Intel L- and H-Tile Transceiver PHY User Manual

L- and H-Tile Transceiver PHY User Guide

Subscribe
Send Feedback
UG-20055 | 2021.03.29
Latest document on the web: PDF | HTML

Contents

Contents
1. Overview........................................................................................................................ 7
1.1.1. Intel Stratix 10 GX/SX H-Tile Configurations..................................................8
1.1.2. Intel Stratix 10 TX H-Tile and E-Tile Configurations.......................................10
1.1.3. Intel Stratix 10 MX H-Tile and E-Tile Configurations...................................... 12
1.2. L-Tile/H-Tile Counts in Intel Stratix 10 Devices and Package Variants.......................... 14
1.3. L-Tile/H-Tile Building Blocks...................................................................................16
1.3.1. Transceiver Bank Architecture....................................................................17
1.3.2. Transceiver Channel Types........................................................................ 17
1.3.3. GX and GXT Channel Placement Guidelines..................................................19
1.3.4. GXT Channel Usage..................................................................................19
1.3.5. PLL and Clock Networks............................................................................ 20
1.3.6. Ethernet Hard IP......................................................................................23
1.3.7. PCIe Gen1/Gen2/Gen3 Hard IP Block..........................................................25
1.4. Overview Revision History.....................................................................................28
2. Implementing the Transceiver PHY Layer in L-Tile/H-Tile............................................ 30
2.1. Transceiver Design IP Blocks................................................................................. 30
2.2. Transceiver Design Flow........................................................................................31
2.2.1. Select the PLL IP Core.............................................................................. 31
2.2.2. Reset Controller ......................................................................................32
2.2.3. Create Reconfiguration Logic..................................................................... 32
2.2.4. Connect the Native PHY IP Core to the PLL IP Core and Reset Controller..........32
2.2.5. Connect Datapath ................................................................................... 33
2.2.6. Modify Native PHY IP Core SDC..................................................................33
2.2.7. Compile the Design.................................................................................. 33
2.2.8. Verify Design Functionality........................................................................ 33
2.3. Configuring the Native PHY IP Core........................................................................ 34
2.3.1. Protocol Presets.......................................................................................35
2.3.2. GXT Channels..........................................................................................36
2.3.3. General and Datapath Parameters .............................................................36
2.3.4. PMA Parameters...................................................................................... 39
2.3.5. PCS-Core Interface Parameters..................................................................42
2.3.6. Analog PMA Settings Parameters................................................................47
2.3.7. Enhanced PCS Parameters ........................................................................53
2.3.8. Standard PCS Parameters......................................................................... 57
2.3.9. PCS Direct Datapath Parameters............................................................... 61
2.3.10. Dynamic Reconfiguration Parameters........................................................ 61
2.3.11. Generation Options Parameters................................................................64
2.3.12. PMA, Calibration, and Reset Ports.............................................................64
2.3.13. PCS-Core Interface Ports.........................................................................67
2.3.14. Enhanced PCS Ports............................................................................... 74
2.3.15. Standard PCS Ports................................................................................ 80
2.3.16. Transceiver PHY PCS-to-Core Interface Reference Port Mapping.................... 86
2.3.17. IP Core File Locations............................................................................104
2.4. Using the Intel Stratix 10 L-Tile/H-Tile Transceiver Native PHY Intel Stratix 10 FPGA
IP Core.......................................................................................................... 106
L- and H-Tile Transceiver PHY User Guide
2
Send Feedback
Contents
2.4.1. PMA Functions....................................................................................... 108
2.4.2. PCS Functions........................................................................................110
2.4.3. Deterministic Latency Use Model.............................................................. 145
2.4.4. Debug Functions.................................................................................... 153
2.5. Implementing the PHY Layer for Transceiver Protocols.............................................163
2.5.1. PCI Express (PIPE)................................................................................ 163
2.5.2. Interlaken............................................................................................ 213
2.5.3. Ethernet............................................................................................... 220
2.5.4. CPRI....................................................................................................226
2.6. Unused or Idle Transceiver Channels.....................................................................232
2.7. Simulating the Native PHY IP Core........................................................................235
2.7.1. How to Specify Third-Party RTL Simulators ............................................... 235
2.7.2. Scripting IP Simulation............................................................................237
2.7.3. Custom Simulation Flow..........................................................................239
2.8. Implementing the Transceiver Native PHY Layer in L-Tile/H-Tile Revision History......... 242
3. PLLs and Clock Networks............................................................................................ 249
3.1. PLLs................................................................................................................. 251
3.1.1. ATX PLL................................................................................................ 251
3.1.2. fPLL......................................................................................................266
3.1.3. CMU PLL............................................................................................... 273
3.2. Input Reference Clock Sources............................................................................278
3.2.1. Dedicated Reference Clock Pins...............................................................279
3.2.2. Receiver Input Pins.................................................................................281
3.2.3. PLL Cascading as an Input Reference Clock Source..................................... 282
3.2.4. Reference Clock Network.........................................................................282
3.2.5. Core Clock as an Input Reference Clock.....................................................282
3.3. Transmitter Clock Network...................................................................................283
3.3.1. x1 Clock Lines....................................................................................... 283
3.3.2. x6 Clock Lines....................................................................................... 284
3.3.3. x24 Clock Lines......................................................................................286
3.3.4. GXT Clock Network.................................................................................289
3.3.5. HCLK Network....................................................................................... 291
3.4. Clock Generation Block....................................................................................... 292
3.5. FPGA Fabric-Transceiver Interface Clocking............................................................ 294
3.6. Double Rate Transfer Mode..................................................................................295
3.7. Transmitter Data Path Interface Clocking...............................................................295
3.8. Receiver Data Path Interface Clocking...................................................................297
3.9. Channel Bonding................................................................................................299
3.9.1. PMA Bonding......................................................................................... 299
3.9.2. PMA and PCS Bonding.............................................................................300
3.9.3. Selecting Channel Bonding Schemes.........................................................301
3.9.4. Skew Calculations.................................................................................. 302
3.10. PLL Cascading Clock Network.............................................................................302
3.11. Using PLLs and Clock Networks.......................................................................... 304
3.11.1. Non-bonded Configurations....................................................................304
3.11.2. Bonded Configurations.......................................................................... 308
3.11.3. Implementing PLL Cascading..................................................................311
3.11.4. Mix and Match Example.........................................................................312
3.12. PLLs and Clock Networks Revision History............................................................315
Send Feedback
L- and H-Tile Transceiver PHY User Guide
3
Contents
4. Resetting Transceiver Channels.................................................................................. 319
4.1. When Is Reset Required? ................................................................................... 319
4.2. Transceiver PHY Reset Controller Intel Stratix 10 FPGA IP Implementation................. 320
4.3. How Do I Reset?................................................................................................ 321
4.3.1. Recommended Reset Sequence................................................................321
4.3.2. Transceiver Blocks Affected by Reset and Power-down Signals......................332
4.4. Using PCS Reset Status Port................................................................................ 332
4.5. Using Transceiver PHY Reset Controller Intel Stratix 10 FPGA IP............................... 332
4.5.1. Parameterizing Transceiver PHY Reset Controller Intel Stratix 10 FPGA IP.......334
4.5.2. Transceiver PHY Reset Controller Intel Stratix 10 FPGA IP Parameters............334
4.5.3. Transceiver PHY Reset Controller Intel Stratix 10 FPGA IP Interfaces............. 336
4.5.4. Transceiver PHY Reset Controller Intel Stratix 10 FPGA IP Resource Utilization340
