Intel BXSTS100P User Manual

Intel® Xeon® Processor 5600 Series
Datasheet, Volume 1
June 2011
Reference Number: 323369-002
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING T O SALE AND/OR USE OF INTEL PRODUCT S INCLUDING LIABILITY OR WARRANTIES RELA TING T O FITNES S FOR A PARTICULAR PURPOSE, MERCHANT ABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life savin g, or life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoev er for conflicts or incompatibilities arising from future changes to them.
The Intel deviate from published specifications. Current characterized errata are available on request.
Intel processor numbers are not a measure of performance. Processor numb ers differentia te features withi n each processo r family, not across different processor families. See http://www.intel.com/products/processor_number for details. Over time processor numbers will increment based on changes in clock, speed, cache, FSB, or other features, and increments are not intended to represent proportional or quantitative increases in any particular feature. Current roadmap processor number progression is not necessarily representative of future roadmaps. See www.intel.com/products/processor_number for details.
Xeon® Processor 5600 Series may contain design defects or errors known as errata which may cause the product to
Hyper-Threading Technology requires a computer system with a processor supporting HT Technology and an HT Technology­enabled chipset, BIOS and operating system. Performance will va ry de pe ndi ng on the specific hardware and software y ou use. For more information including details on which processors support HT Technology, see
http://www.intel.com/products/ht/hyperthreading_more.htm.
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.
64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information.
Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software to execute the instructions in the correct sequence. AES-NI is available on select Intel® processors. For availability, consult your reseller or system manufacturer. For more information, see http://software.intel.com/en-us/articles/intel-advanced-encryption-standard­instructions-aes-ni/
Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain computer system software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configur ations and may re quire a BIOS update. S oftware applicatio ns may not be compatible with all operating systems. Please check with your application vendor.
Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware, software and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology. For more information, see www.intel.com.
Enhanced Intel SpeedStep® Technology. See the http://processorfinder.intel.com or contact your Intel representative for more information.
Intel, Xeon, Intel 64, Enhanced Intel SpeedStep Technology, and the Intel logo are trademarks of Intel Corporation in the U .S. and other countries.
*Other brands and names are the property of their respective owners. Copyright © 2008-2011, Intel Corporation.
2 Intel® Xeon® Processor 5600 Series Datasheet Volume 1
Contents
1Introduction............................................................................................................11
1.1 Processor Features............................................................................................12
1.2 Platform Features............................... .. .............................................................12
1.3 Terminology .....................................................................................................13
1.4 References.......................................................................................................15
1.5 Statement of Volatility .......................................................................................15
2 Electrical Specifications...........................................................................................17
2.1 Processor Signaling ...........................................................................................17
2.1.1 Intel® QuickPath Interconnect ...............................................................17
2.1.2 DDR3 Signal Groups..............................................................................17
2.1.3 Platform Environmental Control Interface (PECI).......................................17
2.1.4 Processor Sideband Signals....................................................................18
2.1.5 System Reference Clock ........................................................................18
2.1.6 Test Access Port (TAP) Signals................................................................19
2.1.7 Power / Other Signals............................................................................19
2.1.8 Reserved or Unused Signals...................................................................27
2.2 Signal Group Summary............................. ............................ .............................27
2.3 Mixing Processors..............................................................................................29
2.4 Flexible Motherboard Guidelines (FMB)............................. ... .. ........................... .. ..30
2.5 Absolute Maximum and Minimum Ratings .............................................................30
2.6 Processor DC Specifications ................................................................................31
2.6.1 VCC Overshoot Specifications.................................................................35
2.6.2 Die Voltage Validation ...........................................................................36
2.7 Intel QuickPath Interconnect Specifications...........................................................44
2.8 AC Specifications...............................................................................................47
2.9 Processor AC Timing Waveforms .........................................................................54
3 Signal Quality Specifications....................................................................................65
3.1 Overshoot/Undershoot Tolerance.........................................................................65
4 Package Mechanical Specifications ..........................................................................67
4.1 Package Mechanical Specifications.......................................................................67
4.1.1 Package Mechanical Drawing..................................................................67
4.1.2 Processor Component Keep-Out Zones ....................................................70
4.1.3 Package Loading Specifications...............................................................70
4.1.4 Package Handling Guidelines..................................................................70
4.1.5 Package Insertion Specifications.............................................................70
4.1.6 Processor Mass Specification ......... .. ............................ .. .. .. .....................71
4.1.7 Processor Materials................................... .. .. ............................ ............71
4.1.8 Processor Markings...............................................................................71
5Land Listing.............................................................................................................73
5.1 Listing by Land Name ........................... .. .. .......................... .. .. ...........................73
5.2 Listing by Land Number ............................ .........................................................90
6 Signal Definitions .................................................................................................. 109
6.1 Signal Definitions .................................................. .. ........................................ 109
7 Thermal Specifications .......................................................................................... 113
7.1 Package Thermal Specifications......................... .. .. ........................... ................. 113
7.1.1 Thermal Specifications......................................................................... 113
7.1.2 Thermal Metrology.............................................................................. 128
7.2 Processor Thermal Features.............................................................................. 128
7.2.1 Processor Temperature........................................... .. .. .. ....................... 128
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 3
7.2.2 Adaptive Thermal Monitor.....................................................................129
7.2.3 On-Demand Mode ...............................................................................131
7.2.4 PROCHOT# Signal...............................................................................131
7.2.5 THERMTRIP# Signal ............................................................................132
7.3 Platform Environment Control Interface (PECI)....................................................132
7.3.1 PECI Client Capabilities ........................................................................133
7.3.2 Client Command Suite ...... .. .. .................................................. ... .. ........134
7.3.3 Multi-Domain Commands .....................................................................153
7.3.4 Client Responses.................................................................................153
7.3.5 Originator Responses...........................................................................155
7.3.6 Temperature Data...............................................................................155
7.3.7 Client Management............... .. ......................... .. .. .......................... .. .. ..156
7.4 Storage Conditions Specifications.......................................................................158
8Features................................................................................................................161
8.1 Power-On Configuration (POC)...........................................................................161
8.2 Clock Control and Low Power States........................... .. .. ....................................162
8.2.1 Thread and Core Power State Descriptions..............................................163
8.2.2 Package Power State Descriptions .........................................................164
8.2.3 Intel Xeon Processor 5600 Series C-State Power Specifications..................165
8.3 Sleep States ...................................................................................................165
8.4 Intel
®
Turbo Boost Technology............................................. .. ...........................166
8.5 Enhanced Intel SpeedStep® Technology ................... ......................... .. .. .............166
9 Boxed Processor Specifications..............................................................................167
9.1 Introduction....................................................................................................167
9.1.1 Available Boxed Thermal Solution Configurations.....................................167
9.1.2 Intel® Thermal Solution STS100C
(Passive/Active Combination Heat Sink Solution).....................................167
9.1.3 Intel Thermal Solution STS100A (Active Heat Sink Solution) .....................168
9.1.4 Intel Thermal Solution STS100P
(Boxed 25.5 mm Tall Passive Heat Sink Solution)....................................169
9.2 Mechanical Specifications..................................................................................169
9.2.1 Boxed Processor Heat Sink Dimensions and Baseboard Keepout Zones.......170
9.2.2 Boxed Processor Retention Mechanism and Heat Sink
Support (URS)....................... .. .. ................................................... .. .. ..179
9.3 Fan Power Supply [STS100C (Combo) and STS100A (Active) Solutions]....... ...........180
9.3.1 Boxed Processor Cooling Requirements..................................................181
9.4 Boxed Processor Contents.................................................................................183
4 Intel® Xeon® Processor 5600 Series Datasheet Volume 1
Figures
2-1 Active ODT for a Differential Link Example............................................................17
2-2 Input Device Hysteresis .....................................................................................18
2-3 VCC Static and Transient Tolerance Loadlines1,2,3,4..............................................35
2-4 VCC Overshoot Example Waveform......................................................................36
2-5 Load Current Versus Time (Frequency Optimized Server/Workstation),2................... 37
2-6 Load Current Versus Time (Advanced Server/Workstation),2................................... 37
2-7 Load Current Versus Time (Standard Server/Workstation),2....................................38
2-8 Load Current Versus Time (Low Power & LV-60W),2...................... .........................38
2-9 Load Current Versus Time (Low Power & LV-40W),2...................... .........................39
2-10 VTT Static and Transient Tolerance Loadlines........................................................40
2-11 Intel QuickPath Interconnect Electrical Test Setup for Validating
Standalone TX Voltage and Timing Parameters......................................................54
2-12 Intel QuickPath Interconnect Electrical Test Setup for Validating
TX + Worst-Case Interconnect Specifications ........................................................55
2-13 Distribution Profile of Common Mode Noise for Either Tx or Rx.................................55
2-14 Distribution Profile of UI-UI Jitter and Accumulated Jitter........................................56
2-15 Eye Mask at the End of Tx + Channel...................................................................56
2-16 Differential Clock Crosspoint Specification.............................................................57
2-17 Differential Clock Measurement Points for Duty Cycle and Period .............................57
2-18 Differential Clock Measurement Points for Rise and Fall time ...................................57
2-19 Single-Ended Clock Measurement Points for Absolute Cross Point and Swing .............58
2-20 Single-Ended Clock Measurement Points for Delta Cross Point ......... ........................ 58
2-21 Differential Clock Measurement Point for Ringback.................................................58
2-22 DDR3 Command / Control and Clock Timing Waveform ..........................................59
2-23 DDR3 Clock to Output Timing Waveform ..............................................................59
2-24 DDR3 Clock to DQS Skew Timing Waveform .........................................................60
2-25 TAP Valid Delay Timing Waveform .......................................................................60
2-26 Test Reset (TRST#), Asynch GTL Input, and PROCHOT# Timing Waveform ............... 61
2-27 THERMTRIP# Power Down Sequence ...................................................................61
2-28 Voltage Sequence Timing Requirements ...............................................................62
2-29 VID Step Times and Vcc Waveforms ....................................................................63
3-1 Maximum Acceptable Overshoot/Undershoot Waveform..........................................66
4-1 Processor Package Assembly Sketch ....................................................................67
4-2 Processor Package Drawing (Sheet 1 of 2)............................................................68
4-3 Processor Package Drawing (Sheet 2 of 2)............................................................69
4-4 Processor Top-Side Markings ..............................................................................71
7-1 Frequency Optimized Server/Workstation Platform Thermal Profile (6 Core) ............ 115
7-2 Frequency Optimized Server/Workstation Platform Thermal Profile (4 Core) ............ 116
7-3 Advanced Server/Workstation Platform Thermal Profile A and B (6 Core) ................ 117
7-4 Advanced Server/Workstation Platform Thermal Profile A and B (4 Core) ................ 119
7-5 Standard Server/Workstation Platform Thermal Profile (6 Core)............................. 121
7-6 Standard Server/Workstation Platform Thermal Profile (4 Core)............................. 122
7-7 Low Power Platform 60W Thermal Profile (6 Core) ............................................... 123
7-8 Low Power Platform 40W Thermal Profile (4 Core) ............................................... 124
7-9 LV-60W Processor Dual Thermal Profile.............................................................. 125
7-10 LV-40W Processor Dual Thermal Profile.............................................................. 127
7-11 Case Temperature (TCASE) Measurement Location............................. .. ............... 128
7-12 Frequency and Voltage Ordering........................................................................ 130
7-13 Ping()............................................................................................................ 134
7-14 Ping() Example............................................................................................... 134
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 5
7-15 GetDIB() ........................................................................................................135
7-16 Device Info Field Definition ...............................................................................135
7-17 Revision Number Definition...............................................................................135
7-18 GetTemp()......................................................................................................136
7-19 GetTemp() Example.........................................................................................136
7-20 PCI Configuration Address.................................................................................137
7-21 PCIConfigRd().................................................................................................138
7-22 PCIConfigWr().................................................................................................140
7-23 Thermal Status Word .................... .. ........................... .. ............................ ........142
7-24 Thermal Data Configuration Register ..................................................................143
7-25 Machine Check Read MbxSend() Data Format......................................................143
7-26 ACPI T-State Throttling Control Read / Write Definition.........................................147
7-27 Energy Accumulator Register Definition ..............................................................148
7-28 MbxSend() Command Data Format ............... .. ............................ .. .. .. .................149
7-29 MbxSend()......................................................................................................150
7-30 MbxGet()........................................................................................................151
7-31 Temperature Sensor Data Format ......................................................................155
7-32 PECI Power-Up Timeline ...................................................................................157
8-1 PROCHOT# POC Timing Requirements................................................................161
8-2 Power States........................................................... .. .. .......................... .. .. ......163
9-1 STS100C Passive / Active Combination Heat Sink (with Removable Fan) .................168
9-2 STS100C Passive / Active Combination Heat Sink (with Fan Removed)....................168
9-3 STS100A Active Heat Sink ................................................................................169
9-4 STS100P 25.5 mm Tall Passive Heat Sink............................................................169
9-5 Top Side Baseboard Keep-Out Zones..................................................................171
9-6 Top Side Baseboard Mounting-Hole Keep-Out Zones.............................................172
9-7 Bottom Side Baseboard Keep-Out Zones.............................................................173
9-8 Primary and Secondary Side 3D Height Restriction Zones......................................174
9-9 Volumetric Height Keep-Ins...............................................................................175
9-10 Volumetric Height Keep-Ins...............................................................................176
9-11 4-Pin Fan Cable Connector (For Active Heat Sink) ................................................177
9-12 4-Pin Base Baseboard Fan Header (For Active Heat Sink) ......................................178
9-13 Thermal Solution Installation.............................................................................180
9-14 Fan Cable Connector Pin Out For 4-Pin Ac tive Thermal Solution..............................181
6 Intel® Xeon® Processor 5600 Series Datasheet Volume 1
Tables
1-1 Intel® Xeon® Processor 5600 Series Feature Set Overview....................................12
1-2 References.......................................................................................................15
2-1 Processor Power Supply Voltages1.......................................................................19
2-2 Voltage Identification Definition...........................................................................21
2-3 Power-On Configuration (POC[7:0]) Decode..........................................................25
2-4 VTT Voltage Identification Definition ....................................................................26
2-5 Signal Groups....................... .......................... .. .. ......................... .. .. .................27
2-6 Signals With On-Die Termination (ODT).................. .. .. .. .. ............................ .. .. .. ....29
2-7 Processor Absolute Minimum and Maximum Ratings...............................................31
2-8 Voltage and Current Specifications.......................................................................31
2-9 VCC Static and Transient Tolerance.....................................................................34
2-10 VCC Overshoot Specifications..............................................................................35
2-11 VTT Static and Transient Tolerance.....................................................................39
2-12 DDR3 and DDR3L Signal Group DC Specifications ..................................................41
2-13 PECI Signal DC Electrical Limits...........................................................................41
2-14 System Reference Clock DC Specifications............................................................42
2-15 RESET# Signal DC Specifications.........................................................................42
2-16 TAP Signal Group DC Specifications .....................................................................43
2-17 xxxPWRGOOD Signal Group DC Specifications.......................................................43
2-18 Processor Sideband Signal Group DC Specifications................................................43
2-19 Common Intel QuickPath Interconnect Specifications .............................................44
2-20 Parameter Values for Intel QuickPath Interconnect Channels at 4.8 GT/s ..................45
2-21 Parameter Values for Intel QuickPath Interconnect Channel at 5.86 or
6.4 GT/s ..........................................................................................................47
2-22 System Reference Clock AC Specifications .................................................. .. .. .. ....48
2-23 DDR3/DDR3L Electrical Characteristics and AC Specifications at 800 MT/s.................48
2-24 DDR3 Electrical Characteristics and AC Specifications at 1066 MT/s.......................... 49
2-25 DDR3/DDR3L Electrical Characteristics and AC Specifications at 1333 MT/s ............... 51
2-26 Processor Sideband Signal Group AC Specifications................................................52
2-27 TAP Signal Group AC Specifications......................................................................53
2-28 VID Signal Group AC Specifications......................................................................53
3-1 Overshoot/Undershoot Tolerance.........................................................................65
4-1 Processor Loading Specifications .........................................................................70
4-2 Package Handling Guidelines............................. .. ........................... .. .. .................70
4-3 Processor Materials............................................................................................71
5-1 Land Name.......................................................................................................73
5-2 Land Number....................................................................................................90
6-1 Signal Definitions .................................................. .......................................... 109
7-1 Frequency Optimized Server/Workstation Platform Thermal Specifications .............. 114
7-2 Frequency Optimized Server/Workstation Platform Thermal Profile (6 Core) ............ 115
7-3 Frequency Optimized Server/Workstation Platform Thermal Profile (4 Core) ............ 116
7-4 Advanced Server/Workstation Platform Thermal Specifications .............................. 117
7-5 Advanced Server/Workstation Thermal Profile A (6 Core)...................................... 118
7-6 Advanced Server/Workstation Thermal Profile B (6 Core)..................................... 118
7-7 Advanced Server/Workstation Thermal Profile A (4 Core)...................................... 119
7-8 Advanced Server/Workstation Thermal Profile B (4 Core)..................................... 120
7-9 Standard Server/Workstation Platform Thermal Specifications............................... 120
7-10 Standard Server/Workstation Platform Thermal Profile (6 Core)............................. 121
7-11 Standard Server/Workstation Platform Thermal Profile (4 Core)............................. 122
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 7
7-12 Low Power Platform 60W Thermal Specifications..................................................123
7-13 Low Power Platform 60W Thermal Profile (6 Core)................................................123
7-14 Low Power Platform 40W Thermal Specifications..................................................124
7-15 Low Power Platform 40W Thermal Profile (4 Core)................................................125
7-16 LV-60W Processor Thermal Specifications............................................................125
7-17 LV-60W Processor Dual Thermal Profile...............................................................126
7-18 LV-40W Processor Thermal Specifications............................................................126
7-19 LV-40W Processor Dual Thermal Profile...............................................................127
7-20 Summary of Processor-Specific PECI Commands..................................................133
7-21 GetTemp() Response Definition ................ ............................ .. .. .. .. .....................137
7-22 PCIConfigRd() Response Definition.....................................................................138
7-23 PCIConfigWr() Device/Function Support..............................................................138
7-24 PCIConfigWr() Response Definition.....................................................................140
7-25 Mailbox Command Summary.............................................................................141
7-26 Counter Definition............................................................................................142
7-27 Machine Check Bank Definitions.........................................................................143
7-28 ACPI T-state Duty Cycle Definition .....................................................................146
7-29 MbxSend() Response Definition ................................................ .. .. .....................150
7-30 MbxGet() Response Definition ...........................................................................151
7-31 Domain ID Definition............................................ .. .. ........................................153
7-32 Multi-Domain Command Code Reference.............................................................153
7-33 Completion Code Pass/Fail Mask........................................................................154
7-34 Device Specific Completion Code (CC) Definition..................................................154
7-35 Originator Response Guidelines.................................................................... .. .. ..155
7-36 Error Codes and Descriptions.............................................................................156
7-37 PECI Client Response During Power-Up (During ‘Data Not Ready’)..........................156
7-38 Storage Condition Ratings.................................................................................158
8-1 Power-On Configuration Signal Options...............................................................161
8-2 Coordination of Thread Power States at the Core Level .........................................163
8-3 Processor C-State Power Specifications...............................................................165
8-4 Processor S-States...........................................................................................166
9-1 PWM Fan Frequency Specifications For 4-Pin Active Thermal Solution......................181
9-2 Fan Specifications For 4-Pin Active Thermal Solution.............................................181
9-3 Fan Cable Connector P in Out for 4-Pin Active Thermal Solution ..............................181
8 Intel® Xeon® Processor 5600 Series Datasheet Volume 1
Revision History
Revision
Number
-001 • Initial Release March 2010
-002 • Added Section 1.5: Statement of Volatility June 2011
Description Date
§
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 9
10 Intel® Xeon® Processor 5600 Series Datasheet Volume 1
Introduction

1 Introduction

The Intel® Xeon® processor 5600 series is a server/workstation multi-core processor based on 32 nm process technology. The processors feature two Intel® QuickPath Interconnect point-to-point links capable of up to 6.4 GT/s, up to 12 MB of shared cache, and an Integrated Memory Controller. The processors are optimized for performance with the power efficiencies of a low-power microarchitecture to enable smaller, quieter systems.
This datasheet provides DC and AC electrical specifications, signal integrity, differential signaling specifications, pinout and signal definitions, package mechanical specifications and thermal requirements, and additional features pertinent to implementation and operation of the processor.
The Intel Xeon processor 5600 series features a range of Thermal Design Power (TDP) envelopes from 40W TDP up to 130W TDP, and is segmented into multiple platforms:
• 2-Socket Frequency Optimized Server/Workstation Platforms support a 130 W Thermal Design Power (TDP) SKU and up to 6 core support. These platforms provide optimal overall performance and reliability, in addition to high-end graphics support.
• 2-Socket Advanced Server/Workstation Platforms support a 95 W Thermal Design Power (TDP) SKU. These platforms provide optimal overall performance featuring up to 6 core support.
• 2-Socket Standard Server/Workstation Platforms support 80 W TDP processor SKUs supporting up to 6 cores. These platforms provide optimal performance per watt for rack-optimized platforms.
• Low Power Platforms implement 60 W TDP (up to 6 cores) and 40 W TDP (up to 4 cores) processor SKU’s. These processors are intended for dual-processor server blades and embedded servers.
• 1-Socket Workstation Platforms support Intel® Xeon® Processor W3680. These platforms enable a wide range of options for either the performance, power, or cost sensitive customer.
• Platforms supporting Higher Case Temperature Low-Voltage Processors with 60 W TDP (up to 6 cores) and 40 W TDP (up to 4 cores). The higher case temperatures are intended to meet the short-term thermal profile requirements of NEBS Level 3. These 2-socket processors are ideal for thermally-constrained form factors in embedded servers, communications and storage markets. Specifications denoted as LV-60W apply to the Intel® Xeon® Processor L5638. Specifications denoted as LV-40W apply to the Intel® Xeon® Processor L5618.
®
Note: All references to “chipset” in this document pertain to the Intel
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 11
®
5500 chipset.
Intel Intel is committed to delivering processors for both server and workstation platforms
that maximize performance while meeting all Intel Quality and Reliability goals. The product’s reliability assessment is based on a datasheet compliant system and reference use condition. Intel utilizes a broad set of use condition assumptions (that is, percentage of time in active vs. inactive operation, non-operating conditions, and the number of power cycles per year) to ensure proper operation over the life of the
5520 chipset and the
product. The reference use condition differs between workstation and server processor SKU’s. Implementing processors outside of reference use conditions may affect reliability performance.

1.1 Processor Features

Introduction
.
Table 1-1 provides an overview the Intel Xeon processor 5600 series feature set.
Table 1-1. Intel® Xeon® Processor 5600 Series Feature Set Overview
Feature Intel® Xeon® Processor 5600 Series
Cache Sizes Instruction Cache: 32 kB
12 MB Last-Level Cache shared among all cores
Data Transfer Rate (GT/s) Two full-width Intel® QuickPath Interconnect links;
Memory Support Integrated Memory Controller supports up to 3 channels of
DDR3 Memory Speed (MHz) 800, 1066, 1333 Multi-Core Support Up to 6 cores per processor (package)
Intel
Hyper-Threading Technology 2 threads per core
Dual Processor Support Up to 2 processor sockets per platform Package 1366-land FC-LGA
DDR3 or DDR3L memory, with up to 3 DIMMs per channel
Data Cache: 32 kB
256 kB Mid-Level Cache per core
Up to 6.40 GT/s in each direction
The Intel Xeon processor 5600 series support all the existing Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3) and Streaming SIMD Extensions 4 (SSE4) instructions. Additionally, Intel Xeon processor 5600 series support Intel® AES New Instructions (Intel® AES-NI).
The Intel Xeon processor 5600 series support Direct Cache Access (DCA). DCA enables supported I/O adapter to pre-fetch data from memory to the processor cache, thereby avoiding cache misses and improving application response times.
These processors support a maximum physical address size of 40 bits. Also supported is IA-32e paging which adds support for 1 GB (2 4 kB page size support for linear to physical address translation.
Finally, these processors support several advanced technologies including Execute Disable Bit, Intel
®
64 Technology, Enhanced Intel SpeedStep® Technology, Intel® Virtualization Technology (Intel® VT), Intel® Hyper-Threading Technology, and Intel® Turbo Boost Technology.

1.2 Platform Features

Various new component and platform capabilities are available with the implementation of Intel Xeon processor 5600 series.
New memory subsystem capabilities include Low Voltage DDR3 (DDR3L) DIMM support for power optimization. The Intel Xeon processor 5600 series also add features to provide improved manageability of memory channels. The DDR_THERM2# signal has been added to support high-temperature DIMMs and their 2X refresh requirements.
12 Intel
30
) page size in addition to 2 MB and
Xeon® Processor 5600 Series Datasheet Volume 1
Introduction
Intel Xeon processor 5600 series are based on a low-power microarchitecture that supports operation within various C-states. Additionally, six execution cores and power management coordination logic are optimized to manage C-state support at both the execution core and package levels. An Intel Turbo Boost Technology optimization feature is supported on these processors for improved energy efficiency.
®
Trusted Execution Technology (Intel® TXT) is also supported and represents a
Intel set of enhanced hardware components designed to help protect sensitive information from software-based attacks. Features include capabilities in the microprocessor, chipset, I/O subsystems, and other platform components. When coupled with suitably enabled operating systems and applications, Intel TXT helps protect the confidentiality and integrity of data in the face of increasingly hostile security environment.

