When not all menu items fit on the screen, move the “CURSOR UP/DOWN” key to display the next/previous menu items.
With the “CURSOR LEFT/RIGHT” keys, it is possible to: – (De) activate the selected menu item. – (De) activate the selected sub menu.
With the “OK” key, it is possible to activate the selected action.
How to Exit SAM
Use one of the following methods:
Press the “MENU” button on the RC-transmitter.
Switch the set to STAND-BY via the RC-transmitter.

5.3.3 Customer Service Mode (CSM)

Purpose
When a customer is having problems with his TV-set, he can call his dealer or the Customer Helpdesk. The service technician can then ask the customer to activate the CSM, in order to identify the status of the set. Now, the service technician can judge the severity of the complaint. In many cases, he can advise the customer how to solve the problem, or he can decide if it is necessary to visit the customer. The CSM is a read only mode; therefore, modifications in this mode are not possible. When in this chassis CSM is activated, a color bar test pattern will be visible for 5 seconds. This test pattern is generated by the Pacific3. So if you see this test pattern you can determine that the back end video chain (Pacific3, LVDS, and display) of the SSB is working. In case of a set with DFI panel, an extra test picture is generated. So you will see the Pacific3 test picture for 3 seconds and then the DFI EPLD test picture for another 3 seconds. With this extra test picture you can determine if the DFI board is working properly. Also new in this chassis: when you activate CSM and there is a USB stick connected to the TV, the software will dump the complete CSM content to the USB stick. The file (Csm.txt) will be saved in the root of your USB stick. This info can be handy if you do not have picture. Another new item in this chassis is when CSM is activated, the complete error-buffer content will be shown via the blinking LED procedure.
How to Activate CSM
Key in the code “123654” via the standard RC transmitter.
Note: Activation of the CSM is only possible if there is no (user) menu on the screen!
How to Navigate
By means of the “CURSOR-DOWN/UP” knob on the RC­transmitter, you can navigate through the menus.
Contents of CSM
Set Type. This information is very helpful for a helpdesk/ workshop as reference for further diagnosis. In this way, it is not necessary for the customer to look at the rear of the TV-set. Note that if an NVM is replaced or is initialized after corruption, this set type has to be re-written to NVM. ComPair will foresee in a possibility to do this.
Production Code. Displays the production code (the serial number) of the TV. Note that if an NVM is replaced or is initialized after corruption, this production code has to be re-written to NVM. ComPair will foresee a in possibility to do this.
Code 1. Gives the last five errors of the error buffer. As soon as the built-in diagnose software has detected an error, the buffer is adapted. The last occurred error is displayed on the leftmost position. Each error code is displayed as a 2-digit number. When less than 10 errors
occur, the rest of the buffer is empty (00). See also paragraph “Error Codes” for a description.
Code 2. Gives the first five errors of the error buffer. See also paragraph “Error Codes” for a description.
Options 1. Gives the option codes of option group 1 as set in SAM (Service Alignment Mode).
Options 2. Gives the option codes of option group 2 as set in SAM (Service Alignment Mode).
12NC SSB. NVM. Note that if an NVM is replaced or is initialized after corruption, this identification number has to be re-written to NVM. ComPair will foresee in a possibility to do this. This identification number consists of 14 characters and is built up as follows:
- Seven last characters of the 12NC of the SSB itself.
- the serial number of the SSB, which consists of seven digits. Both can be found on a sticker on the PWB of the SSB itself. The format of the identification number is then as follows: <last seven characters of 12NC of SSB><serial number of SSB> (total fourteen characters).
Installed date. Indicates the date of the first installation of the TV. This date is acquired via time extraction.
Pixel Plus. Gives the last status of the Perfect Pixel HD setting, as set by the customer. Possible values are “ON” and “OFF”. See DFU on how to change this item.
DNR. Gives the last status of the Noise reduction setting, as set by the customer. Possible values are “OFF”, “MINIMUM”, “MEDIUM” and “MAXIMUM”. See DFU on how to change this item.
Noise Figure. Gives an indication of the signal quality for the selected transmitter. Possible values are “BAD”, “AVERAGE”, “GOOD” and “DIGITAL”. In case of a digital channel, this item will never indicate: “BAD”, “GOOD” or “AVERAGE” but only displays “DIGITAL”.
12NC Display. Shows the 12NC of the display.
MPEG 4 (blue to toggle). Shows the status of the MPEG 4 module. On or Off. See DFU on how to change this item.
Headphone Volume. Gives the last status of the headphone volume, as set by the customer. The value can vary from 0 (volume is minimum) to 100 (volume is maximum). See DFU on how to change this item.