4.6. Using a User-Coded Reset Controller.....................................................................340
4.6.1. User-Coded Reset Controller Signals......................................................... 341
4.7. Combining Status or PLL Lock Signals with User Coded Reset Controller.................... 342
4.8. Resetting Transceiver Channels Revision History.....................................................343
5. Intel Stratix 10 L-Tile/H-Tile Transceiver PHY Architecture........................................ 344
5.1. PMA Architecture................................................................................................344
5.1.1. Transmitter PMA.....................................................................................344
5.1.2. Receiver PMA.........................................................................................346
5.2. Enhanced PCS Architecture..................................................................................354
5.2.1. Transmitter Datapath..............................................................................354
5.2.2. Receiver Datapath..................................................................................361
5.2.3. RX KR FEC Blocks...................................................................................367
5.3. Intel Stratix 10 Standard PCS Architecture............................................................ 367
5.3.1. Transmitter Datapath..............................................................................368
5.3.2. Receiver Datapath..................................................................................373
5.4. Intel Stratix 10 PCI Express Gen3 PCS Architecture................................................ 387
5.4.1. Transmitter Datapath..............................................................................388
5.4.2. Receiver Datapath..................................................................................389
5.4.3. PIPE Interface........................................................................................390
5.5. PCS Support for GXT Channels.............................................................................390
5.6. Square Wave Generator...................................................................................... 390
5.7. PRBS Pattern Generator...................................................................................... 391
5.8. PRBS Pattern Verifier.......................................................................................... 392
5.9. Loopback Modes................................................................................................ 392
5.10. Intel Stratix 10 L-Tile/H-Tile Transceiver PHY Architecture Revision History............... 394
6. Reconfiguration Interface and Dynamic Reconfiguration............................................ 396
6.1. Reconfiguring Channel and PLL Blocks...................................................................397
6.2. Interacting with the Reconfiguration Interface........................................................397
6.2.1. Reading from the Reconfiguration Interface............................................... 399
6.2.2. Writing to the Reconfiguration Interface.................................................... 399
6.3. Multiple Reconfiguration Profiles...........................................................................400
6.3.1. Configuration Files..................................................................................401
6.3.2. Embedded Reconfiguration Streamer........................................................ 403
6.4. Arbitration.........................................................................................................405
6.5. Recommendations for Dynamic Reconfiguration......................................................407
6.6. Steps to Perform Dynamic Reconfiguration............................................................ 407
6.6.1. Channel Reconfiguration..........................................................................409
L- and H-Tile Transceiver PHY User Guide
4
Send Feedback
Contents
6.6.2. PLL Reconfiguration................................................................................ 410
6.7. Direct Reconfiguration Flow................................................................................. 411
6.8. Native PHY IP or PLL IP Core Guided Reconfiguration Flow....................................... 412
6.9. Reconfiguration Flow for Special Cases..................................................................413
6.9.1. Switching Transmitter PLL....................................................................... 414
6.9.2. Switching Reference Clocks..................................................................... 416
6.9.3. Reconfiguring Between GX and GXT Channels............................................ 420
6.10. Changing Analog PMA Settings.......................................................................... 420
6.11. Ports and Parameters........................................................................................421
6.12. Dynamic Reconfiguration Interface Merging Across Multiple IP Blocks...................... 426
6.13. Embedded Debug Features................................................................................ 428
6.13.1. Native PHY Debug Master Endpoint (NPDME)............................................428
6.13.2. Optional Reconfiguration Logic............................................................... 429
6.14. Timing Closure Recommendations...................................................................... 430
6.15. Unsupported Features.......................................................................................432
6.16. Transceiver Register Map................................................................................... 433
6.17. Reconfiguration Interface and Dynamic Revision History........................................ 433
7. Calibration.................................................................................................................. 435
7.1. Reconfiguration Interface and Arbitration with PreSICE (Precision Signal Integrity
Calibration Engine).......................................................................................... 437
7.2. Calibration Registers...........................................................................................438
7.2.1. Avalon Memory-Mapped Interface Arbitration Registers............................... 438
7.2.2. User Recalibration Enable Registers.......................................................... 438
7.2.3. Capability Registers................................................................................439
7.2.4. Rate Switch Flag Register........................................................................442
7.3. Power-up Calibration.......................................................................................... 443
7.4. Background Calibration....................................................................................... 444
7.5. User Recalibration.............................................................................................. 446
7.5.1. Recalibrating a Duplex Channel (Both PMA TX and PMA RX)......................... 446
7.5.2. Recalibrating the PMA RX Only in a Duplex Channel.................................... 447
7.5.3. Recalibrating the PMA TX Only in a Duplex Channel.....................................447
7.5.4. Recalibrating a PMA Simplex RX Without a Simplex TX Merged into the
Same Physical Channel........................................................................... 448
7.5.5. Recalibrating a PMA Simplex TX Without a Simplex RX Merged into the
Same Physical Channel........................................................................... 448
7.5.6. Recalibrating Only a PMA Simplex RX in a Simplex TX Merged Physical
Channel................................................................................................ 449
7.5.7. Recalibrating Only a PMA Simplex TX in a Simplex RX Merged Physical
Channel................................................................................................ 449
7.5.8. Recalibrating the fPLL............................................................................. 450
7.5.9. Recalibrating the ATX PLL........................................................................ 450
7.5.10. Recalibrating the CMU PLL When it is Used as a TX PLL..............................450
7.6. Calibration Revision History................................................................................. 451
A. Logical View of the L-Tile/H-Tile Transceiver Registers.............................................. 452
A.1. ATX_PLL Logical Register Map..............................................................................452
A.1.1. ATX PLL Calibration................................................................................ 452
A.1.2. Optional Reconfiguration Logic ATX PLL- Capability..................................... 453
A.1.3. Optional Reconfiguration Logic ATX PLL- Control & Status............................ 453
A.1.4. Embedded Streamer (ATX PLL)................................................................ 453
A.1.5. Updating ATX PLL Fractional Multiply Factor (K) Value................................. 454
Send Feedback
L- and H-Tile Transceiver PHY User Guide
5
Contents
A.2. CMU_PLL Logical Register Map.............................................................................454
A.2.1. CDR/CMU and PMA Calibration................................................................. 455
A.2.2. Optional Reconfiguration Logic CMU PLL- Capability.....................................455
A.2.3. Optional Reconfiguration Logic CMU PLL- Control & Status........................... 456
A.2.4. Embedded Streamer (CMU PLL)............................................................... 456
A.3. FPLL Logical Register Map................................................................................... 457
A.3.1. fPLL Calibration......................................................................................457
A.3.2. Optional Reconfiguration Logic fPLL-Capability............................................458
A.3.3. Optional Reconfiguration Logic fPLL-Control & Status...................................458
A.3.4. Embedded Streamer (fPLL)......................................................................458
A.4. Channel Logical Register Map.............................................................................. 459
A.4.1. Transmitter PMA Logical Register Map....................................................... 460
A.4.2. Receiver PMA Logical Register Map........................................................... 461
A.4.3. Pattern Generators and Checkers............................................................. 466
A.4.4. Loopback.............................................................................................. 469
A.4.5. Optional Reconfiguration Logic PHY- Capability........................................... 469
A.4.6. Optional Reconfiguration Logic PHY- Control & Status..................................470
A.4.7. Embedded Streamer (Native PHY)............................................................ 471
A.4.8. Static Polarity Inversion.......................................................................... 472
A.4.9. Reset................................................................................................... 472
A.4.10. CDR/CMU and PMA Calibration............................................................... 473
A.5. Logical View Register Map of the L-Tile/H-Tile Transceiver Registers Revision History... 474
L- and H-Tile Transceiver PHY User Guide
6
Send Feedback
UG-20055 | 2021.03.29
Send Feedback