1.3 Terminology

A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in the active state when driven to a low voltage level. For example, when RESET# is low, a reset has been requested.
A ‘_N’ and ‘_P’ after a signal name refers to a differential pair. Commonly used terms are explained here for clarification:
1366-land FC-LGA package — The Intel Xeon processor 5600 series is available in a Flip-Chip Land Grid Array (FC-LGA) package, consisting of processor mounted on a land grid array substrate with an integrated heat spreader (IHS).
DDR3 — Double Data Rate 3 synchronous dynamic random access memory (SDRAM) is the DDR memory standard, developed as the successor to DDR2 SDRAM.
Enhanced Intel SpeedStep Technology allows the operating system to reduce power consumption when performance is not needed.
Execute Disable Bit — Execute Disable allows memory to be marked as executable or non-executable, when combined with a supporting operating system. If code attempts to run in non-executable memory the processor raises an error to the operating system. This feature can prevent some classes of viruses or worms that exploit buffer over run vulnerabilities and can thus help improve the overall security of the system. See the Intel Developer's Manuals for more detailed information.
Functional Operation — Refers to the normal operating conditions in which all processor specifications, including DC, AC, signal quality , m echanical, and thermal, are satisfied.
Integrated Memory Controller (IMC) — This is a memory controller that is integrated in the processor die. Intel Xeon processor 5600 series can support up to 3 channels of DDR3, DDR3L memory , with up to 3 DIMMs per channel. Please refer to Intel Plan of Record for supported DIMM types, densities and configurations.
®
Intel faster than the marked frequency if the part is operating under power, temperature, and current specification limits of the Thermal Design Power (TDP). This results in increased performance of both single and multi-threaded applications.
Intel extensions to Intel processors and chipsets that, with appropriate software, enhance the platform security capabilities.
Turbo Boost Technology - A way to automatically run the processor core
®
Trusted Execution Technology - A highly versatile set of hardware
®
Technology — Enhanced Intel SpeedStep®
®
64 and IA-32 Architecture Software
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 13
Introduction
Intel® QuickPath Interconnect (Intel® QPI) — A cache-coherent, links-based interconnect specification for Intel processors, chipsets, and I/O bridge components.
Intel® 64 Architecture — An enhancement to Intel's IA-32 architec ture, allowing the processor to execute operating systems and applications written to take advantage of Intel
®
64.
Intel® Virtualization Technology (Intel® VT) — A set of hardware enhancements to Intel server and client platforms that can improve virtualization solutions. VT provides a foundation for widely-deployed virtualization solutions and enables more robust hardware assisted virtualization solution.
Integrated Heat Spreader (IHS) — A component of the processor package used to enhance the thermal performance of the package. Component thermal solutions interface with the processor at the IHS surface.
Jitter — Any timing variation of a transition edge or edges from the defined Unit Interval (UI).
LGA1366 Socket — The 1366-land FC-LGA package mates with the system board through this surface mount, 1366-contact socket.
Network Equipment Building System (NEBS) — The most common set of environmental design guidelines applied to telecommunications equipment in the United States.
Serve r SKU — A processor Stock Keeping Unit (SKU) to be installed in either server or workstation platforms. Electrical, power and thermal specifications for these SKU’s are based on specific use condition assumptions. Server processors may be further categorized as Frequency Optimized, Advanced, Standard and Low Power SKUs. For further details on use condition assumptions, please refer to the latest Product Release Qualification (PRQ) Report available via your Customer Quality Engineer (CQE) contact.
Storage Conditions — Refers to a non-operational state. The processor may be installed in a platform, in a tray , or loose. Processors ma y be sealed in packaging or exposed to free air. Under these conditions, processor lands should not be connected to any supply voltages, have any I/Os biased, or receive any clocks.
Unit Interval (UI) — Signaling convention that is binary and unidirectional. In this binary signaling, one bit is sent for every edge of the forwarded clock, whether it be a rising edge or a falling edge. If a number of edges are collected at instances
, t2, tn,...., tk then the UI at instance “n” is defined as:
t
1
UI n = t n - t
Workstation SKU — A processor SKU to be installed in workstation platforms only. Electrical, power and thermal specifications for these processors have been developed based on Intel’s reliability goals at a reference use condition. In addition, the processor validation and production test conditions have been optimized based on these conditions. Operating “Workstation” processors in a server environment or other application, could impact reliability performance, which means Intel’s reliability goals may not be met. For further details on use condition assumptions or reliability performance, please refer to the latest Product Release Qualification (PRQ) Report available via your Customer Quality Engineer (CQE) contact.
14 Intel
n - 1
Xeon® Processor 5600 Series Datasheet Volume 1
Introduction

1.4 References

Platform designers are strongly encouraged to maintain familiarity with the most up-to­date revisions of processor and platform collateral.
Table 1-2. References
Advanced Configuration and Power Interface Specification www.acpi.info. Compact Electronics Bay Specification: A Server System
Infrastructure (SSI) Specification for Value Servers and Workstations Electronics Bay Specification for 2008 Servers and Workstation Entry-Level Electronics-Bay Specifications: A Server System
Infrastructure (SSI) Specification for Entry Pedestal Servers and Workstations
Thin Electronics Bay Specification: A Server System Infrastructure (SSI) Specification for Rack-Optimized Servers
Intel
64 and IA-32 Architecture Software Developer's Manual
• Volume 1: Basic Architecture
• Volume 2A: Instruction Set Reference, A-M
• Volume 2B: Instruction Set Reference, N-Z
• Volume 3A: System Programming Guide, Part 1
• Volume 3B: Systems Programming Guide, Part 2
64 and IA-32 Architectures Optimization Reference Manual 248966 1
Intel
Intel
Xeon® Processor 5600 Series Datasheet, Volume 2 323370 1
Intel
Xeon® Processor 5500/5600 Series Thermal/Mechanical
Design Guide
Document Location / Document#1Notes
www.ssiforum.org
1 253665 253666 253667 253668 253669
321323 1
Notes:
1. Document is available publicly at http://www.intel.com.

1.5 Statement of Volatility

No Intel Xeon processor 5600 series product family processors retain any end user data when powered down and/or when the parts are physically removed from the socket.
§
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 15
Introduction
16 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
T
X
R
X
R
TT
R
TT
R
TT
R
TT
Signal Signal

2 Electrical Specifications

2.1 Processor Signaling

The Intel Xeon processor 5600 series include 1366 lands, which utilize various signaling technologies. Signals are grouped by electrical characteristics and buffer type into various signal groups. These include Intel QuickPath Interconnect, DDR3 (Reference Clock, Command, Control, and Data), Platform Environmental Control Interface (PECI), Processor Sideband, System Reference Clock, Test Access Port (TAP), and Power/Other signals. Refer to Table 2-5 for details.

2.1.1 Intel® QuickPath Interconnect

The Intel Xeon processor 5600 series provide two Intel QuickPath Interconnect ports for high speed serial transfer between other enabled components. Each port consists of two uni-directional links (for transmit and receive). A differential signaling scheme is utilized, which consists of opposite-polarity (D_P, D_N) signal pairs.
On-die termination (ODT) is included on the processor silicon and terminated to V Intel chipsets also provide ODT, thus eliminating the need to terminate on the system board. Figure 2-1 illustrates the active ODT.
Figure 2-1. Active ODT for a Differential Link Example

2.1.2 DDR3 Signal Groups

The memory interface utilizes DDR3 technology, which consists of numerous signal groups. These include: Reference Clocks, Command Signals, Control Signals, and Data Signals. Each group consists of numerous signals, which may utilize various signaling technologies. Please refer to Table 2-5 for further details.

2.1.3 Platform Environmental Control Interface (PECI)

PECI is an Intel proprietary interface that provides a communication channel between Intel processors and chipset components to external thermal monitoring devices. The processor contains a Digital Thermal Sensor (DTS) that reports a relative die temperature as an offset from Thermal Control Circuit (TCC) activation temperature. Temperature sensors located throughout the die are implemented as analog-to-digital converters calibrated at the factory. PECI provides an interface for external devices to read processor temperature, perform processor manageability functions, and manage processor interface tuning and diagnostics. Please refer to Section 7.3 for processor specific implementation details for PECI.
SS
.
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 17
Electrical Specifications
Minimum V
P
Maximum V
P
Minimum V
N
Maximum V
N
PECI High Range
PECI Low Range
Valid Input Signal Range
Minimum Hysteresis
V
TTD
PECI Ground
The PECI interface operates at a nominal voltage set by V specifications shown in Table 2-13 is used with devices normally operating from a V interface supply.
2.1.3.1 Input Device Hysteresis
The PECI client and host input buffers must use a Schmitt-triggered input design for improved noise immunity. Pl ease refer to Figure 2-2 and Table 2-13.
Figure 2-2. Input Device Hysteresis
. The set of DC electrical
TTD
TTD

2.1.4 Processor Sideband Signals

Intel Xeon processor 5600 series include sideband signals that provide a variety of functions. Details can be found in Table 2-5.
All Asynchronous Processor Sideband signals are required to be asserted/deasserted for at least eight BCLKs in order for the processor to recognize the proper signal state. See Table 2-18 and Table 2-26 for DC and AC specifications, respectively. Refer to
Section 3 for applicable signal integrity specifications.

2.1.5 System Reference Clock

The processor core, processor uncore, Intel QuickPath Interconnect link, and DDR3 memory interface frequencies are generated from BCLK_DP and BCLK_DN signals. There is no direct link between core frequency and Intel QuickPath Interconnect link frequency (for example, no core frequency to Intel QuickPath Interconnect multiplier). The processor maximum core frequency, Intel QuickPath Interconnect link frequency and DDR memory frequency are set during manufacturing. It is possible to override the processor core frequency setting using software. This permits operation at lower core frequencies than the factory set maximum core frequency.
The processor core frequency is configured during reset by using values stored within the device during manufacturing. The stored value sets the lowest core multiplier at which the particular processor can operate. If higher speeds are desired, the appropriate ratio can be configured via the IA32_PERF_CTL MSR (MSR 199h); Bits [15:0].
18 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
Clock multiplying within the processor is provided by the internal phase locked loop (PLL), which requires a constant frequency BCLK_DP, BCLK_DN input, with exceptions for spread spectrum clocking. DC specifications for the BCLK_DP, BCLK_DN inputs are provided in Table 2-14 and AC specifications in Table 2-22. These specifications must be met while also meeting the associated signal quality specifications outlined in
Section 3.

2.1.6 Test Access Port (TAP) Signals

Due to the voltage levels supported by other components in the Test Access Port (TAP) logic, it is recommended that the processor(s) be first in the TAP chain and followed by any other components within the system. A translation buffer should be used to connect to the rest of the chain unless one of the other components is capable of accepting an input of the appropriate voltage. Similar considerations must be made for TCK, TDO, TMS, and TRST#. Two copies of each signal may be required with each driving a different voltage level.
Processor TAP signal DC specifications can be found in Table 2-18. AC specifications are located in Table 2-27.
Note: While TDI, TMS and TRST# do not include On-Die Termination (OD T), these signals are
weakly pulled-up via a 1-5 kΩ resistor to V
TT
.
Note: While TCK does not include ODT, this signal is weakly pulled-down via a
1-5 kΩ resistor to V
SS
.

2.1.7 Power / Other Signals

Processors also include various other signals including power/ground, sense points, and analog inputs. Details can be found in Table 2-5.
Table 2-1 outlines the required voltage supplies necessary to support Intel Xeon
processor 5600 series.
Table 2-1. Processor Power Supply Voltages
Power Rail Nominal Voltage Notes
V
CC
V
CCPLL
V
DDQ
V
, V
TTA
TTD
See Table 2-9;
Figure 2-3
1.80 V
1.50 V
1.35 V
See Table 2-11;
Figure 2-10
1
Each processor includes a dedicated VR11.1 regulator.
Each processor includes dedicated V Each processor and DDR3 / DDR3L stack shares a dedicated voltage
regulator. It is expected that regulators will support both 1.50 and
1.35 V. Each processor includes a dedicated VR11.0 regulator.
= V
+ V
V
TT
TTA
VID range is 1.025-1.2000 V; 20 mV offset (see Table 2-4); V represents a typical voltage. V
31.5 mV offset from V
; P1V1_Vtt is VID[4:2] controlled,
TTD
TT_MIN
(typ).
TT
and PLL circuits.
CCPLL
and V
TT_MAX
loadlines represent a
TT
Note:
1. Refer to Table 2-8 for voltage and current specifications.
2.1.7.1 Power and Ground Lands
For clean on-chip power distribution, processors include lands for all required voltage supplies. These include:
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 19
Electrical Specifications
•210 each VCC (271 ea. VSS) lands must be supplied with the voltage determined by the VID[7:0] signals. Table 2-2 defines the voltage level associated with each core VID pattern. Table 2-9 and Figure 2-3 represent V
•3 each V
lands, connected to a 1.8 V supply, power the Phase Lock Loop (PLL)
CCPLL
static and transient limits.
CC
clock generation circuitry. An on-die PLL filter solution is implemented within the processor.
• 45 eac h V
(17 ea. VSS) lands, connected to a 1.50 / 1.35 V supply, provide
DDQ
power to the processor DDR3 interface. This supply also powers the DDR3 memory subsystem.
•7 each V
(5 ea. VSS) and 26 ea. V
TTA
(17 ea. VSS) lands must be supplied with
TTD
the voltage determined by the VTT_VID[4:2] signals. Coupled with a 20 mV offset, this corresponds to a VTT_VID pattern of ‘010xxx10’. Table 2-4 specifies the voltage levels associated with each VTT represent V
static and transient limits.
TT
VID pattern. Table 2-11 and Figure 2-10
_
All VCC, V
CCPLL, VDDQ, VTTA
, and V
lands must be connected to their respective
TTD
processor power planes, while all VSS lands must be connected to the system ground plane.
2.1.7.2 Decoupling Guidelines
Due to its large number of transistors and high internal clock speeds, the processor is capable of generating large current swings between low and full power states. This may cause voltages on power planes to sag below their minimum values if bulk decoupling is not adequate. Larger bulk storage (C
), such as electrolytic capacitors, supply
BULK
current during longer lasting changes in current demand, for example coming out of an idle condition. Similarly, they act as a storage well for current when entering an idle condition from a running condition. Care must be taken in the baseboard design to ensure that the voltages provided to the processor remain within the specifications listed in Table 2-8. Failure to do so can result in timing violations or reduced lifetime of the processor.
2.1.7.3 Processor VCC Voltage Identification (VID) Signals
The voltage set by the VID signals is the maximum reference voltage regulator (VR) output to be delivered to the processor VCC lands. VID signals are CMOS push/pull outputs. Please refer to Table 2-18 for the DC specifications for these signals.
Individual processor VID values may be calibrated during manufacturing such that two devices at the same core frequency may have different default VID settings.
The processor uses eight voltage identification signals, VID[7:0], to support automatic selection of power supply voltages. Table 2-2 specifies the voltage level corresponding to the state of VID[7:0]. A ‘1’ in this table refers to a high voltage level and a ‘0’ refers to a low voltage level. If the processor socket is empty (SKTOCC# pulled high), or the voltage regulation circuit cannot supply the voltage that is requested, the voltage regulator must disable itself.
The processor provides the ability to operate while transitioning to an adjacent VID and its associated processor core voltage (V
). This is represented by a DC shift in the
CC
loadline. It should be noted that a low-to-high or high-to-low voltage state change may result in as many VID transitions as necessary to reach the target core voltage. T ransitions abov e the maximum specified VID are not permitted. Table 2-8 includes VID step sizes and DC shift ranges. Minimum and maximum voltages must be maintained as shown in Table 2-9.
20 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
The VRM or EVRD utilized must be capable of regulating its output to the value defined by the new VID. DC specifications for dynamic VID transitions are included in
Table 2-18, while AC specifications are included in Table 2-28.
Power source characteristics must be guaranteed to be stable whenever the supply to the voltage regulator is stable.
Table 2-2. Voltage Identification Definition (Sheet 1 of 5)
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 V
000000 0 0 OFF 000000 0 1 OFF 000000 1 01.60000 000000 1 11.59375 000001 0 01.58750 000001 0 11.58125 000001 1 01.57500 000001 000010 0 0 0 0 1 0 0 1 1.55625 0 0 0 0 1 0 1 0 1.55000 0 0 0 0 1 0 1 1 1.54375 000011 0 01.53750 000011 0 11.53125 000011 1 01.52500 000011 1 11.51875 000100 0 01.51250 000100 0 11.50625 000100 1 01.50000 000100 1 11.49375 000101 0 01.48750 000101 0 11.48125 000101 1 01.47500 000101 1 11.46875 000110 0 01.46250 000110 0 11.45625 000110 1 01.45000 000110 1 11.44375 000111 0 01.43750 000111 0 11.43125 000111 1 01.42500 000111 1 11.41875 001000 0 01.41250 001000 0 11.40625 001000 1 01.40000 001000 1 11.39375
1 1 1.56875 0 0 1.56250
CC_MAX
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 21
Table 2-2. Voltage Identification Definition (Sheet 2 of 5)
Electrical Specifications
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 V
CC_MAX
001001 0 01.38750 001001 0 11.38125 001001 1 01.37500 001001 1 11.36875 001010 0 01.36250 001010 0 11.35625 001010 1 01.35000 001010 1 11.34375 001011 0 01.33750 001011 0 11.33125 001011 1 01.32500 001011 1 11.31875 001100 0 01.31250 001100 0 11.30625 001100 1 01.30000 001100 1 11.29375 001101 0 01.28750 001101 0 11.28125 001101 1 01.27500 001101 1 11.26875 001110 0 01.26250 001110 0 11.25625 001110 1 01.25000 001110 1 11.24375 001111 0 01.23750 001111 0 11.23125 001111 1 01.22500 001111 1 11.21875 010000 0 01.21250 010000 0 11.20625 010000 1 01.20000 010000 1 11.19375 010001 0 01.18750 010001 0 11.18125 010001 1 01.17500 010001 1 11.16875 010010 0 01.16250 010010 0 11.15625 010010 1 01.15000 010010 1 11.14375 010011 0 01.13750 010011 0 11.13125
22 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
Table 2-2. Voltage Identification Definition (Sheet 3 of 5)
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 V
010011 1 01.12500 010011 1 11.11875 010100 0 01.11250 010100 0 11.10625 010100 1 01.10000 010100 1 11.09375 010101 0 01.08750 010101 0 11.08125 010101 1 01.07500 010101 1 11.06875 010110 0 01.06250 010110 0 11.05625 010110 1 01.05000 010110 1 11.04375 010111 0 01.03750 010111 0 11.03125 010111 1 01.02500 010111 1 11.01875 011000 0 01.01250 011000 0 11.00625 011000 1 01.00000 011000 1 10.99375 011001 0 00.98750 011001 0 10.98125 011001 1 00.97500 011001 1 10.96875 011010 0 00.96250 011010 0 10.95625 011010 1 00.95000 011010 1 10.94375 011011 0 00.93750 011011 0 10.93125 011011 1 00.92500 011011 1 10.91875 011100 0 00.91250 011100 0 10.90625 011100 1 00.90000 011100 1 10.89375 011101 0 00.88750 011101 0 10.88125 011101 1 00.87500 011101 1 10.86875
CC_MAX
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 23
Table 2-2. Voltage Identification Definition (Sheet 4 of 5)
Electrical Specifications
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 V
CC_MAX
011110 0 00.86250 011110 0 10.85625 011110 1 00.85000 011110 1 10.84375 011111 0 00.83750 011111 0 10.83125 011111 1 00.82500 011111 1 10.81875 100000 0 00.81250 100000 0 10.80625 100000 1 00.80000 100000 1 10.79375 100001 0 00.78750 100001 0 10.78125 100001 1 00.77500 100001 1 10.76875 100010 0 00.76250 100010 0 10.75625 100010 1 00.75000 100010 1 10.74375 100011 0 00.73750 100011 0 10.73125 100011 1 00.72500 100011 1 10.71875 100100 0 00.71250 100100 0 10.70625 100100 1 00.70000 100100 1 10.69375 100101 0 00.68750 100101 0 10.68125 100101 1 00.67500 100101 1 10.66875 100110 0 00.66250 100110 0 10.65625 100110 1 00.65000 100110 1 10.64375 100111 0 00.63750 100111 0 10.63125 100111 1 00.62500 100111 1 10.61875 101000 0 00.61250 101000 0 10.60625
24 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
Table 2-2. Voltage Identification Definition (Sheet 5 of 5)
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 V
101000 1 00.60000 101000 1 10.59375 101001 0 00.58750 101001 0 10.58125 101001 1 00.57500 101001 1 10.56875 101010 0 00.56250 101010 0 10.55625 101010 1 00.55000 101010 1 10.54375 101011 0 00.53750 101011 0 10.53125 101011 1 00.52500 101011 1 10.51875 101100 0 00.51250 101100 0 10.50625 101100 1 00.50000 111111 1 0 OFF 111111 1 1 OFF
Notes:
1. When the “11111111” VID pattern is observed, or when the SKTOCC# pin is pulled high, the voltage regulator output should be disabled.
2. The VID range includes VID transitions that may be initiated by thermal events, Extended HALT state transitions (see Section 8.2), higher C-States (see Section 8.2) or Enhanced Intel SpeedStep transitions (see Section 8.5). The Extended HALT state must be enabled for the processor to
remain within its specifications
3. Once the VRM/EVRD is operating after power-up, if either the Output Enable signal is de-asserted or a specific VID off code is received, the VRM/EVRD must turn off its output (the output should go to high impedance) within 500 ms and latch off until power is cycled.
CC_MAX
Technology
2.1.7.3.1 Power-On Configuration (POC) Logic
VID[7:0] signals also serve a second function. During power-up, Power-On Configuration POC[7:0] logic levels are MUX’ed onto these signals via 1-5 kΩ pull-up or pull down resistors located on the baseboard. These values provide voltage regulator keying (VID[7]), inform the processor of the platforms power delivery capabilities (MSID[2:0]), and program the gain applied to the ISENSE input (CSC[2:0]). Table 2-3 maps VID signals to the corresponding POC functionality.
Table 2-3. Power-On Configuration (POC[7:0]) Decode (Sheet 1 of 2)
Function Bits POC Settings Description
VR_Key VID[7] 0b for VR11.1 Electronic safety key
Spare VID[6] 0b (default) Reserved for future use
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 25
distinguishing VR11.1
Table 2-3. Power-On Configuration (POC[7:0]) Decode (Sheet 2 of 2)
Function Bits POC Settings Description
CSC[2:0] VID[5:3] -000b
-001b
-010b
-011b
-100b
-101b
-111b
MSID[2:0] VID[2:0] -001b
-011b
-100b
-101b
-110b
Note:
1. This setting is defined for future use; no Intel Xeon processor 5600 series SKU is defined with ICC_MAX=40 A.
2. In general, set PWM IMON slope to 900 mV = IMAX, where IMAX = ICCMAX. For the 130 W SKU, set IMON slope to 900 mV= 180 A. All other SKUs must match the values shown above. Please consult the PWM datasheet for the IMON slope setting.
Feature Disabled
ICC_MAX = 40 A
40 W TDP / ICC_MAX = 50 A 60 W TDP / ICC_MAX = 80 A 80W TDP / ICC_MAX = 100 A 95W TDP / ICC_MAX = 120 A
130W TDP / ICC_MAX =
150A
40 W TDP / 50 A ICC_MAX
60 W TDP / 80 A ICC_MAX 80 W TDP / 100 A ICC_MAX 95 W TDP / 120 A ICC_MAX
130 W TDP / 150 A ICC_MAX
1
2
Current Sensor Configuration (CSC) programs the gain applied to the ISENSE A/D output. ISENSE data is then used to dynamically calculate current and power.
MSID[2:0] signals are provided to indicate the Market Segment for the processor and may be used for future processor compatibility or keying. See
Section 8.1 for platform timing
requirements of the MSID[2:0] signals.
Electrical Specifications
Some POC signals include specific timing requirements. Please refer to Section 8.1 for further details.
2.1.7.4 Processor VTT Voltage Identification (VTT_VID) Signals
The voltage set by the VTT_VID signals is the typical reference voltage regulator (VR) output to be delivered to the processor V regulator will supply all V
TTA
and V
TTD
outputs. Please refer to Table 2-18 for the DC specifications for these signals. Individual processor VTT_VID values may be calibrated during manufacturing such that
two devices at the same core frequency may have different default VTT_VID settings. The processor utilizes three voltage identification signals to support automatic selection
of power supply voltages. These correspond to VTT_VID[4:2]. The V delivered to the processor lands must also encompass a 20 mV offset (See Table 2-4; V
) above the voltage level corresponding to the state of the VTT_VID[7:0] signals
TT_TYP
(See Table 2-4; VR 11.0 Voltage). Table 2-11 and Figure 2-10 provide the resulting static and transient tolerances. Please note that the maximum and minimum electrical loadlines are defined by a 31.5 mV tolerance band above and below V
Power source characteristics must be guaranteed to be stable whenever the supply to the voltage regulator is stable.
Table 2-4. VTT Voltage Identification Definition (Sheet 1 of 2)
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0
010 010 010 010 010
0 0 0 1 0 1.200 V 1.220 V 0 0 1 1 0 1.175 V 1.195 V 0 1 0 1 0 1.150 V 1.170 V 0 1 1 1 0 1.125 V 1.145 V 1 0 0 1 0 1.100 V 1.120 V
TTA
and V
lands. It is expected that one
TTD
lands. VTT_VID signals are CMOS push/pull
VR 11.0
Voltage
voltage level
TT
valu es.
TT_TYP
V
TT_TYP
(Voltage + Offset)
26 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
Table 2-4. VTT Voltage Identification Definition (Sheet 2 of 2)
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0
0101 0 1 1 0 1.075 V 1.095 V 010 010
1 1 0 1 0 1.050 V 1.070 V 1 1 1 1 0 1.025 V 1.045 V

2.1.8 Reserved or Unused Signals

All Reserved (RSVD) signals must remain unconnected. Connection of these signals to
, V
, V
, V
V
CC
TTA
TTD
component malfunction or incompatibility with future processors. See Section 5 for the land listing and the location of all Reserved signals.
For reliable operation, connect unused inputs or bidirectional signals to an appropriate signal level. Unused Intel QuickPath Interconnect input and output pins can be left floating. Unused active high inputs should be connected through a resistor to ground
). Unused outputs can be left unconnected; however, this may interfere with some
(V
SS
TAP functions, complicate debug probing, and prev ent boundary scan testing. A resistor must be used when tying bidirectional signals to power or ground. When tying any signal to power or ground, including a resistor will also allow for system testability. Resistor values should be within ± 20% of the impedance of the baseboard trace, unless otherwise noted in the appropriate platform design guidelines.
TAP signals do not include on-die termination, however they may include resistors on package (refer to Section 2.1.6 for details). Inputs and utilized outputs must be terminated on the baseboard. Unused outputs may be terminated on the baseboard or left unconnected. Note that leaving unused outputs unterminated may interfere with some TAP functions, complicate debug probing, and prevent boundary scan testing.
, VSS, or any other signal (including each other) can result in
DDQ
VR 11.0
Voltage
V
TT_TYP
(Voltage + Offset)