Surround Mode. Indicates the by the customer selected sound mode (or automatically chosen mode). Possible values are “STEREO” and “VIRTUAL DOLBY SURROUND”. It can also have been selected automatically by signalling bits (internal software). See DFU on how to change this item.
AVL. Indicates the last status of AVL (Automatic Volume Level) as set by the customer: See DFU on how to change this item.
Delta Volume. Indicates the last status of the delta volume for the selected preset as set by the customer: from “-12” to “+12”. See DFU on how to change this item.
Volume. Indicates the last status of the volume for the selected preset as set by the customer: from “0” to “100”. See DFU on how to change this item.
Balance. Indicates the last status of the balance for the selected preset as set by the customer: from “-10” to “+10”. See DFU on how to change this item.
Preset Lock. Indicates if the selected preset has a child lock: “LOCKED” or “UNLOCKED”. See DFU on how to change this item.
Lock after. Indicates at what time the channel lock is set: “OFF” or e.g. “18:45” (lock time). See DFU on how to change this item.
TV ratings lock. Only applicable for US.
Movie ratings lock. Only applicable for US.
V-Chip TV status. Only applicable for US.
V-Chip movie status. Only applicable for US.
Region rating status (RRT). Only applicable for US.
Region rating enabled. On of Off.
Table channel changed. Yes or No.
On timer. Indicates if the “On timer” is set “ON” or “OFF” and when it is set to “ON”, also start time, start day and
Gives an identification of the SSB as stored in
2009-Oct-09
EN 18 PB52.3HU LA5.
Service Modes, Error Codes, and Fault Finding
program number is displayed. See DFU on how to change this item.
Location. Gives the last status of the location setting as set via the installation menu. Possible values are “SHOP” and “HOME”. If the location is set to “SHOP”, several settings are fixed. So for a customer location must be set to “HOME”. Can be changed via the installation menu (see also DFU).
HDMI key validity. Indicates if the HDMI keys (or HDCP keys) are valid or not. In case these keys are not valid and the customer wants to make use of the HDMI functionality, the SSB has to be replaced.
TV System. Gives information about the video system of the selected transmitter. – BG: PAL BG signal received – DK: PAL DK signal received – L/La: SECAM L/La signal received – I: PAL I signal received – M: NTSC M signal received – ATSC: ATSC signal received
12NC one zip SW. Displays the 12NC number of the one­zip file as it is used for programming software in production. In this one-zip file all below software versions can be found.
Initial main SW. Displays the main software version which was initially loaded by the factory.
Current main SW. Displays the built-in main software version. In case of field problems related to software, software can be upgraded. As this software is consumer upgradeable, it will also be published on the Internet. Example: Q582E_1.2.3.4.
Flash utils SW. Displays the software version of the software which contains all necessary components of the download application. To program this software, EJTAG tooling is needed. Example: Q582E_1.2.3.4.
Standby SW. Displays the built-in stand-by processor software version. Upgrading this software will be possible via ComPair or via USB (see chapter Software upgrade). Example: STDBY_3.0.1.2.
MOP SW. Only applicable for US. At the time of release of this manual, there was still a problem with this item, and some rubbish was displayed. Ignore this.
Pacific 3 Flash SW. Displays the Pacific 3 software version.
NVM version. Displays the NVM version as programmed by factory.
Display parameters. For development purposes only.
Private PQ parameters. For development purposes only.
Public PQ parameters. For development purposes only.
Ambilight parameters. For development purposes only.
Acoustics parameters. For development purposes only.
DFI software (if applicable). Displays the DFI EPLD software.
DFI ambilight software (if applicable). Displays the DFI ambilight EPLD software.
MPEG4 software. Displays the MPEG4 software version.
situation until it is reset (Mains/AC Power supply interrupted). Caution: in case the start up in this mode with a faulty FET 7U08 is done, you can destroy all ICs supplied by the +3V3, due to overvoltage. It is recommended to measure first the FET 7U08 on short-circuit before activating SDM via the service pads. When the TV is in protection state due to an error detected by main software (MIPS protection) and SDM is activated via short-cutting the service pads on the SSB, the TV starts up and ignores the error. In this chassis, only error “63” (power-ok) is a MIPS protection and already displays the failure via blinking LED.
The abbreviations “SP” and “MP” in the figures stand for:
SP: protection or error detected by the Stand-by Processor.
MP: protection or error detected by the MIPS Main Processor.
How to Exit CSM
Press “MENU” on the RC-transmitter.