1. Overview

Intel® Stratix® 10 devices offer up to 144 transceivers with integrated advanced high­speed analog signal conditioning and clock data recovery circuits for chip-to-chip, chip-to-module, and backplane applications.
The Intel Stratix 10 devices contain a combination of GX, GXT, or GXE channels, in addition to the hardened IP blocks for PCI Express* and Ethernet applications.
The Intel Stratix 10 device introduces several transceiver tile variants to support a wide variety of protocol implementations. These transceiver tile variants are L-tiles, H­tiles, and E-tiles. This user guide describes both the L- and H-tile transceivers. For Intel Stratix 10 devices that only contain E-tiles, refer to the E-Tile Transceiver PHY User Guide.
Table 1. Transceiver Tile Variants—Comparison of Transceiver Capabilities
Feature L-Tile H-Tile E-Tile
Maximum Transceiver
Data Rate (Chip-to-
chip)
Maximum Transceiver
Data Rate
(Backplane)
Number of
Transceiver Channels
(per tile)
Hard IP (per tile) PCIe*—Gen3 x16
(1)
GX
—17.4 Gbps
(1)
GXT
—26.6 Gbps
GX—12.5 Gbps
GXT—12.5 Gbps
GX—16 per tile GXT—8 per tile
Total—24 per tile (4
banks, 6 channels per
bank)
GX—17.4 Gbps
GXT—28.3 Gbps
GX—8 per tile
GXT—16 per tile
Total—24 per tile (4 banks, 6
channels per bank)
PCIe—Gen3 x16, SR-IOV (4
PF, 2K VF)
Ethernet—100GbE MAC
(2)
GXE
—57.8 Gbps Pulse Amplitude
Modulation 4 (PAM4)/28.9 Gbps Non-
return to zero (NRZ)
GXE—24 individual channels per tile
Ethernet—100GbE MAC and RS (528,
514)-FEC, 4 per tile
Ethernet—KP-FEC, 4 per tile
Ethernet—10/25GbE MAC and RS
(528, 514)-FEC, 24 per tile
In all Intel Stratix 10 devices, the various transceiver tiles connect to the FPGA fabric using Intel EMIB (Embedded Multi-Die Interconnect Bridge) technology.
Related Information
L-Tile/H-Tile Building Blocks on page 16
See AN 778: Intel Stratix 10 Transceiver Usage for transceiver channel placement
guidelines for L-tiles and H-tiles.
(1)
Refer to the L-Tile/H-Tile Building Blocks section for further descriptions of GX and GXT channels.
(2)
Refer to the E-Tile Transceiver PHY User Guide for a full description of GXE channels.
Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, eASIC, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. *Other names and brands may be claimed as the property of others.
ISO 9001:2015 Registered
HSSI_2_1
Tile 1K-N
HSSI_2_0
Package Substrate
EMIBEMIB
EMIBEMIB
Core Fabric
®
Channel
5 4 3 2 1 0 5 4 3 2 1 0 5 4 3 2 1 0 5 4 3 2 1 0
Bank
1N
1M
1L
1K
EMIB
Tile 4K-N
EMIB
Tile 4G-J
HSSI_1_1
Tile 4C-F
HSSI_0_1
Tile 1C-F
HSSI_0_0
Tile 1G-J
HSSI_1_0
UG-20055 | 2021.03.29
Intel Stratix 10 GX/SX Device Overview
Intel Stratix 10 MX (DRAM System-in-Package) Device Overview
Intel Stratix 10 TX Device Overview
Intel Stratix 10 DX Device Overview
E-Tile Transceiver PHY User Guide
Intel FPGA IP for Transceiver PHY—Support Center

1.1. L-Tile/H-Tile Layout in Intel Stratix 10 Device Variants

Intel Stratix 10 GX/SX device variants support both L- and H-Tiles. Intel Stratix 10 TX and MX device variants support both H- and E-Tiles.
Intel Stratix 10 devices are offered in a number of different configurations based on layout. There is a maximum of six possible locations for a tile. The following figure maps these layouts to the corresponding transceiver tiles and banks.
Figure 1. Intel Stratix 10 Tile Layout
1. Overview

1.1.1. Intel Stratix 10 GX/SX H-Tile Configurations

The Intel Stratix 10 GX FPGAs meet the high-performance demands of high­throughput systems with up to 10 teraflops (TFLOPs) of floating-point performance. Intel Stratix 10 GX FPGAs also provide transceiver support up to 28.3 Gbps for chip­module, chip-to-chip, and backplane applications.
The Intel Stratix 10 SX SoCs features a hard processor system with 64 bit quad-core ARM* Cortex*-A53 processor available in all densities, in addition to all the features of Intel Stratix 10 GX devices.
L- and H-Tile Transceiver PHY User Guide
8
Send Feedback
L-Tile/H-Tile
(24 Channels)
HSSI_0_0
Package Substrate
EMIB
Core Fabric
®
GX/SX 400 HF35 (F1152) GX/SX 650 HF35 (F1152) GX/SX 2500 HF55 (F2912E) GX/SX 2800 HF55 (F2912E)
L-Tile/H-Tile
(24 Channels)
HSSI_2_0
L-Tile/H-Tile
(24 Channels)
HSSI_0_0
Package Substrate
EMIBEMIB
Core Fabric
®
GX/SX 850 NF43 (F1760A) GX/SX 1100 NF43 (F1760A) GX/SX 1650 NF43 (F1760A) GX/SX 2100 NF43 (F1760A) GX/SX 2500 NF43 (F1760A) GX/SX 2800 NF43 (F1760A) GX 1660 NF43 (F1760A) GX 2110 NF43 (F1760A)
L-Tile/H-Tile
(24 Channels)
HSSI_2_1
L-Tile/H-Tile
(24 Channels)
HSSI_0_1
L-Tile/H-Tile
(24 Channels)
HSSI_2_0
L-Tile/H-Tile
(24 Channels)
HSSI_0_0
Package Substrate
EMIBEMIB
EMIBEMIB
Core Fabric
®
GX/SX 1650 UF50 (F2397B) GX/SX 2100 UF50 (F2397B) GX/SX 2500 UF50 (F2397B) GX/SX 2800 UF50 (F2397B)
1. Overview
UG-20055 | 2021.03.29
Figure 2. Intel Stratix 10 GX/SX Device with 1 H-Tile (24 Transceiver Channels)
Figure 3. Intel Stratix 10 GX/SX Device with 2 H-Tiles (48 Transceiver Channels)
Figure 4. Intel Stratix 10 GX/SX Device with 4 H-Tiles (96 Transceiver Channels)
Send Feedback
L- and H-Tile Transceiver PHY User Guide
9
EMIBEMIBEMIB
EMIBEMIB
EMIBEMIB
H-tile
(12 Channels)
T2
H-tile
(12 Channels)
T1
H-tile
(12 Channels)
T4
H-tile
(12 Channels)
T3
Package Substrate
Core Fabric Core Fabric
GX 10200 NF74 (F4938)
Dedicated
REFCLK
refclk1
refclk1
refclk1
refclk0
refclk0
0
1
2
3
3
4
4
Channel Bank
1MU12
1LU12
1KU12
5
0
1
1 0
refclk0
Dedicated
REFCLK
refclk1
refclk1
refclk1
refclk0
refclk0
0
1
2
3
3
4
4
Channel Bank
1EU10
1DU10
1CU10
5
0
1
1 0
refclk0
Dedicated
REFCLK
refclk1
refclk1
refclk1
refclk0
refclk0
0
1
2
3
3
4
4
Channel Bank
1MU22
1LU22
1KU22
5
0
1
1 0
refclk0
Dedicated
REFCLK
refclk1
refclk1
refclk1
refclk0
refclk0
0
1
2
3
3
4
4
Channel Bank
1EU20
1DU20
1CU20
5
0
1
1 0
refclk0
H-Tile
(24 Channels)
HSSI_0_0
Package Substrate
EMIB
Core Fabric
®
E-Tile
(24 Channels)
HSSI_0_1
EMIB
TX 850 NF43 (F1760C) TX 1100 NF43 (F1760C)
Channel
23 22 21 20 19 18 17 16 15 14 13 12 11 10
9 8 7 6
5 4 3 2 1 0
Channel
5 4 3 2 1 0 5 4 3 2 1 0 5 4 3 2 1 0
5 4 3 2 1 0
Bank
1F
1E
1D
1C
1. Overview
UG-20055 | 2021.03.29
Figure 5. Intel Stratix 10 GX 10M Device with 4 H-Tiles (48 Transceiver Channels)