2.2 Signal Group Summary

Signals are aligned in Table 2-5 by buffer type and characteristics. “Buffer Type” denotes the applicable signaling technology and specifications.
Table 2-5. Signal Groups (Sheet 1 of 2)
Signal Group Buffer Type Signals
Intel® QuickPath Interconnect Signals
Differential Intel®
Differential Intel®
Single ended Analog Input QPI[0/1]_COMP
DDR3 Reference Clocks
Differential Output DDR{0/1/2}_CLK_[P/N][3:0]
DDR3 Command Signals
Single ended CMOS Output DDR{0/1/2}_RAS#, DDR{0/1/2}_CAS#,
DDR3 Control Signals
QuickPath Interconnect Input QPI[0/1]_DRX_D[N/P][19:0], QuickPath Interconnect Output QPI[0/1]_DTX_D[N/P][19:0],
2
2
Asynchronous Output DDR{0/1/2}_RESET#
2
1
QPI[0/1]_CLKRX_DP, QPI[0/1]_CLKRX_DN
QPI[0/1]_CLKTX_DP, QPI[0/1]_CLKTX_DN
DDR{0/1/2}_WE#, DDR{0/1/2}_MA[15:0], DDR{0/1/2}_BA[2:0], DDR{0/1/2}_MA_PAR
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 27
Notes:
Table 2-5. Signal Groups (Sheet 2 of 2)
Signal Group Buffer Type Signals
Single ended CM OS Output DDR{0/1/2}_CS#[7:0], DDR{0/1/2}_ODT[5:0],
Single ended Analog Input DDR_VREF, DDR_COMP[2:0]
DDR3 Data Signals
Single ended CMOS Input/Output DDR{0/1/2}_DQ[63:0], DDR{0/1/2}_ECC[7:0]
Differential CMOS Input/Output DDR{0/1/2}_DQS_[N/P][17:0]
Single ended Asynchronous Input DDR{0/1/2}_PAR_ERR#[2:0],
Platform Environmental Control Interface (PECI)
Single ended Asynchronous Input/Output PECI
Processor Sideband Signals
Single ended GTL Input/Output BPM#[7:0], CAT_ERR# Single ended Asynchronous Input PECI_ID# Single ended Asynchronous GTL Output PRDY#, THERMTRIP# Single ended Asynchronous GTL Input PREQ# Single ended Asynchronous GTL Input/Output PROCHOT# Single ended Asynchronous CMOS Output PSI#, TAPPWRGOOD Single ended CMOS Output VID[7:6],
PWRGOOD Signal
Single ended Asynchronous Input VCCPWRGOOD, VDDPWRGOOD, VTTPWRGOOD
Reset Signal
Single ended Reset Input RESET#
System Reference Clock
Differential Input BCLK_DP, BCLK_DN
Test Access Port (TAP) Signals
Differential CMOS Output BCLK_ITP_DP, BCLK_ITP_DN Single ended Input TCK, TDI, TMS, TRST# Single ended GTL Output TDO
Power/Other Signals
2
Power / Ground V Analog Input COMP0, ISENSE Sense Points VCCSENSE, VSSSENSE, VSS_SENSE_VTTD,
Other SKTOCC#, DBR#
Electrical Specifications
1
DDR{0/1/2}_CKE[3:0]
DDR_THERM#, DDR_THERM2#
VID[5:3]/CSC[2:0], VID[2:0]/MSID[2:0], VTT_VID[4:2]
, V
CCPLL
, V
DDQ, VTTA
CC
, V
TTD
VTTD_SENSE
, V
SS
1. Refer to Section 5 for land assignments and Section 6 for signal definitions.
2. DDR{0/1/2} refers to DDR3 channel 0, DDR3 channel 1, and DDR3 Channel 2
Signals that include on-die termination (ODT) are listed in Table 2-6.
28 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
Table 2-6. Signals With On-Die Termination (ODT)
Intel® QuickPath Interconnect Interface Signal Group
QPI[1:0]_DRX_DP[19:0], QPI[1:0]_DRX_DN[19:0], QPI[1:0]_TRX_DP[19:0], QPI[1:0]_TRX_DN[19:0], QPI[0/1]_CLKRX_D[N/P], QPI[0/1]_CLKTX_D[N/P]
DDR3 Signal Group
DDR{0/1/2}_DQ[63:0], DDR{0/1/2}_DQS_[N/P][17:0], DDR{0/1/2}_ECC[7:0], DDR{0/1/2}_PAR_ERR#[2:0]
Processor Sideband Signal Group
BPM#[7:0]6, PECI_ID#7, PREQ#
Test Access Port (TAP) Signal Group
4
TCK
, TDI5, TMS5, TRST#
Power/Other Signal Group
TAPPWRGOOD8, VCCPWRGOOD, VDDPWRGOOD, VTTPWRGOOD
1,2
3
1
6,
TAPPWRGOOD
5
9
8
1
Notes:
1. Unless otherwise specified, signals have ODT in the package with a 50 Ω pull-down to V
2. Unless otherwise specified, all DDR3 signals are terminated to V
3. DDR{0/1/2}_PAR_ERR#[2:0] are terminated to V
4. TCK does not include ODT, this signal is weakly pulled-down via a 1-5 kΩ resistor to VSS.
5. TDI, TMS, TRST# do not include ODT, these signals are weakly pulled-up via 1-5kΩ resistor to V
6. BPM[7:0]# and PREQ# signals have ODT in package with 35 Ω pull-ups to V
7. PECI_ID# has ODT in package with a 1-5 kΩ pull-up to VTT.
8. TAPPWRGOOD has ODT in package with a 1-2.5 kΩ pull-up to V
9. VCCPWRGOOD, VDDPWRGOOD, and VTTPWRGOOD have ODT in package with a 5-20 kΩ pull-down to V
DDQ.
DDQ
TT
/2.
TT.
.
.
SS
.
TT

2.3 Mixing Processors

Intel supports dual-processor (DP) configurations consisting of processors:
• from the same power optimization segment.
• that support the same maximum Intel QuickPath Interconnect and DDR3 memory speeds.
• that share symmetry across physical packages with respect to the number of logical processor per package, number of cores per package, number of Intel QuickPath Interconnect interfaces, and cache topology.
• that have identical Extended Family, Extended Model, Processor Type, Family Code and Model Number as indicated by the Function 1 of the CPUID instruction.
Note: Processors must operate with the same Intel QuickPath Interconnect, DDR3 memory
and core frequency. While Intel does nothing to prevent processors from operating together, some
combinations may not be supported due to limited validation, which may result in uncharacterized errata. Coupling this fact with the large number of Intel Xeon processor 5600 series processor attributes, the following population rules and stepping matrix have been developed to clearly define supported configurations.
• Processors must be of the same power-optimization segment. This insures processors include the same maximum Intel QuickPath Interconnect and DDR3 operating speeds and cache sizes.
• Processors must operate at the same core frequency. Note, processors within the same power-optimization segment supporting different maximum core frequencies can be operated within a system. However, both must operate at the highest frequency rating commonly supported. Mixing components operating at different internal clock frequencies is not supported and will not be validated by Intel.
.
SS
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 29
Electrical Specifications
• Processors must share symmetry across physical packages with respect to the number of logical processors per package, number of cores per package (but not necessarily the same subset of cores within the packages), number of Intel QuickPath Interconnect interfaces and cache topology.
• Mixing steppings is only supported with processors that have identical Extended Family, Extended Model, Processor Type, Family Code and Model Number as indicated by the Function 1 of the CPUID instruction. Mixing processors of different steppings, but the same mode (as per CPUID instruction) is supported. Details
regarding the CPUID instruction are provide in the Intel
64 and IA-32
Architectures Software Developer’s Manual, Volume 2A.
• After AND ’ing the fe ature flag and extended feature flags from the installed processors, any processor whose set of feature flags exactly matches the AND’ed feature flags can be selected by the BIOS as the BSP. If no processor exactly matches the AND’ed feature flag values, then the processor with the numerically lower CPUID should be selected as the BSP.
• Intel requires that the proper microcode update be loaded on each processor operating within the system. Any processor that does not have the proper microcode update loaded is considered by Intel to be operating out-of-specification.
• Customers are fully responsible for the v alidation of their system configurations
Note: Processors within a system must operate at the same frequency per bits [15:8] of the
FLEX_RATIO MSR (Address: 194h); however this does not apply to frequency transitions initiated due to thermal events, Extended HALT, Enhanced Intel SpeedStep Technology transitions signal (See Section 8).

2.4 Flexible Motherboard Guidelines (FMB)

The Flexible Motherboard (FMB) guidelines are estimates of the maximum values the processor will have over certain time periods. The values are only estimates and actual specifications for future processors may differ. Processors may or may not have specifications equal to the FMB value in the foreseeable future. System designers should meet the FMB values to ensure their systems will be compatible with future processors.

2.5 Absolute Maximum and Minimum Ratings

Table 2-7 specifies absolute maximum and minimum ratings only, which lie outside the
functional limits of the processor. Only within specified operation limits, can functionality and long-term reliability be expected.
At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits.
At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time then, when returned to conditions within the functional operating condition limits, it will either not function or its reliability will be severely degraded.
30 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
Although the processor contains protective circuitry to resist damage from static electric discharge, precautions should always be taken to avoid high static voltages or electric fields.
Table 2-7. Processor Absolute Minimum and Maximum Ratin gs
Symbol Parameter Min Max Unit Notes
V
V
CCPLL
V
V
V
T
CASE
T
STORAGE
V
ISENSE
Notes:
1. For functional operation, all processor electri cal, signal quality, mechanical and thermal specifications must
2. Overshoot and undershoot voltage guidelines for input, output, and I/O signals are outlined in Section 3.
3. V
4. 5% tolerance
5. Storage temperature is applicable to storage conditions only. In this scenario, the processor must not
6. This rating applies to the processor and does not include any tray or packaging.
7. Failure to adhere to this specification can affect the long-term reliability of the processor
Processor core voltage with respect to V
CC
Processor PLL voltage with respect to V Processor I/O supply voltage for DDR3
DDQ
with respect to V Processor uncore analog voltage with
TTA
respect to V Processor uncore digital voltage with
TTD
respect to V Processor case temperature See
Storage temperature See
Analog input voltage with respect to VSS for sensing core current consumption
be satisfied. Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.
and V
TTA
receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect the long-term reliability of the device. For functional operation, please refer to the processor case temperature specification.
should be derived from the same voltage regulator (VR).
TTD
SS
SS
SS
-0.3 1.4 V
SS
-0.3 2.0 V 4
SS
-0.3 1.8 V 4
-0.3 1.4 V 3
-0.3 1.4 V 3
Section 7
Section 7.4
-0.3 1.15 V
Section 7
Section 7.4
See
See
1,2
°C
°C5,6,7

2.6 Processor DC Specifications

DC specifications are defined at the processor pads, unless otherwise noted.
DC specifications are only valid while meeting specifications for case temperature (T
specified in Section 7, “Thermal Specifications”), clock frequency, and input
CASE
voltages. Care should be taken to read all notes associated with each specification.
Table 2-8. Voltage and Current Specifications (Sheet 1 of 3)
Symbol Parameter
VID VCC VID Range - 0.750 1.350 V 2,3 V
CC
V
VID_STEP
V
CCPLL
V
DDQ
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 31
Core Voltage (Launch - FMB)
VID step size during a transition
PLL Voltage (DC + AC specification)
I/O Voltage for DDR3 (DC + AC specification)
Voltage
Plane
V
CC
- ± 6.250 mV 9
V
CCPLL
V
DDQ
Min Typ Max Unit Notes
V
=VID-(ICC * 0.8 mΩ)
CCMAX
=(VID-VRTOL)-(ICC*0.8 mΩ)
V
CCMIN
See Table 2-9 and Figure 2-3
0.95*V (Typ)
0.95*V (Typ)
CCPLL
DDQ
1.800 1.05*V
1.500 1.05*V
(Typ)
(Typ)
CCPLL
DDQ
V 3,4,6,7,11
V10
V10
1
Table 2-8. Voltage and Current Specifications (Sheet 2 of 3)
Electrical Specifications
Symbol Parameter
V
DDQ
VTT_VID V
V
I/O Voltage for DDR3L (DC + AC specification)
VID Range - 1.045 1.220 V 2,3
TT
Uncore Voltage
TT
(Launch - FMB)
I
CC_MAX
I
CCPLL_MAX
I
DDQ_MAX
I
TT_MAX
Max. Processor Current: Frequency Optimized Server/Workstation (TDP = 130 W)
(Launch - FMB)
Max. Processor Current: Advanced Server/Workstation (TDP = 95 W)
(Launch - FMB)
Max. Processor Current: Standard Server/Workstation (TDP = 80 W)
(Launch - FMB)
Max. Processor Current: Low Power & LV-60W (TDP = 60 W)
(Launch - FMB)
Max. Processor Current: Low Power & LV-40W (TDP = 40 W)
(Launch - FMB)
Voltage
Plane
V
DDQ
V
TT
V
CC
V
CCPLL
V
DDQ
V
TTA
V
TTD
V
CC
V
CCPLL
V
DDQ
V
TTA
V
TTD
V
CC
V
CCPLL
V
DDQ
V
TTA
V
TTD
V
CC
V
CCPLL
V
DDQ
V
TTA
V
TTD
V
CC
V
CCPLL
V
DDQ
V
TTA
V
TTD
Min Typ Max Unit Notes
0.95*V
1.350 1.075*V
DDQ
(Typ)
V
=VTT_VID-(ITT*6 mΩ)
TT_TYP
V
TT_MAX=VTTTYP
V
TT_MIN=VTTTYP
(Typ)
+ 31.5 mV
- 31.5 mV
V10
DDQ
V 3,5,8,11
See Table 2-11 and Figure 2-10
150
1.1 9 6
22
120
1.1 9 6
22
100
1.1 9 6
22 80
1.1 9 6
20 50
1.1 9 6
20
A A A A A
A A A A A
A A A A A
A A A A A
A A A A A
1
11
11
11
11
11
32 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
Table 2-8. Voltage and Current Specifications (Sheet 3 of 3)
Symbol Parameter
I
CC_TDC
I
CCPLL_TDC
I
DDQ_TDC
I
TT_TDC
Thermal Design Current:
Frequency Optimized Server/Workstation
(TDP = 130 W) (Launch - FMB)
Thermal Design Current: Advanced Server/Workstation (TDP = 95 W)
(Launch - FMB) Thermal Design
Current: Standard Server/Workstation (TDP = 80 W)
(Launch - FMB) Thermal Design
Current: Low Power & LV-60W (TDP = 60 W)
(Launch - FMB)
Thermal Design Current: Low Power & LV-40W (TDP = 40 W)
(Launch - FMB)
I
DDQ_S3
DDR3 System Memory Interface Supply Current in Standby State
Voltage
Plane
V
CC
V
CCPLL
V
DDQ
V
TTA
V
TTD
V
CC
V
CCPLL
V
DDQ
V
TTA
V
TTD
V
CC
V
CCPLL
V
DDQ
V
TTA
V
TTD
V
CC
V
CCPLL
V
DDQ
V
TTA
V
TTD
V
CC
V
CCPLL
V
DDQ
V
TTA
V
TTD
V
DDQ
Min Typ Max Unit Notes
110
1.1 9 6
22
101
1.1 9 6
22 70
1.1 9 6
22 60
1.1 9 6
20 40
1.1 9 6
20
A
11,12 A A A A
A
11,12 A A A A
A
11,12 A A A A
A
11,12 A A A A
A
11,12 A A A A
1 A 13,14
1
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processors.
2. Individual processor VID and/or VTT_VID values may be calibrated during manufacturing such that two devices at the same speed may have different settings.
3. These voltages are targets only. A variable voltage source should exist on systems in the event that a different voltage is required.
4. The V
5. The V
6. Refer to Table 2-9 and corresponding Figure 2-3. The processor should not be subjected to any static V
7. Minimu m V
8. Refer to Table 2-11 and corresponding Figure 2-10. The processor should not be subjected to any static V
9. This specification represents the V
10.Baseboard b andwidth is limited to 20 MHz.
11.FMB is the flexible motherboard guidelines. See Section 2.4 for FMB details.
12.ICC_TDC (Thermal Design Current) is the sustained (DC equivalent) current that the processor is capable of
voltage specification requirements are measured across vias on the platform for the VCCSENSE and
CC
VSSSENSE pins close to the socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 MΩ minimum impedance . The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
voltage specification requirements are measured across vias on the platform for the VTTD_SENSE
TT
and VSS_SENSE_VTTD lands close to the socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 MΩ minimum imped ance. The max imum length o f ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
level that exceeds the V can shorten processor lifetime.
Table 7-1. I
drawing I processor current draw over various time durations.
and maximum ICC are specified at the maximum processor case temperature (T
CC
is specified at the relative V
CC_MAX
for up to 10 ms. Refer to Figure 2-5 through Figure 2-8 for further details on the average
CC_MAX
level that exceeds the V can shorten processor lifetime.
requirements for VID transitions are included in Figure 2-29.
drawing indefinitely and should be used for the voltage regulator temperature assessment. The voltage regulator is responsible for monitoring its temperature and asserting the necessary signal to inform the processor of a thermal excursion.
associated with any particular current. Failure to adhere to this specification
CC_MAX
point on the VCC load line. The processor is capable of
CC_MAX
associated with any particular current. Failure to adhere to this specification
TT_MAX
reduction due to each VID transition. See Section 2.1.7.3. AC timing
CC
CASE
CC
) shown in
TT
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 33
Electrical Specifications
13.Specification is at T
14.Characterized by design (not tested)
CASE
= 50 °C.
Table 2-9. VCC Static and Transient Tolerance
ICC (A) V
0 VID - 0.000 VID - 0.015 VID - 0.030
5 VID - 0.004 VID - 0.019 VID - 0.034 10 VID - 0.008 VID - 0.023 VID - 0.038 15 VID - 0.012 VID - 0.027 VID - 0.042 20 VID - 0.016 VID - 0.031 VID - 0.046 25 VID - 0.020 VID - 0.035 VID - 0.050 30 VID - 0.024 VID - 0.039 VID - 0.054 35 VID - 0.028 VID - 0.043 VID - 0.058 40 VID - 0.032 VID - 0.047 VID - 0.062 45 VID - 0.036 VID - 0.051 VID - 0.066 50 VID - 0.040 VID - 0.055 VID - 0.070 55 VID - 0.044 VID - 0.059 VID - 0.074 60 VID - 0.048 VID - 0.063 VID - 0.078 65 VID - 0.052 VID - 0.067 VID - 0.082 70 VID - 0.056 VID - 0.071 VID - 0.086 75 VID - 0.060 VID - 0.075 VID - 0.090 80 VID - 0.064 VID - 0.079 VID - 0.094 85 VID - 0.068 VID - 0.083 VID - 0.098 90 VID - 0.072 VID - 0.087 VID - 0.102 95 VID - 0.076 VID - 0.091 VID - 0.106
100 VID - 0.080 VID - 0.095 VID - 0.110 105 VID - 0.084 VID - 0.099 VID - 0.114 110 VID - 0.088 VID - 0.103 VID - 0.118 115 VID - 0.092 VID - 0.107 VID - 0.122 120 VID - 0.096 VID - 0.111 VID - 0.126 125 VID - 0.100 VID - 0.115 VID - 0.130 130 VID - 0.104 VID - 0.119 VID - 0.134 135 VID - 0.108 VID - 0.123 VID - 0.138 140 VID - 0.112 VID - 0.127 VID - 0.142 145 VID - 0.116 VID - 0.131 VID - 0.146 150 VID - 0.120 VID - 0.135 VID - 0.150
(V) V
CC_MAX
(V) V
CC_TYP
(V) Notes
CC_MIN
1,2,3,4
Notes:
1. The V overshoot specifications.
2. This table is intended to aid in reading discrete points on Figure 2-3.
3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. V oltag e regulation feedback for voltage regulator circuits must also be taken from processor VCC_SENSE and VSS_SENSE lands.
CC_MIN
and V
4. Processor core current (I
loadlines represent static and transient limits. Please see Section 2.6.1 for VCC
CC_MAX
) ranges are valid up to I
CC
CC_MAX
34 Intel
of the processor SKU as defined in Table 2-8.
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
VID - 0.000
VID - 0.020
VID - 0.040
VID - 0.060
VID - 0.080
VID - 0.100
VID - 0.120
VID - 0.140
VID - 0.160
VID - 0.180
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Icc [A]
Vcc [V]
Figure 2-3. VCC Static and Transient Tolerance Loadlines
Notes:
1. The V overshoot specifications.
2. Refer to Table 2-9 for V
3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must also be taken from processor VCC_SENSE and VSS_SENSE lands.
4. Processor core current (I
CC_MIN
and V
loadlines represent static and transient limits. Please see Section 2.6.1 for V
CC_MAX
Static and Transient Tolerance.
CC
) ranges are valid up to I
CC
CC_MAX
1,2,3,4
CC
of the processor SKU as defined in Table 2-8.

2.6.1 VCC Overshoot Specifications

The processor can tolerate short transient overshoot events where VCC exceeds the VID voltage when transitioning from a high-to-low current load condition. This overshoot cannot exceed VID + V
OS_MAX
(V
OS_MAX
VID). These specifications apply to the processor die voltage as measured across the VCC_SENSE and VSS_SENSE lands.
Table 2-10. VCC Overshoot Specifications
Symbol Parameter Min Max Units Figure Notes
V
OS_MAX
T
OS_MAX
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 35
Magnitude of VCC overshoot above VID - 50 mV 2-4 Time duration of VCC overshoot above VID - 25 µs 2-4
is the maximum allowable overshoot above
Electrical Specifications
Example Overshoot Waveform
0 5 10 15 20 25
Time [us]
Voltage [V]
VID - 0.000
VID + 0.050
V
OS
T
OS
TOS: Overshoot time above VID
OS
: Overshoot above VID
Figure 2-4. V
Overshoot Example Waveform
CC
Notes:
1. V
2. T
is the measured overshoot voltage.
OS
is the measured time duration above VID.
OS
V