5.4 Stepwise Start-up

There are two possible situations: one for protections detected by the stand-by software and one for protections detected by the main software. When the TV is in a protection state due to an error detected by stand-by software (and thus blinking an error) and SDM is activated via short-circuiting the pins on the SSB, the TV starts up until it reaches the situation just before protection. So, this is a kind of automatic stepwise start-up. In combination with the start-up diagrams below, you can see which supplies are present at a certain moment. Important to know is, that if e.g. the 3V3 detection fails (and thus error 8 is blinking) and the TV is restarted via SDM, the Stand-by Processor will enable the 3V3, but will not go to protection now. The TV will stay in this
2009-Oct-09
Service Modes, Error Codes, and Fault Finding
Off
Mains
off
Mains
on
EN 19PB52.3HU LA 5.
St by
(Off St by)
- POD Card removed
- tact SW pushed
On
For POD should be read Common Interface (CI)
- WakeUp requested
- Acquisition needed
- No data Acquisition required and no POD present
- tact SW pushed
- WakeUp requested
- Acquisition needed
No d ata
Acquisition
required and
POD pre sent
POD
St by
GoToProtection

Figure 5-2 Transition diagram

Semi St by
GoToProtection
WakeUp requeste
- St by requested
- tact SW pushed
WakeUp
requeste
d
d
Active
GoToProtection
Protection
H_17650_093.eps
180108
2009-Oct-09
EN 20 PB52.3HU LA5.
Service Modes, Error Codes, and Fault Finding
Off/Stby to Semi
action holder: MIPS
action holder: St-by
autonomous action
The a vailability of the supplies is checked through detect signals going to the st-by µP. These signals are available
for +12V and +5V (combined as AND function, called
detect-5V-12V) and for +1V2 and +3V3 (combined as
AND function, called detect-1V2-2V5-3V). A low to high
transition of the signals should occur within a certain time
after toggling the standby line. If an observer is detected
before the time-out elapses, of course, the process
should continue in order to minimize start up time.
Off
Mains is ap plied
Standby Supply starts running.
All stand by supply volta ges become a vailable .
st-b y µP resets
All I/O lines have a High default state:
- Switch P NX85x x in re set (act ive LOW).
- NVM power line is high, no NVM communication possible.
Initialise I/O pins of the st-by µP, start keyboard scanning, RC
because of the stby µP r eset in an F HP set) which w ill start the
Switch ON Platform and display supply by switching LOW the
- Keep the Audio-reset high.
detection. Wake up reasons are off.
PDPGO line is high (either HW wise in a non FHP set or
FHP PDP.
POD-MODE and the ON-MODE I/O lines.
+5V, and +12V are switched on
Wait 50ms and the n start pollin g the dete ct-
5V-12V every 40ms.
Stand by or
Protection
If the protection state was left by short circuiting the
SDM pins, detection of a protection condition during
startup will stall the startup. Protection conditions in a
playing se t will be ignor ed. Th e protect ion mode will
not be entered.
- Switch Audio-Reset high.
It is low in the standby mode if the standby
mode lasted longer than 10s.
Display sup ply is switched on through the ON-mode I/O line
detect-5V-12V received within
2900 ms after POD-mode I/O
line toggle?
Yes
activat e +5V/+1 2V supply
detection algorithm. See CHS protections.
Enable the +1V2 supply (ENABLE-1V2 )
Wait 100m s
Enable the supply for
+1.8V and +3. 3V (ENABLE-3V3)
Start polling the detect-1V2-2V5-3V3
every 40ms
Detection
received within
250 ms after enable-3V3
toggle?
Yes
Activate supply detection algorithms for DC-
DC outputs
Wait 20ms
No
“5V 12V supply” error
SP
ms is recommended by the
100
spec
PNX
85xx
.
No separate enable is present for the +1V8 supply in the TV522.
Only one detect line is present in the TV522: it detects +1V2 and +3V3
No
1V2 2V5 3V3 DCDC error
SP
2009-Oct-09
SUPPLY-F AULT I/O line
is High ?
No

Figure 5-3 “Off” to “Semi Stand-by” flowchart (part 1)

Supply fault error
The supply fault line is an OR function of DCDC, DCDC5050 and POD /CI supply sw itch.
H_17650_094a.eps
090826
Service Modes, Error Codes, and Fault Finding
EN 21PB52.3HU LA 5.
SUPPLY-F AULT I/O line
is High ?
No
Switch LOW the RESET-NVM_WP-NANDFLASH line. Add a 2ms delay before
trying to address the NVM to allow correct NVM initialization.
No
No
Relea se AVC system r eset
Feed warm boot script
Enable the supply fault detection
(pulling pin of the probe interface to
ground by inserting EJTAG probe)
Yes
algorithm
Set I²C slave address
of Standby µP to (A0h)
Detect EJTAG debug probe
EJTAG probe
connected ?
No
Cold boot?
Yes
Relea se AVC system r eset
Feed cold boot script
No
Supply fault error
SP
This will a llow access to NVM and NAND FLASH and can not be done earlier because the FLASH needs to be in Write Protect as long as the supplies are not available.
An EJTAG probe (e.g. WindPower ICE probe) can be connected for Linux Kernel debugging purposes.
Yes
Relea se AVC system r eset Feed initializing boot script
disable alive mechanism
The supply fault line is an OR function of DCDC, DCDC5050 and POD /CI supply sw itch.
No
Code = 5
Switch AVC PNX8 5xx
in re set (act ive low)
Wait 10ms
Switch the NVM r eset
line HI GH.
Disable all supply related protections and
switch off the +2V5, +3V3 DC/DC converter.
Wait 5ms
Boot process of the PNX5050 also starts at this point.
Bootscript ready
in 1250 ms?
Set I²C slave address
of Standby µP to (60h)
RPC start (comm. protocol)
No
Code = 53
Flash to Ram image transfer succeeded
No
SW initializat ion
Enable Alive check mechanism
MIPS reads the wake up reason
from standby µP.
In case of an LCD set, check t he
Power- OK display line
Yes
within 30s?
Yes
succeeded within 20s?
Yes
Wait until AVC starts to
commun icate
3-th try?
switch off the remaining DC/DC
converters
Switch POD-MODE and ON-MODE
I/O line high.
Power-ok display high ?
Yes
Reset t he Pacific by pulling LOW the Pacific
hardware reset line during 100ms.
No

Figure 5-4 “Off” to “Semi Stand-by” flowchart (part 2)