1.1.2. Intel Stratix 10 TX H-Tile and E-Tile Configurations

The Intel Stratix 10 TX FPGAs deliver the most advanced transceiver capabilities in the industry by combining H-Tile and E-Tile transceivers.
Figure 6. Intel Stratix 10 TX Device with 1 E-Tile and 1 H-Tile (48 Transceiver
Channels)
L- and H-Tile Transceiver PHY User Guide
10
Send Feedback
E-Tile
(24 Channels)
HSSI_2_1
E-Tile
(24 Channels)
HSSI_2_0
H-Tile
(24 Channels)
HSSI_0_0
Package Substrate
EMIBEMIB
EMIB
Core Fabric
®
TX 850 SF50 (F2397C) TX 1100 SF50 (F2397C)
E-Tile
(24 Channels)
HSSI_2_1
E-Tile
(24 Channels)
HSSI_2_0
H-Tile
(24 Channels)
HSSI_0_0
Package Substrate
EMIBEMIB
EMIB
Core Fabric
®
TX 1650 UF50 (F2397C)
E-Tile
(24 Channels)
HSSI_0_1
EMIB
TX 2100 UF50 (F2397C) TX 2500 UF50 (F2397C) TX 2800 UF50 (F2397C)
E-Tile
(24 Channels)
HSSI_2_1
E-Tile
(24 Channels)
HSSI_1_1
E-Tile
(24 Channels)
HSSI_0_1
E-Tile
(24 Channels)
HSSI_2_0
E-Tile
(24 Channels)
HSSI_1_0
H-Tile
(24 Channels)
HSSI_0_0
Package Substrate
EMIBEMIBEMIB
EMIBEMIBEMIB
Core Fabric
TX 2500 YF55 (F2912B) TX 2800 YF55 (F2912B)
1. Overview
UG-20055 | 2021.03.29
Figure 7. Intel Stratix 10 TX Device with 2 E-Tiles and 1 H-Tile (72 Transceiver
Channels)
Figure 8. Intel Stratix 10 TX Device with 3 E-Tiles and 1 H-Tile (96 Transceiver
Channels)
Figure 9. Intel Stratix 10 TX Device with 5 E-Tiles and 1 H-Tile (144 Transceiver
Channels)
Send Feedback
L- and H-Tile Transceiver PHY User Guide
11
H-Tile
(24 Channels)
HSSI_0_0
Package Substrate
EMIB
Core Fabric
®
MX 2100 NF53 (F2597B)
H-Tile
(24 Channels)
HSSI_2_0
EMIB
HBM2
HBM2
4 GByte
4 GByte
H-Tile
(24 Channels)
HSSI_2_0
Package Substrate
EMIBEMIB
Core Fabric
®
MX 1650 UF53 (F2597A)
HBM2
H-Tile
(24 Channels)
HSSI_2_1
H-Tile
(24 Channels)
HSSI_0_1
EMIBEMIB
HBM2
MX 2100 UF53 (F2597A)
H-Tile
(24 Channels)
HSSI_0_0
4 GByte
4 GByte
1. Overview
UG-20055 | 2021.03.29
Note: 1. No package migration available between GX/SX and TX device families (H-Tile and
E-Tile)
2. Migration available within GX/SX from L-Tile to H-Tile variants

1.1.3. Intel Stratix 10 MX H-Tile and E-Tile Configurations

The Intel Stratix 10 MX devices combine the programmability and flexibility of Intel Stratix 10 FPGAs and SoCs with 3D stacked high-bandwidth memory 2 (HBM2). The DRAM memory tile physically connects to the FPGA using Intel Embedded Multi-Die Interconnect Bridge (EMIB) technology.
Figure 10. Intel Stratix 10 MX Device with 2 H-Tiles (48 Transceiver Channels) and 2
HBM2
Figure 11. Intel Stratix 10 MX Device with 4 H-Tiles (96 Transceiver Channels) and Two
4 GB HBM2
L- and H-Tile Transceiver PHY User Guide
12
Send Feedback
H-Tile
(24 Channels)
HSSI_2_0
Package Substrate
EMIBEMIB
Core Fabric
®
MX 1650 UF53 (F2597C)
HBM2
H-Tile
(24 Channels)
HSSI_2_1
H-Tile
(24 Channels)
HSSI_0_1
EMIBEMIB
HBM2
MX 2100 UF53 (F2597C)
H-Tile
(24 Channels)
HSSI_0_0
8 GByte
8 GByte
E-Tile
(24 Channels)
HSSI_2_0
Package Substrate
EMIBEMIB
Core Fabric
®
MX 1650 UF55 (F2912)
HBM2
E-Tile
(24 Channels)
HSSI_2_1
EMIBEMIB
HBM2
MX 2100 UF55 (F2912)
E-Tile
(24 Channels)
HSSI_0_1
H-Tile
(24 Channels)
HSSI_0_0
4 GByte
4 GByte
1. Overview
UG-20055 | 2021.03.29
Figure 12. Intel Stratix 10 MX Device with 4 H-Tiles (96 Transceiver Channels) and Two
8 GB HBM2
Figure 13. Intel Stratix 10 MX Device with 3 E-Tiles, 1 H-Tile (96 Transceiver Channels)
and 2 HBM2
Send Feedback
L- and H-Tile Transceiver PHY User Guide
13
1. Overview
UG-20055 | 2021.03.29