2.6.2 Die Voltage Validation

Core voltage (VCC) overshoot events at the processor must meet the specifications in
Table 2-10 when measured across the VCC_ SENSE and VSS_SENSE lands. Overshoot
events that are < 10 ns in duration may be ignored. These measurements of processor die level overshoot should be taken with a 100 MHz bandwidth limited oscilloscope.
36 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
Notes:
Notes:
105
110
115
120
125
130
135
140
145
150
155
0.01 0.1 1 10 100 1000
Time Du ra tio n , (s )
Sustained Current (A)
95.0
100.0
105.0
110.0
115.0
120.0
125.0
0.01 0.1 1 10 100 1000
Time Duration, (s)
Sustained Current (A)
Figure 2-5. Load Current Versus Time (Frequency Optimized Server/Workstation)
1. Processor or voltage regulator thermal protection circuitry should not trip for load currents greater than
2. Not 100% tested. Specified by design characterization.
I
CC_TDC
.
1,2
Figure 2-6. Load Current Versus Time (Advanced Server/Workstation)
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 37
1. Processor or voltage regulator thermal protection circuitry should not trip for load currents greater than
2. Not 100% tested. Specified by design characterization.
.
I
CC_TDC
1,2
Electrical Specifications
Notes:
Notes:
65
70
75
80
85
90
95
100
105
0.01 0.1 1 10 100 1000
Time Duration, (s)
Sustained Current (A)
45
50
55
60
65
70
75
80
85
0.01 0.1 1 10 100 1000
Time Duration , (s )
Sustained Current (A)
Figure 2-7. Load Current Versus Time (Standard Server/Workstation)
1. Processor or voltage regulator thermal protection circuitry should not trip for load currents greater than
2. Not 100% tested. Specified by design characterization.
I
CC_TDC
.
1,2
Figure 2-8. Load Current Versus Time (Low Power & LV-60W)
1. Processor or voltage regulator thermal protection circuitry should not trip for load currents greater than
2. Not 100% tested. Specified by design characterization.
I
CC_TDC
.
1,2
38 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
Notes:
35
40
45
50
55
0.01 0.1 1 10 100 1000
Time Duration, T
VR_AVE
(s)
Figure 2-9. Load Current Versus Time (Low Power & LV-40W)
Sust ai ned Cu r re nt ( A )
1. Processor or voltage regulator thermal protection circuitry should not trip for load currents greater than
2. Not 100% tested. Specified by design characterization.
I
CC_TDC
.
1,2
Table 2-11. VTT Static and Transient Tolerance (Sheet 1 of 2)
ITT (A) V
(V) V
TT_Max
(V) V
TT_Typ
(V) Notes
TT_Min
0 VTT_VID + 0.0315 VTT_VID - 0.0000 VTT_VID - 0.0315 1 VTT_VID + 0.0255 VTT_VID - 0.0060 VTT_VID - 0.0375 2 VTT_VID + 0.0195 VTT_VID - 0.0120 VTT_VID - 0.0435 3 VTT_VID + 0.0135 VTT_VID - 0.0180 VTT_VID - 0.0495 4 VTT_VID + 0.0075 VTT_VID - 0.0240 VTT_VID - 0.0555 5 VTT_VID + 0.0015 VTT_VID - 0.0300 VTT_VID - 0.0615 6 VTT_VID - 0.0045 VTT_VID - 0.0360 VTT_VID - 0.0675 7 VTT_VID - 0.0105 VTT_VID - 0.0420 VTT_VID - 0.0735 8 VTT_VID - 0.0165 VTT_VID - 0.0480 VTT_VID - 0.0795
9 VTT_VID - 0.0225 VTT_VID - 0.0540 VTT_VID - 0.0855 10 VTT_VID - 0.0285 VTT_VID - 0.0600 VTT_VID - 0.0915 11 VTT_VID - 0.0345 VTT_VID - 0.0660 VTT_VID - 0.0975 12 VTT_VID - 0.0405 VTT_VID - 0.0720 VTT_VID - 0.1035 13 VTT_VID - 0.0465 VTT_VID - 0.0780 VTT_VID - 0.1095 14 VTT_VID - 0.0525 VTT_VID - 0.0840 VTT_VID - 0.1155 15 VTT_VID - 0.0585 VTT_VID - 0.0900 VTT_VID - 0.1215 16 VTT_VID - 0.0645 VTT_VID - 0.0960 VTT_VID - 0.1275 17 VTT_VID - 0.0705 VTT_VID - 0.1020 VTT_VID - 0.1335 18 VTT_VID - 0.0765 VTT_VID - 0.1080 VTT_VID - 0.1395
1,2,3,4
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 39
Table 2-11. VTT Static and Transient Tolerance (Sheet 2 of 2)
-0.2125
-0.2000
-0.1875
-0.1750
-0.1625
-0.1500
-0.1375
-0.1250
-0.1125
-0.1000
-0.0875
-0.0750
-0.0625
-0.0500
-0.0375
-0.0250
-0.0125
0.0000
0.0125
0.0250
0.0375
0.0500
0 5 10 15 20 25
ITT [A]
VTT_VID DevIatIon
ITT (A) V
19 VTT_VID - 0.0825 VTT_VID - 0.1140 VTT_VID - 0.1455 20 VTT_VID - 0.0885 VTT_VID - 0.1200 VTT_VID - 0.1515 21 VTT_VID - 0.0945 VTT_VID - 0.1260 VTT_VID - 0.1575 22 VTT_VID - 0.1005 VTT_VID - 0.1320 VTT_VID - 0.1635 23 VTT_VID - 0.1065 VTT_VID - 0.1380 VTT_VID - 0.1695 24 VTT_VID - 0.1125 VTT_VID - 0.1440 VTT_VID - 0.1755 25 VTT_VID - 0.1185 VTT_VID - 0.1500 VTT_VID - 0.1815 26 VTT_VID - 0.1245 VTT_VID - 0.1560 VTT_VID - 0.1875 27 VTT_VID - 0.1305 VTT_VID - 0.1620 VTT_VID - 0.1935 28 VTT_VID - 0.1365 VTT_VID - 0.1680 VTT_VID - 0.1995
Note:
listed in this table is the sum of I
1. I
TT
2. This table is intended to aid in reading discrete points on Figure 2-10.
3. The V offset from V
4. The loadlines specify voltage limits at the die measured at the VTTD_SENSE and VSS_SENSE_VTTD lands. Voltage regulation feedback for regulator circuits must also be taken from VTTD_SENSE and VSS_SENSE_VTTD lands.
TT_MIN
and V
TT_TYP
TT_MAX
.
(V) V
TT_Max
TTA
and I
(V) V
TT_Typ
.
TTD
loadlines represent static and transient limits. Each is char acterized by a ±31.5 mV
Electrical Specifications
(V) Notes
TT_Min
1,2,3,4
Figure 2-10. VTT Static and Transient Tolerance Loadlines
40 Intel
Notes:
1. The V
2. Refer to Table 2-4 for processor VTT_VID information.
3. Refer to Table 2-11 for V
TT_MIN
offset from V
and V
TT_TYP
loadlines represent static and transient limits. Each is char acterized by a ±31.5 mV
TT_MAX
.
Static and Transient Tolerance.
TT
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
Table 2-12. DDR3 and DDR3L Signal Group DC Specifications
Symbol Parameter Min Typ Max Units Notes
V V
V
V
R
R
R
R
R
Data ODT
ParErr ODT
I DDR_COMP0 COMP Resistance 99 100 101 Ω 8 DDR_COMP1 COMP Resistance 24.65 24.9 25.15 Ω 8 DDR_COMP2 COMP Resistance 128.7 130 131.3 Ω 8
Input Low Voltage 0.43*V
IL
Input High Voltage 0.57*V
IH
Output Low Voltage (V
OL
Output High Voltage V
OH
Clock Buffer On
ON
Resistance Command Buffer On
ON
Resistance Control Buffer On
ON
Resistance Data Buffer On
ON
Resistance RESET Buffer On
ON
Resistance On-Die T e rmination for
Data Signals On-Die T e rmination for
Parity Error bits Input Leakage Current N/A N/A ± 500 mA
LI
DDQ
/ 2)* (R
DDQ
/(RON+R
VTT_TERM
- ((V
DDQ
(R
/(RON+R
ON
21 31 Ω 5
16 24 Ω 5
21 31 Ω 5
21 33 Ω 5
553Ω 5
45 90
90 110 Ω
/ 2)*
DDQ
VTT_TERM
ON
1
V2,
DDQ
V3, 4
))
))
55
V6
V4,6
Ω 7
110
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. is the maximum voltage level at a receiving agent that will be interpreted as a logical low value.
2. V
IL
is the minimum voltage level at a receiving agent that will be interpreted as a logical high value.
3. V
IH
and VOH may experience excursions above V
4. V
IH
signal quality specifications. Refer to Section 3.
5. This is the pull down driver resistance.
6. R
VTT_TERM
DIMM datasheet.
7. The minimum and maximum values for these signals are programmable by BIOS to one of the pairs.
8. COMP resistance must be provided on the system board with 1% resistors.
is the termination on the DIMM and not controlled by the processor. Please refer to the applicable
. However, input signal drivers must comply with the
DDQ
Table 2-13. PECI Signal DC Electrical Limits (Sheet 1 of 2)
Symbol Definition and Conditions Min Max Units Notes
V
In
V
Hysteresis
V
N
V
P
R
Pullup
I
Leak+
I
Leak-
C
Bus
Input Voltage Range -0.150 V Hysteresis 0.100 * V Negative-edge threshold voltage 0.275 * V Positive-edge threshold voltage 0.550 * V Pullup Resistance
= 0.75 * V
(V
OH
High impedance state leakage to V
(V
leak
= VOL)
TTD
TTD
)
High impedance leakage to GND (V
= VOH)
leak
N/A 50 Ω
N/A 50 µA 3
N/A 25 µA 3
Bus capacitance per node N/A 10 pF 4,5
TTD
TTD
TTD
+ 0.150 V
TTD
0.500 * V
0.725 * V
TTD
TTD
1
V V2,6 V2,6
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 41
Table 2-13. PECI Signal DC Electrical Limits (Sheet 2 of 2)
Symbol Definition and Conditions Min Max Units Notes
V
Noise
Signal noise immunity above 300 MHz
0.100 * V
TTD
Electrical Specifications
N/A V
p-p
1
Note:
1. V
2. It is expected that the PECI driver will take into account, the variance in the receiver input thresholds and
3. The leakage specification applies to powered devices on the PECI bus.
4. One node is counted for each client and one node for the s ystem host. Extended tr ace lengths might appear
5. Excessive capacitive loading on the PECI line may slow down the signal rise/f all times and consequently
6. Please refer to Figure 2-2 for further information.
supplies the PECI interface. PECI behavior does not affect V
TTD
consequently, be able to drive its output within safe limits (-0.150 V to 0.275*V
0.725*V
TTD
to V
+0.150 for the high level).
TTD
as additional nodes. limit the maximum bit rate at which the interface can operate.
Table 2-14. System Reference Clock DC Specifications
Symbol Parameter Min Max
V
BCLK_diff_ih
V
BCLK_diff_il
(abs)
V
cross
V
(rel)
cross
ΔV
cross
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. Crossing Voltage is d efined as the instantaneous voltage v alue when the rising edge of BCLK_DN is equal to the falling edge of BCLK_DP.
3. V
Havg
4. The crossing point must meet the absolute and relative crossing point specifications simultaneously.
5. V
Havg
6. V
CROSS
Differential Input High Voltage
Differential Input Low Voltage
Absolute Crossing Point
Relative Crossing Point
Range of Crossing Points
0.150 N/A V
N/A -0.150 V
0.250 0.550 V
0.250 +
0.5*(VH
- 0.700)
avg
N/A 0.140 V 2-20 6
is the statistical average of the VH measured by the oscilloscope. can be measured directly using “Vtop” on Agilent* and “High” on Tektronix* oscilloscopes.
is defined as the total variation of all crossing voltages as defined in Note 2.
0.5*(VH
min/max specifications.
TTD
TTD
Unit Figure Notes
0.550 +
- 0.700)
avg
V 2-16 3,4,5
for the low level and
2-16 2-19
2, 4
1
Table 2-15. RESET# Signal DC Specifications
Symbol Parameter Min Typ Max Units Notes
V
IL
V
IH
R
ON
I
LI
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. The V
3. For V
4. V
IH
specifications in Section 3.
42 Intel
Input Low Voltage
Input High Voltage
Buffer On Resistance
0.7 * V
TTA
10 18
Input Leakage Current ± 200 μA
referred to in these specifications refers to instantaneous V
TTA
between 0 V and V
IN
may experience excursions above VTT. However, input signal drivers must comply with the signal quality
. Measured when the driver is tri-stated.
TTA
0.6 * V
TTA
V2 V2,4
Ω
3
.
TTA
Xeon® Processor 5600 Series Datasheet Volume 1
1
Electrical Specifications
Table 2-16. TAP Signal Group DC Specifications
Symbol Parameter Min Typ Max Units Notes
1
V
IL
V
IH
V
OL
V
OH
R
ON
I
LI
Input Low Voltage
Input High Voltage
0.60 * V
TTA
Input Low Voltage
Input High Voltage
Buffer On Resistance
V
TTA
10 18 Ω
Input Leakage Current ± 200 μA
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. The V
3. For V
4. V
referred to in these specifications refers to instantaneous V
TTA
between 0 V and V
IN
and VOH may experience excursions above VTT. However, input signal drivers must comply with the
IH
signal quality specifications in Section 3.
. Measured when the driver is tri-stated.
TTA
Table 2-17. xxxPWRGOOD Signal Group DC Specifications
Symbol Parameter Min Typ Max Units Notes
V
IL
V
IL
V
IH
V
IH
R
ON
Input Low Voltage for
VCCPWRGOOD and
VTTPWRGOOD signals
Input Low Voltage for VDDPWRGOOD signal
Input High Voltage for
VCCPWRGOOD and
VTTPWRGOOD signals Input High Voltage for
VDDPWRGOOD signal
Buffer On Resistance
0.75 * V
TTA
0.87 V 4,6
10 18 Ω
0.40 * V
TTA
V
TTA * RON
0.25 * V
+ R
TTA
sys_term
.
TTA
/ (RON
)
V2,5
0.29 V 6
V 2,4,5
V2 V2,4
V2
V2,4
3
1
I
LI
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. The V
3. For V
4. V specifications in Section 3.
5. This specification applies to the VCCPWRGOOD and VTTPWRGOOD signals.
6. This specification applies to the VDDPWRGOOD signal.
Input Leakage Current ± 200 μA
referred to in these specifications refers to instantaneous V
TTA
between 0 V and V
IN
may experience excursions above VTT. However, input signal drivers must comply with the signal quality
IH
. Measured when the driver is tri-stated.
TTA
TTA
.
3
Table 2-18. Processor Sideband Signal Group DC Specifications (Sheet 1 of 2)
Symbol Parameter Min Typ Max Units Notes
V
Input Low Voltage 0.64
IL
V
Input Low Voltage for
IL
PROCHOT# Signal Input Low Voltage for
V
IL
PECI ID Signal Input High Voltage 0.76
V
IH
V
Input High Voltage for
IH
PECI ID Signal
085
* VTTA
* VTTA
0.61
0.15
* VTTA
* VTTA
* VTTA
V2 V2
V
V2 V
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 43
1
Electrical Specifications
Table 2-18. Processor Sideband Signal Group DC Specifications (Sheet 2 of 2)
Symbol Parameter Min Typ Max Units Notes
V
V
ODT On-Die Termination 45 55 4
R
R
COMP0 COMP Resistance 49.4 49.9 50.4 Ω 6
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. The V
3. R
4. Applies to all Processor Sideband signals, unless otherwise mentioned in Table 2-6 .
5. This specification only applies to DDR_THERM# and DDR_THERM2#signals.
6. COMP resistance must be provided on the syst em board with 1% resistors. COMP0 resistors are t ied to V
Output Low Voltage V
OL
Output High Voltage V
OH
Buffer On Resistance for
ON
Processor Sideband Signals Buffer On Resistance for
ON
VID[7:0] Signals Input Leakage Current for
I
LI
Processor Sideband Signals Input Leakage Current for
I
LI
DDR_THERM# and DDR_THERM2# Signals
referred to in these specifications refers to instantaneous V
TTA
is the termination on the system and is not controlled by the processor.
SYS_TERM
TTA
10 18 Ω
* RON /
TTA
(R
ON
+ R
SYS_TERM
)
100 Ω
± 200 μA
± 50 μA5
.
TTA
1
V2,3
V2
.
SS

2.7 Intel QuickPath Interconnect Specifications

Intel QuickPath Interconnect specifications are defined at the processor pins. In most cases, termination resistors are not required as these are integrated into
the processor silicon (Refer to Table 2-6).
Table 2-19. Common Intel QuickPath Interconnect Specifications (Sheet 1 of 2)
Symbol Parameter Min Nom Max Unit Notes
UIavg Avg UI size at “f” GT/s
(f = 4.8, 5.86, or 6.4)
T
slew-rise-fall-pin
Z
TX_LOW_CM_DC
ΔZ
TX_LOW_CM_DC
Defined as the slope of the rising or falling waveform as measured between +/- 100 mV of the differential transmitter output, for any data or clock.
DC resistance of Tx terminations at half the single ended swing (usually
0.25*V
Tx-diff-pp-pin
Defined as: ± (max(Z min(Z
TX_LOW_CM_DC))
expressed in %, over full range of Tx
) bias point
single ended voltage
Z
RX_LOW_CM_DC
ΔZ
RX_LOW_CM_DC
N
MIN-UI-Validation
Z
TX_HIGH_CM_DC
DC resistance of Rx terminations at half the single ended swing (usually
0.25*V
Tx-diff-pp-pin
Defined as: ± (max(Z min(Z
RX_LOW_CM_DC))
expressed in %, over full range of Rx single ended voltage
) bias point
# of UI over which the eye mask v ol tag e and timing spec needs to be validated
Single ended DC impedance to GND for either D+ or D- of any data bit at Tx
TX_LOW_CM_DC
/ Z
TX_LOW_CM_DC
RX_LOW_CM_DC
/ Z
RX_LOW_CM_DC
) -
) -
0.999 * Nom
1000/f 1.001 *
Nom
psec
10 25 V / nsec
38 52 Ω
-6 0 6 % of Z
TX_LOW_CM_DC
38 52 Ω
-6 0 6 % of Z
RX_LOW_CM_DC
1,000,000 UI
10k Ω 1
44 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
Table 2-19. Common Intel QuickPath Interconnect Specifications (Sheet 2 of 2)
Symbol Parameter Min Nom Max Unit Notes
Z
RX_HIGH_CM_DC
Z
TX_LINK_DETECT
V
TX_LINK_DETECT
T
DATA_TERM_SKEW
T
INBAND_RESET_SENSE
T
CLK_DET
T
CLK_FREQ_DET
Single ended DC impedance to GND for either D+ or D- of any data bit at Rx
Link Detection Resistor 500 2000 Ω Link Detection Resistor Pull-up Voltage 1.6 V Skew between first to last data
termination meeting Z Time taken by inband reset detector to
sense Inband Reset
RX_LOW_CM_DC
Time taken by clock detector to observe clock stability
Time taken by clock frequency detector to decide slow vs. operational clock after stable clock
T
Refclk-Tx - Variability
T
Refclk-jitter-rms-onepll
Phase variability between Reference Clk (at Tx input) and Tx output
Accumulated rms jitter over n UI of a given PLL model output in response to the jittery reference clock input. The PLL output is generated by convolving t he measured reference clock phase jitter with a given PLL transfer function. Here n=12.
BER
Lane
Bit Error Rate per lane valid for 4.8, 5.86 and 6.4 GT/s
QPI[1,0]_COMP COMP Resistance 21.0-1% 21.0 21.0+1% Ω
10k Ω 2
128 UI
1.5 µs
20k UI
32 Reference
Clock Cycles
500 psec
0.5 psec
1.0E-14 Events
Notes:
1. Used during initialization. It is the state of “OFF” condition for the t r ans mitter. That is, wh en the output driver is disconnected and only the minimum termination is connected. The link detection resistor is assumed not connected when specifying this parameter.
2. Used during initialization. It is the state of “OFF” condition for the receiver when only the minimum termination is connected.
Table 2-20. Parameter Values for Intel QuickPath Interconnect Channels at 4.8 GT/s
(Sheet 1 of 2)
Symbol Parameter Min Max Unit N otes
V
Tx-diff-pp-pin
V
Tx-cm-dc-pin
Transmitter differential swing 800 1400 mV Transmitter output DC common mode, defined as average
and VD- Use setup of Figure 2-11.
of V
D+
0.23 0.27 Fraction of
V
TX-diff-pp-pin
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 45
Electrical Specifications
Table 2-20. Parameter Values for Intel QuickPath Interconnect Channels at 4.8 GT/s
(Sheet 2 of 2)
Symbol Parameter Min M a x Unit Notes
V
Tx-cm-ac-pin
TX
duty-pin
TX
jitUI-UI-1E-7pin
TX
jitUI-UI-1E-9pin
TX
clk-acc-jit-N_UI-1E-7
TX
clk-acc-jit-N_UI-1E-9
T
Tx-data-clk-skew-pin
T
Rx-data-clk-skew-pin
V
Rx-cm-dc-pin
V
Rx-cm-ac-pin
T
Rx-margin
Transmitter output AC common mode, defined as ((VD+ +
)/2 - V
V
D-
Figure 2-13 for illustration of A C common mode distributio n
and spec limits.
Tx-cm-ac-pin
). Use setup of Figure 2-11 and
Average of UI-UI jitter, using setup of Figure 2-11. This appears as bimodal peaks in UI-UI jitter distribution
Figure 2-14.
UI-UI jitter measured at Tx output pins with 1E-7 probability , using setup of Figure 2-11. Refer to Figure 2-14 for illustration of UI-UI jitter distribution and spec limits
UI-UI jitter measured at Tx output pins with 1E-9 probability , using setup of Figure 2-11. Refer to Figure 2-14 for illustration of UI-UI jitter distribution and spec limits
P-P accumulated jitter out of any Tx data or clock over 0 <= n <= N UI where N=12, measured with 1E-7 probability. Refer to Figure 2-14 for illustration
P-P accumulated jitter out of any Tx data or clock over 0 <= n <= N UI where N=12, measured with 1E-9 probability. Refer to Figure 2-14 for illustration
Delay of any data lane relative to the clock lane, as measured at Tx output
Delay of any data lane relative to the clock lane, as measured at Tx+ channel. This parameter is a collective sum of effects of data clock mismatches in Tx and on the medium connecting Tx and Rx.
DC common mode ranges at the Rx input for any data or clock channel, defined as average of V
AC common mode ranges at the Rx input for any data or clock channel, defined as((V Refer to Figure 2-13 for illustration.
Measured timing margin during receiver margining with any receiver equalizer off or for Tx EQ only based systems
+ VD-)/2 - V
D+
and VD-.
D+
RX-cm-dc-pin
).
-0.0375 0.0375 Fraction of
V
TX-diff-pp-pin
-0.078 0.078 UI
-0.085 0.085 UI
-0.09 0.09 UI
00.15UI
00.17UI
-0.4 0.4 UI
02UI1
-1 1 2
145 350 mV
-50 50 mV
0.1 UI
Notes:
1. Refers to routing lengths of 10 - 15 inches (25.4 - 38.1 cm).
2. Refers to routing lengths of 0 - 10 inches (0 - 25.4 cm).
46 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
Table 2-21. Parameter Values for Intel QuickPath Interconnect Channel at 5.86 or
6.4 GT/s
Symbol Parameter Min Max Unit Note
V
Tx-diff-pp-pin
V
Tx-cm-dc-pin
V
Tx-cm-ac-pin
TX
duty-pin
TX
jitUI-UI-1E-7pin
TX
jitUI-UI-1E-9pin
TX
clk-acc-jit-N_UI-1E-7
TX
clk-acc-jit-N_UI-1E-9
T
Tx-data-clk-skew-pin
T
Rx-data-clk-skew-pin
V
Rx-cm-dc-pin
V
Rx-cm-ac-pin
T
Rx-margin
V
Rx-margin
Transmitter differential swing 800 1400 mV Transmitter output DC common mode, defined as
average of V Transmitter output AC common mode, defined as
+ VD–)/2 - V
((V
D+
Figure 2-11 and Figure 2-13 for illustration of AC
common mode distribution and spec limits.
and VD–. Use setup of Figure 2-11.
D+
TX-cm-dc-pin
). Use setup of
Average of UI-UI jitter, using setup of Figure 2-11. This appears as bimodal peaks in UI-UI jitter distribution Figure 2-14
UI-UI jitter measured at Tx output pins with 1E-7 probability, using setup of Figure 2-11. Refer to
Figure 2-14 for illustration of UI-UI jitter distribution
and spec limits UI-UI jitter measured at Tx output pins with 1E-9
probability, using setup of Figure 2-11. Refer to
Figure 2-14 for illustration of UI-UI jitter distribution
0.23 0.27 Fraction of V
TX-diff-pp-pin
–0.0375 0.0375 Fraction of
V
TX-diff-pp-pin
-0.078 0.078 UI
-0.088 0.088 UI
-0.095 0.095 UI
and spec limits. P-P accumulated jitter out of any Tx data or clock
over 0 <= n <= N UI where N=12, measured with
00.15 UI
1E-7 probability. Refer to Figure 2-14 for illustration P-P accumulated jitter out of any Tx data or clock
over 0 <= n <= N UI where N=12, measured with
00.17 UI
1E-9 probability. Refer to Figure 2-14 for illustration Delay of any data lane relative to clock lane, as
measured at Tx output Delay of any data lane relative to the clock lane, as
measured at the end of Tx+Channel. This parameter is a collective sum of effects of data clock mismatches
-0.4 0.4 UI
02 UI1
-1 1 2
in Tx and on the medium connecting Tx and Rx. DC common mode ranges at the Rx input for any data
or clock channel, defined as average of V AC common mode ranges at the Rx input for any data
or clock channel, defined as ((V
). Refer to Figure 2-13 for illustration.
dc-pin
Measured timing margin during receiver margining with any receiver equalizer off or forTx EQ only based
+ VD-)/2 - V
D+
and VD-.
D+
RX-cm-
145 350 mV
–50 50 mV
0.1 UI
systems Measured voltage margin during receiver margining
with receiver equalizer off
40 mV
Notes:
1. Refers to routing lengths of 10 - 15 inches (25.4 - 38.1 cm).
2. Refers to routing lengths of 0 - 10 inches (0 - 25.4 cm).

