NEC PA836TF Technical data

PRELIMINARY DATA SHEET
Silicon Transistor
µµµµ
PA836TF
NPN SILICON EPITAXIAL TRANSISTOR (WITH 2 DIFFERENT ELEMENTS)
IN A 6-PIN THIN-TYPE SMALL MINI MOLD PACKAGE
DESCRIPTION PACKAGE DRAWINGS (Unit:mm)
The µPA836TF has two different built-in transistors (Q1 and Q2) for low noise amplification in the VHF band to UHF band.
FEATURES
•Low noise
Q1 : NF = 1.5 dB TYP. @f = 2 GHz, VCE = 3 V, IC = 3 mA
Q2 : NF = 1.7 dB TYP. @f = 2 GHz, VCE = 1 V, IC = 3 mA
•High gain
Q1 : |S
Q2 : |S
•6-pin thin-type small mini mold package
•2 different transistors on-chip (2SC5193, 2SC4959)
2
21e
|
= 8.5 dB TYP. @f = 2 GHz, VCE = 3 V, IC = 10 mA
2
21e
|
= 3.5 dB TYP. @f = 2 GHz, VCE = 1 V, IC = 3 mA
ON-CHIP TRANSISTORS
1.30
2.00±0.2
0.60±0.1
0.65
0.65
0.45
2.10±0.1
1.25±0.1
V47
321
0 to 0.1
456
+0.1
0.05
0.22
0.13±0.05
Q1 Q2
3-pin small mini mold part No. 2SC4959 2SC5193
The µPA833TF features the Q1 and Q2 in inverted positions.
ORDERING INFORMATION
PART NUMBER QUANTITY PACKING STYLE
µ
PA836TF
µ
PA836TF-T1
Caution is required concerning excess input, such as from static electricity, because the high-frequency process is used for this device.
Loose products
(50 pcs)
Taping products
(3 kpcs/reel)
The information in this document is subject to change without notice.
8-mm wide embossed tape. Pin 6 (Q1 Base), pin 5 (Q2 Emitter), and pin 4 (Q2 Base) face perforated side of tape.
PIN CONFIGURATION (Top View)
B1
E2 B2
654
Q1 Q2
321
C1 E1 C2
PIN CONNECTIONS
1. Collector (Q1)
2. Emitter (Q1)
3. Collector (Q2)
4. Base (Q2)
5. Emitter (Q2)
6. Base (Q1)
Document No. P12728EJ1V0DS00 (1st edition) Date Published August 1997 N Printed in Japan
1997©
µµµµ
PA836TF
ABSOLUTE MAXIMUM RATINGS (TA = 25
Collector to base voltage V Collector to emitter voltage V Emitter to base voltage V Collector current I Total power dissipation P
Junction temperature T Storage temperature T
Note
110 mW must not be exceeded for 1 element.
(1) Q1
CBO
CEO
EBO
C
T
j
stg
ELECTRICAL CHARACTERISTICS
°°°°
C)
RATING
Q1 Q2
99V 66V 22V
30 100 mA
150 in 1 element 150 in 1 element mW
200 in 2 elements
Note
150 150
65 to +150
UNITSYMBOLPARAMETER
°
C
°
C
PARAMETER SYMBOL CONDITION MIN. TYP. MAX. UNIT
Collector cutoff current I Emitter cutoff current I DC current gain h Gain bandwidth product f Feedback capacitance C Insertion power gain
CBO
EBO
FE
T
|
21e
S
VCB = 5 V, IE = 0 0.1 VEB = 1 V, IC = 0 0.1 VCE = 3 V, IC = 10 mA
Note 1
75 150 VCE = 3 V, IC = 10 mA, f = 2 GHz 12 GHz VCB = 3 V, IE = 0, f = 1 MHz
re
2
|
VCE = 3 V, IC = 10 mA, f = 2 GHz 7 8.5 dB
Note 2
0.4 0.7 pF
Noise figure NF VCE = 3 V, IC = 3 mA, f = 2 GHz 1.5 2.5 dB
Notes 1.