1.2. L-Tile/H-Tile Counts in Intel Stratix 10 Devices and Package Variants

Table 2. L-Tile/H-Tile Counts in Intel Stratix 10 GX/SX Devices (HF35, NF43, UF50,
HF55, NF74)
The number in the Intel Stratix 10 GX/SX Device Name column indicates the device's Logic Element (LE) count (in thousands LEs).
Intel Stratix 10 GX/SX
Device Name
GX 400/ SX 400 1
GX 650/ SX 650 1
GX 850/ SX 850 2
GX 1100/ SX 1100 2
GX 1650/ SX 1650 2 4
GX 2100/ SX 2100 2 4
GX 2500/ SX 2500 2 4 1
GX 2800/ SX 2800 2 4 1
GX 1660 2
GX 2110 2
GX 10200 4
F1152
HF35
(35x35 mm2)
F1760A
NF43
(42.5x42.5
mm2)
F2397B
UF50
(50x50 mm2)
F2912E
HF55
(55x55 mm2)
F4938
NF74
(70x74 mm2)
Table 3. H- and E-Tile Counts in Intel Stratix 10 TX Devices (HF35, NF43, SF50, UF50,
YF55)
The number in the Intel Stratix 10 TX Device Name column indicates the device's Logic Element (LE) count (in thousands LEs).
Cell legend: H-Tile count, E-Tile count
Intel Stratix 10 TX Device
Name
TX 850 1, 1 1, 2
TX 1100 1, 1 1, 2
TX 1650 1, 3
TX 2100 1, 3
TX 2500 1, 3 1, 5
TX 2800 1, 3 1, 5
F1152
HF35
(35x42.5 mm2)
F1760C
NF43
(42.5x42.5 mm2)
F2397C
SF50, UF50
(50x50 mm2)
F2912B
YF55
(55x55 mm2)
L- and H-Tile Transceiver PHY User Guide
14
Send Feedback
1. Overview
UG-20055 | 2021.03.29
Table 4. H- and E-Tile Counts in Intel Stratix 10 MX Devices (NF53, UF53, UF55)
The number in the Intel Stratix 10 MX Device Name column indicates the device's Logic Element (LE) count (in thousands LEs).
Cell legend: H-Tile count, E-Tile count
Intel Stratix 10 MX Device
Name
MX 1650 4, 0 4, 0 1, 3
MX 2100 4, 0 2, 0 4, 0 1, 3
F2597A
UF53
(52.5x52.5 mm2)
F2597B
NF53
(52.5x52.5 mm2)
F2597C
UF53
(52.5x52.5 mm2)
F2912
UF55
(55x55 mm2)
Send Feedback
L- and H-Tile Transceiver PHY User Guide
15
PMA Ch 0
PMA Ch 1
PMA Ch 2
PMA Ch 3
PMA Ch 4
PMA Ch 5
PCS Ch 0
PCS Ch 1
PCS Ch 2
PCS Ch 3
PCS Ch 4
PCS Ch 5
fPLL 0
ATX PLL 0
fPLL 1
ATX PLL 1
x6 Clock Network
x24 Clock Network
Transceiver Bank 3 (2)
refclk1
refclk0
PMA Ch 0
PMA Ch 1
PMA Ch 2
PMA Ch 3
PMA Ch 4
PMA Ch 5
PCS Ch 0
PCS Ch 1
PCS Ch 2
PCS Ch 3
PCS Ch 4
PCS Ch 5
fPLL 0
ATX PLL 0
fPLL 1
ATX PLL 1
x6 Clock Network
Transceiver Bank 2
refclk1
refclk0
PMA Ch 0
PMA Ch 1
PMA Ch 2
PMA Ch 3
PMA Ch 4
PMA Ch 5
PCS Ch 0
PCS Ch 1
PCS Ch 2
PCS Ch 3
PCS Ch 4
PCS Ch 5
fPLL 0
ATX PLL 0
fPLL 1
ATX PLL 1
x6 Clock Network
Transceiver Bank 1 (2)
refclk1
refclk0
PMA Ch 0
PMA Ch 1
PMA Ch 2
PMA Ch 3
PMA Ch 4
PMA Ch 5
PCS Ch 0
PCS Ch 1
PCS Ch 2
PCS Ch 3
PCS Ch 4
PCS Ch 5
fPLL 0
ATX PLL 0
fPLL 1
ATX PLL 1
x6 Clock Network
Transceiver Bank 0
refclk1
refclk0
PCIe Gen3
x16 Hard IP
Ch0 PCS FIFO
Ch1 PCS FIFO
Ch2 PCS FIFO
Ch3 PCS FIFO
Ch4 PCS FIFO
Ch5 PCS FIFO
Ch0 Core FIFO
Ch1 Core FIFO
Ch2 Core FIFO
Ch3 Core FIFO
Ch4 Core FIFO
Ch5 Core FIFO
EMIB
FPGA Fabric
L-Tile/H-Tile
PCS Core Interface
Ethernet 100G
Hard IP
Ch0 Core FIFO
Ch1 Core FIFO
Ch2 Core FIFO
Ch3 Core FIFO
Ch4 Core FIFO
Ch5 Core FIFO
Ch0 Core FIFO
Ch1 Core FIFO
Ch2 Core FIFO
Ch3 Core FIFO
Ch4 Core FIFO
Ch5 Core FIFO
Ch0 Core FIFO
Ch1 Core FIFO
Ch2 Core FIFO
Ch3 Core FIFO
Ch4 Core FIFO
Ch5 Core FIFO
Ch0 PCS FIFO
Ch1 PCS FIFO
Ch2 PCS FIFO
Ch3 PCS FIFO
Ch4 PCS FIFO
Ch5 PCS FIFO
Ch0 PCS FIFO
Ch1 PCS FIFO
Ch2 PCS FIFO
Ch3 PCS FIFO
Ch4 PCS FIFO
Ch5 PCS FIFO
Ch0 PCS FIFO
Ch1 PCS FIFO
Ch2 PCS FIFO
Ch3 PCS FIFO
Ch4 PCS FIFO
Ch5 PCS FIFO
(1)
1. The Ethernet Hard IP is only for H-Tile devices.
2. GXT channels for L-Tile devices are only in Banks 1 or 3.
Note:
= GXT clock network
Legend
UG-20055 | 2021.03.29

1.3. L-Tile/H-Tile Building Blocks

Figure 14. High Level Block Diagram of L-Tile/H-Tile in Intel Stratix 10 Devices
1. Overview
L- and H-Tile Transceiver PHY User Guide
16
Send Feedback
GX - Channel 5
GXT Channel 4
GXT Channel 3
GX Channel 2
GXT Channel 1
GXT Channel 0
fPLL
fPLL
ATX
ATX
1. Overview
UG-20055 | 2021.03.29

1.3.1. Transceiver Bank Architecture

Each L-Tile/H-tile transceiver tile contains four transceiver banks. The transceiver channels are grouped into transceiver banks, where each bank has six channels. These six channels are a combination of GX and GXT channels which you can configure in the following ways:
All six channels as GX channels
Channels 0, 1, 3, and 4 as GXT channels. L-Tile supports GXT channels in banks 1 and 3. H-Tile supports GXT channels in banks 0, 1, 2, and 3.
All six channels as a mix of GX and GXT channels; for example, two GX channels and four GXT channels on H-Tile Devices. On L-Tile devices, you can use a maximum of four channels in a bank when any channel is configured as a GXT channel.
Each channel can also run in any of the following operational modes:
Duplex (default)—Specifies a single channel that supports both transmission and reception
Transmitter (TX) Simplex—Specifies a single channel that supports only transmission
Receiver (RX) Simplex—Specifies a single channel that supports only reception
Each transceiver bank contains two Advanced Transmit (ATX) PLLs, two fractional PLLs (fPLL), and two Clock Multiplier Unit (CMU) PLLs.
Figure 15. Transceiver Banks in the L-Tile/H-Tile
Related Information
PLLs and Clock Networks on page 249

1.3.2. Transceiver Channel Types

Each transceiver has a Physical Coding Sublayer (PCS) and a Physical Medium Attachment (PMA). Additionally, each transceiver has loopback modes and internal pattern generator and verifier blocks for debugging.
1.3.2.1. GX Channel
Each GX transceiver channel has four types of PCS blocks that together support continuous datarates up to 17.4 Gbps. The various PCS blocks contain data processing functions such as encoding or decoding, scrambling or descrambling, word alignment, frame synchronization, FEC, and so on.
Send Feedback
L- and H-Tile Transceiver PHY User Guide
17
Figure 16. GX Transceiver Channel in TX/RX Duplex Mode
Standard PCS
PCIe Gen3 PCS
Enhanced PCS
Transceiver
Tile
Transmitter PCS
Transmitter PMA
Serializer
Standard PCS
PCIe Gen3 PCS
Enhanced PCS
Receiver PCS
Receiver PMA
DeserializerCDR
from FPGA fabric
to FPGA fabric
PCS Direct
PCS Direct
TX
PCS
FIFO
RX
PCS
FIFO
Table 5. PCS Types Supported by GX Transceiver Channels
1. Overview
UG-20055 | 2021.03.29
PCS Type
Standard PCS
Enhanced
PCS
PCIe Gen3
PCS
PCS Direct 17.4 Gbps
-2 Speed Grade -3 Speed Grade -1 Speed Grade -2 Speed Grades -3 Speed Grade
10.81344 Gbps
L-Tile Production H-Tile Production
12 Gbps
(3)
or
(4)
9.8304 Gbps
(4)
10.81344 Gbps
12 Gbps
17.4 Gbps
8 Gbps
(3)
or
(4)
10.81344 Gbps
12 Gbps
(3)
or
(4)
9.8304 Gbps
(4)
Note: Use the L-Tile/H-Tile Transceiver Native PHY Intel Stratix 10FPGA IP Parameter Editor
to determine the datarate limitations of your selected PCS configuration.
Refer to Table 12 on page 38 for a definition of the PCS Direct mode.
1.3.2.2. GXT Channel
Each GXT transceiver channel has two types of PCS blocks that together support continuous datarates up to 28.3 Gbps for H-Tile and 26.6 Gbps for L-Tile. Use PCS Direct or Enhanced PCS to implement a GXT channel.
Refer to the Intel Stratix 10 Device Datasheet for more details on transceiver specifications.
(3)
The 12 Gbps data rate at the receiver is only supported when the RX word aligner mode parameter is set to Manual.
(4)
This data rate is only supported when Byte Serializer and Deserializer mode is enabled.
L- and H-Tile Transceiver PHY User Guide
18
Send Feedback
Standard PCS
PCIe Gen3 PCS
Enhanced PCS
Transceiver
Tile
Transmitter PCS
Transmitter PMA
Serializer
Standard PCS
PCIe Gen3 PCS
Receiver PCS
Receiver PMA
DeserializerCDR
from FPGA fabric
to FPGA fabric
PCS Direct
Enhanced PCS
PCS Direct
TX
PCS
FIFO
RX
PCS
FIFO
1. Overview
UG-20055 | 2021.03.29
Figure 17. GXT Transceiver Channel in TX/RX Duplex Mode
Table 6. PCS Types Supported by GXT Transceiver Channels
PCS Type
Enhanced
PCS
PCS Direct 26.6 Gbps No GXT 28.3 Gbps 26.6 Gbps No GXT
-2 Speed Grade -3 Speed Grade -1 Speed Grade -2 Speed Grades -3 Speed Grade
L-Tile Production H-Tile Production
26.6 Gbps No GXT 28.3 Gbps 26.6 Gbps No GXT
Note: Use the Native PHY IP Parameter Editor to determine the datarate limitations of your
selected PCS configuration.
Related Information
Intel Stratix 10 Device Datasheet