Log power-ok error and enter
protection
No
MP
H_17650_094b.eps
090826
2009-Oct-09
EN 22 PB52.3HU LA5.
Service Modes, Error Codes, and Fault Finding
switch off the remaining DC/DC
3-th try?
Yes
Blink Code as
error code
Switch POD -MODE and ON- MODE
SP
- Channeldecoder type TDA10060 cannot be reloaded without reset of the channeldecoder.
- Channeldecoder type TDA10048 can be reloaded without reset.
conver ters
I/O line high.
Channel decoder
TDA 10048?
Power-ok display high ? No
Yes
Reset the Pacific by pulling LOW the Pacific
hardware reset line during 100ms.
Relea se Pacific rese t
and wait 200ms
Ping the Pacific through I²C
Pacific acknowledges?
Yes
Init Pa cific accordin g use case :
- lvds or CMOS input and output
- panel config… to be discussed with Stefan / SW if we will put this here or in the display excel overview of Stefan or in …..
Enable the Pacific output by sending the PanelConfig.PanelOn
YesNo
to the Pacific in case of a DFI set
Start 4 seconds preheating timer in case of
an LPL scanning backlight LCD set.
Initialize audio accord ing FMS infor mation :
Download firmware into the channel
decoder
Log power-ok err or and enter
protection
No
MP
Third Pacific boot retry?No
Yes
Log Pacific error
This is needed here because the Pacific has to deliver an output clock towards the DFI. Otherwise the DFI cannot deliver ambilight functionality in the lampadaire mode. The presence of the DFI can be determined via the display option.
No
Third try? No
Yes
Log channel decoder error
Downloaded
successfu lly?
Yes
initialize tuner , Master IF and channel
decoder
Initialize source selectio n
Wait until Cpipe delivers a stable output
Initialize video processin g IC 's :
- PNX5050 in /82
- scale r EPLD
initialize Au toTV by tr iggering C HS AutoTV I nit interfa ce
Initialize Pacific or EPLD related Ambilight
clock
Reset EPLD
Wait 100ms
Reset Pacific clock
settings (if applicable)
EPLD and Pacific should be reset when a stable input clock become s available at their input.
2009-Oct-09
Initialize Ambilight with Lights off.
Do not enter semi-standby state in case of an LPL scanning backlight LCD set before 4s preheating timer has elapsed.
Semi-Standby

Figure 5-5 “Off” to “Semi Stand-by” flowchart (part 3)

H_17650_094c.eps
090826
Service Modes, Error Codes, and Fault Finding
Semi Standby
Wait until previous on-state is left mor e than 2
seconds ago. (to prevent LCD display problems)
Assert RGB video blanking
and audio mute
EN 23PB52.3HU LA 5.
action holder: AVC
action holder: St-by
autonomous action
Rewrite Pacific register 0x03 (output format) :
this command is sometimes not processed properly by the
Pacific at initialisation time , r esending it here solves the issue.
Switch on the display by sending the
PanelConfig.PanelOn (I²C) command to the Pacific
wait 250ms (min. = 200ms)
Switch off the dimming backlight feature and
make sure PWM output is set to 100%
Switch on LCD backlight
The higher level requirement is that
audio and video should be demuted
without transient effects and that the
audio should be demuted maximum 1s
before or at the same time as the
unblanking of the video.
Initialize audio and video
processing IC's and functions
according needed use case.
Wait until valid and stable audio and video , corresponding to
the requested output is delivered by the AVC AND the
backlight PWM has been on for 1second.
Switch Audio-Reset low and wait 5ms
Release audio mute and wait 100ms before any other audio
handling is done (e.g. volume change)
Restore dimming backlight feature, PWM output and unblank
the video.
Active

Figure 5-6 “Semi Stand-by” to “Active” flowchart

H_16770_110.eps
290307
2009-Oct-09
EN 24 PB52.3HU LA5.
Service Modes, Error Codes, and Fault Finding
Active
Mute all sound outputs via softmute
Wait 100ms
Set main amplifier mute (I/O: audio-mute)
Force ext audio outputs to ground
(I/O: audio reset)
And wait 5ms
switch off LCD backlight
action holder: AVC
action holder: St-by
autonomous action
Mute all video outputs
Wait 250ms (min. = 200ms)
Switch off the display by sending the
PanelConfig.PanelOff (I²C) command to the Pacific
switch off ambient light
Semi Standby

Figure 5-7 “Active” to “Semi Stand-by” flowchart

H_16770_112.eps
260307
2009-Oct-09
Service Modes, Error Codes, and Fault Finding
EN 25PB52.3HU LA 5.
Semi Stand by
If ambientlight functionality was used in semi -standby
(lampadaire mode), switch off ambient light
Delay transition until ramping down of ambient light is
finished . *)
transfer Wake up reasons to the Stand by µP.
Switch Memories to self- r efresh (this creates a more
stable condition when switching off the power).
Switch AVC system in reset state
action holder: MIPS
action holder: St-by
autonomous action
*) If this is not performed and the set is switched to standby when the sw itch off of the ambilights is still ongoing , the lights will switch off abruptly when the supply is cut.
Import ant remark:
release reset audio 10 sec after
entering standby to save power
Wait 10ms
Switch the NVM reset line HIGH.
Disable all supply related protections and switch off
the +1V8 and the +3V3 DC/DC converter
Wait 5ms
switch off the +1V2 DC/DC converters
Switch OFF all supplies by switching HIGH the POD -
MODE and the ON-MODE I/O lines.
Stand by
For PDP this means CPUGO becomes low.
H_16770_114.eps
260307

Figure 5-8 “Semi Stand-by” to “Stand-by” flowchart

2009-Oct-09
EN 26 PB52.3HU LA5.
Service Modes, Error Codes, and Fault Finding
action holder: MIPS
action holder: St-by
autonomous action
MP
Log the appropriate error and
set stand-by flag in NVM
Redefine wake up reasons for protection
state and transfer to stand-by µP.
Switch off LCD lamp supply
Wait 250ms (min. = 200ms)
Switch off LVDS signal
Switch off 12V LCD supply within a time frame of
min. 0.5ms to max. 50ms after LVDS switch off.
SP
Ask stand-by µP to enter protection state
Switch AVC in r ese t state
Wait 10ms
Switch the NVM reset line HIGH.
Disable all supply related protections and switch off
the +1V8 and the +3V3 DC/DC converter.
Wait 5ms
switch off the +1V2 DC/DC converter
Switch OFF a ll supplies by swit ching HI GH the POD -
MODE and the ON-MODE I/O lines .
2009-Oct-09
Flash the Protection-LED in order to indicate
protection state*.
Protection

Figure 5-9 “Protection” flowchart

(*): This can be the standby LED or the ON LED depending on the availability in the set under discussion .
H_16770_115.eps
290307
Service Modes, Error Codes, and Fault Finding
EN 27PB52.3HU LA 5.

