National Semiconductor MM54HC190, MM54HC191, MM74HC190, MM74HC191 Service Manual

MM54HC190/MM74HC190 Synchronous Decade Up/Down Counters with Mode Control MM54HC191/MM74HC191 Synchronous Binary Up/Down Counters with Mode Control
These high speed synchronous counters utilize advanced silicon-gate CMOS technology. They possess the high noise immunity and low power consumption of CMOS technology, along with the speeds of low power Schottky TTL.
These circuits are synchronous, reversible, up/down count­ers. The MM54HC191/MM74HC191 are 4-bit binary count­ers and the MM54HC190/MM74HC190 are BCD counters. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change simulta­neously when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.
The outputs of the four master-slave flip-flops are triggered on a low-to-high level transition of the clock input, if the enable input is low. A high at the enable input inhibits count­ing. The direction of the count is determined by the level of the down/up input. When low, the counter counts up and when high, it counts down.
These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change independent of the level of the clock in­put. This feature allows the counters to be used as modulo-
N dividers by simply modifying the count length with the preset inputs.
Two outputs have been made available to perform the cas­cading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accom­plish look-ahead for high-speed operation.
Features
Y
Level changes on Enable or Down/Up can be made re­gardless of the level of the clock input
Y
Wide power supply range: 2–6V
Y
Low quiescent supply current: 80 mA maximum (74HC Series)
Y
Low input current: 1 mA maximum
MM54HC190/MM74HC190/MM54HC191/MM74HC191
January 1988
Connection Diagram
Dual-In-Line Package
Load
Order Number MM54HC190/191 or MM74HC190/191
Top View
C
1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.
TL/F/5322
TL/F/5322– 1
Enable Down/
GUp
HL L HL H L X X X Load H H X X No Change
Asynchronous inputs Low input to load sets Q
e
Q
B, Q
B
Clock Function
e
C, and Q
C
e
D
Count Up
Count Down
e
A,
A
u u
D
Absolute Maximum Ratings (Notes1&2)
Operating Conditions
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (V
CC
)
DC Input Voltage (VIN)
DC Output Voltage (V
OUT
)
Clamp Diode Current (IIK,IOK)
DC Output Current, per pin (I
OUT
)
DC VCCor GND Current, per pin (ICC)
Storage Temperature Range (T
STG
b
b
)
b
0.5 toa7.0V
1.5 to V
CC
0.5 to V
CC
g
g
b
g
65§Ctoa150§C
a
1.5V
a
0.5V
20 mA
25 mA
50 mA
Power Dissipation (PD)
Supply Voltage (V
)26V
CC
DC Input or Output Voltage 0 V
(V
IN,VOUT
)
Operating Temp. Range (TA)
MM74HC MM54HC
Input Rise or Fall Times
e
V
2.0V(tr,tf) 1000 ns
CC
e
V
4.5V 500 ns
CC
e
V
6.0V 400 ns
CC
(Note 3) 600 mW S.O. Package only 500 mW
Lead Temp. (T
) (Soldering 10 seconds) 260§C
L
DC Electrical Characteristics (Note 4)
Symbol Parameter Conditions V
CC
A
e
T
25§C
Typ Guaranteed Limits
V
IH
Minimum High Level 2.0V 1.5 1.5 1.5 V Input Voltage 4.5V 3.15 3.15 3.15 V
6.0V 4.2 4.2 4.2 V
V
IL
Maximum Low Level 2.0V 0.5 0.5 0.5 V Input Voltage** 4.5V 1.35 1.35 1.35 V
6.0V 1.8 1.8 1.8 V
V
OH
Minimum High Level V Output Voltage
e
VIHor V
l
IN
I
OUT
IL
s
20 mA 2.0V 2.0 1.9 1.9 1.9 V
l
4.5V 4.5 4.4 4.4 4.4 V
6.0V 6.0 5.9 5.9 5.9 V
e
V
VIHor V
IN
I
l
OUT
I
l
OUT
l
IN
I
OUT
e
V
OL
Maximum Low Level V Output Voltage
IL
s
4.0 mA 4.5V 4.2 3.98 3.84 3.7 V
l
s
5.2 mA 6.0V 5.7 5.48 5.34 5.2 V
l
VIHor V
IL
s
20 mA 2.0V 0 0.1 0.1 0.1 V
l
4.5V 0 0.1 0.1 0.1 V
6.0V 0 0.1 0.1 0.1 V
e
V
VIHor V
IN
I
l
OUT
I
l
OUT
I
IN
I
CC
Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground.