1.3.3. GX and GXT Channel Placement Guidelines

Refer to AN 778: Intel Stratix 10 Transceiver Usage for detailed information on this section.
Related Information
AN 778: Intel Stratix 10 Transceiver Usage

1.3.4. GXT Channel Usage

Intel Stratix 10 L-Tile/H-Tile transceivers support GXT channels.
Send Feedback
L- and H-Tile Transceiver PHY User Guide
19
Table 7. Channel Types
There are a total of 24 channels available per tile. You can configure them as either GX channels or as a combination of GX and (up to 16) GXT channels provided that the total does not exceed 24. You can use GXT channels as a GX channel, but they are subject to all of the GX channel placement constraints.
Tile Channel Type
L-Tile
H-Tile
An ATX PLL can serve as the transmit PLL for up to six GXT channels.
Refer to AN 778: Intel Stratix 10 Transceiver Usage for detailed information about this section.
Related Information
Intel Stratix 10 Device Datasheet
AN 778: Intel Stratix 10 Transceiver Usage
UG-20055 | 2021.03.29
Number of Channels
per Tile
GX Up to 24 17.4 Gbps 12.5 Gbps
(5)
GXT
GX Up to 24 17.4 Gbps
(5)
GXT
Up to 8 26.6 Gbps 12.5 Gbps
Up to 16 28.3 Gbps 28.3 Gbps
Chip-to-Chip Backplane
Channel Capability
1. Overview

1.3.5. PLL and Clock Networks

There are two different types of clock networks to distribute the high speed serial clock to the channels:
Transceiver clock network that supports GX channels and allows a single TX PLL to drive up to 24 bonded channels in a tile.
High Performance clock network that allows a single ATX PLL to drive up to 6 GXT channels in unbonded configurations.
Table 8. Channel Type Supported by Different Clock Networks
Clock Network Clock Lines Channel Type Support
Standard x1, x6, x24 GX
High Performance PLL Direct Connect GXT
1.3.5.1. PLLs
1.3.5.1.1. Transceiver Phase-Locked Loops
Each transceiver channel in Intel Stratix 10 devices has direct access to three types of high performance PLLs:
Advanced Transmit (ATX) PLL
Fractional PLL (fPLL)
Channel PLL / Clock Multiplier Unit (CMU) PLL.
(5)
If you use GXT channel data rates, the V
L- and H-Tile Transceiver PHY User Guide
20
CCR_GXB
and V
CCT_GXB
voltages must be set to 1.12 V.
Send Feedback
1. Overview
UG-20055 | 2021.03.29
These transceiver PLLs along with the Master or Local Clock Generation Blocks (CGB) drive the transceiver channels.
Related Information
PLLs on page 251
For more information about transceiver PLLs in Stratix 10 devices.
Advanced Transmit (ATX) PLL
The ATX PLL is the transceiver channel’s primary transmit PLL. It can operate over the full range of supported datarates required for high datarate applications. An ATX PLL supports both integer frequency synthesis and coarse resolution fractional frequency synthesis (when configured as a cascade source).
Fractional PLL (fPLL)
A fractional PLL (fPLL) is an alternate transmit PLL used for generating lower clock frequencies for lower datarate applications. fPLLs support both integer frequency synthesis and fine resolution fractional frequency synthesis. Unlike the ATX PLL, you can also use the fPLL to synthesize frequencies that can drive the core through the FPGA fabric clock networks.
Channel PLL (CMU/CDR PLL)
A channel PLL is located within each transceiver channel. The channel's primary function is clock and data recovery in the transceiver channel when you use the PLL in clock data recovery (CDR) mode. You can use the channel PLLs of channel 1 and 4 as transmit PLLs when configured in clock multiplier unit (CMU) mode. You cannot configure the channel PLLs of channel 0, 2, 3, and 5 in CMU mode; therefore, you cannot use them as transmit PLLs. You cannot use the receiver channel when you use it as a Channel PLL/CMU.
1.3.5.1.2. Clock Generation Block (CGB)
Intel Stratix 10 devices include the following types of clock generation blocks (CGBs):
Master CGB
Local CGB
Transceiver banks have two master CGBs. The master CGB divides and distributes bonded clocks to a bonded channel group. The master CGB also distributes non­bonded clocks to non-bonded channels across the x6/x24 clock network.
Each transceiver channel has a local CGB. The local CGB divides and distributes non­bonded clocks to the corresponding PCS and PMA blocks.
Send Feedback
L- and H-Tile Transceiver PHY User Guide
21
Tile 2
8 reference
clock pins
per tile
Transceiver Bank 3
Transceiver Bank 2
Transceiver Bank 0
Transceiver Bank 1
Transceiver Bank 3
Transceiver Bank 2
Transceiver Bank 0
Transceiver Bank 1
Transceiver Bank 3
Transceiver Bank 2
Transceiver Bank 0
Transceiver Bank 1
Tile 1
Tile 0
8 reference
clock pins
per tile
8 reference
clock pins
per tile
1. Overview
UG-20055 | 2021.03.29
1.3.5.2. Input Reference Clock Sources
Eight dedicated reference clocks available per transceiver tile
— Two reference clocks per transceiver bank
— You must route multiple copies of reference clocks on the PCB to span beyond
a transceiver tile
Reference clock network
— Reference clock network does not span beyond the transceiver tile
— There are two regulated reference clock networks for better performance per
tile that any reference clock pin can access
You can use unused receiver pins as additional reference clocks
Note: Unused receiver pins used as reference clocks can only be used within the same tile.
Figure 18. Reference Clock Network
For the best jitter performance, place the reference clock as close as possible to the transmit PLL. Use the reference clock in the same triplet of the bank as the transmit PLL.
1.3.5.3. Transceiver Clock Network
1.3.5.3.1. x1 Clock Lines
The ATX PLL, fPLL, or CMU PLL can access the x1 clock lines. The x1 clock lines allow the TX PLL to drive multiple transmit channels in the same bank in non-bonded mode.
For more information, refer to the x1 Clock Lines section.
L- and H-Tile Transceiver PHY User Guide
22
Related Information
x1 Clock Lines on page 283
Send Feedback
1. Overview
UG-20055 | 2021.03.29
1.3.5.3.2. x6 Clock Lines
The ATX PLL or fPLL can access the x6 clock lines through the master CGB. The x6 clock lines allow the TX PLL to drive multiple bonded or non-bonded transmit channels in the same bank.
For more information, refer to the x6 Clock Lines section.
Related Information
x6 Clock Lines on page 284
1.3.5.3.3. x24 Clock Lines
Route the x6 clock lines onto x24 clock lines to allow a single ATX PLL or fPLL to drive multiple bonded or non-bonded transmit channels in multiple banks in an L-/H-Tile.
1.3.5.3.4. GXT Clock Network
The GXT Clock Network allows the ATX PLL to drive up to six GXT channels in non­bonded mode.
The top ATX PLL in a bank can drive:
Channels 0, 1, 3, 4 in the bank
Channels 0, 1 in the bank above in the same H-Tile
The bottom ATX PLL in a bank can drive:
Channels 0, 1, 3, 4 in the bank
Channels 3, 4 in the bank below in the same H-Tile
Related Information
GXT Clock Network on page 289