5.5 Service Tools

5.5.1 ComPair

Introduction
ComPair (Computer Aided Repair) is a Service tool for Philips Consumer Lifestyle products. and offers the following:
1. ComPair helps you to quickly get an understanding on how to repair the chassis in a short and effective way.
2. ComPair allows very detailed diagnostics and is therefore capable of accurately indicating problem areas. You do not have to know anything about I yourself, because ComPair takes care of this.
3. ComPair speeds up the repair time since it can automatically communicate with the chassis (when the uP is working) and all repair information is directly available.
4. ComPair features TV software up possibilities.
Specifications
ComPair consists of a Windows based fault finding program and an interface box between PC and the (defective) product. The (new) ComPair II interface box is connected to the PC via an USB cable. For the TV chassis, the ComPair interface box and the TV communicate via a bi-directional cable via the service connector(s).
How to Connect
This is described in the ComPair chassis fault finding database.
TO
UART SERVICE
CONNECTOR
ComPair II
RC in
Optional
Switch
Power ModeLink/
Activity
RC out
2
C or UART commands
TO TV
TO I2C SERVICE CONNECTOR
Multi
function
UART SERVICE
CONNECTOR
2
C
I
TO
RS232 /UART
Note: If you encounter any problems, contact your local support desk.

5.6 Error Codes

5.6.1 Introduction

The error code buffer contains all detected errors since the last time the buffer was erased. The buffer is written from left to right, new errors are logged at the left side, and all other errors shift one position to the right. When an error occurs, it is added to the list of errors, provided the list is not full. When an error occurs and the error buffer is full, then the new error is not added, and the error buffer stays intact (history is maintained). To prevent that an occasional error stays in the list forever, the error is removed from the list after more than 50 hrs. of operation. When multiple errors occur (errors occurred within a short time span), there is a high probability that there is some relation between them.
Basically there are three kinds of errors:
Errors detected by the Stand-by software. These errors will always lead to protection and an automatic start of the blinking LED for the concerned error (see paragraph “The Blinking LED Procedure”). In these cases SDM can be used to start up (see chapter “Stepwise Start-up”). Note that it can take up to 90 seconds before the TV goes to protection and starts blinking the error (e.g. error 53)
Errors detected by main software that lead to protection. In this case the TV will go to protection and the front LED should also blink the concerned error. See also paragraph “Error Codes” -> “Error Buffer” -> “Extra Info”. For this chassis only error 63 is a protection error detected by main software.
Errors detected by main software that do not lead to protection. In this case the error will be logged into the error buffer and can be read out via ComPair, via blinking LED method, or in case you have picture, via SAM.
PC
ComPair II Developed by Philips Brugge
Optional power
HDMI
2
I
C only
5V DC
10000_036_090121.eps
090819
Figure 5-10 ComPair II interface connection
Caution: It is compulsory to connect the TV to the PC as
shown in the picture above (with the ComPair interface in between), as the ComPair interface acts as a level shifter. If one connects the TV directly to the PC (via UART), ICs will be blown!
How to Order
ComPair II order codes:
ComPair II interface: 312278591020.
Software is available via the Philips Service web portal.
ComPair RS232 cable: 310431112742 (to be used with chassis Q52x).

5.6.2 How to Read the Error Buffer

Use one of the following methods:
On screen via the SAM (only if you have a picture). E.g.: – 00 00 00 00 00: No errors detected – 06 00 00 00 00: Error code 6 is the last and only
detected error
09 06 00 00 00: Error code 6 was first detected and
error code 9 is the last detected error
Via the blinking LED procedure (when you have no picture). See next paragraph.
•Via ComPair.
Via CSM. when CSM is activated the blinking LED procedure will start and the CSM content will be written to a USB stick (if present).

5.6.3 How to Clear the Error Buffer

Use one of the following methods:
By activation of the “RESET ERROR BUFFER” command in the SAM menu.
With a normal RC, key in sequence “MUTE” followed by “062599” and “OK”.
If the content of the error buffer has not changed for 50+ hours, it resets automatically.