Note 3: Power Dissipation temperature derating Ð plastic ‘‘N’’ package:
Note 4: For a power supply of 5V
with this supply. Worst case V I
**V
Maximum Input V Current
Maximum Quiescent V Supply Current I
g
and VILoccur at V
) occur for CMOS at the higher voltage and so the 6.0V values should be used.
OZ
limits are currently tested at 20% of VCC. The above VILspecification (30% of VCC) will be implemented no later than Q1, CY’89.
IL
IH
e
IN
e
IN
OUT
10% the worst case output voltages (VOH, and VOL) occur for HC at 4.5V. Thus the 4.5V values should be used when designing
IL
s
4.0 mA 4.5V 0.2 0.26 0.33 0.4 V
l
s
5.2 mA 6.0V 0.2 0.26 0.33 0.4 V
l
VCCor GND 6.0V
g
0.1
VCCor GND 6.0V 8.0 80 160 mA
e
0 mA
b
12 mW/§C from 65§Cto85§C; ceramic ‘‘J’’ package:b12 mW/§C from 100§Cto125§C.
e
5.5V and 4.5V respectively. (The VIHvalue at 5.5V is 3.85V.) The worst case leakage current (IIN,ICC, and
CC
74HC 54HC
eb
T
40 to 85§CT
A
g
1.0
Min Max Units
V
§
§
Units
b b
40 55
eb
A
55 to 125§C
g
CC
a
85
a
125
1.0 mA
C C
2
AC Electrical Characteristics T
Symbol Parameter
f
MAX
t
PLH,tPHL
t
PLH,tPHL
t
PLH,tPHL
t
PLH,tPHL
t
PLH,tPHL
t
PLH,tPHL
t
PLH,tPHL
t
PHL,tPLH
t
W
Maximum Clock 40 MHz Frequency
Maximum Propagation Delay Time Load QA,Q
Maximum Propagation Delay Time Data A, QA,Q
Maximum Propagation Delay Time Clock Ripple 16 ns
Maximum Propagation Delay Time Clock QA,Q
Maximum Propagation Delay Time Clock Max/Min 30 ns Maximum Propagation Delay Time Down/Up Ripple 29 ns
Maximum Propagation Delay Time Down/Up Max/Min 22 ns Maximum Propagation Delay Time Enable Ripple Clock 22 ns Minimum Clock, Clear or Load 10 ns
Input Pulse Width
A
e
25§C, V
e
e
CC
5.0V, t
e
t
6 ns, C
r
f
From To
(Input) (Output)
B, C, D Q
e
15 pF (unless otherwise specified)
L
Typ Units
Q
B
C,QD
B
C,QD
30 ns
27 ns
Clock
Q
B
C,QD
24 ns
Clock
AC Electrical Characteristics V
Symbol Parameter
f
MAX
t
PLH,tPHL
t
PLH,tPHL
t
PLH,tPHL
t
PLH,tPHL
Maximum Clock 2.0V 9 4.0 3.5 2.6 MHz Frequency 4.5V 30 20 16 13 MHz
Maximum Propagation Load QA,QB2.0V 80 220 275 330 ns Delay Time Q
Maximum Propagation Data A, QA,QB2.0V 71 200 250 300 ns Delay Time B, C, D Q
Maximum Propagation Clock Ripple 2.0V 44 125 155 190 ns Delay Time Clock 4.5V 25 25 31 38 ns
Maximum Propagation Clock QA,QB2.0V 83 215 270 325 ns Delay Time QC,QD4.5V 29 43 54 65 ns
From To T
(Input) (Output)
e
2.0V to 6.0V, C
CC
V
CC
e
L
e
25§C
A
50 pF, t
e
e
t
6 ns (unless otherwise specified)
r
f
74HC 54HC
eb
T
40 to 85§CT
A
A
eb
Typ Guaranteed Limits
6.0V 36 24 19 15 MHz
4.5V 27 44 55 66 ns
C,QD
6.0V 21 37 47 56 ns
4.5V 25 40 50 60 ns
C,QD
6.0V 19 34 43 51 ns
6.0V 14 21 26 32 ns
6.0V 22 37 46 55 ns
55 to 125§C Units
3
Loading...
+ 5 hidden pages