1.3.6. Ethernet Hard IP

1.3.6.1. 100G Ethernet MAC Hard IP
The 100G Ethernet MAC Hard IP block implements an Ethernet stack with MAC and PCS layers, as defined in the www.ieee802.org/3/.
Note: This Hard IP only apples to Intel Stratix 10 H-Tile devices.
Supported Protocols
— 100G MAC + PCS Ethernet x4 lanes
Modes
— MAC + PCS
— PCS only
— PCS66 (encoder/scrambler bypass)
— Loopbacks
— AN/LT with soft logic: dynamic switching
Send Feedback
L- and H-Tile Transceiver PHY User Guide
23
1. Overview
UG-20055 | 2021.03.29
Requires a soft Auto Negotiation / Link Training (AN/LT) logic implemented in the core fabric. Implement the AN/LT logic, or use a MAC IP.
Note: Auto negotiation (AN) is an exchange in which link partners to determine the highest
performance datarate that they both support. Link training (LT) is the process that defines how a receiver (RX) and a transmitter (TX) on a high-speed serial link communicate with each other to tune their PMA settings.
The protocol specifies how to request the link partner TX driver to adjust TX deemphasis, but the standard does not state how or when to adjust receiver equalization. The manufacturer determines how they adjust their receiver equalization. The algorithm for RX settings is different between tiles.
1.3.6.2. 100G Configuration
The Ethernet Hard IP uses 5 channels in the top transceiver bank of the tile. Channels 0, 1, 3 and 4 send or receive data at 25 Gbps. Channel 2 bonds the 4 transceiver channels and it cannot be used for other purposes.
L- and H-Tile Transceiver PHY User Guide
24
Send Feedback
fPLL
fPLL
fPLL
fPLL
fPLL
fPLL
fPLL
fPLL
ATXPLL
ATXPLL
ATXPLL
ATXPLL
ATXPLL
ATXPLL
ATXPLL
ATXPLL
GX Channel 5
GXT Channel 4
GXT Channel 3
GX Channel 2
GXT Channel 1
GXT Channel 0
GX Channel 5
GXT Channel 4
GXT Channel 3
GX Channel 2
GXT Channel 1
GXT Channel 0
GX Channel 5
GXT Channel 4
GXT Channel 3
GX Channel 2
GXT Channel 1
GXT Channel 0
GX Channel 5
GXT Channel 4
GXT Channel 3
GX Channel 2
GXT Channel 1
GXT Channel 0
GXT Channel 3
GXT Channel 2
100G Ethernet HIP
GXT Channel 1
GXT Channel 0
EMIB GX Channel 5
EMIB GXT Channel 4
EMIB GXT Channel 3
EMIB GX Channel 2
EMIB GXT Channel 1
EMIB GXT Channel 0
EMIB GX Channel 5
EMIB GXT Channel 4
EMIB GXT Channel 3
EMIB GX Channel 2
EMIB GXT Channel 1
EMIB GXT Channel 0
EMIB GX Channel 5
EMIB GXT Channel 4
EMIB GXT Channel 3
EMIB GX Channel 2
EMIB GXT Channel 1
EMIB GXT Channel 0
EMIB GX Channel 5
EMIB GXT Channel 4
EMIB GXT Channel 3
EMIB GX Channel 2
EMIB GXT Channel 1
EMIB GXT Channel 0
1. Overview
UG-20055 | 2021.03.29
Figure 19. 100G Configuration

1.3.7. PCIe Gen1/Gen2/Gen3 Hard IP Block

The PCIe Hard IP is an IP block that provides multiple layers of the protocol stack for PCI Express. The Intel Stratix 10 Hard IP for PCIe is a complete PCIe solution that includes the Transaction, Data Link, and PHY/MAC layers. The Hard IP solution contains dedicated hard logic that connects to the transceiver PHY interface. Each transceiver tile contains a PCIe Hard IP block supporting PCIe Gen1, Gen2, or Gen3 protocols with x1, x2, x4, x8, and x16 configurations. x1, x2, and x4 configurations result in unusable channels. The Hard IP resides at the bottom of the tile, and is 16 channels high. Additionally, the block includes extensible VF (Virtual Functions)
Send Feedback
L- and H-Tile Transceiver PHY User Guide
25
interface to enable implementation of up to 2K VFs via the SRIOV-w (Single-Root I/O
PCIe Hard IP x1
7 Channels
Unusable
PCIe x1
PCIe Hard IP x2
6 Channels
Unusable
PCIe x2
PCIe Hard IP x4
4 Channels
Unusable
PCIe x4
PCIe Hard IP x8
PCIe x8
PCIe Hard IP x16
PCIe x16
Transceiver Tile Transceiver Tile Transceiver Tile Transceiver Tile Transceiver Tile
0 0 0 0 0
15
23
23 23 23 23
8
8 8
7 7
8
1
3
4
1
7
2
7
16 Channels
Usable
16 Channels
Usable
16 Channels
Usable
16 Channels
Usable
8 Channels
Usable
16
Virtualization) bridge. The following table and figure show the possible PCIe Hard IP channel configurations, the number of unusable channels, and the number of channels available for other protocols.
Table 9. PCIe Hard IP Channel Configurations Per Transceiver Tile
1. Overview
UG-20055 | 2021.03.29
PCIe Hard IP Configuration Number of Unusable Channels
PCIe x1 7 16
PCIe x2 6 16
PCIe x4 4 16
PCIe x8 0 16
PCIe x16 0 8
Number of Channels Available for
Figure 20. PCIe Hard IP Channel Configurations Per Transceiver Tile
Other Protocols
The table below maps all transceiver channels to PCIe Hard IP channels in available tiles.
Table 10. PCIe Hard IP Channel Mapping Across all Tiles
Bottom Left
Tile Bank
Number
Top Left Tile
Bank Number
Tile Channel
Sequence
23 5 1F 1N 4F 4N
22 4 1F 1N 4F 4N
21 3 1F 1N 4F 4N
20 2 1F 1N 4F 4N
19 1 1F 1N 4F 4N
18 0 1F 1N 4F 4N
L- and H-Tile Transceiver PHY User Guide
26
PCIe Hard IP
Channel
Index within
I/O Bank
Bottom Right
Tile Bank
Number
Top Right Tile Bank Number
continued...
Send Feedback
1. Overview
UG-20055 | 2021.03.29
Tile Channel
Sequence
17 5 1E 1M 4E 4M
16 4 1E 1M 4E 4M
15 15 3 1E 1M 4E 4M
14 14 2 1E 1M 4E 4M
13 13 1 1E 1M 4E 4M
12 12 0 1E 1M 4E 4M
11 11 5 1D 1L 4D 4L
10 10 4 1D 1L 4D 4L
9 9 3 1D 1L 4D 4L
8 8 2 1D 1L 4D 4L
7 7 1 1D 1L 4D 4L
6 6 0 1D 1L 4D 4L
5 5 5 1C 1K 4C 4K
4 4 4 1C 1K 4C 4K
3 3 3 1C 1K 4C 4K
2 2 2 1C 1K 4C 4K
1 1 1 1C 1K 4C 4K
0 0 0 1C 1K 4C 4K
PCIe Hard IP
Channel
Index within
I/O Bank
Bottom Left
Tile Bank
Number
Top Left Tile
Bank Number
Bottom Right
Tile Bank
Number
Top Right Tile Bank Number
The PCIe Hard IP block includes extensible VF (Virtual Functions) interface to enable the implementation of up to 2K VFs via the SRIOV-2 (Single-Root I/O Virtualization) bridge.
In network virtualization, single root input/output virtualization or SR-IOV is a network interface that allows the isolation of the PCI Express resources for manageability and performance reasons. A single physical PCI Express is shared on a virtual environment using the SR-IOV specification. The SR-IOV specification offers different virtual functions to different virtual components, such as a network adapter, on a physical server machine.
Related Information
http://www.design-reuse.com/articles/32998/single-root-i-o-virtualization.html
Send Feedback
L- and H-Tile Transceiver PHY User Guide
27