5.6.4 Error Buffer

In case of non-intermittent faults, clear the error buffer before you begin the repair (before clearing the buffer, write down the content, as this history can give you significant information). This to ensure that old error codes are no longer present.
2009-Oct-09
EN 28 PB52.3HU LA5.
Service Modes, Error Codes, and Fault Finding
If possible, check the entire contents of the error buffer. In some situations, an error code is only the result of another error code and not the actual cause (e.g., a fault in the protection detection circuitry can also lead to a protection). There are several mechanisms of error detection:
Via error bits in the status registers of ICs.
Via polling on I/O pins going to the stand-by processor.
Via sensing of analogue values on the stand-by processor or the PNX85xx.
Via a “not acknowledge” of an I
2
C communication.
Take notice that some errors need more than 90 seconds before they start blinking or before they will be logged. So in case of problems wait 2 minutes from start-up onwards, and then check if the front LED is blinking or if an error is logged.
Table 5-2 Error code overview
Error/
Error Description
3I2C3 E MIPS PNX85xx Error logged.
5 PNX85xx does
not boot (HW cause)
6 5V, 12V supply P Stby P / Protection + Error
8 1V2, 1V4, 2V5,
3V3 supply
9 Supply fault P Stby P / Protection + Error
2
C-MUX1 E MIPS PCA9540 Error logged.
11 I
12 I2C-MUX2 E MIPS PCA9540 Error logged.
22 PNX5050 E MIPS PNX5050 Error logged.
23 HDMI mux E MIPS AD8190/
24 I2C switch E MIPS PCA9540 Error logged.
26 Master IF E MIPS TDA9898/
28 MOP (Ambilight
MOP on DFI
1)
panel)
34 Tuner E MIPS TD1716 Error logged.
37 Channel decoder E MIPS TDA10060/
38 MPEG4 E MIPS STi71xx Error logged.
46 Pacific3 E MIPS T6TF4 Error blinking + Error
53 PNX85xx does
not boot (SW cause)
63 Power OK E/P M IPS / Error logged in case of
65 DFI (EPLD on
75 iBoard n.a. n.a. n.a. n.a.
76 Pro:Idiom n.a. n.a. n.a. n.a.
77 DMSD n.a. n.a. n.a. n.a.
DFI panel)
1)
Detected
Prot
by Device Result
E Stby P PNX85xx Error blinking.
blinking.
P Stby P / Protection + Error
AD8191
9897/9890
E MIPS EP2CXXF4
E Stby P PNX85xx Error blinking.
E MIPS / Error blinking + Error
84C7N
TDA10048
blinking.
blinking.
Error logged.
Error logged.
Error logged.
Error logged.
logged.
a PDP set. Protection in case of an LCD set.
logged.
Note
1) Where applicable.
Extra Info
Rebooting. When a TV is constantly rebooting due to internal problems, most of the time no errors will be logged or blinked. This rebooting can be recognized via a ComPair interface and Hyperterminal (for Hyperterminal settings, see paragraph “Stand-by software upgrade). You will see that the loggings which are generated by the main software keep continuing. In this case (rebooting) diagnose has to be done via ComPair.
Error 3 (I
2
C bus 3 blocked). At the time of release of this manual, this error was not working as expected (error 3 is logged and can be read out). Current situation: when this error occurs, the TV will constantly reboot due to the blocked bus. The best way for further diagnosis here, is to use ComPair (e.g. read out the NVM content). Instead of
error “3” it is possible you will see error “2” in the error buffer.
Error 5 (PNX85xx doesn’t boot). Indicates that the main processor was not able to read his bootscript. This error will point to a hardware problem around the PNX85xx (supplies not OK, PNX 8535 completely dead, I and Stand-by Processor broken, etc...). When error 5 occurs it is also possible that I
2
I
C2 can be indicated in the schematics as follows: SCL-
2
C link between PNX
2
C2 bus is blocked (NVM).
UP-MIPS, SDA-UP-MIPS, SCL-SLAVE, SDA-SLAVE, SCL-2 or SDA-2.
Error 11 (I
2
I
C-MUX1 bus. At the time of release of this manual, this
2
C MUX1). Indicates a blocked (short circuited)
error was not working as expected. Current situation: when this error occurs the TV will constantly reboot due to the blocked bus. The best way for further diagnosis, is to use ComPair (e.g. read out the NVM content).
Error 12 (I
2
I
C-MUX2 bus. At the time of release of this manual, this
2
C MUX2). Indicates a blocked (short circuited)
error was not working as expected. Current situation: when this error occurs the TV will constantly reboot due to the blocked bus. The best way for further diagnosis, is to use ComPair (e.g. read out the NVM content).
Error 24 (I
2
C switch). As a side effect of error 24 it is
possible that error 47(no existing error) will also be logged.
Error 28 (DFI Ambilight MOP). It can take up to 2 minutes or more before this error is logged. So if you suspect that this MOP is defective: clear the error buffer, restart the TV and wait for about 2 minutes before checking the error buffer.
Error 37 (Channel decoder). When this error occurs, there probably will be no picture and sound from tuner input. As a side effect of error 37 it is possible that error 4 (no existing error) is also logged.
Error 46 (Pacific 3). When there is an actual problem with or around the Pacific during start-up, you will have no picture and error 46 will be blinked via the blinking LED procedure. For further diagnosis you can always dump the CSM content on USB stick (see CSM) or use ComPair.
Error 53. This error will indicate that the PNX85xx has read his bootscript (if this would have failed, error 5 would blink) but initialization was never completed because of hardware problems (NAND flash, ...) or software initialization problems. Possible cause could be that there is no valid software loaded (try to upgrade to the latest main software version). Note that it can take up to 2 minutes before the TV starts blinking error 53.
Error 63 (POWER OK). When this error occurs, it means that the POWER-OK line did not became “high”. This error is only applicable for TV’s with an LCD display. For PDP displays there will be no protection during a POWER-OK line failure, but error 63 will be logged in the error buffer. Caution: in case a PDP TV ends up into power-ok protection, it can indicate that the display option code is set to “LCD”. To change the display option code to “PDP” you need to activate SDM via the service pads (see figure “Service mode pads”). Then change the display option code blindly via a standard RC: key in the code “062598” directly followed by the “MENU” button and “XXX” (where XXX is the 3 digit decimal display option code as mentioned in figure “Display option code overview”).
Error 65 (DFI EPLD error). When this error occurs it means that there is a problem with the I
2
C communication towards the EPLD (picture processing EPLD, not the Ambilight EPLD) on the DFI panel.
Error 75 - 77. These errors are introduced specifically for the iTV part of these sets.
2009-Oct-09
Service Modes, Error Codes, and Fault Finding
EN 29PB52.3HU LA 5.