Pulse measurement: PW ≤ 350 Collector to base capacitance when measured with capacitance meter (automatic balanced bridge
2.
s, Duty cycle ≤ 2%
µ
method), with emitter connected to guard pin of capacitance meter.
µ
A
µ
A
2
µµµµ
PA836TF
(2) Q2
ELECTRICAL CHARACTERISTICS
PARAMETER SYMBOL CONDITION MIN. TYP. MAX. UNIT Collector cutoff current I Emitter cutoff current I DC current gain h Gain bandwidth product (1) f Gain bandwidth product (2) f Feedback capacitance C Insertion power gain (1) Insertion power gain (2) Noise figure (1) NF VCE = 1 V, IC = 3 mA, f = 2 GHz 1.7 2.5 dB Noise figure (2) NF VCE = 3 V, IC = 7 mA, f = 2 GHz 1.5 dB
CBO
EBO
FE
T
T
|
21e
S
|
21e
S
VCB = 5 V, IE = 0 0.1 VEB = 1 V, IC = 0 0.1 VCE = 1 V, IC = 3 mA
Note 1
100 145 VCE = 1 V, IC = 3 mA, f = 2 GHz 4.0 4.5 GHz VCE = 3 V, IC = 20 mA, f = 2 GHz 9.0 GHz VCB = 1 V, IE = 0, f = 1 MHz
re
2
|
VCE = 1 V, IC = 3 mA, f = 2 GHz 2.5 3.5 dB
2
|
VCE = 3 V, IC = 20 mA, f = 2 GHz 6.5 dB
Note 2
0.75 0.85 pF
µ
A
µ
A
Notes 1.
Pulse measurement: PW ≤ 350 Collector to base capacitance when measured with capacitance meter (automatic balanced bridge
2.
method), with emitter connected to guard pin of capacitance meter.
hFE CLASSIFICATION
Rank FB Marking V47 hFE value of Q1 75 to 150 hFE value of Q2 100 to 145
s, Duty cycle ≤ 2%
µ
3
µµµµ
PA836TF
TYPICAL CHARACTERISTICS (TA = 25
Q1 Q2
Total Power Dissipation vs. Ambient Temperature
200
(mW)
T
Q1 when using 1 element
100
Total power dissipation P
0 50 100 150
Ambient temperature T
Collector Current vs. DC Base Voltage
2 elements in total
50
V
CE
= 3 V
40
(mA)
C
30
20
Collector current I
10
0
0.5 1.0
DC base voltage V
Free Air
Q1 when using 2 elements
A
(°C)
BE
(V)
°°°°
C)
Total Power Dissipation vs. Ambient Temperature
Free Air
200
(mW)
T
2 elements in total
Q2 when using 1 element
Q2 when using 2 elements
100
Total power dissipation P
0
50 100 150
A
Ambient temperature T
(°C)
Collector Current vs. DC Base Voltage
100
V
CE
50
= 1 V
20 10
(mA)
5
C
2 1
0.5
0.2
0.1
Collector current I
0.05
0.02
0.01 0 0.5 1
DC base voltage V
BE
(V)
Collector Current vs. Collector to Emitter Voltage
60
µ
500 A
50
(mA)
C
40
30
µ
400 A
µ
300 A
µ
200 A
20
µ
I
B
Collector current I
10
0 246
135
Collector to emitter voltage V
= 100 A
CE
(V)
4
Collector Current vs. Collector to Emitter Voltage
30
µ
200 A
µ
180 A
µ
(mA)
20
C
10
Collector current I
160 A
µ
140 A
µ
120 A
µ
100 A
80 A
µ µ
60 A
µ
40 A
IB = 20 A
0 123456
Collector to emitter voltage V
CE
(V)
µ
Loading...
+ 8 hidden pages