2.8 AC Specifications

AC specifications are defined at the processor pads, unless otherwise noted.
Therefore, proper simulation is the only means to verify proper timing and signal quality. Care should be taken to read all notes associated with each parameter.
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 47
Electrical Specifications
Table 2-22. System Reference Clock AC Specifications
Parameter Min Nom Max Unit Figure Notes
BCLK Frequency (SSC-off) 133.29 133.33 133.37 MHz 2-17 2 BCLK Frequency (SSC-on) 132.62 133.33 133.37 MHz 2-17 2 ER
BCLK-diffRise
T
BCLK-Dutycycle
T
BCLK-diff-jit
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. SSC is Spread Spectrum Clocking. The processor core clock frequency is derived from BCLK. The system reference clock to processor core clock ratio is determined during initialization as described in
Section 2.1.5.
3. Rise and fall time slopes (V/ns) are measured between +150 mV and -150 mV of the differential output of reference clock.
4. Phase drift between reference clocks at two connected ports.
, ER
BCLK-diffFall
1.0 4.0 V/ns 2-18 3 40 50 60 % 2-17
500 ps 4
Table 2-23. DDR3/DDR3L Electrical Characteristics and AC Specifications at 800 MT/s
(Sheet 1 of 2)
Channel 0 Channel 1
Symbol Parameter
Channel 2
Unit Figure Note
1
Latency Timings
tCL – tRCD – tRP CAS Latency – RAS to CAS Delay –
Pre-charge Command Period
Electrical Characteristics
T
SLR_D
DQ[63:0], DQS_N[17:0], DQS_P[17:0], ECC[7:0]
Input Slew Rate
Clock Timings
T
CK
T
CH
T
CL
T
SKEW
CLK Period 3 2.50 ns CLK High Time 1.50 1.25 ns CLK Low Time 1.50 1.25 ns Skew Between Any System
Memory Differential Clock Pair (CLK_P/CLK_N)
Command Signal Timings
T
CMD_CO
RAS#, CAS#, WE#, MA[15:0], BA[2:0] Edge placement accuracy
Control Signal Timings
T
CTRL_CS
CS#[7:0], CKE[3:0], ODT[3:0] Edge placement accuracy
Data and Strobe Signal Timings
T
T
DVA
SU
+ T
+ T
DVB
HD
DQ[63:0] Valid before and after DQS[17:0] Rising or Falling Edge
DQ Input Setup plus Hold Time to DQS Rising or Falling Edge
Max Min
6 – 6 – 6 t
CK
4.0 1.0 V/ns 2
+155 ps
+375 -375 ps 2-22 3,4,6
+375 -375 ps 2-22 3,6
0.67 * UI UI 7
0.25 * UI ns 2-23 1,2,7
48 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
Table 2-23. DDR3/DDR3L Electrical Characteristics and AC Specifications at 800 MT/s
(Sheet 2 of 2)
Channel 0 Channel 1
Symbol Parameter
T
DQS_CO
T
DQS_CO
T
WPRE
T
WPST
T
DQSS
DQS Edge Placement Accuracy to CK Rising Edge BEFORE write leveling
DQS Edge Placement Accuracy to CK Rising Edge AFTER write leveling
DQS/DQS# Write Preamble Duration
DQS/DQS# Write Postamble Duration
CK Rising Edge Output Access Time, Where a Write Command Is Referenced, to the First DQS Rising Edge
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. Timing specifications only depend on the operatin g freq ue ncy of th e memory channel and not the maximum rated frequency.
2. When the single ended slew rate of the input Data or Strobe signals, within a byte group, are below 1.0 V/ns, the tSU and tHD specifications must be increased by a derating factor. The input single ended slew rate is measured DC to AC levels; V edges. Use the worse case minimum slew rate measured between Data and Strobe, within a byte group, to determine the required derating value. No derating is required for single ended slew rates equal to or greater than 1.0 V/ns.
3. Edge Placement Accuracy (EPA): The silicon contains digital logic that automatically adjusts the timing relationship between the DDR reference clocks and DDR signals. The BIOS initiates a training procedure that will place a given signal appropriately within the clock period. The difference in delay between the signal and clock is accurate to within ±EPA. This EPA includes jitter, skew, within die variation and several other effects.
4. Data to Strobe read setup and Data from Strobe read hold minimum requirements specified at the processor pad are determined with the minimum Read DQS/DQS# delay.
5. C
6. The system memory clock outputs are differential (CLK and CLK#), the CLK rising edge is referenc ed at the
7. The system memory strobe outputs are differential (DQS and DQS#), the DQS rising edge is referenced at
8. This values specifies the parameter after write leveling, representing the residual error in the controller
(CAS Write Latency) is the delay, in clock cycles, between the rising edge of CK where a write
WL
command is referenced and the first rising strobe edge where the first byte of write data is present. The
value is determined by the value of the CL (CAS Latency) setting.
C
WL
crossing point where CLK is rising and CLK# is falling. the crossing point where DQS is rising and DQS# is falling, and the DQS falling edge is referenced at the
crossing point where DQS is falling and DQS# is rising. after training, and does not include any effects from the DRAM itself.
_DC to VIH_AC for rising edges, and VIH_DC to VIL_AC for falling
IL
Channel 2
Unit Fig u re Note
Max Min
+375 -375 ns 3,6,7
+275 -275 ns 3,6,7,8
2.379 ns
1.371 1.129 ns
CWL x (TCK
+ 4)
ns 5,6
Table 2-24. DDR3 Electrical Characteristics and AC Specifications at 1066 MT/s (Sheet 1
of 2)
Channel 0 Channel 1
Symbol Parameter
Latency Timings
tCL – tRCD – tRP CAS Latency – RAS to CAS Delay –
Pre-charge Command Period
Electrical Characteristics
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 49
Channel 2
Max Min
7 – 7 – 7
8 - 8 - 8
Unit Figure Note
tCK
Electrical Specifications
Table 2-24. D DR3 Electrical Characteristics and AC Specifications at 1066 MT/s (Sheet 2
of 2)
Channel 0 Channel 1
Symbol Parameter
T
SLR_D
DQ[63:0], DQS_P[17:0], DQS_N[17:0], ECC[7:0]
Input Slew Rate
Clock Timings
T
CK
T
CH
T
CL
T
SKEW
CLK Period <2.50 1.875 ns CLK High Time 1.25 0.94 ns CLK Low Time 1.25 0.94 ns Skew Between Any System
Memory Differential Clock Pair (CLK_P/CLK_N)
Command Signal Timings
T
CMD_CO
RAS#, CAS#, WE#, MA[15:0], BA[2:0] Edge placement accuracy
Control Signal Timings
T
CTRL_CS
CS#[7:0], CKE[3:0], ODT[3:0] Edge placement accuracy
Data and Strobe Signal Timings
T
DVA
+ T
T
SU
T
DQS_CO
+ T
DVB
HD
DQ[63:0] Valid before and after DQS[17:0] Rising or Falling Edge
DQ Input Setup plus Hold Time to DQS Rising or Falling Edge
DQS Edge Placement Accuracy to CK Rising Edge BEFORE write leveling
T
DQS_CO
DQS Edge Placement Accuracy to CK Rising Edge AFTER write leveling
T
WPRE
T
WPST
T
DQSS
DQS/DQS# Write Preamble Duration
DQS/DQS# Write Postamble Duration
CK Rising Edge Output Access Time, Where a Write Command Is Referenced, to the First DQS Rising Edge
Channel 2
Unit Figure Note
Max M in
4.0 1.0 V/ns 2
+155 ps
+300 -300 ps 2-22 3,4,6
+300 -300 ps 2-22 3,6
0.67 * UI UI 7
0.25 * UI ns 2-23 1,2,7
+300 -300 ns 3,6,7
+206 -206 ns 3,6,7,8
1.781 ns
1.031 0.844 ns
C
x (TCK
WL
+ 4)
ns 5,6
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. When the single ended slew rate of the input Data or Strobe signals, within a byte group, are below 1.0 V/ns, the tSU and tHD specifications must be increased by a derating factor. The input single ended slew rate is measured DC to AC levels; V edges. Use the worse case minimum slew rate measured between Data and Strobe, within a byte group, to determine the required derating value. No derating is required for single ended slew rates equal to or greater than 1.0 V/ns.
3. Edge Placement Accuracy (EPA): The silicon contains digital logic that automatically adjusts the timing relationship between the DDR reference clocks and DDR signals. The BIOS initiates a training procedure that will place a given signal appropriately within the clock period. The difference in delay between the signal and clock is accurate to within ±EPA. This EPA includes jitter, skew, within die variation and several other effects.
4. Data to Strobe read setup and Data from Strobe read hold minimum requirements specified at the processor pad are determined with the minimum Read DQS/DQS# delay.
_DC to VIH_AC for rising edges, and VIH_DC to VIL_AC for falling
IL
50 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
5. CWL (CAS Write Latency) is the delay, in clock cycles, between the rising edge of CK where a write command is referenced and the first rising strobe edge where the first byte of write data is present. The CWL value is determined by the value of the CL (CAS Latency) setting.
6. The system memory clock outputs are differential (CLK and CLK#), the CLK rising edge is referenc ed at the crossing point where CLK is rising and CLK# is falling.
7. The system memory strobe outputs are differential (DQS and DQS#), the DQS rising edge is referenced at the crossing point where DQS is rising and DQS# is falling, and the DQS falling edge is referenced at the crossing point where DQS is falling and DQS# is rising.
8. This values specifies the parameter after write leveling, representing the residual error in the controller afrter training, and does not include any effects from the DRAM itself.
Table 2-25. DDR3/DDR3L Electrical Characteristics and AC Specifications at 1333 MT/s
(Sheet 1 of 2)
Channel 0 Channel 1
Symbol Parameter
System Memory Latency Timings
tCL – tRCD – tRP CAS Latency – RAS to CAS Delay –
Pre-charge Command Period
Electrical Characteristics
T
SLR_D
DQ[63:0], DQS_N[17:0], DQS_P[17:0], ECC[7:0], MA[15:0] Input Slew Rate
System Memory Clock Timings
T
CK
T
CH
T
CL
T
SKEW
CLK Period <1.875 1.50 ns CLK High Time 0.94 0.75 ns CLK Low Time 0.94 0.75 ns Skew Between Any System
Memory Differential Clock Pair (CLK_P/CLK_N)
System Memory Command Signal Timings
T
CMD_CO
RAS#, CAS#, WE#, MA[15:0], BA[2:0] Edge placement accuracy
System Memory Control Signal Timings
T
CTRL_CS
CS#[7:0], CKE[3:0], ODT[3:0] Edge placement accuracy
System Memory Data and Strobe Signal Timings
T
DVA
+ T
T
SU
T
DQS_CO
T
DQS_CO
+ T
DVB
HD
DQ[63:0] Valid before and after DQS[17:0] Rising or Falling Edge
DQ Input Setup plus Hold Time to DQS Rising or Falling Edge
DQS Edge Placement Accuracy to CK Rising Edge BEFORE write leveling
DQS Edge Placement Accuracy to CK Rising Edge AFTER write leveling
Channel 2
Unit Figure Note
Max Min
8 - 8 - 8
tCK
9 - 9 - 9
4.0 1.0 V/ns 2
+155 ps
+250 -250 ps 2-22 3,4,6
+250 -250 ps 2-22 3,6
0.67 * UI UI 7
0.25 * UI ns 1,2,7
+250 -250 ns 2-24 3,6,7
+165 -165 ns 2-24 3,6,7,8
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 51
Electrical Specifications
Table 2-25. DDR3/DDR3L Electrical Characteristics and AC Specifications at 1333 MT/s
(Sheet 2 of 2)
Channel 0 Channel 1
Symbol Parameter
T
WPRE
T
WPST
T
DQSS
DQS/DQS# Write Preamble Duration
DQS/DQS# Write Postamble Duration
CK Rising Edge Output Access Time, Where a Write Command Is Referenced, to the First DQS Rising Edge
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. When the single ended slew rate of the input Data or Strobe signals, within a byte group, are below 1.0 V/ns, the tSU and tHD specifications must be increased by a derating factor. The input single ended slew rate is measured DC to AC levels; V edges. Use the worse case minimum slew rate measured between Data and Strobe, within a byte group, to determine the required derating value. No derating is required for single ended slew rates equal to or greater than 1.0 V/ns.
3. Edge Placement Accuracy (EPA): The silicon contains digital logic that automatically adjusts the timing relationship between the DDR reference clocks and DDR signals. The BIOS initiates a training procedure that will place a given signal appropriately within the clock period. The difference in delay between the signal and clock is accurate to within ±EPA. This EPA includes jitter, skew, within die variation and several other effects.
4. Data to Strobe read setup and Data from Strobe read hold minimum requirements specified at the processor pad are determined with the minimum Read DQS/DQS# delay.
5. CWL (CAS Write Latency) is the delay, in clock cycles, between the rising edge of CK where a write command is referenced and the first rising strobe edge where the first byte of write data is present. The CWL value is determined by the value of the CL (CAS Latency) setting.
6. The system memory clock outputs are differential (CLK and CLK#), the CLK rising edge is referenced at the crossing point where CLK is rising and CLK# is falling.
7. The system memory strobe outputs are differential (DQS and DQS#), the DQS rising edge is refe renced at the crossing point where DQS is rising and DQS# is falling, and the DQS falling edge is referenced at the crossing point where DQS is falling and DQS# is rising.
8. This values specifies the parameter after write leveling, representing the residual error in the controller afrter training, and does not include any effects from the DRAM itself.
_DC to VIH_AC for rising edges, and VIH_DC to VIL_AC for falling
IL
Channel 2
Max M in
1.425 ns
0.825 0.674 ns
CWL x (TCK
+ 4)
Unit Figure Note
ns 5,6
Table 2-26. Processor Sideband Signal Group AC Specifications (Sheet 1 of 2)
T# Parameter Min Max Unit Figure
Asynchronous GTL input pulse width 8 BCLKs Tb: V
stable to VTTPWRGOOD assertion 1 500 ms 2-28 5,7,8,10
TT
Td: VTTPWRGOOD assertion to Dynamic V Processor
Te: V
stable to VDDPWRGOOD assertion 100 ns 2-28 5,6,7
DDQ
Tf: VTTPWRGOOD to valid VID 0 10 µs 2-28 Th: V
stable to VCCPWRGOOD assertion 0.05 650 ms 2-28
CC
Ti: V
stable to VCCPWRGOOD assertion 1 ms 2-28
CCPLL
Tj: BCLK stable to VCCPWRGOOD assertion 10 BCLKs 2-28 Tk: VCCPWRGOOD assertion to RESET# de-assertion 1 10 ms 2-28 Tm: VTTPWRGOOD assertion to VCCPWRGOOD
assertion Tn: V
rise time 1.5 ms 2-28 14
CCPLL
Tq: PROCHOT# pulse width 500 µs 2-26 Tr:THERMTRIP# assertion until V
/ VTT removed 500 ms 2-27
CC
52 Intel
VID from
TT
10 µs 2-28 9
1ms2-28
Xeon® Processor 5600 Series Datasheet Volume 1
Notes
1,2,3,4
Electrical Specifications
Table 2-26. Processor Sideband Signal Group AC Specifications (Sheet 2 of 2)
T# Parameter Min Max Unit Figure
VTTPWRGOOD de-assertion to V T
: Time from BCLK land until signal valid at output 0.5 2.275 ns 11
CO
T
: Processor Sideband Input signals with respect to
SU
BCLK
: Processor Sideband Input signals with respect to
T
H
BCLK
: Power-On Configuration Hold Time (PROCHOT#) 106 BCLK 8-1 13
T
H
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. All AC timings for the Asynchronous GTL signals are referenced to the BCLK_P rising edge at Crossing Voltage (V at 0.5 * V
3. These signals may be driven asynchronously.
4. Refer to Section 8 for additional timing requirements for entering and leaving low power states.
5. xxPWRGOOD signal has no edge rate requirement, but edge must be monotonic.
6. VDDPWRGOOD must be asserted no later then VCCPWRGOOD. There is no releationship between VDDPWRGOOD and VCC ramp.
7. There is no dependency between V DDPWRGOOD and VTTPWRGOOD assertion.
8. VTTPWRGOOD must accurately reflect the state of VTT and must not glitch whenever VTT or VDD is applied.
9. VTT must read VTTFINAL before VCCPWRGOOD assertion.
10. It may be required to add delay on the board to meet the 1 ms minimum processor requirement.
11. Based on a test load of 50 Ω to V
12. Specified for synchronous signals.
13. Applies to PROCHOT# signal only. Please see Section 2.1.7.3.1 and Section 8.1 for information regarding Power-On Configuration options.
14. Rise time is measured from 10% to 90% of the final voltage.
). VCCPWRGOOD, VTTPWRGOOD and VDDPWRG OOD are referenced to BCLK_P rising edge
CROSS
.
TT
below specification 100 ns
TT
.
TT
Table 2-27. TAP Signal Group AC Specifications
Notes
1,2,3,4
600 ps 12
600 ps
T# Parameter Min Max Unit Figure
TCK Period 31.25 ns T
: TDI, TMS Setup Time 1 ns 2-25
s
T
: TDI, TMS Hold Time 1 ns 2-25
h
T
: TDO Clock to Output Delay 0.5 4 ns 2-25
x
T
: TRST# Assert Time 2 T
q
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. Not 100% tested. Specified by design characterization.
3. It is recommended that TMS be asserted while TRST# is being deasserted.
Table 2-28. VID Signal Group AC Specifications
T# Parameter Min Max Unit Figure Notes
Ta: VID Step Time 1.25 µs 2-29 Tb: VID Down Transition to Valid V Tc: VID Up Transition to Valid V Td: VID Down Transition to Valid V Te: VID Up Transition to Valid V
Notes:
1. Platform support for VID transitions is required for the processor to operate within specifications.
(min) 0 µs 2-29
CC
(min) 15 µs 2-29
CC
(max) 15 µs 2-29
CC
(max) 0 µs 2-29
CC
TCK
Notes
1,2,3
2-26
1
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 53
Electrical Specifications
Tx Package
Silicon TX
Ideal Loads
SI Tx pin terminations are set to optimum values (targeted around 42.5 ohms si ngle-ended)

2.9 Processor AC Timing Waveforms

The following figures are to be used in conjunction with the AC specifications included in Table 2-19 through Table 2-28.
Note: For Figure 2-11 through Figure 2-29, the following apply:
1. All System Reference Clock signal AC specifications are referenced to the Crossing Voltage (V
2. All TAP signal group AC specifications are referenced to the TCK at 0.5 * V processor lands. All TAP signal group timings (TMS, TDI, and so forth) are referenced at 0.5 * V
3. All CMOS signal AC specifications are referenced at 0.5 * VTT at the processor lands.
The Intel QuickPath Interconnect electrical test setup are shown in Figure 2-11 and
Figure 2-12.
Figure 2-11. Intel QuickPath Interconnect Electrical Test Setup for Validating
Standalone TX Voltage and Timing Parameters
) of the BCLK_DP and BCLK_DN at rising edge of BCLK_DP.
CROSS
at the processor die (pads).
TT
at the
TT
54 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
S i lic o n T x b it (D ata )
W o rs t-C a s e Inte r c o n n e ct
Id e a l Loads
Tx Package
S i lic o n T x b it (C loc k)
Id e a l Loads
Lossless Interconnect Phase
Matc h ed to D a ta B it In te rc o n n e c t
0.5* (VD+ - VD-) - X_cm_dc_pin
Figure 2-12. Intel QuickPath Interconnect Electrical Test Setup for Validating
TX + Worst-Case Interconnect Specifications
Figure 2-13. Distribution Profile of Common Mode Noise for Either Tx or Rx
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 55
Figure 2-14. Distribution Profile of UI-UI Jitter and Accumulated Jitter
P-P n UI ac jitter with Prob = 1E-7
P-P n UI ac jitter
with Prob = 1E-9
V
Rx-diff-pp-pin
Probability = 1E -9
Timing Margin
Distribution
Probability = 1E -9
T
Rx-diff-pp-pin
Voltage Margin
Distribution
Electrical Specifications
Figure 2-15. Eye Mask at the End of Tx + Channel
56 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850
200
250
300
350
400
450
500
550
600
650
VHavg (mV)
Crossin g Point (mV)
550 mV
250 mV
250 + 0.5 (VHavg - 700)
550 + 0.5 (VHavg - 700)
Figure 2-16. Differential Clock Crosspoint Specification
Figure 2-17. Differential Clock Measurement Points for Duty Cycle and Period
Figure 2-18. Differential Clock Measurement Points for Rise and Fall time
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 57
Electrical Specifications
Figure 2-19. Single-Ended Clock Measurement Points for Absolute Cross Point and Swing
Figure 2-20. Single-Ended Clock Measurement Points for Delta Cross Point
Figure 2-21. Differential Clock Measurement Point for Ringback
58 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
CK# (IMC)
MA , B S,
RAS#,
CAS#, WE#
(IMC)
CK (IMC)
Control Signals
(IMC)
Tcm d_c o
Tcm d_co
BIOS
Programmabl e
Delay
Tcm d_c s
Tcm d_c s
Figure 2-22. DDR3 Command / Control and Clock Timing Waveform
Figure 2-23. DDR3 Clock to Output Timing Waveform
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 59
Figure 2-24. DDR3 Clock to DQS Skew Timing Waveform
Figure 2-25. TAP Valid Delay Timing Waveform
Electrical Specifications
Note: Please refer to Table 2-18 for TAP Signal Group DC specifications and Table 2-27 for TAP Signal Group
AC specifications.
60 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
TRST# Assert Time, V = 0.5 * V
TTA
V
T
q
PROCHOT# Pulse Width, V = V
TTA
=
Tq
THERMTRIP#
V
CC
V
TT
Tr
Tr: THERMTRIP# assertion unti l VCC, VTT removal
Figure 2-26. Test Reset (TRST#), Asynch GTL Input, and PROCHOT# Timing Waveform
Figure 2-27. THERMTRIP# Power Down Sequence
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 61
Figure 2-28. Voltage Sequence Timing Requirements
VTTPWRGOOD
V
TT
BCLK
VCCPWRGOOD
VCC VID[7:0]
V
CC
V
DDQ
VDDPWRGOOD
RESET#
V
CCPLL
LFM VID From C P U
V
CCBOOT
Tk
Tj
POC
MSID
V
LFM
Th
VTT VID FINAL
VTT_VID[2:0]
V
TTBOOT
V
TTSAFE
VT T VID from
VID Buffer
V
TTFINAL
Tb
Tm
Td
VDDPW R GO O D m ust assert before or at the same time as
VCCPWRGOOD assertion
VTT must be stable before VCCPWR GO O D
assertion
Varies based on BIOS execution
Dynamic VID From CPU
Tf
Refer to VRD11.1 specification for details on Vcc ramp timings
Ti
Te
Electrical Specifications
62 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Electrical Specifications
Note: In order In order to ensure Timestamp Counter (TSC) synchronization across sockets in multi-socket
systems, the RESET# deassertion edge should arrive at the same BCLK rising edge at both sockets and should meet the Tsu and Th requirement of 600ps relative to BCLK, as outlined in Table 2-26.
Figure 2-29. VID Step Times and Vcc Waveforms
Note: This waveform illustrates an example of an Intel Adaptive Thermal Monitor transition or an Intel
Enhanced SpeedStep Technology transition that is six VID step down from the current state and six steps back up. Any arbitrary up or down transition can be generalized from this waveform.
§
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 63
Electrical Specifications
64 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Signal Quality Specifications

3 Signal Quality Specifications

Data transfer requires the clean reception of data and clock signals. Ringing below receiver thresholds, non-monotonic signal edges, and excessive voltage swings will adversely affect system timings. Ringback and signal non-monotonicity cannot be tolerated since these phenomena may inadvertently advance receiver state machines. Excessive signal swings (overshoot and undershoot) are detrimental to silicon gate oxide integrity, and can cause device failure if absolute voltage limits are exceeded. Overshoot and undershoot can also cause timing degradation due to the build up of inter-symbol interference (ISI) effects.
For these reasons, it is crucial that the designer work towards a solution that provides acceptable signal quality across all systematic variations encountered in volume manufacturing.
This section documents signal quality metrics used to derive topology and routing guidelines through simulation. All specifications are specified at the processor die (pad measurements).
Specifications for signal quality are for measurements at the processor core only and are only observable through simulation. Therefore, proper signal simulation is the only means of properly verifying timing and signal quality requirements.

3.1 Overshoot/Undershoot Tolerance

Overshoot (or undershoot) is the absolute value of the maximum voltage above or below VSS. The overshoot/undershoot specifications limit transitions beyond V
due to the fast signal edge rates. The processor can be damaged by single and/or
V
SS
repeated overshoot or undershoot events on any input, output, or I/O buffer if the charge is large enough (that is, if the over/undershoot is great enough). Baseboard designs which meet signal integrity and timing requirements and which do not exceed the maximum overshoot or undershoot limits will insure reliable IO performance for the lifetime of the processor.
The pulse magnitude, duration, and activity factor must all be used to determine if the overshoot/undershoot pulse is within specifications.
Note: Oscillations below the reference voltage cannot be subtracted from the total
Table 3-1. Overshoot/Undershoot Tolerance
overshoot/undershoot pulse duration.
Signal Group Min Undershoot Max Overshoot Duration
Intel QuickPath Interconnect -0.1 * V
DDR3 -0.1 * V
Processor Sideband Signals -0.1 * V
System Reference Clock -0.3 1.15 NA
Notes:
1. These specifications are measured at the processor pin.
2. Refer to Figure 3-1 for description of Overshoot/Undershoot magnitude and duration.
TT
DDQ
TT
1.2 * V
1.2 * V
1.2 * V
TT
DDQ
TT
0.5 * T
CCIO
500 ps
50 ns
or
CH
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 65
Figure 3-1. Maximum Acceptable Overshoot/Undershoot Waveform
Vss
Overshoot
Duration
Undershoot
Duration
Overshoot
Undershoot
Signal Quality Specifications
§
66 Intel
Xeon® Processor 5600 Series Datasheet Volume 1

Package Mechanical Specifications

IHS
Substrate
LGA1366 Socket
System Board
Capacitors
TIM
IHS
Substrate
LGA
System Board
Capacitors
Die
TIM
4 Package Mechanical
Specifications

4.1 Package Mechanical Specifications

The processor is packaged in a Flip-Chip Land Grid Array (FC-LGA) package that interfaces with the baseboard via an LGA1366 socket. The package consists of a processor mounted on a substrate land-carrier. An integrated heat spreader (IHS) is attached to the package substrate and core and serves as the mating surface for processor component thermal solutions, such as a heatsink. Figure 4-1 shows a sketch of the processor package components and how they are assembled together. Refer to the Intel complete details on the LGA1366 socket.
The package components shown in Figure 4-1 include the following:
1. Integrated Heat Spreader (IHS)
2. Thermal Interface Material (TIM)
3. Processor core (die)
4. Package substrate
5. Capacitors
Xeon® Processor 5500/5600 Series Thermal/Mechanical Design Guide for
Figure 4-1. Processor Package Assembly Sketch
Note:
1. Socket and baseboard are included for reference and are not part of processor package.

4.1.1 Package Mechanical Drawing

The package mechanical drawings are shown in Figure 4-2 and Figure 4-2. The drawings include dimensions necessary to design a thermal solution and reflect the processor as received by Intel. These dimensions include:
1. Package reference with tolerances (total height, length, width, and so forth)
2. IHS parallelism and tilt
3. Land dimensions
4. Top-side and back-side component keep-out dimensions
5. Reference datums
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 67
6. All drawing dimensions are in mm.
7. Guidelines on potential IHS flatness variation with socket load plate actuation and installation of the cooling solution is available in the Intel® Xeon® Processor 5500/5600 Series Thermal/Mechanical Design Guide.
Figure 4-2. Processor Package Drawing (Sheet 1 of 2)
Package Mechanical Specifications
68 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Package Mechanical Specifications
Figure 4-3. Processor Package Drawing (Sheet 2 of 2)
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 69

4.1.2 Processor Component Keep-Out Zones

The processor may contain components on the substrate that define component keep-out zone requirements. A thermal and mechanical solution design must not intrude into the required keep-out zones. Do not contact the Test Pad Area with conductive material. Decoupling capacitors are typically mounted to either the topside or land-side of the package substrate. See Figure 4-2 and Figure 4-2 for keep-out zones. The location and quantity of package capacitors may change due to manufacturing efficiencies but will remain within the component keep-in.

4.1.3 Package Loading Specifications

Table 4-1 provides load specifications for the processor package. These maximum
limits should not be exceeded during heatsink assembly, shipping conditions, or standard use condition. Exceeding these limits during test may result in component failure. The processor substrate should not be used as a mechanical reference or load-
.
Table 4-1. Processor Loading Specifications
bearing surface for thermal solutions.
Parameter Maximum Notes
Static Compressive Load 890 N [200 lbf] 1, 2, 3
Dynamic Compressive Load 1779 N [400 lbf] [max static compressive + dynamic load] 1, 3, 4
Package Mechanical Specifications
Notes:
1. These specifications apply to uniform compressive loading in a direction normal to the processor IHS.
2. This is the maximum static force that can be applied by the heatsink and Independent Loading Mechanism (ILM).
3. These specifications are based on limited testing for design characterization. Loading limits are for the package constrained by the limits of the processor socket.
4. Dynamic loading is defined as an 11 ms duration average load superimposed on the static load requirement.
5. See Intel® Xeon® Processor 5500/5600 Series Thermal/Mechanical Desi gn Guide for min imum so cket lo ad to engage processor within socket.

4.1.4 Package Handling Guidelines

Table 4-2 includes a list of guidelines on package handling in terms of recommended
maximum loading on the processor IHS relative to a fixed substrate. These package handling loads may be experienced during heatsink removal.
Table 4-2. Package Handling Guidelines
Parameter Maximum Recommended Notes
Shear 70 lbs Tensile 25 lbs Torque 35 in.lbs

4.1.5 Package Insertion Specifications

The processor can be inserted into and removed from an LGA1366 socket 15 times. The socket should meet the LGA1366 requirements detailed in the Intel® Xeon® Processor 5500/5600 Series Thermal/Mechanical Design Guide.
70 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Package Mechanical Specifications

4.1.6 Processor Mass Specification

The typical mass of the processor is 35 grams. This mass [weight] includes all the components that are included in the package.

4.1.7 Processor Materials

Table 4-3 lists some of the package components and associated materials.
Table 4-3. Processor Materials
Component Material
Integrated Heat Spreader (IHS) Nickel Plated Copper Substrate Fiber Reinforced Resin Substrate Lands Gold Plated Copper

4.1.8 Processor Markings

Figure 4-4 shows the topside markings on the processor. This diagram is to aid in the
identification of the processor.
Figure 4-4. Processor Top-Side Markings
§
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 71
Package Mechanical Specifications
72 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Land Listing