5.7 The Blinking LED Procedure

5.7.1 Introduction

The blinking LED procedure can be split up into two situations:
In case of a protection. In this case the error is automatically blinked. This will be only one error, namely the one that is causing the protection. Therefore, you do not have to do anything special, just read out the blinks. A long blink indicates the decimal digit, a short blink indicates the units.
In the “on” state. Via this procedure, you can make the contents of the error buffer visible via the front LED. This is especially useful for fault finding, when there is no picture.
When the blinking LED procedure is activated in the “on” state, the front LED will show (blink) the contents of the error-buffer. Error-codes > 10 are shown as follows:
1. “n” long blinks (where “n” = 1 - 9) indicating decimal digit,
2. A pause of 1.5 s,
3. “n” short blinks (where “n”= 1 - 9),
4. A pause of approximately 3 s,
5. When all the error-codes are displayed, the sequence finishes with a LED blink of 3 s,
6. The sequence starts again.
Example: Error 12 8 6 0 0. After activation of the SDM, the front LED will show:
1. 1 long blink of 750 ms (which is an indication of the decimal digit) followed by a pause of 1.5 s,
2. 2 short blinks of 250 ms followed by a pause of 3 s,
3. 8 short blinks followed by a pause of 3 s,
4. 6 short blinks followed by a pause of 3 s,
5. 1 long blink of 3 s to finish the sequence,
6. The sequence starts again.
Remark on the Supply Errors
The detection of a supply dip or supply loss during the normal playing of the set does not lead to a protection, but to a cold reboot of the set. If the supply is still missing after the reboot, the TV will go to protection.
Protections during Start-up
During TV start-up, some voltages and IC observers are actively monitored to be able to optimize the start-up speed, and to assure good operation of all components. If these monitors do not respond in a defined way, this indicates a malfunction of the system and leads to a protection. As the observers are only used during start-up, they are described in the start-up flow in detail (see paragraph “Stepwise Start-up”).

5.8.2 Hardware Protections

The only real hardware protection in this chassis is (in case of an audio problem) the audio protection circuit that will switch “off” immediately the supply of the SSB. The supply will buzz during the protection and +12VS drops to approximately 5V5 and +5V Stand-by to approximately to 1V9. Other indication of the audio protection is that the red LED lights up with an intensity of 50%.
Repair Tips
It is also possible that you have an audio DC protection because of an interruption in one or both speakers (the DC voltage that is still on the circuit cannot disappear through the speakers). Caution: (dis)connecting the speaker wires during the ON state of the TV at high volume can damage the audio amplifier.

5.9 Fault Finding and Repair Tips

5.7.2 How to Activate

Use one of the following methods:
Activate the SDM or CSM. The blinking front LED will show the entire contents of the error buffer (this works in “normal operation” mode).
Transmit the commands “MUTE” - “062500” - “OK” with a normal RC. The complete error buffer is shown. Take notice that it takes some seconds before the blinking LED starts.
Transmit the commands “MUTE” - “06250x” - “OK” with a normal RC (where “x” is a number between 1 and
5). When x= 1 the last detected error is shown, x= 2 the
second last error, etc.... Take notice that it takes some
seconds before the blinking LED starts.

5.8 Protections

5.8.1 Software Protections

Most of the protections and errors use either the stand-by microprocessor or the MIPS controller as detection device. Since in these cases, checking of observers, polling of ADCs, and filtering of input values are all heavily software based, these protections are referred to as software protections. There are several types of software related protections, solving a variety of fault conditions:
Protections related to supplies: check of the 12V, +5V, +1V2, +1V4, 2V5 and +3V3.
Protections related to breakdown of the safety check mechanism. E.g. since the protection detections are done by means of software, failing of the software will have to initiate a protection mode since safety cannot be guaranteed any more.
Read also paragraph “Error Codes” -> “Error Buffer” -> “Extra Info”.

5.9.1 Ambilight

Due to a degeneration process of the AmbiLight, it is recommended to change all ambilight units in case one unit needs to be repaired.

5.9.2 CSM

When you activate CSM and there is a USB stick connected to the TV, the software will dump the complete CSM content to the USB stick. The file (Csm.txt) will be saved in the root of your USB stick. If this mechanism works you can conclude that a large part of the operating system is already working (MIPS, USB...)