1.4. Overview Revision History

1. Overview
UG-20055 | 2021.03.29
Document
Version
2021.03.29 • Removed H-tile information for Intel Agilex™ devices in the Overview section.
• Removed the footnote to PCIe—Gen3 x16 for H-tile in the Transceiver Tile Variants—Comparison of Transceiver Capabilities table.
• Removed the H-Tile in Intel Agilex Devices section.
2020.10.22 Made the following change:
• Clarified that H-tiles in Intel Agilex devices do not support speed grade -1 and thus have a maximum GXT transceiver data rate of 26.6 Gbps.
2020.10.05 Made the following changes:
• Added the "Intel Stratix 10 GX 10M Device with 4 H-Tiles (48 Transceiver Channels)" figure.
• Added the Intel Stratix 10 GX 10M Device to the "L-Tile/H-Tile Counts in Intel Stratix 10 GX/SX Devices (HF35, NF43, UF50, HF55, NF74)" table.
• Added H-Tile in Intel Agilex Devices.
• Removed the H-tile hard IP 50G variant.
2020.03.03 Made the following changes:
• Updated the Intel Stratix 10 TX devices in the "Intel Stratix 10 TX Device with 1 E-Tile and 1 H-Tile (48 Transceiver Channels)" figure and the "H- and E-Tile Counts in Intel Stratix 10 TX Devices (HF35, NF43, SF50, UF50, YF55)" table.
• For GX Standard PCS data rates in GX Channel, added 12 Gbps and the note, "The 12 Gbps data rate at the receiver is only supported when the RX word aligner mode parameter is set to Manual.
2019.03.22 Made the following change:
• Changed the data rate for E-tile Non-Return to Zero (NRZ) to 28.9 Gbps.
• Changed 60 GXE channels/device for PAM-4 to 57.8 Gbps.
• Updated plan of record devices.
• Updated device configuration drawings.
2018.07.06 Made the following changes:
• Changed the GXT data rate limit for L-Tile to 26.6 Gbps in the "Channel Types" table.
• Changed the data rate limit for -2 speed grades on both L-Tile and H-Tile to 26.6 Gbps in the "PCS Types Supported by GXT Type Transceiver Channels" table.
• Clarified the number of reference clocks pins in the "Reference Clock Network" figure.
• Changed the standard PCS data rates for L-Tile and H-Tile devices in the "PCS Types Supported by GX Transceiver Channels" table.
• Changed the backplane data rate for L-Tile GX channels in the "Channel Types" table.
2018.03.16 Made the following changes:
• Added the operational modes description for channels in the "Transceiver Bank Architecture" section.
• Added PCS Direct to the "GX Transceiver Channel in TX/RX Duplex Mode" figure.
• Added a cross-reference to the "General and Datapath Parameters" table in the "GX Channel" section.
• Added PCS Direct to the "PCS Types Supported by GX Type Transceiver Channels" table.
• Changed the description in the "GXT Channel" section.
• Added PCS Direct to the "GXT Transceiver Channel in TX/RX Duplex Mode" figure.
• Updated ATX PLL description stating "An ATX PLL supports both integer frequency synthesis and coarse resolution fractional frequency synthesis (when configured as a cascade source)".
• Removed the NF48 package from the "L-Tile/H-Tile Counts in Intel Stratix 10 GX/SX Devices (HF35, NF43, UF50, HF55)" table.
2017.08.11 Made the following changes:
• Added the "Transceiver Tile Variants—Comparison of Transceiver Capabilities" table.
• Removed the "H-Tile Transceivers" section.
• Added description to the "L-Tile/H-Tile Layout in Stratix 10 Device Variants" section.
Changes
continued...
L- and H-Tile Transceiver PHY User Guide
28
Send Feedback
1. Overview
UG-20055 | 2021.03.29
Document
Version
• Added the "Stratix 10 Tile Layout" figure.
• Changed the package and tile counts in the "H- and E-Tile Counts in Intel Stratix 10 MX Devices (NF43, UF53, UF55)" table.
• Added separate datarate support for L-Tile and H-Tile in the "PCS Types Supported by GX Type Transceiver Channels" table.
2017.06.06 Made the following changes:
• Removed CEI 56G support from the "Stratix 10 Transceiver Protocols, Features, and IP Core Support" table.
• Added tile names based on the thermal models to the figures in the "Stratix 10 GX/SX H-Tile Configurations" section.
• Added tile names based on the thermal models to the figures in the "Stratix 10 TX H-Tile and E-Tile Configurations" section.
• Added tile names based on the thermal models to the figures in the "Stratix 10 MX H-Tile and E-Tile Configurations" section.
• Changed the number of GXT channels that the ATX PLL can support as a transmit PLL in the "GXT Channel Usage" section.
• Changed the number of GXT channels an ATX PLL can support in the "GXT Channel Usage" section.
• Removed a note in the "Input Reference Clock Sources" section.
2017.03.08 Made the following changes:
• Changed all the notes in the "GXT Channel Usage" section.
• Changed all the notes in the "PLL Direct Connect Clock Network" section.
2017.02.17 Made the following changes:
• Completely updated the "GXT Channel Usage" section.
2016.12.21 Initial release.
Changes
Send Feedback
L- and H-Tile Transceiver PHY User Guide
29
Transceiver PLL IP Core
Master/Local
Clock
Generation
Block
Reset Ports
Analog and Digital
Reset Bus
Non-Bonded and
Bonded Clocks
Note:
Transceiver PHY Reset
Controller Intel Stratix 10
FPGA IP (1)
Legend:
Intel generated IP block User created IP block
MAC IP Core /
Data Generator /
Data Analyzer
Parallel Data Bus
(1) You can either design your own reset controller or use the Transceiver PHY Reset Controller Intel Stratix 10 FPGA IP core.
Resets the transceiver channels
Provides a clock source to clock networks that drive the
transceiver channels. In Intel Stratix 10 devices, the PLL IP Core
is seperate from the Native PHY IP Core
This block can be either a MAC IP core, or a frame generator/ analyzer or a data generator/analyzer
Controls the PCS and PMA configurations and transceiver channels functions for all communication protocols
L-Tile/H-Tile Transceiver
Native PHY Intel Stratix 10
FPGA IP
UG-20055 | 2021.03.29
Send Feedback
2. Implementing the Transceiver PHY Layer in L-Tile/H­Tile

2.1. Transceiver Design IP Blocks

The following figure shows all the design blocks involved in designing and using Intel Stratix 10 transceivers.
Figure 21. Intel Stratix 10 Transceiver Design Fundamental Building Blocks
Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, eASIC, Intel, the Intel logo, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. *Other names and brands may be claimed as the property of others.
Related Information
Resetting Transceiver Channels on page 319
ISO 9001:2015 Registered
Loading...
+ 445 hidden pages