5 Land Listing

5.1 Listing by Land Name

Table 5-1. Land Name (Sheet 1 of 36)
Land Name
BCLK_DN AH35 CMOS I BCLK_DP AJ35 CMOS I BCLK_ITP_DN AA4 CMOS O BCLK_ITP_DP AA5 CMOS O BPM#[0] B3 GTL I/O BPM#[1] A5 GTL I/O BPM#[2] C2 GTL I/O BPM#[3] B4 GTL I/O BPM#[4] D1 GTL I/O BPM#[5] C3 GTL I/O BPM#[6] D2 GTL I/O BPM#[7] E2 GTL I/O CAT_ERR# AC37 GTL I/O COMP0 AB41 Analog QPI0_CLKRX_DN AR42 QPI I QPI0_CLKRX_DP AR41 QPI I QPI0_CLKTX_DN AF42 QPI O QPI0_CLKTX_DP AG42 QPI O QPI0_COMP AL43 Analog QPI0_DRX_DN[0] AU37 QPI I QPI0_DRX_DN[1] AV38 QPI I QPI0_DRX_DN[10] AT42 QPI I QPI0_DRX_DN[11] AR43 QPI I QPI0_DRX_DN[12] AR40 QPI I QPI0_DRX_DN[13] AN42 QPI I QPI0_DRX_DN[14] AM43 QPI I QPI0_DRX_DN[15] AM40 QPI I QPI0_DRX_DN[16] AM41 QPI I QPI0_DRX_DN[17] AP40 QPI I QPI0_DRX_DN[18] AP39 QPI I QPI0_DRX_DN[19] AR38 QPI I QPI0_DRX_DN[2] AV37 QPI I QPI0_DRX_DN[3] AY36 QP I I QPI0_DRX_DN[4] BA37 QPI I QPI0_DRX_DN[5] AW38 QPI I
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 2 of 36)
Land Name
QPI0_DRX_DN[6] AY38 QPI I QPI0_DRX_DN[7] AT39 QPI I QPI0_DRX_DN[8] AV40 QPI I QPI0_DRX_DN[9] AU41 QPI I QPI0_DRX_DP[0] AT37 QPI I QPI0_DRX_DP[1] AU38 QPI I QPI0_DRX_DP[10] AU42 QPI I QPI0_DRX_DP[11] AT43 QPI I QPI0_DRX_DP[12] AT40 QPI I QPI0_DRX_DP[13] AP42 QPI I QPI0_DRX_DP[14] AN43 QPI I QPI0_DRX_DP[15] AN40 QPI I QPI0_DRX_DP[16] AM42 QPI I QPI0_DRX_DP[17] AP41 QPI I QPI0_DRX_DP[18] AN39 QPI I QPI0_DRX_DP[19] AP38 QPI I QPI0_DRX_DP[2] AV36 QPI I QPI0_DRX_DP[3] AW36 QPI I QPI0_DRX_DP[4] BA36 QPI I QPI0_DRX_DP[5] AW37 QPI I QPI0_DRX_DP[6] BA38 QPI I QPI0_DRX_DP[7] AU39 QPI I QPI0_DRX_DP[8] AW40 QPI I QPI0_DRX_DP[9] AU40 QPI I QPI0_DTX_DN[0] AH38 QPI O QPI0_DTX_DN[1] AG39 QPI O QPI0_DTX_DN[10] AE43 QPI O QPI0_DTX_DN[11] AE41 QPI O QPI0_DTX_DN[12] AC42 QPI O QPI0_DTX_DN[13] AB43 QPI O QPI0_DTX_DN[14] AD39 QPI O QPI0_DTX_DN[15] AC40 QPI O QPI0_DTX_DN[16] AC38 QPI O QPI0_DTX_DN[17] AB38 QPI O QPI0_DTX_DN[18] AE38 QPI O QPI0_DTX_DN[19] AF40 QPI O
Land
No.
Buffer
Type
Direction
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 73
Land Listing
Table 5-1. Land Name (Sheet 3 of 36)
Land Name
QPI0_DTX_DN[2] AK38 QPI O QPI0_DTX_DN[3] AJ39 QPI O QPI0_DTX_DN[4] AJ40 QPI O QPI0_DTX_DN[5] AK41 QPI O QPI0_DTX_DN[6] AH42 QPI O QPI0_DTX_DN[7] AJ42 QPI O QPI0_DTX_DN[8] AH43 QPI O QPI0_DTX_DN[9] AG41 QPI O QPI0_DTX_DP[0] AG38 QPI O QPI0_DTX_DP[1] AF39 QPI O QPI0_DTX_DP[10] AF43 QPI O QPI0_DTX_DP[11] AE42 QPI O QPI0_DTX_DP[12] AD42 QPI O QPI0_DTX_DP[13] AC43 QPI O QPI0_DTX_DP[14] AD40 QPI O QPI0_DTX_DP[15] AC41 QPI O QPI0_DTX_DP[16] AC39 QPI O QPI0_DTX_DP[17] AB39 QPI O QPI0_DTX_DP[18] AD38 QPI O QPI0_DTX_DP[19] AE40 QPI O QPI0_DTX_DP[2] AK37 QPI O QPI0_DTX_DP[3] AJ38 QPI O QPI0_DTX_DP[4] AH40 QPI O QPI0_DTX_DP[5] AK40 QPI O QPI0_DTX_DP[6] AH41 QPI O QPI0_DTX_DP[7] AK42 QPI O QPI0_DTX_DP[8] AJ43 QPI O QPI0_DTX_DP[9] AG40 QPI O QPI1_CLKRX_DN AR6 QPI I QPI1_CLKRX_DP AT6 QPI I QPI1_CLKTX_DN AE6 QPI O QPI1_CLKTX_DP AF6 QPI O QPI1_COMP AL6 Analog QPI1_DRX_DN[0] AV8 QPI I QPI1_DRX_DN[1] AW7 QPI I QPI1_DRX_DN[10] AR1 QPI I QPI1_DRX_DN[11] AR5 QPI I QPI1_DRX_DN[12] AN2 QPI I QPI1_DRX_DN[13] AM1 QPI I QPI1_DRX_DN[14] AM3 QPI I QPI1_DRX_DN[15] AP4 QPI I
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 4 of 36)
Land Name
QPI1_DRX_DN[16] AN4 QPI I QPI1_DRX_DN[17] AN6 QPI I QPI1_DRX_DN[18] AM7 QPI I QPI1_DRX_DN[19] AL8 QPI I QPI1_DRX_DN[2] BA8 QPI I QPI1_DRX_DN[3] AW5 QPI I QPI1_DRX_DN[4] BA6 QPI I QPI1_DRX_DN[5] AY5 QPI I QPI1_DRX_DN[6] AU6 QPI I QPI1_DRX_DN[7] AW3 QPI I QPI1_DRX_DN[8] AU3 QPI I QPI1_DRX_DN[9] AT2 QPI I QPI1_DRX_DP[0] AU8 QPI I QPI1_DRX_DP[1] AV7 QPI I QPI1_DRX_DP[10] AT1 QPI I QPI1_DRX_DP[11] AR4 QPI I QPI1_DRX_DP[12] AP2 QPI I QPI1_DRX_DP[13] AN1 QPI I QPI1_DRX_DP[14] AM2 QPI I QPI1_DRX_DP[15] AP3 QPI I QPI1_DRX_DP[16] AM4 QPI I QPI1_DRX_DP[17] AN5 QPI I QPI1_DRX_DP[18] AM6 QPI I QPI1_DRX_DP[19] AM8 QPI I QPI1_DRX_DP[2] AY8 QPI I QPI1_DRX_DP[3] AV5 QPI I QPI1_DRX_DP[4] BA7 QPI I QPI1_DRX_DP[5] AY6 QPI I QPI1_DRX_DP[6] AU7 QPI I QPI1_DRX_DP[7] AW4 QPI I QPI1_DRX_DP[8] AU4 QPI I QPI1_DRX_DP[9] AT3 QPI I QPI1_DTX_DN[0] AH8 QPI O QPI1_DTX_DN[1] AJ7 QPI O QPI1_DTX_DN[10] AF3 QPI O QPI1_DTX_DN[11] AD1 QPI O QPI1_DTX_DN[12] AD3 QPI O QPI1_DTX_DN[13] AB3 QPI O QPI1_DTX_DN[14] AE4 QPI O QPI1_DTX_DN[15] AD4 QPI O QPI1_DTX_DN[16] AC6 Q PI O
Land
No.
Buffer
Type
Direction
74 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Land Listing
Table 5-1. Land Name (Sheet 5 of 36)
Land Name
QPI1_DTX_DN[17] AD7 QPI O QPI1_DTX_DN[18] AE5 QPI O QPI1_DTX_DN[19] AD8 QPI O QPI1_DTX_DN[2] AJ6 QPI O QPI1_DTX_DN[3] AK5 QPI O QPI1_DTX_DN[4] AK4 QPI O QPI1_DTX_DN[5] AG6 QPI O QPI1_DTX_DN[6] AJ2 QPI O QPI1_DTX_DN[7] AJ1 QPI O QPI1_DTX_DN[8] AH4 QPI O QPI1_DTX_DN[9] AG2 QPI O QPI1_DTX_DP[0] AG8 QPI O QPI1_DTX_DP[1] AJ8 QPI O QPI1_DTX_DP[10] AF2 QPI O QPI1_DTX_DP[11] AE1 QPI O QPI1_DTX_DP[12] AD2 QPI O QPI1_DTX_DP[13] AC3 QPI O QPI1_DTX_DP[14] AE3 QPI O QPI1_DTX_DP[15] AC4 QPI O QPI1_DTX_DP[16] AB6 QPI O QPI1_DTX_DP[17] AD6 QPI O QPI1_DTX_DP[18] AD5 QPI O QPI1_DTX_DP[19] AC8 QPI O QPI1_DTX_DP[2] AH6 QPI O QPI1_DTX_DP[3] AK6 QPI O QPI1_DTX_DP[4] AJ4 QPI O QPI1_DTX_DP[5] AG7 QPI O QPI1_DTX_DP[6] AJ3 QPI O QPI1_DTX_DP[7] AK1 QPI O QPI1_DTX_DP[8] AH3 QPI O QPI1_DTX_DP[9] AH2 QPI O DBR# AF10 Asynch I DDR_COMP[0] AA8 Analog DDR_COMP[1] Y7 Analog DDR_COMP[2] AC1 Analog DDR_THERM# AB5 CMOS I DDR_THERM2# AF4 CMOS I DDR_VREF L23 Analog I DDR0_BA[0] B16 CMOS O DDR0_BA[1] A16 CMOS O DDR0_BA[2] C28 CMOS O
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 6 of 36)
Land Name
DDR0_CAS# C12 CMOS O DDR0_CKE[0] C29 CMOS O DDR0_CKE[1] A30 CMOS O DDR0_CKE[2] B30 CMOS O DDR0_CKE[3] B31 CMOS O DDR0_CLK_N[0] K19 CLOCK O DDR0_CLK_N[1] C19 CLOCK O DDR0_CLK_N[2] E18 CLOCK O DDR0_CLK_N[3] E19 CLOCK O DDR0_CLK_P[0] J19 CLOCK O DDR0_CLK_P[1] D19 CLOCK O DDR0_CLK_P[2] F18 CLOCK O DDR0_CLK_P[3] E20 CLOCK O DDR0_CS#[0] G15 CMOS O DDR0_CS#[1] B10 CMOS O DDR0_CS#[2] C13 CMOS O DDR0_CS#[3] B9 C MOS O DDR0_CS#[4] B15 CMOS O DDR0_CS#[5] A7 C MOS O DDR0_CS#[6]/
DDR0_ODT[4] DDR0_CS#[7]/
DDR0_ODT[5] DDR0_DQ[0] W41 CMOS I/O DDR0_DQ[1] V41 CMOS I/O DDR0_DQ[10] K42 CMOS I/O DDR0_DQ[11] K43 CMOS I/O DDR0_DQ[12] P42 CMOS I/O DDR0_DQ[13] P41 CMOS I/O DDR0_DQ[14] L43 CMOS I/O DDR0_DQ[15] L42 CMOS I/O DDR0_DQ[16] H41 CMOS I/O DDR0_DQ[17] H43 CMOS I/O DDR0_DQ[18] E42 CMOS I/O DDR0_DQ[19] E43 CMOS I/O DDR0_DQ[2] R43 CMOS I/O DDR0_DQ[20] J42 CMOS I/O DDR0_DQ[21] J41 CMOS I/O DDR0_DQ[22] F43 CMOS I/O DDR0_DQ[23] F42 CMOS I/O DDR0_DQ[24] D40 CMOS I/O DDR0_DQ[25] C41 CMOS I/O
Land
No.
C11 CMOS O
B8 CMOS O
Buffer
Type
Direction
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 75
Land Listing
Table 5-1. Land Name (Sheet 7 of 36)
Land Name
DDR0_DQ[26] A38 CMOS I/O DDR0_DQ[27] D37 CMOS I/O DDR0_DQ[28] D41 CMOS I/O DDR0_DQ[29] D42 CMOS I/O DDR0_DQ[3] R42 CMOS I/O DDR0_DQ[30] C38 CMOS I/O DDR0_DQ[31] B38 CMOS I/O DDR0_DQ[32] B5 C MOS I/O DDR0_DQ[33] C4 CMOS I/O DDR0_DQ[34] F1 CMOS I/O DDR0_DQ[35] G3 CMOS I/O DDR0_DQ[36] B6 C MOS I/O DDR0_DQ[37] C6 CMOS I/O DDR0_DQ[38] F3 CMOS I/O DDR0_DQ[39] F2 CMOS I/O DDR0_DQ[4] W40 CMOS I/O DDR0_DQ[40] H2 CMOS I/O DDR0_DQ[41] H1 CMOS I/O DDR0_DQ[42] L1 CMOS I/O DDR0_DQ[43] M1 CMOS I/O DDR0_DQ[44] G1 CMOS I/O DDR0_DQ[45] H3 CMOS I/O DDR0_DQ[46] L3 CMOS I/O DDR0_DQ[47] L2 CMOS I/O DDR0_DQ[48] N1 CMOS I/O DDR0_DQ[49] N2 CMOS I/O DDR0_DQ[5] W42 CMOS I/O DDR0_DQ[50] T1 CMOS I/O DDR0_DQ[51] T2 CMOS I/O DDR0_DQ[52] M3 CMOS I/O DDR0_DQ[53] N3 CMOS I/O DDR0_DQ[54] R4 CMOS I/O DDR0_DQ[55] T3 CMOS I/O DDR0_DQ[56] U4 CMOS I/O DDR0_DQ[57] V1 CMOS I/O DDR0_DQ[58] Y2 CMOS I/O DDR0_DQ[59] Y3 CMOS I/O DDR0_DQ[6] U41 CMOS I/O DDR0_DQ[60] U1 CMOS I/O DDR0_DQ[61] U3 CMOS I/O DDR0_DQ[62] V4 CMOS I/O
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 8 of 36)
Land Name
DDR0_DQ[63] W4 CMOS I/O DDR0_DQ[7] T42 CMOS I/O DDR0_DQ[8] N41 CMOS I/O DDR0_DQ[9] N43 CMOS I/O DDR0_DQS_N[0] U43 CMOS I/O DDR0_DQS_N[1] M41 CMOS I/O DDR0_DQS_N[10] M43 CMOS I/O DDR0_DQS_N[11] G43 CMOS I/O DDR0_DQS_N[12] C39 CMOS I/O DDR0_DQS_N[13] D4 CMOS I/O DDR0_DQS_N[14] J1 CMOS I/O DDR0_DQS_N[15] P1 CMOS I/O DDR0_DQS_N[16] V3 CMOS I/O DDR0_DQS_N[17] B35 CMOS I/O DDR0_DQS_N[2] G41 CMOS I/O DDR0_DQS_N[3] B40 CMOS I/O DDR0_DQS_N[4] E4 CMOS I/O DDR0_DQS_N[5] K3 CMOS I/O DDR0_DQS_N[6] R3 CMOS I/O DDR0_DQS_N[7] W1 CMOS I/O DDR0_DQS_N[8] D35 CMOS I/O DDR0_DQS_N[9] V42 CMOS I/O DDR0_DQS_P[0] T43 CMOS I/O DDR0_DQS_P[1] L41 CMOS I/O DDR0_DQS_P[10] N42 CMOS I/O DDR0_DQS_P[11] H42 CMOS I/O DDR0_DQS_P[12] D39 CMOS I/O DDR0_DQS_P[13] D5 CMOS I/O DDR0_DQS_P[14] J2 CMOS I/O DDR0_DQS_P[15] P2 CMOS I/O DDR0_DQS_P[16] V2 CMOS I/O DDR0_DQS_P[17] B36 CMOS I/O DDR0_DQS_P[2] F41 CMOS I/O DDR0_DQS_P[3] B39 CMOS I/O DDR0_DQS_P[4] E3 CMOS I/O DDR0_DQS_P[5] K2 CMOS I/O DDR0_DQS_P[6] R2 CMOS I/O DDR0_DQS_P[7] W2 CMOS I/O DDR0_DQS_P[8] D34 CMOS I/O DDR0_DQS_P[9] V43 CMOS I/O DDR0_ECC[0] C36 CMOS I/O
Land
No.
Buffer
Type
Direction
76 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Land Listing
Table 5-1. Land Name (Sheet 9 of 36)
Land Name
DDR0_ECC[1] A36 CMOS I/O DDR0_ECC[2] F32 CMOS I/O DDR0_ECC[3] C33 CMOS I/O DDR0_ECC[4] C37 CMOS I/O DDR0_ECC[5] A37 CMOS I/O DDR0_ECC[6] B34 CMOS I/O DDR0_ECC[7] C34 CMOS I/O DDR0_MA[0] A20 CMOS O DDR0_MA[1] B21 CMOS O DDR0_MA[10] B19 CMOS O DDR0_MA[11] A26 CMOS O DDR0_MA[12] B26 CMOS O DDR0_MA[13] A10 CMOS O DDR0_MA[14] A28 CMOS O DDR0_MA[15] B29 CMOS O DDR0_MA[2] C23 CMOS O DDR0_MA[3] D24 CMOS O DDR0_MA[4] B23 CMOS O DDR0_MA[5] B24 CMOS O DDR0_MA[6] C24 CMOS O DDR0_MA[7] A25 CMOS O DDR0_MA[8] B25 CMOS O DDR0_MA[9] C26 CMOS O DDR0_MA_PAR B20 CMOS O DDR0_ODT[0] F12 CMOS O DDR0_ODT[1] C9 CMOS O DDR0_ODT[2] B11 CMOS O DDR0_ODT[3] C7 CMOS O DDR0_PAR_ERR#[0] D25 Asynch I DDR0_PAR_ERR#[1] B28 Asynch I DDR0_PAR_ERR#[2] A27 Asynch I DDR0_RAS# A15 CMOS O DDR0_RESET# D32 CMOS O DDR0_WE# B13 CMOS O DDR1_BA[0] C18 CMOS O DDR1_BA[1] K13 CMOS O DDR1_BA[2] H27 CMOS O DDR1_CAS# E14 CMOS O DDR1_CKE[0] H28 CMOS O DDR1_CKE[1] E27 CMOS O DDR1_CKE[2] D27 CMOS O
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 10 of 36)
Land Name
DDR1_CKE[3] C27 CMOS O DDR1_CLK_N[0] D21 CLOCK O DDR1_CLK_N[1] G20 CLOCK O DDR1_CLK_N[2] L18 CLOCK O DDR1_CLK_N[3] H19 CLOCK O DDR1_CLK_P[0] C21 CLOCK O DDR1_CLK_P[1] G19 CLOCK O DDR1_CLK_P[2] K18 CLOCK O DDR1_CLK_P[3] H18 CLOCK O DDR1_CS#[0] D12 CMOS O DDR1_CS#[1] A8 C MOS O DDR1_CS#[2] E15 CMOS O DDR1_CS#[3] E13 CMOS O DDR1_CS#[4] C17 CMOS O DDR1_CS#[5] E10 CMOS O DDR1_CS#[6]/
DDR1_ODT[4] DDR1_CS#[7]/
DDR1_ODT[5] DDR1_DQ[0] AA37 CMOS I/O DDR1_DQ[1] AA36 CMOS I/O DDR1_DQ[10] P39 CMOS I/O DDR1_DQ[11] N39 CMOS I/O DDR1_DQ[12] R34 CMOS I/O DDR1_DQ[13] R35 CMOS I/O DDR1_DQ[14] N37 CMOS I/O DDR1_DQ[15] N38 CMOS I/O DDR1_DQ[16] M35 CMOS I/O DDR1_DQ[17] M34 CMOS I/O DDR1_DQ[18] K35 CMOS I/O DDR1_DQ[19] J35 CMOS I/O DDR1_DQ[2] Y35 CMOS I/O DDR1_DQ[20] N34 CMOS I/O DDR1_DQ[21] M36 CMOS I/O DDR1_DQ[22] J36 CMOS I/O DDR1_DQ[23] H36 CMOS I/O DDR1_DQ[24] H33 CMOS I/O DDR1_DQ[25] L33 CMOS I/O DDR1_DQ[26] K32 CMOS I/O DDR1_DQ[27] J32 CMOS I/O DDR1_DQ[28] J34 CMOS I/O DDR1_DQ[29] H34 CMOS I/O
Land
No.
C14 CMOS O
E12 CMOS O
Buffer
Type
Direction
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 77
Land Listing
Table 5-1. Land Name (Sheet 11 of 36)
Land Name
DDR1_DQ[3] Y34 CMOS I/O DDR1_DQ[30] L32 CMOS I/O DDR1_DQ[31] K30 CMOS I/O DDR1_DQ[32] E9 CMOS I/O DDR1_DQ[33] E8 CMOS I/O DDR1_DQ[34] E5 CMOS I/O DDR1_DQ[35] F5 CMOS I/O DDR1_DQ[36] F10 CMOS I/O DDR1_DQ[37] G8 CMOS I/O DDR1_DQ[38] D6 CMOS I/O DDR1_DQ[39] F6 CMOS I/O DDR1_DQ[4] AA35 CMOS I/O DDR1_DQ[40] H8 CMOS I/O DDR1_DQ[41] J6 CMOS I/O DDR1_DQ[42] G4 CMOS I/O DDR1_DQ[43] H4 CMOS I/O DDR1_DQ[44] G9 CMOS I/O DDR1_DQ[45] H9 CMOS I/O DDR1_DQ[46] G5 CMOS I/O DDR1_DQ[47] J5 CMOS I/O DDR1_DQ[48] K4 CMOS I/O DDR1_DQ[49] K5 CMOS I/O DDR1_DQ[5] AB36 CMOS I/O DDR1_DQ[50] R5 CMOS I/O DDR1_DQ[51] T5 CMOS I/O DDR1_DQ[52] J4 CMOS I/O DDR1_DQ[53] M6 CMOS I/O DDR1_DQ[54] R8 CMOS I/O DDR1_DQ[55] R7 CMOS I/O DDR1_DQ[56] W6 CMOS I/O DDR1_DQ[57] W7 CMOS I/O DDR1_DQ[58] Y10 CMOS I/O DDR1_DQ[59] W10 CMOS I/O DDR1_DQ[6] Y40 CMOS I/O DDR1_DQ[60] V9 CMOS I/O DDR1_DQ[61] W5 CMOS I/O DDR1_DQ[62] AA7 CMOS I/O DDR1_DQ[63] W9 CMOS I/O DDR1_DQ[7] Y39 CMOS I/O DDR1_DQ[8] P34 CMOS I/O DDR1_DQ[9] P35 CMOS I/O
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 12 of 36)
Land Name
DDR1_DQS_N[0] Y37 CMOS I/O DDR1_DQS_N[1] R37 CMOS I/O DDR1_DQS_N[10] P37 CMOS I/O DDR1_DQS_N[11] K37 CMOS I/O DDR1_DQS_N[12] K33 CMOS I/O DDR1_DQS_N[13] F7 CMOS I/O DDR1_DQS_N[14] J7 CMOS I/O DDR1_DQS_N[15] M4 CMOS I/O DDR1_DQS_N[16] Y5 CMOS I/O DDR1_DQS_N[17] E35 CMOS I/O DDR1_DQS_N[2] L36 CMOS I/O DDR1_DQS_N[3] L31 CMOS I/O DDR1_DQS_N[4] D7 CMOS I/O DDR1_DQS_N[5] G6 CMOS I/O DDR1_DQS_N[6] L5 CMOS I/O DDR1_DQS_N[7] Y9 CMOS I/O DDR1_DQS_N[8] G34 CMOS I/O DDR1_DQS_N[9] AA4 1 CMOS I/O DDR1_DQS_P[0] Y38 CMOS I/O DDR1_DQS_P[1] R38 CMOS I/O DDR1_DQS_P[10] P36 CMOS I/O DDR1_DQS_P[11] L37 CMOS I/O DDR1_DQS_P[12] K34 CMOS I/O DDR1_DQS_P[13] F8 CMOS I/O DDR1_DQS_P[14] H7 CMOS I/O DDR1_DQS_P[15] M5 CMOS I/O DDR1_DQS_P[16] Y4 CMOS I/O DDR1_DQS_P[17] F35 CMOS I/O DDR1_DQS_P[2] L35 CMOS I/O DDR1_DQS_P[3] L30 CMOS I/O DDR1_DQS_P[4] E7 CMOS I/O DDR1_DQS_P[5] H6 CMOS I/O DDR1_DQS_P[6] L6 CMOS I/O DDR1_DQS_P[7] Y8 CMOS I/O DDR1_DQS_P[8] G33 CMOS I/O DDR1_DQS_P[9] AA40 CMOS I/O DDR1_ECC[0] D36 CMOS I/O DDR1_ECC[1] F36 CMOS I/O DDR1_ECC[2] E33 CMOS I/O DDR1_ECC[3] G36 CMOS I/O DDR1_ECC[4] E37 CMOS I/O
Land
No.
Buffer
Type
Direction
78 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Land Listing
Table 5-1. Land Name (Sheet 13 of 36)
Land Name
DDR1_ECC[5] F37 CMOS I/O DDR1_ECC[6] E34 CMOS I/O DDR1_ECC[7] G35 CMOS I/O DDR1_MA[0] J14 CMOS O DDR1_MA[1] J16 CMOS O DDR1_MA[10] H14 CMOS O DDR1_MA[11] E23 CMOS O DDR1_MA[12] E24 CMOS O DDR1_MA[13] B14 CMOS O DDR1_MA[14] H26 CMOS O DDR1_MA[15] F26 CMOS O DDR1_MA[2] J17 CMOS O DDR1_MA[3] L28 CMOS O DDR1_MA[4] K28 CMOS O DDR1_MA[5] F22 CMOS O DDR1_MA[6] J27 CMOS O DDR1_MA[7] D22 CMOS O DDR1_MA[8] E22 CMOS O DDR1_MA[9] G24 CMOS O DDR1_MA_PAR D20 CMOS O DDR1_ODT[0] D11 CMOS O DDR1_ODT[1] C8 CMOS O DDR1_ODT[2] D14 CMOS O DDR1_ODT[3] F11 CMOS O DDR1_PAR_ERR#[0] C22 Asynch I DDR1_PAR_ERR#[1] E25 Asynch I DDR1_PAR_ERR#[2] F25 Asynch I DDR1_RAS# G14 CMOS O DDR1_RESET# D29 CMOS O DDR1_WE# G13 CMOS O DDR2_BA[0] A17 CMOS O DDR2_BA[1] F17 CMOS O DDR2_BA[2] L26 CMOS O DDR2_CAS# F16 CMOS O DDR2_CKE[0] J26 CMOS O DDR2_CKE[1] G26 CMOS O DDR2_CKE[2] D26 CMOS O DDR2_CKE[3] L27 CMOS O DDR2_CLK_N[0] J21 CLOCK O DDR2_CLK_N[1] K20 CLOCK O DDR2_CLK_N[2] G21 CLOCK O
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 14 of 36)
Land Name
DDR2_CLK_N[3] L21 CLOCK O DDR2_CLK_P[0] J22 CLOCK O DDR2_CLK_P[1] L20 CLOCK O DDR2_CLK_P[2] H21 CLOCK O DDR2_CLK_P[3] L22 CLOCK O DDR2_CS#[0] G16 CMOS O DDR2_CS#[1] K14 CMOS O DDR2_CS#[2] D16 CMOS O DDR2_CS#[3] H16 CMOS O DDR2_CS#[4] E17 CMOS O DDR2_CS#[5] D9 CMOS O DDR2_CS#[6]/