5.9.3 DC/DC Converter

Introduction
The best way to find a failure in the DC-DC converters is to check their starting-up sequence at “power-on via the mains cord”, presuming that the standby microprocessor is operational.
If the input voltage of DC-DC converters is around 12.7V (measured on decoupling capacitors (2U01 and 2U02) and the enable signals are “low” (active), then the output voltages should have their normal values. +12V and +5V­POD supplies start-up first (enabled by POD-MODE signal from the standby microprocessor). There is a supplementary condition for +12V to start-up: if +5V-POD does not start up due to a local defect, then +12V will not be available as well. +5V-ON supply is enabled by the ON­MODE signal (coming also from the standby microprocessor) and is coming up a little bit later (20 ms) due to the slower rise time needed to charge the USB
2009-Oct-09
EN 30 PB52.3HU LA5.
Service Modes, Error Codes, and Fault Finding
decoupling capacitor 2N31. +1V2 supply starts-up when +12V appears, then at least 100 ms later, +1V8, +2V5 and +3V3 will be activated via the ENABLE-3V3 signal from the standby microprocessor. If +12V value is less than 10 V then the last enumerated voltages will not show-up due to the under-voltage detection circuit 6U10 + 7U10 and surrounding components. Furthermore, if +12V is less than 8V then also +1V2 will not be available. The third DC-DC convertor that delivers +1V4 out of +12V is started up when the ENABLE-1V2 becomes active (low) and +12V is present. The +Vtun generator (present only for the analogue version of China platforms) will generate +33V for the analogue tuner as soon as the 12V/3.3V DC-DC converter will start to operate.
The consumption of controller IC 7U00 is around 19 mA (that means almost 200 mV drop voltage across resistor 3U01) and the consumption of controller IC 7U64 is around 12 mA.
The current capability of DC-DC converters is quite high (short-circuit current is 7 to 10 A), therefore if there is a linear integrated stabiliser that, for example, delivers 1.8V from +3V3 with its output overloaded, the +3V3 stays usually at its normal value even though the consumption from +3V3 increases significantly.
The +1V8 and +2V5 supply voltages are obtained via linear stabilizer made with discrete components that can deliver a lot of current, therefore in case +1V8 or +2V5 are short­circuited to GND then +3V3 will not have the normal value but much less.
The SUPPLY-FAULT signal (active low) is an internal protection (error 9) of the DC-DC convertor and will occur if the output voltage of any DC-DC convertor is out of limits (10% of the normal value).
Fault Finding
Symptom: +1V2 not present (even for a short while ~10 ms)
1. Check 12 V availability (resistor 3U01, MOS-FETs
7U03 and 7U08), and +5V-POD.
2. Check the voltage on pin 9 (1.5 V),
3. Check for +1V2 output voltage short-circuit to GND that
can generate pulsed over-currents 7...10 A through coil 5U02.
4. Check the over-current detection circuit (2U20 or 3U40
interrupted).
Symptom: +1V4 not present (even for a short while ~10ms) while +12V is okay (also across input capacitors and ).
1. Check resistor and power MOS-FETs -1/2
2. Check the voltage on pin 4 (4 V)
3. Check enable signal ENABLE-1V2 (active “low”)
4. Check for +1V4 output voltage short-circuit to GND that
can generate pulsed over-currents 7...10 A through coil
5. Check the over-current detection reference( + ) and the
boot components ( + ).
Symptom: +1V2 present for about 100ms, +1V8, +2V5 and +3V3 not rising.
1. Check the ENABLE-3V3 signal (active “low”),
2. Check the voltage on pin 8 (1.5 V),
3. Check the under-voltage detection circuit (the voltage
on collector of transistor 7U10-1 should be less than
0.8 V),
4. Check for output voltages short-circuits to GND (+3V3,
+2V5 and +1V8) that can generate pulsed over­currents 7...10 A through coil 5U01,
5. Check the over-current detection circuit (2U18 or 3U31
interrupted).
Symptom: +1V2 OK, +2V5 and +3V3 present for about 100 ms. Possible cause: SUPPLY-FAULT line stays “low” even though the +3V3 and +1V2 is available - the standby microprocessor is detecting that and switching “off” all supply voltages.
1. Check the drop voltage across resistor 3U01 or 3U7B
(they could be too high, meaning a defective controller IC or MOS-FETs),
2. Check if the boost voltage on pin 4 of controller IC 7U00 is less than 14 V (should be 19 V),
3. Check if +1V2 or +3V3 are higher than their normal values - that can be due to defective DC feedback of the respective DC-DC convertor (ex. 3U47, 3U77, or 3U70).
Symptom: +1V2, +1V4, +1V8, +2V5 or +3V3 shows a high level of ripple voltage (audible noise can come from the filtering coils 5U01 or 5U02). Possible cause: instability of the frequency and/or duty cycle of a DC-DC converter or stabilizer.
1. Check the resistor 3U32 and 3U7B, capacitors 2U17
and 2U19, input and output decoupling capacitors.
2. Check a.c. feedback circuits
(2U23+2U24+3U55+3U63 for +1V2, and 2U07+2U08+3U17+3U24 for +3V3), compensation capacitors 2U34, 2U36, 2U37, 2U40 and 2U68.
Symptom: +1V2, +1V4, +2V5 and +3V3 ok, no +Vtun (analogue sets only). Possible cause: the “+VTUN GENERATOR” circuit (7U24+7U26+surrounding components) is defective: check transistor 7U24 (it has to have gate voltage pulses of about 10 V amplitude and drain voltage pulses of about 35 V amplitude) and surroundings components. A high consumption (more than 6 mA) from +Vtun voltage can cause also +Vtun voltage to be too low or zero.
Note: when a pair of power MOSFETs (7U01+7U06 or 7U03+7U08) becomes defective the controller IC 7U00 should be replaced as well.

5.9.4 Exit “Factory Mode”

When an “F” is displayed in the screen’s right corner, this means that the set is in “Factory” mode, and it normally happens after a new SSB has been mounted. To exit this mode, push the “VOLUME minus” button on the TV’s keyboard control for 5 seconds and restart the set.
2009-Oct-09
Loading...
+ 82 hidden pages