DDR2_ODT[4] DDR2_CS#[7]/
DDR2_ODT[5] DDR2_DQ[0] W34 CMOS I/O DDR2_DQ[1] W35 CMOS I/O DDR2_DQ[10] R39 CMOS I/O DDR2_DQ[11] T36 CMOS I/O DDR2_DQ[12] W39 CMOS I/O DDR2_DQ[13] V39 CMOS I/O DDR2_DQ[14] T41 CMOS I/O DDR2_DQ[15] R40 CMOS I/O DDR2_DQ[16] M39 CMOS I/O DDR2_DQ[17] M40 CMOS I/O DDR2_DQ[18] J40 CMOS I/O DDR2_DQ[19] J39 CMOS I/O DDR2_DQ[2] V36 CMOS I/O DDR2_DQ[20] P40 CMOS I/O DDR2_DQ[21] N36 CMOS I/O DDR2_DQ[22] L40 CMOS I/O DDR2_DQ[23] K38 CMOS I/O DDR2_DQ[24] G40 CMOS I/O DDR2_DQ[25] F40 CMOS I/O DDR2_DQ[26] J37 CMOS I/O DDR2_DQ[27] H37 CMOS I/O DDR2_DQ[28] H39 CMOS I/O DDR2_DQ[29] G39 CMOS I/O DDR2_DQ[3] U36 CMOS I/O DDR2_DQ[30] F38 CMOS I/O DDR2_DQ[31] E38 CMOS I/O DDR2_DQ[32] K12 CMOS I/O
Land
No.
L17 CMOS O
J15 CMOS O
Buffer
Type
Direction
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 79
Land Listing
Table 5-1. Land Name (Sheet 15 of 36)
Land Name
DDR2_DQ[33] J12 CMOS I/O DDR2_DQ[34] H13 CMOS I/O DDR2_DQ[35] L13 CMOS I/O DDR2_DQ[36] G11 CMOS I/O DDR2_DQ[37] G10 CMOS I/O DDR2_DQ[38] H12 CMOS I/O DDR2_DQ[39] L12 CMOS I/O DDR2_DQ[4] U34 CMOS I/O DDR2_DQ[40] L10 CMOS I/O DDR2_DQ[41] K10 CMOS I/O DDR2_DQ[42] M9 CMOS I/O DDR2_DQ[43] N9 CMOS I/O DDR2_DQ[44] L11 CMOS I/O DDR2_DQ[45] M10 CMOS I/O DDR2_DQ[46] L8 CMOS I/O DDR2_DQ[47] M8 CMOS I/O DDR2_DQ[48] P7 CMOS I/O DDR2_DQ[49] N6 CMOS I/O DDR2_DQ[5] V34 CMOS I/O DDR2_DQ[50] P9 CMOS I/O DDR2_DQ[51] P10 CMOS I/O DDR2_DQ[52] N8 CMOS I/O DDR2_DQ[53] N7 CMOS I/O DDR2_DQ[54] R10 CMOS I/O DDR2_DQ[55] R9 CMOS I/O DDR2_DQ[56] U5 CMOS I/O DDR2_DQ[57] U6 CMOS I/O DDR2_DQ[58] T10 CMOS I/O DDR2_DQ[59] U10 CMOS I/O DDR2_DQ[6] V37 CMOS I/O DDR2_DQ[60] T6 CMOS I/O DDR2_DQ[61] T7 CMOS I/O DDR2_DQ[62] V8 CMOS I/O DDR2_DQ[63] U9 CMOS I/O DDR2_DQ[7] V38 CMOS I/O DDR2_DQ[8] U38 CMOS I/O DDR2_DQ[9] U39 CMOS I/O DDR2_DQS_N[0] W36 CMOS I/O DDR2_DQS_N[1] T38 CMOS I/O DDR2_DQS_N[10] T40 CMOS I/O DDR2_DQS_N[11] L38 CMOS I/O
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 16 of 36)
Land Name
DDR2_DQS_N[12] G38 CMOS I/O DDR2_DQS_N[13] J11 CMOS I/O DDR2_DQS_N[14] K8 CMOS I/O DDR2_DQS_N[15] P4 CMOS I/O DDR2_DQS_N[16] V7 CMOS I/O DDR2_DQS_N[17] G31 CMOS I/O DDR2_DQS_N[2] K39 CMOS I/O DDR2_DQS_N[3] E40 CMOS I/O DDR2_DQS_N[4] J9 CMOS I/O DDR2_DQS_N[5] K7 CMOS I/O DDR2_DQS_N[6] P5 CMOS I/O DDR2_DQS_N[7] T8 CMOS I/O DDR2_DQS_N[8] G30 CMOS I/O DDR2_DQS_N[9] T35 CMOS I/O DDR2_DQS_P[0] W37 CMOS I/O DDR2_DQS_P[1] T37 CMOS I/O DDR2_DQS_P[10] U40 CMOS I/O DDR2_DQS_P[11] M38 CMOS I/O DDR2_DQS_P[12] H38 CMOS I/O DDR2_DQS_P[13] H11 CMOS I/O DDR2_DQS_P[14] K9 CMOS I/O DDR2_DQS_P[15] N4 CMOS I/O DDR2_DQS_P[16] V6 CMOS I/O DDR2_DQS_P[17] H31 CMOS I/O DDR2_DQS_P[2] K40 CMOS I/O DDR2_DQS_P[3] E39 CMOS I/O DDR2_DQS_P[4] J10 CMOS I/O DDR2_DQS_P[5] L7 CMOS I/O DDR2_DQS_P[6] P6 CMOS I/O DDR2_DQS_P[7] U8 CMOS I/O DDR2_DQS_P[8] G29 CMOS I/O DDR2_DQS_P[9] U35 CMOS I/O DDR2_ECC[0] H32 CMOS I/O DDR2_ECC[1] F33 CMOS I/O DDR2_ECC[2] E29 CMOS I/O DDR2_ECC[3] E30 CMOS I/O DDR2_ECC[4] J31 CMOS I/O DDR2_ECC[5] J30 CMOS I/O DDR2_ECC[6] F31 CMOS I/O DDR2_ECC[7] F30 CMOS I/O DDR2_MA[0] A18 CMOS O
Land
No.
Buffer
Type
Direction
80 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Land Listing
Table 5-1. Land Name (Sheet 17 of 36)
Land Name
DDR2_MA[1] K17 CMOS O DDR2_MA[10] H17 CMOS O DDR2_MA[11] H23 CMOS O DDR2_MA[12] G23 CMOS O DDR2_MA[13] F15 CMOS O DDR2_MA[14] H24 CMOS O DDR2_MA[15] G25 CMOS O DDR2_MA[2] G18 CMOS O DDR2_MA[3] J20 CMOS O DDR2_MA[4] F20 CMOS O DDR2_MA[5] K23 CMOS O DDR2_MA[6] K22 CMOS O DDR2_MA[7] J24 CMOS O DDR2_MA[8] L25 CMOS O DDR2_MA[9] H22 CMOS O DDR2_MA_PAR B18 CMOS O DDR2_ODT[0] L16 CMOS O DDR2_ODT[1] F13 CMOS O DDR2_ODT[2] D15 CMOS O DDR2_ODT[3] D10 CMOS O DDR2_PAR_ERR#[0] F21 Asynch I DDR2_PAR_ERR#[1] J25 Asynch I DDR2_PAR_ERR#[2] F23 Asynch I DDR2_RAS# D17 CMOS O DDR2_RESET# E32 CMOS O DDR2_WE# C16 CMOS O GTLREF AJ37 Analog I ISENSE AK8 Analog I PECI AH36 Asynch I/O PECI_ID# AK35 Asynch I PRDY# B41 GTL O PREQ# C42 GTL I PROCHOT# AG35 GTL I/O PSI# AP7 CMOS O RESET# AL39 Asynch I RSVD A31 RSVD A40 RSVD AF1 RSVD AG1 RSVD AG4 RSVD AG5
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 18 of 36)
Land Name
RSVD AK2 RSVD AK7 RSVD AK36 RSVD AL3 RSVD AL38 RSVD AL4 RSVD AL40 RSVD AL41 RSVD AL5 RSVD AM36 RSVD AM38 RSVD AN36 RSVD AN38 RSVD AR36 RSVD AR37 RSVD AT36 RSVD AT4 RSVD AT5 RSVD AU2 RSVD AV1 RSVD AV2 RSVD AV35 RSVD AV42 RSVD AV43 RSVD AW2 RSVD AW39 RSVD AW41 RSVD AW42 RSVD AY3 RSVD AY35 RSVD AY39 RSVD AY4 RSVD AY40 RSVD AY41 RSVD B33 RSVD BA4 RSVD BA40 RSVD C31 RSVD C32 RSVD D30 RSVD D31
Land
No.
Buffer
Type
Direction
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 81
Land Listing
Table 5-1. Land Name (Sheet 19 of 36)
Land Name
RSVD E28 RSVD F27 RSVD F28 RSVD G28 RSVD H29 RSVD J29 RSVD K15 RSVD K24 RSVD K25 RSVD K27 RSVD K29 RSVD L15 RSVD U11 RSVD V11 SKTOCC# AG36 O TAPPWRGOOD AH5 CMOS O TCK AH10 TAP I TDI AJ9 TAP I TDO AJ10 TAP O THERMTRIP# AG37 GTL O TMS AG10 TAP I TRST# AH9 TAP I VCC AH11 PWR VCC AH33 PWR VCC AJ11 PWR VCC AJ33 PWR VCC AK11 PWR VCC AK12 PWR VCC AK13 PWR VCC AK15 PWR VCC AK16 PWR VCC AK18 PWR VCC AK19 PWR VCC AK21 PWR VCC AK24 PWR VCC AK25 PWR VCC AK27 PWR VCC AK28 PWR VCC AK30 PWR VCC AK31 PWR VCC AK33 PWR
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 20 of 36)
Land Name
VCC AL12 PWR VCC AL13 PWR VCC AL15 PWR VCC AL16 PWR VCC AL18 PWR VCC AL19 PWR VCC AL21 PWR VCC AL24 PWR VCC AL25 PWR VCC AL27 PWR VCC AL28 PWR VCC AL30 PWR VCC AL31 PWR VCC AL33 PWR VCC AL34 PWR VCC AM12 PWR VCC AM13 PWR VCC AM15 PWR VCC AM16 PWR VCC AM18 PWR VCC AM19 PWR VCC AM21 PWR VCC AM24 PWR VCC AM25 PWR VCC AM27 PWR VCC AM28 PWR VCC AM30 PWR VCC AM31 PWR VCC AM33 PWR VCC AM34 PWR VCC AN12 PWR VCC AN13 PWR VCC AN15 PWR VCC AN16 PWR VCC AN18 PWR VCC AN19 PWR VCC AN21 PWR VCC AN24 PWR VCC AN25 PWR VCC AN27 PWR VCC AN28 PWR
Land
No.
Buffer
Type
Direction
82 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Land Listing
Table 5-1. Land Name (Sheet 21 of 36)
Land Name
VCC AN30 PWR VCC AN31 PWR VCC AN33 PWR VCC AN34 PWR VCC AP12 PWR VCC AP13 PWR VCC AP15 PWR VCC AP16 PWR VCC AP18 PWR VCC AP19 PWR VCC AP21 PWR VCC AP24 PWR VCC AP25 PWR VCC AP27 PWR VCC AP28 PWR VCC AP30 PWR VCC AP31 PWR VCC AP33 PWR VCC AP34 PWR VCC AR10 PWR VCC AR12 PWR VCC AR13 PWR VCC AR15 PWR VCC AR16 PWR VCC AR18 PWR VCC AR19 PWR VCC AR21 PWR VCC AR24 PWR VCC AR25 PWR VCC AR27 PWR VCC AR28 PWR VCC AR30 PWR VCC AR31 PWR VCC AR33 PWR VCC AR34 PWR VCC AT10 PWR VCC AT12 PWR VCC AT13 PWR VCC AT15 PWR VCC AT16 PWR VCC AT18 PWR
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 22 of 36)
Land Name
VCC AT19 PWR VCC AT21 PWR VCC AT24 PWR VCC AT25 PWR VCC AT27 PWR VCC AT28 PWR VCC AT30 PWR VCC AT31 PWR VCC AT33 PWR VCC AT34 PWR VCC AT9 PWR VCC AU10 PWR VCC AU12 PWR VCC AU13 PWR VCC AU15 PWR VCC AU16 PWR VCC AU18 PWR VCC AU19 PWR VCC AU21 PWR VCC AU24 PWR VCC AU25 PWR VCC AU27 PWR VCC AU28 PWR VCC AU30 PWR VCC AU31 PWR VCC AU33 PWR VCC AU34 PWR VCC AU9 PWR VCC AV10 PWR VCC AV12 PWR VCC AV13 PWR VCC AV15 PWR VCC AV16 PWR VCC AV18 PWR VCC AV19 PWR VCC AV21 PWR VCC AV24 PWR VCC AV25 PWR VCC AV27 PWR VCC AV28 PWR VCC AV30 PWR
Land
No.
Buffer
Type
Direction
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 83
Land Listing
Table 5-1. Land Name (Sheet 23 of 36)
Land Name
VCC AV31 PWR VCC AV33 PWR VCC AV34 PWR VCC AV9 PWR VCC AW10 PWR VCC AW12 PWR VCC AW13 PWR VCC AW15 PWR VCC AW16 PWR VCC AW18 PWR VCC AW19 PWR VCC AW21 PWR VCC AW24 PWR VCC AW25 PWR VCC AW27 PWR VCC AW28 PWR VCC AW30 PWR VCC AW31 PWR VCC AW33 PWR VCC AW34 PWR VCC AW9 PWR VCC AY10 PWR VCC AY12 PWR VCC AY13 PWR VCC AY15 PWR VCC AY16 PWR VCC AY18 PWR VCC AY19 PWR VCC AY21 PWR VCC AY24 PWR VCC AY25 PWR VCC AY27 PWR VCC AY28 PWR VCC AY30 PWR VCC AY31 PWR VCC AY33 PWR VCC AY34 PWR VCC AY9 PWR VCC BA10 PWR VCC BA12 PWR VCC BA13 PWR
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 24 of 36)
Land Name
VCC BA15 PWR VCC BA16 PWR VCC BA18 PWR VCC BA19 PWR VCC BA24 PWR VCC BA25 PWR VCC BA27 PWR VCC BA28 PWR VCC BA30 PWR VCC BA9 PWR VCC M11 PWR VCC M13 PWR VCC M15 PWR VCC M19 PWR VCC M21 PWR VCC M23 PWR VCC M25 PWR VCC M29 PWR VCC M31 PWR VCC M33 PWR VCC N11 PWR VCC N33 PWR VCC R11 PWR VCC R33 PWR VCC T11 PWR VCC T33 PWR VCC W11 PWR VCC_SENSE AR9 Analog VCCPLL U33 PWR VCCPLL V33 PWR VCCPLL W33 PWR VCCPWRGOOD AR7 Asynch I VDDPWRGOOD AA6 Asynch I VDDQ A14 PWR VDDQ A19 PWR VDDQ A24 PWR VDDQ A29 PWR VDDQ A9 PWR VDDQ B12 PWR VDDQ B17 PWR VDDQ B22 PWR
Land
No.
Buffer
Type
Direction
84 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Land Listing
Table 5-1. Land Name (Sheet 25 of 36)
Land Name
VDDQ B27 PWR VDDQ B32 PWR VDDQ B7 PWR VDDQ C10 PWR VDDQ C15 PWR VDDQ C20 PWR VDDQ C25 PWR VDDQ C30 PWR VDDQ D13 PWR VDDQ D18 PWR VDDQ D23 PWR VDDQ D28 PWR VDDQ E11 PWR VDDQ E16 PWR VDDQ E21 PWR VDDQ E26 PWR VDDQ E31 PWR VDDQ F14 PWR VDDQ F19 PWR VDDQ F24 PWR VDDQ G17 PWR VDDQ G22 PWR VDDQ G27 PWR VDDQ H15 PWR VDDQ H20 PWR VDDQ H25 PWR VDDQ J18 PWR VDDQ J23 PWR VDDQ J28 PWR VDDQ K16 PWR VDDQ K21 PWR VDDQ K26 PWR VDDQ L14 PWR VDDQ L19 PWR VDDQ L24 PWR VDDQ M17 PWR VDDQ M27 PWR VID[0]/MSID[0] AL10 CMOS O VID[1]/MSID[1] AL9 CMOS O VID[2]/MSID[2] AN9 CMOS O VID[3]/CSC[0] AM10 CMOS O
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 26 of 36)
Land Name
VID[4]/CSC[1] AN10 CMOS O VID[5]/CSC[2] AP9 CSMO O VID[6] AP8 CMOS O VID[7] AN8 CMOS O VSS A35 GND VSS A39 GND VSS A4 GND VSS A41 GND VSS A6 GND VSS AA3 GND VSS AA34 GND VSS AA38 GND VSS AA39 GND VSS AA9 GND VSS AB37 GND VSS AB4 GND VSS AB40 GND VSS AB42 GND VSS AB7 GND VSS AC2 GND VSS AC36 GND VSS AC5 GND VSS AC7 GND VSS AC9 GND VSS AD11 GND VSS AD33 GND VSS AD37 GND VSS AD41 GND VSS AD43 GND VSS AE2 GND VSS AE39 GND VSS AE7 GND VSS AF35 GND VSS AF38 GND VSS AF41 GND VSS AF5 GND VSS AG11 GND VSS AG3 GND VSS AG33 GND VSS AG43 GND VSS AG9 GND
Land
No.
Buffer
Type
Direction
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 85
Land Listing
Table 5-1. Land Name (Sheet 27 of 36)
Land Name
VSS AH1 GND VSS AH34 GND VSS AH37 GND VSS AH39 GND VSS AH7 GND VSS AJ34 GND VSS AJ36 GND VSS AJ41 GND VSS AJ5 GND VSS AK10 GND VSS AK14 GND VSS AK17 GND VSS AK20 GND VSS AK22 GND VSS AK23 GND VSS AK26 GND VSS AK29 GND VSS AK3 GND VSS AK32 GND VSS AK34 GND VSS AK39 GND VSS AK43 GND VSS AK9 GND VSS AL1 GND VSS AL11 GND VSS AL14 GND VSS AL17 GND VSS AL2 GND VSS AL20 GND VSS AL22 GND VSS AL23 GND VSS AL26 GND VSS AL29 GND VSS AL32 GND VSS AL35 GND VSS AL36 GND VSS AL37 GND VSS AL42 GND VSS AL7 GND VSS AM11 GND VSS AM14 GND
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 28 of 36)
Land Name
VSS AM17 GND VSS AM20 GND VSS AM22 GND VSS AM23 GND VSS AM26 GND VSS AM29 GND VSS AM32 GND VSS AM35 GND VSS AM37 GND VSS AM39 GND VSS AM5 GND VSS AM9 GND VSS AN11 GND VSS AN14 GND VSS AN17 GND VSS AN20 GND VSS AN22 GND VSS AN23 GND VSS AN26 GND VSS AN29 GND VSS AN3 GND VSS AN32 GND VSS AN35 GND VSS AN37 GND VSS AN41 GND VSS AN7 GND VSS AP1 GND VSS AP10 GND VSS AP11 GND VSS AP14 GND VSS AP17 GND VSS AP20 GND VSS AP22 GND VSS AP23 GND VSS AP26 GND VSS AP29 GND VSS AP32 GND VSS AP35 GND VSS AP36 GND VSS AP37 GND VSS AP43 GND
Land
No.
Buffer
Type
Direction
86 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Land Listing
Table 5-1. Land Name (Sheet 29 of 36)
Land Name
VSS AP5 GND VSS AP6 GND VSS AR11 GND VSS AR14 GND VSS AR17 GND VSS AR2 GND VSS AR20 GND VSS AR22 GND VSS AR23 GND VSS AR26 GND VSS AR29 GND VSS AR3 GND VSS AR32 GND VSS AR35 GND VSS AR39 GND VSS AT11 GND VSS AT14 GND VSS AT17 GND VSS AT20 GND VSS AT22 GND VSS AT23 GND VSS AT26 GND VSS AT29 GND VSS AT32 GND VSS AT35 GND VSS AT38 GND VSS AT41 GND VSS AT7 GND VSS AT8 GND VSS AU1 GND VSS AU11 GND VSS AU14 GND VSS AU17 GND VSS AU20 GND VSS AU22 GND VSS AU23 GND VSS AU26 GND VSS AU29 GND VSS AU32 GND VSS AU35 GND VSS AU36 GND
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 30 of 36)
Land Name
VSS AU43 GND VSS AU5 GND VSS AV11 GND VSS AV14 GND VSS AV17 GND VSS AV20 GND VSS AV22 GND VSS AV23 GND VSS AV26 GND VSS AV29 GND VSS AV32 GND VSS AV39 GND VSS AV4 GND VSS AV41 GND VSS AW1 GND VSS AW11 GND VSS AW14 GND VSS AW17 GND VSS AW20 GND VSS AW22 GND VSS AW23 GND VSS AW26 GND VSS AW29 GND VSS AW32 GND VSS AW35 GND VSS AW6 GND VSS AW8 GND VSS AY11 GND VSS AY14 GND VSS AY17 GND VSS AY2 GND VSS AY20 GND VSS AY22 GND VSS AY23 GND VSS AY26 GND VSS AY29 GND VSS AY32 GND VSS AY37 GND VSS AY42 GND VSS AY7 GND VSS B2 GND
Land
No.
Buffer
Type
Direction
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 87
Land Listing
Table 5-1. Land Name (Sheet 31 of 36)
Land Name
VSS B37 GND VSS B42 GND VSS BA11 GND VSS BA14 GND VSS BA17 GND VSS BA20 GND VSS BA26 GND VSS BA29 GND VSS BA3 GND VSS BA35 GND VSS BA39 GND VSS BA5 GND VSS C35 GND VSS C40 GND VSS C43 GND VSS C5 GND VSS D3 GND VSS D33 GND VSS D38 GND VSS D43 GND VSS D8 GND VSS E1 GND VSS E36 GND VSS E41 GND VSS E6 GND VSS F29 GND VSS F34 GND VSS F39 GND VSS F4 GND VSS F9 GND VSS G12 GND VSS G2 GND VSS G32 GND VSS G37 GND VSS G42 GND VSS G7 GND VSS H10 GND VSS H30 GND VSS H35 GND VSS H40 GND VSS H5 GND
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 32 of 36)
Land Name
VSS J13 GND VSS J3 GND VSS J33 GND VSS J38 GND VSS J43 GND VSS J8 GND VSS K1 GND VSS K11 GND VSS K31 GND VSS K36 GND VSS K41 GND VSS K6 GND VSS L29 GND VSS L34 GND VSS L39 GND VSS L4 GND VSS L9 GND VSS M12 GND VSS M14 GND VSS M16 GND VSS M18 GND VSS M2 GND VSS M20 GND VSS M22 GND VSS M24 GND VSS M26 GND VSS M28 GND VSS M30 GND VSS M32 GND VSS M37 GND VSS M42 GND VSS M7 GND VSS N10 GND VSS N35 GND VSS N40 GND VSS N5 GND VSS P11 GND VSS P3 GND VSS P33 GND VSS P38 GND VSS P43 GND
Land
No.
Buffer
Type
Direction
88 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Land Listing
Table 5-1. Land Name (Sheet 33 of 36)
Land Name
VSS P8 GND VSS R1 GND VSS R36 GND VSS R41 GND VSS R6 GND VSS T34 GND VSS T39 GND VSS T4 GND VSS T9 GND VSS U2 GND VSS U37 GND VSS U42 GND VSS U7 GND VSS V10 GND VSS V35 GND VSS V40 GND VSS V5 GND VSS W3 GND VSS W38 GND VSS W43 GND VSS W8 GND VSS Y1 GND VSS Y11 GND VSS Y33 GND VSS Y36 GND VSS Y41 GND VSS Y6 GND VSS_SENSE AR8 Analog VSS_SENSE_VTTD AE37 Analog VTT_VID2 AV3 CMOS O VTT_VID3 AF7 CMOS O VTT_VID4 AV6 CMOS O VTTA AD10 PWR VTTA AE10 PWR VTTA AE11 PWR VTTA AE33 PWR VTTA AF11 PWR VTTA AF33 PWR VTTA AF34 PWR VTTA AG34 PWR VTTD AA10 PWR
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 34 of 36)
Land Name
VTTD AA11 PWR VTTD AA33 PWR VTTD AB10 PWR VTTD AB11 PWR VTTD AB33 PWR VTTD AB34 PWR VTTD AB8 PWR VTTD AB9 PWR VTTD AC10 PWR VTTD AC11 PWR VTTD AC33 PWR VTTD AC34 PWR VTTD AC35 PWR
Land
No.
Buffer
Type
Direction
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 89
Land Listing
Table 5-1. Land Name (Sheet 35 of 36)
Land Name
VTTD AD34 PWR VTTD AD35 PWR VTTD AD36 PWR VTTD AD9 PWR VTTD AE34 PWR VTTD AE35 PWR VTTD AE8 PWR
Land
No.
Buffer
Type
Direction

5.2 Listing by Land Number

Table 5-2. Land Number (Sheet 1 of 35)
Land Name
DDR0_MA[13] A10 CMOS O VDDQ A14 PWR DDR0_RAS# A15 CMOS O DDR0_BA[1] A16 CMOS O DDR2_BA[0] A17 CMOS O DDR2_MA[0] A18 CMOS O VDDQ A19 PWR DDR0_MA[0] A20 CMOS O VDDQ A24 PWR DDR0_MA[7] A25 CMOS O DDR0_MA[11] A26 CMOS O DDR0_PAR_ERR#[2] A27 Asynch I DDR0_MA[14] A28 CMOS O VDDQ A29 PWR DDR0_CKE[1] A30 CMOS O RSVD A31 VSS A35 GND DDR0_ECC[1] A36 CMOS I/O DDR0_ECC[5] A37 CMOS I/O DDR0_DQ[26] A38 CMOS I/O VSS A39 GND VSS A4 GND RSVD A40 VSS A41 GND BPM#[1] A5 GTL I/O VSS A6 GND DDR0_CS#[5] A7 CMOS O DDR1_CS#[1] A8 CMOS O
Land
No.
Buffer
Type
Direction
Table 5-1. Land Name (Sheet 36 of 36)
Land Name
VTTD AE9 PWR VTTD AF36 PWR VTTD AF37 PWR VTTD AF8 PWR VTTD AF9 PWR VTTD_SENSE AE36 Analog VTTPWRGOOD AB35 Asynch I
Land
No.
Buffer
Type
Direction
Table 5-2. Land Number (Sheet 2 of 35)
Land Name
VDDQ A9 PWR VTTD AA10 PWR VTTD AA11 PWR VSS AA3 GND VTTD AA33 PWR VSS AA34 GND DDR1_DQ[4] AA35 CMOS I/O DDR1_DQ[1] AA36 CMOS I/O DDR1_DQ[0] AA37 CMOS I/O VSS AA38 GND VSS AA39 GND BCLK_ITP_DN AA4 CMOS O DDR1_DQS_P[9] AA40 CMOS I/O DDR1_DQS_N[9] AA41 CMOS I/O BCLK_ITP_DP AA5 CMOS O VDDPWRGOOD AA6 Asynch I DDR1_DQ[62] AA7 CMOS I/O DDR_COMP[0] AA8 Analog VSS AA9 GND VTTD AB10 PWR VTTD AB11 PWR QPI1_DTX_DN[13] AB3 QPI O VTTD AB33 PWR VTTD AB34 PWR VTTPWRGOOD AB35 Asynch I DDR1_DQ[5] AB36 CMOS I/O VSS AB37 GND QPI0_DTX_DN[17] AB38 QPI O
Land
No.
Buffer
Type
Direction
90 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Land Listing
Table 5-2. Land Number (Sheet 3 of 35)
Land Name
QPI0_DTX_DP[17] AB39 QPI O VSS AB4 GND VSS AB40 GND COMP0 AB41 Analog VSS AB42 GND QPI0_DTX_DN[13] AB43 QPI O DDR_THERM# AB5 CMOS I QPI1_DTX_DP[16] AB6 QPI O VSS AB7 GND VTTD AB8 PWR VTTD AB9 PWR DDR_COMP[2] AC1 Analog VTTD AC10 PWR VTTD AC11 PWR VSS AC2 GND QPI1_DTX_DP[13] AC3 QPI O VTTD AC33 PWR VTTD AC34 PWR VTTD AC35 PWR VSS AC36 GND CAT_ERR# AC37 GTL I/O QPI0_DTX_DN[16] AC38 QPI O QPI0_DTX_DP[16] AC39 QPI O QPI1_DTX_DP[15] AC4 QPI O QPI0_DTX_DN[15] AC40 QPI O QPI0_DTX_DP[15] AC41 QPI O QPI0_DTX_DN[12] AC42 QPI O QPI0_DTX_DP[13] AC43 QPI O VSS AC5 GND QPI1_DTX_DN[16] AC6 QPI O VSS AC7 GND QPI1_DTX_DP[19] AC8 QPI O VSS AC9 GND QPI1_DTX_DN[11] AD1 QPI O VTTA AD10 PWR VSS AD11 GND QPI1_DTX_DP[12] AD2 QPI O QPI1_DTX_DN[12] AD3 QPI O VSS AD33 GND VTTD AD34 PWR VTTD AD35 PWR
Land
No.
Buffer
Type
Direction
Table 5-2. Land Number (Sheet 4 of 35)
Land Name
VTTD AD36 PWR VSS AD37 GND QPI0_DTX_DP[18] AD38 QPI O QPI0_DTX_DN[14] AD39 QPI O QPI1_DTX_DN[15] AD4 QPI O QPI0_DTX_DP[14] AD40 QPI O VSS AD41 GND QPI0_DTX_DP[12] AD42 QPI O VSS AD43 GND QPI1_DTX_DP[18] AD5 QPI O QPI1_DTX_DP[17] AD6 QPI O QPI1_DTX_DN[17] AD7 QPI O QPI1_DTX_DN[19] AD8 QPI O VTTD AD9 PWR QPI1_DTX_DP[11] AE1 QPI O VTTA AE10 PWR VTTA AE11 PWR VSS AE2 GND QPI1_DTX_DP[14] AE3 QPI O VTTA AE33 PWR VTTD AE34 PWR VTTD AE35 PWR VTTD_SENSE AE36 Analog VSS_SENSE_VTTD AE37 Analog QPI0_DTX_DN[18] AE38 QPI O VSS AE39 GND QPI1_DTX_DN[14] AE4 QPI O QPI0_DTX_DP[19] AE40 QPI O QPI0_DTX_DN[11] AE41 QPI O QPI0_DTX_DP[11] AE42 QPI O QPI0_DTX_DN[10] AE43 QPI O QPI1_DTX_DN[18] AE5 QPI O QPI1_CLKTX_DN AE6 QPI O VSS AE7 GND VTTD AE8 PWR VTTD AE9 PWR RSVD AF1 DBR# AF10 Asynch I VTTA AF11 PWR QPI1_DTX_DP[10] AF2 QPI O QPI1_DTX_DN[10] AF3 QPI O
Land
No.
Buffer
Type
Direction
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 91
Land Listing
Table 5-2. Land Number (Sheet 5 of 35)
Land Name
VTTA AF33 PWR VTTA AF34 PWR VSS AF35 GND VTTD AF36 PWR VTTD AF37 VSS AF38 GND QPI0_DTX_DP[1] AF39 QPI O DDR_THERM2# AF4 QPI0_DTX_DN[19] AF40 QPI O VSS AF41 GND QPI0_CLKTX_DN AF42 QPI O QPI0_DTX_DP[10] AF43 QPI O VSS AF5 GND QPI1_CLKTX_DP AF6 QPI O VTT_VID3 AF7 CMOS O VTTD AF8 PWR VTTD AF9 PWR RSVD AG1 TMS AG10 TAP I VSS AG11 GND QPI1_DTX_DN[9] AG2 QPI O VSS AG3 GND VSS AG33 GND VTTA AG34 PWR PROCHOT# AG35 GTL I/O SKTOCC# AG36 O THERMTRIP# AG37 GTL O QPI0_DTX_DP[0] AG38 QPI O QPI0_DTX_DN[1] AG39 QPI O RSVD AG4 QPI0_DTX_DP[9] AG40 QPI O QPI0_DTX_DN[9] AG41 QPI O QPI0_CLKTX_DP AG42 QPI O VSS AG43 GND RSVD AG5 QPI1_DTX_DN[5] AG6 QPI O QPI1_DTX_DP[5] AG7 QPI O QPI1_DTX_DP[0] AG8 QPI O VSS AG9 GND VSS AH1 GND TCK AH10 TAP I
Land
No.
Buffer
Type
Direction
Table 5-2. Land Number (Sheet 6 of 35)
Land Name
VCC AH11 PWR QPI1_DTX_DP[9] AH2 QPI O QPI1_DTX_DP[8] AH3 QPI O VCC AH33 PWR VSS AH34 GND BCLK_DN AH35 CMOS I PECI AH36 Asynch I/O VSS AH37 GND QPI0_DTX_DN[0] AH38 QPI O VSS AH39 GND QPI1_DTX_DN[8] AH4 QPI O QPI0_DTX_DP[4] AH40 QPI O QPI0_DTX_DP[6] AH41 QPI O QPI0_DTX_DN[6] AH42 QPI O QPI0_DTX_DN[8] AH43 QPI O TAPPWRGOOD AH5 QPI1_DTX_DP[2] AH6 QPI O VSS AH7 GND QPI1_DTX_DN[0] AH8 QPI O TRST# AH9 TAP I QPI1_DTX_DN[7] AJ1 QPI O TDO AJ10 TAP O VCC AJ11 PWR QPI1_DTX_DN[6] AJ2 QPI O QPI1_DTX_DP[6] AJ3 QPI O VCC AJ33 PWR VSS AJ34 GND BCLK_DP AJ35 CMOS I VSS AJ36 GND GTLREF AJ37 Analog I QPI0_DTX_DP[3] AJ38 QPI O QPI0_DTX_DN[3] AJ39 QPI O QPI1_DTX_DP[4] AJ4 QPI O QPI0_DTX_DN[4] AJ40 QPI O VSS AJ41 GND QPI0_DTX_DN[7] AJ42 QPI O QPI0_DTX_DP[8] AJ43 QPI O VSS AJ5 GND QPI1_DTX_DN[2] AJ6 QPI O QPI1_DTX_DN[1] AJ7 QPI O QPI1_DTX_DP[1] AJ8 QPI O
Land
No.
Buffer
Type
Direction
92 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Land Listing
Table 5-2. Land Number (Sheet 7 of 35)
Land Name
TDI AJ9 TAP I QPI1_DTX_DP[7] AK1 QPI O VSS AK10 GND VCC AK11 PWR VCC AK12 PWR VCC AK13 PWR VSS AK14 GND VCC AK15 PWR VCC AK16 PWR VSS AK17 GND VCC AK18 PWR VCC AK19 PWR RSVD AK2 VSS AK20 GND VCC AK21 PWR VSS AK22 GND VSS AK23 GND VCC AK24 PWR VCC AK25 PWR VSS AK26 GND VCC AK27 PWR VCC AK28 PWR VSS AK29 GND VSS AK3 GND VCC AK30 PWR VCC AK31 PWR VSS AK32 GND VCC AK33 PWR VSS AK34 GND PECI_ID# AK35 Asynch I RSVD AK36 QPI0_DTX_DP[2] AK37 QPI O QPI0_DTX_DN[2] AK38 QPI O VSS AK39 GND QPI1_DTX_DN[4] AK4 QPI O QPI0_DTX_DP[5] AK40 QPI O QPI0_DTX_DN[5] AK41 QPI O QPI0_DTX_DP[7] AK42 QPI O VSS AK43 GND QPI1_DTX_DN[3] AK5 QPI O QPI1_DTX_DP[3] AK6 QPI O
Land
No.
Buffer
Type
Direction
Table 5-2. Land Number (Sheet 8 of 35)
Land Name
RSVD AK7 ISENSE AK8 Analog I VSS AK9 GND VSS AL1 GND VID[0]/MSID[0] AL10 CMOS O VSS AL11 GND VCC AL12 PWR VCC AL13 PWR VSS AL14 GND VCC AL15 PWR VCC AL16 PWR VSS AL17 GND VCC AL18 PWR VCC AL19 PWR VSS AL2 GND VSS AL20 GND VCC AL21 PWR VSS AL22 GND VSS AL23 GND VCC AL24 PWR VCC AL25 PWR VSS AL26 GND VCC AL27 PWR VCC AL28 PWR VSS AL29 GND RSVD AL3 VCC AL30 PWR VCC AL31 PWR VSS AL32 GND VCC AL33 PWR VCC AL34 PWR VSS AL35 GND VSS AL36 GND VSS AL37 GND RSVD AL38 RESET# AL39 Asynch I RSVD AL4 RSVD AL40 RSVD AL41 VSS AL42 GND QPI0_COMP AL43 Analog
Land
No.
Buffer
Type
Direction
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 93
Land Listing
Table 5-2. Land Number (Sheet 9 of 35)
Land Name
RSVD AL5 QPI1_COMP AL6 Analog VSS AL7 GND QPI1_DRX_DN[19] AL8 QPI I VID[1]/MSID[1] AL9 CMOS O QPI1_DRX_DN[13] AM1 QPI I VID[3]/CSC[0] AM10 CMOS O VSS AM11 GND VCC AM12 PWR VCC AM13 PWR VSS AM14 GND VCC AM15 PWR VCC AM16 PWR VSS AM17 GND VCC AM18 PWR VCC AM19 PWR QPI1_DRX_DP[14] AM2 QPI I VSS AM20 GND VCC AM21 PWR VSS AM22 GND VSS AM23 GND VCC AM24 PWR VCC AM25 PWR VSS AM26 GND VCC AM27 PWR VCC AM28 PWR VSS AM29 GND QPI1_DRX_DN[14] AM3 QPI I VCC AM30 PWR VCC AM31 PWR VSS AM32 GND VCC AM33 PWR VCC AM34 PWR VSS AM35 GND RSVD AM36 VSS AM37 GND RSVD AM38 VSS AM39 GND QPI1_DRX_DP[16] AM4 QPI I QPI0_DRX_DN[15] AM40 QPI I QPI0_DRX_DN[16] AM41 QPI I
Land
No.
Buffer
Type
Direction
Table 5-2. Land Number (Sheet 10 of 35)
Land Name
QPI0_DRX_DP[16] AM42 QPI I QPI0_DRX_DN[14] AM43 QPI I VSS AM5 GND QPI1_DRX_DP[18] AM6 QPI I QPI1_DRX_DN[18] AM7 QPI I QPI1_DRX_DP[19] AM8 QPI I VSS AM9 GND QPI1_DRX_DP[13] AN1 QPI I VID[4]/CSC[1] AN10 CMOS O VSS AN11 GND VCC AN12 PWR VCC AN13 PWR VSS AN14 GND VCC AN15 PWR VCC AN16 PWR VSS AN17 GND VCC AN18 PWR VCC AN19 PWR QPI1_DRX_DN[12] AN2 QPI I VSS AN20 GND VCC AN21 PWR VSS AN22 GND VSS AN23 GND VCC AN24 PWR VCC AN25 PWR VSS AN26 GND VCC AN27 PWR VCC AN28 PWR VSS AN29 GND VSS AN3 GND VCC AN30 PWR VCC AN31 PWR VSS AN32 GND VCC AN33 PWR VCC AN34 PWR VSS AN35 GND RSVD AN36 VSS AN37 GND RSVD AN38 QPI0_DRX_DP[18] AN39 QPI I QPI1_DRX_DN[16] AN4 QPI I
Land
No.
Buffer
Type
Direction
94 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Land Listing
Table 5-2. Land Number (Sheet 11 of 35)
Land Name
QPI0_DRX_DP[15] AN40 QPI I VSS AN41 GND QPI0_DRX_DN[13] AN42 QPI I QPI0_DRX_DP[14] AN43 QPI I QPI1_DRX_DP[17] AN5 QPI I QPI1_DRX_DN[17] AN6 QPI I VSS AN7 GND VID[7] AN8 CMOS O VID[2]/MSID[2] AN9 CMOS O VSS AP1 GND VSS AP10 GND VSS AP11 GND VCC AP12 PWR VCC AP13 PWR VSS AP14 GND VCC AP15 PWR VCC AP16 PWR VSS AP17 GND VCC AP18 PWR VCC AP19 PWR QPI1_DRX_DP[12] AP2 QPI I VSS AP20 GND VCC AP21 PWR VSS AP22 GND VSS AP23 GND VCC AP24 PWR VCC AP25 PWR VSS AP26 GND VCC AP27 PWR VCC AP28 PWR VSS AP29 GND QPI1_DRX_DP[15] AP3 QPI I VCC AP30 PWR VCC AP31 PWR VSS AP32 GND VCC AP33 PWR VCC AP34 PWR VSS AP35 GND VSS AP36 GND VSS AP37 GND QPI0_DRX_DP[19] AP38 QPI I
Land
No.
Buffer
Type
Direction
Table 5-2. Land Number (Sheet 12 of 35)
Land Name
QPI0_DRX_DN[18] AP39 QPI I QPI1_DRX_DN[15] AP4 QPI I QPI0_DRX_DN[17] AP40 QPI I QPI0_DRX_DP[17] AP41 QPI I QPI0_DRX_DP[13] AP42 QPI I VSS AP43 GND VSS AP5 GND VSS AP6 GND PSI# AP7 CMOS O VID[6] AP8 CMOS O VID[5]/CSC[2] AP9 CMOS O QPI1_DRX_DN[10] AR1 QPI I VCC AR10 PWR VSS AR11 GND VCC AR12 PWR VCC AR13 PWR VSS AR14 GND VCC AR15 PWR VCC AR16 PWR VSS AR17 GND VCC AR18 PWR VCC AR19 PWR VSS AR2 GND VSS AR20 GND VCC AR21 PWR VSS AR22 GND VSS AR23 GND VCC AR24 PWR VCC AR25 PWR VSS AR26 GND VCC AR27 PWR VCC AR28 PWR VSS AR29 GND VSS AR3 GND VCC AR30 PWR VCC AR31 PWR VSS AR32 GND VCC AR33 PWR VCC AR34 PWR VSS AR35 GND RSVD AR36
Land
No.
Buffer
Type
Direction
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 95
Land Listing
Table 5-2. Land Number (Sheet 13 of 35)
Land Name
RSVD AR37 QPI0_DRX_DN[19] AR38 QPI I VSS AR39 GND QPI1_DRX_DP[11] AR4 QPI I QPI0_DRX_DN[12] AR40 QPI I QPI0_CLKRX_DP AR41 QPI I QPI0_CLKRX_DN AR42 QPI I QPI0_DRX_DN[11] AR43 QPI I QPI1_DRX_DN[11] AR5 QPI I QPI1_CLKRX_DN AR6 QPI I VCCPWRGOOD AR7 Asynch I VSS_SENSE AR8 Analog VCC_SENSE AR9 Analog QPI1_DRX_DP[10] AT1 QPI I VCC AT10 PWR VSS AT11 GND VCC AT12 PWR VCC AT13 PWR VSS AT14 GND VCC AT15 PWR VCC AT16 PWR VSS AT17 GND VCC AT18 PWR VCC AT19 PWR QPI1_DRX_DN[9] AT2 QPI I VSS AT20 GND VCC AT21 PWR VSS AT22 GND VSS AT23 GND VCC AT24 PWR VCC AT25 PWR VSS AT26 GND VCC AT27 PWR VCC AT28 PWR VSS AT29 GND QPI1_DRX_DP[9] AT3 QPI I VCC AT30 PWR VCC AT31 PWR VSS AT32 GND VCC AT33 PWR VCC AT34 PWR
Land
No.
Buffer
Type
Direction
Table 5-2. Land Number (Sheet 14 of 35)
Land Name
VSS AT35 GND RSVD AT36 QPI0_DRX_DP[0] AT37 QPI I VSS AT38 GND QPI0_DRX_DN[7] AT39 QPI I RSVD AT4 QPI0_DRX_DP[12] AT40 QPI I VSS AT41 GND QPI0_DRX_DN[10] AT42 QPI I QPI0_DRX_DP[11] AT43 QPI I RSVD AT5 QPI1_CLKRX_DP AT6 QPI I VSS AT7 GND VSS AT8 GND VCC AT9 PWR VSS AU1 GND VCC AU10 PWR VSS AU11 GND VCC AU12 PWR VCC AU13 PWR VSS AU14 GND VCC AU15 PWR VCC AU16 PWR VSS AU17 GND VCC AU18 PWR VCC AU19 PWR RSVD AU2 VSS AU20 GND VCC AU21 PWR VSS AU22 GND VSS AU23 GND VCC AU24 PWR VCC AU25 PWR VSS AU26 GND VCC AU27 PWR VCC AU28 PWR VSS AU29 GND QPI1_DRX_DN[8] AU3 QPI I VCC AU30 PWR VCC AU31 PWR VSS AU32 GND
Land
No.
Buffer
Type
Direction
96 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Land Listing
Table 5-2. Land Number (Sheet 15 of 35)
Land Name
VCC AU33 PWR VCC AU34 PWR VSS AU35 GND VSS AU36 GND QPI0_DRX_DN[0] AU37 QPI I QPI0_DRX_DP[1] AU38 QPI I QPI0_DRX_DP[7] AU39 QPI I QPI1_DRX_DP[8] AU4 QPI I QPI0_DRX_DP[9] AU40 QPI I QPI0_DRX_DN[9] AU41 QPI I QPI0_DRX_DP[10] AU42 QPI I VSS AU43 GND VSS AU5 GND QPI1_DRX_DN[6] AU6 QPI I QPI1_DRX_DP[6] AU7 QPI I QPI1_DRX_DP[0] AU8 QPI I VCC AU9 PWR RSVD AV1 VCC AV10 PWR VSS AV11 GND VCC AV12 PWR VCC AV13 PWR VSS AV14 GND VCC AV15 PWR VCC AV16 PWR VSS AV17 GND VCC AV18 PWR VCC AV19 PWR RSVD AV2 VSS AV20 GND VCC AV21 PWR VSS AV22 GND VSS AV23 GND VCC AV24 PWR VCC AV25 PWR VSS AV26 GND VCC AV27 PWR VCC AV28 PWR VSS AV29 GND VTT_VID2 AV3 CMOS O VCC AV30 PWR
Land
No.
Buffer
Type
Direction
Table 5-2. Land Number (Sheet 16 of 35)
Land Name
VCC AV31 PWR VSS AV32 GND VCC AV33 PWR VCC AV34 PWR RSVD AV35 QPI0_DRX_DP[2] AV36 QPI I QPI0_DRX_DN[2] AV37 QPI I QPI0_DRX_DN[1] AV38 QPI I VSS AV39 GND VSS AV4 GND QPI0_DRX_DN[8] AV40 QPI I VSS AV41 GND RSVD AV42 RSVD AV43 QPI1_DRX_DP[3] AV5 QPI I VTT_VID4 AV6 CMOS O QPI1_DRX_DP[1] AV7 QPI I QPI1_DRX_DN[0] AV8 QPI I VCC AV9 PWR VSS AW1 GND VCC AW10 PWR VSS AW11 GND VCC AW12 PWR VCC AW13 PWR VSS AW14 GND VCC AW15 PWR VCC AW16 PWR VSS AW17 GND VCC AW18 PWR VCC AW19 PWR RSVD AW2 VSS AW20 GND VCC AW21 PWR VSS AW22 GND VSS AW23 GND VCC AW24 PWR VCC AW25 PWR VSS AW26 GND VCC AW27 PWR VCC AW28 PWR VSS AW29 GND
Land
No.
Buffer
Type
Direction
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 97
Land Listing
Table 5-2. Land Number (Sheet 17 of 35)
Land Name
QPI1_DRX_DN[7] AW3 QPI I VCC AW30 PWR VCC AW31 PWR VSS AW32 GND VCC AW33 PWR VCC AW34 PWR VSS AW35 GND QPI0_DRX_DP[3] AW36 QPI I QPI0_DRX_DP[5] AW37 QPI I QPI0_DRX_DN[5] AW38 QPI I RSVD AW39 QPI1_DRX_DP[7] AW4 QPI I QPI0_DRX_DP[8] AW40 QPI I RSVD AW41 RSVD AW42 QPI1_DRX_DN[3] AW5 QPI I VSS AW6 GND QPI1_DRX_DN[1] AW7 QPI I VSS AW8 GND VCC AW9 PWR VCC AY10 PWR VSS AY11 GND VCC AY12 PWR VCC AY13 PWR VSS AY14 GND VCC AY15 PWR VCC AY16 PWR VSS AY17 GND VCC AY18 PWR VCC AY19 PWR VSS AY2 GND VSS AY20 GND VCC AY21 PWR VSS AY22 GND VSS AY23 GND VCC AY24 PWR VCC AY25 PWR VSS AY26 GND VCC AY27 PWR VCC AY28 PWR VSS AY29 GND
Land
No.
Buffer
Type
Direction
Table 5-2. Land Number (Sheet 18 of 35)
Land Name
RSVD AY3 VCC AY30 PWR VCC AY31 PWR VSS AY32 GND VCC AY33 PWR VCC AY34 PWR RSVD AY35 QPI0_DRX_DN[3] AY36 QPI I VSS AY37 GND QPI0_DRX_DN[6] AY38 QPI I RSVD AY39 RSVD AY4 RSVD AY40 RSVD AY41 VSS AY42 GND QPI1_DRX_DN[5] AY5 QPI I QPI1_DRX_DP[5] AY6 QPI I VSS AY7 GND QPI1_DRX_DP[2] AY8 QPI I VCC AY9 PWR DDR0_CS#[1] B10 CMOS O DDR0_ODT[2] B11 CMOS O VDDQ B12 PWR DDR0_WE# B13 CMOS O DDR1_MA[13] B14 CMOS O DDR0_CS#[4] B15 CMOS O DDR0_BA[0] B16 CMOS O VDDQ B17 PWR DDR2_MA_PAR B18 CMOS O DDR0_MA[10] B19 CMOS O VSS B2 GND DDR0_MA_PAR B20 CMOS O DDR0_MA[1] B21 CMOS O VDDQ B22 PWR DDR0_MA[4] B23 CMOS O DDR0_MA[5] B24 CMOS O DDR0_MA[8] B25 CMOS O DDR0_MA[12] B26 CMOS O VDDQ B27 PWR DDR0_PAR_ERR#[1] B28 Asynch I DDR0_MA[15] B29 CMOS O
Land
No.
Buffer
Type
Direction
98 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Land Listing
Table 5-2. Land Number (Sheet 19 of 35)
Land Name
BPM#[0] B3 GTL I/O DDR0_CKE[2] B30 CMOS O DDR0_CKE[3] B31 CMOS O VDDQ B32 PWR RSVD B33 DDR0_ECC[6] B34 CMOS I/O DDR0_DQS_N[17] B35 CMOS I/O DDR0_DQS_P[17] B36 CMOS I/O VSS B37 GND DDR0_DQ[31] B38 CMOS I/O DDR0_DQS_P[3] B39 CMOS I/O BPM#[3] B4 GTL I/O DDR0_DQS_N[3] B40 CMOS I/O PRDY# B41 GTL O VSS B42 GND DDR0_DQ[32] B5 CMOS I/O DDR0_DQ[36] B6 CMOS I/O VDDQ B7 PWR DDR0_CS#[7]/
DDR0_ODT[5] DDR0_CS#[3] B9 CMOS O VCC BA10 PWR VSS BA11 GND VCC BA12 PWR VCC BA13 PWR VSS BA14 GND VCC BA15 PWR VCC BA16 PWR VSS BA17 GND VCC BA18 PWR VCC BA19 PWR VSS BA20 GND VCC BA24 PWR VCC BA25 PWR VSS BA26 GND VCC BA27 PWR VCC BA28 PWR VSS BA29 GND VSS BA3 GND VCC BA30 PWR VSS BA35 GND QPI0_DRX_DP[4] BA36 QPI I
Land
No.
B8 CMOS O
Buffer
Type
Direction
Table 5-2. Land Number (Sheet 20 of 35)
Land Name
QPI0_DRX_DN[4] BA37 QPI I QPI0_DRX_DP[6] BA38 QPI I VSS BA39 GND RSVD BA4 RSVD BA40 VSS BA5 GND QPI1_DRX_DN[4] BA6 QPI I QPI1_DRX_DP[4] BA7 QPI I QPI1_DRX_DN[2] BA8 QPI I VCC BA9 PWR VDDQ C10 PWR DDR0_CS#[6]/
DDR0_ODT[4] DDR0_CAS# C12 CMOS O DDR0_CS#[2] C13 CMOS O DDR1_CS#[6]/
DDR1_ODT[4] VDDQ C15 PWR DDR2_WE# C16 CMOS O DDR1_CS#[4] C17 CMOS O DDR1_BA[0] C18 CMOS O DDR0_CLK_N[1] C19 CLOCK O BPM#[2] C2 GTL I/O VDDQ C20 PWR DDR1_CLK_P[0] C21 CLOCK O DDR1_PAR_ERR#[0] C22 Asynch I DDR0_MA[2] C23 CM OS O DDR0_MA[6] C24 CM OS O VDDQ C25 PWR DDR0_MA[9] C26 CM OS O DDR1_CKE[3] C27 CMOS O DDR0_BA[2] C28 CMOS O DDR0_CKE[0] C29 CMOS O BPM#[5] C3 GTL I/O VDDQ C30 PWR RSVD C31 RSVD C32 DDR0_ECC[3] C33 CMOS I/O DDR0_ECC[7] C34 CMOS I/O VSS C35 GND DDR0_ECC[0] C36 CMOS I/O DDR0_ECC[4] C37 CMOS I/O
Land
No.
C11 CMOS O
C14 CMOS O
Buffer
Type
Direction
Intel® Xeon® Processor 5600 Series Datasheet Volume 1 99
Land Listing
Table 5-2. Land Number (Sheet 21 of 35)
Land Name
DDR0_DQ[30] C38 CMOS I/O DDR0_DQS_N[12] C39 CMOS I/O DDR0_DQ[33] C4 CMOS I/O VSS C40 GND DDR0_DQ[25] C41 CMOS I/O PREQ# C42 GTL I VSS C43 GND VSS C5 GND DDR0_DQ[37] C6 CMOS I/O DDR0_ODT[3] C7 CMOS O DDR1_ODT[1] C8 CMOS O DDR0_ODT[1] C9 CMOS O BPM#[4] D1 GTL I/O DDR2_ODT[3] D10 CMOS O DDR1_ODT[0] D11 CMOS O DDR1_CS#[0] D12 CMOS O VDDQ D13 PWR DDR1_ODT[2] D14 CMOS O DDR2_ODT[2] D15 CMOS O DDR2_CS#[2] D16 CMOS O DDR2_RAS# D17 CMOS O VDDQ D18 PWR DDR0_CLK_P[1] D19 CLOCK O BPM#[6] D2 GTL I/O DDR1_MA_PAR D20 CMOS O DDR1_CLK_N[0] D21 CLOCK O DDR1_MA[7] D22 CMOS O VDDQ D23 PWR DDR0_MA[3] D24 CMOS O DDR0_PAR_ERR#[0] D25 Asynch I DDR2_CKE[2] D26 CMOS O DDR1_CKE[2] D27 CMOS O VDDQ D28 PWR DDR1_RESET# D29 CMOS O VSS D3 GND RSVD D30 RSVD D31 DDR0_RESET# D32 CMOS O VSS D 33 GND DDR0_DQS_P[8] D34 C MOS I/O DDR0_DQS_N[8] D35 CMOS I/O
Land
No.
Buffer
Type
Direction
Table 5-2. Land Number (Sheet 22 of 35)
Land Name
DDR1_ECC[0] D36 CMOS I/O DDR0_DQ[27] D37 CMOS I/O VSS D38 GND DDR0_DQS_P[12] D39 CMOS I/O DDR0_DQS_N[13] D4 CMOS I/O DDR0_DQ[24] D40 CMOS I/O DDR0_DQ[28] D41 CMOS I/O DDR0_DQ[29] D42 CMOS I/O VSS D43 GND DDR0_DQS_P[13] D5 CMOS I/O DDR1_DQ[38] D6 CMOS I/O DDR1_DQS_N[4] D7 CMOS I/O VSS D8 GND DDR2_CS#[5] D9 CMOS O VSS E1 GND DDR1_CS#[5] E10 CMOS O VDDQ E11 PWR DDR1_CS#[7]/
DDR1_ODT[5] DDR1_CS#[3] E13 CMOS O DDR1_CAS# E14 CMOS O DDR1_CS#[2] E15 CMOS O VDDQ E16 PWR DDR2_CS#[4] E17 CMOS O DDR0_CLK_N[2] E18 CLOCK O DDR0_CLK_N[3] E19 CLOCK O BPM#[7] E2 GTL I/O DDR0_CLK_P[3] E20 CLOCK O VDDQ E21 PWR DDR1_MA[8] E22 CMOS O DDR1_MA[11] E23 CMOS O DDR1_MA[12] E24 CMOS O DDR1_PAR_ERR#[1] E25 Asynch I VDDQ E26 PWR DDR1_CKE[1] E27 CMOS O RSVD E28 DDR2_ECC[2] E29 CMOS I/O DDR0_DQS_P[4] E3 CMOS I/O DDR2_ECC[3] E30 CMOS I/O VDDQ E31 PWR DDR2_RESET# E32 CMOS O DDR1_ECC[2] E33 CMOS I/O
Land
No.
E12 CMOS O
Buffer
Type
Direction
100 Intel
Xeon® Processor 5600 Series Datasheet Volume 1
Loading...