GE Sensing XMTC Operating Manual

GE
Measurement & Control Gas Analysis
XMTC
User’s Manual
910-217 Rev. G
October 2013
XMTC
Thermal Conductivity Binary Gas Transmitter
User’s Manual
910-217 Rev. G October 2013
www.ge-mcs.com
©2013 General Electric Company. All rights reserved.
[no content intended for this page]
ii
Preface
Information Paragraphs
Note: These paragraphs provide information that provides a deeper understanding of the situation, but is not
essential to the proper completion of the instructions.
IMPORTANT: These paragraphs provide information that emphasizes instructions that are essential to proper setup of
the equipment. Failure to follow these instructions carefully may cause unreliable performance.
CAUTION! This symbol indicates a risk of potential minor personal injury and/or severe
damage to the equipment, unless these instructions are followed carefully.
WARNING! This symbol indicates a risk of potential serious personal injury, unless these
instructions are followed carefully.
Safety Issues
WARNING! It is the responsibility of the user to make sure all local, county, state and national
codes, regulations, rules and laws related to safety and safe operating conditions are met for each installation.
Auxiliary Equipment
Local Safety Standards
The user must make sure that he operates all auxiliary equipment in accordance with local codes, standards, regulations, or laws applicable to safety.
Working Area
WARNING! Auxiliary equipment may have both manual and automatic modes of operation. As
equipment can move suddenly and without warning, do not enter the work cell of this equipment during automatic operation, and do not enter the work envelope of this equipment during manual operation. If you do, serious injury can result..
WARNING! Make sure that power to the auxiliary equipment is turned OFF and locked out
before you perform maintenance procedures on the equipment.
XMTC User’s Manual iii
Preface
Auxiliary Equipment (cont.)
Qualification of Personnel
Make sure that all personnel have manufacturer-approved training applicable to the auxiliary equipment.
Personal Safety Equipment
Make sure that operators and maintenance personnel have all safety equipment applicable to the auxiliary equipment. Examples include safety glasses, protective headgear, safety shoes, etc.
Unauthorized Operation
Make sure that unauthorized personnel cannot gain access to the operation of the equipment.
Environmental Compliance
Waste Electrical and Electronic Equipment (WEEE) Directive
GE Measurement & Control Solutions is an active participant in Europe’s Waste Electrical and Electronic Equipment (WEEE) take-back initiative, directive 2002/96/EC.
The equipment that you bought has required the extraction and use of natural resources for its production. It may contain hazardous substances that could impact health and the environment.
In order to avoid the dissemination of those substances in our environment and to diminish the pressure on the natural resources, we encourage you to use the appropriate take-back systems. Those systems will reuse or recycle most of the materials of your end life equipment in a sound way.
The crossed-out wheeled bin symbol invites you to use those systems.
If you need more information on the collection, reuse and recycling systems, please contact your local or regional waste administration.
Visit http://www.ge-mcs.com/en/about-us/environmental-health-and-safety/1741-weee-req.html take-back instructions and more information about this initiative.
iv XMTC User’s Manual
for
Contents
Chapter 1. Features and Capabilities
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 Basic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.3 Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
1.4 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.4.1 Packaging and Temperature Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.4.2 2-Port (Sealed Reference Gas) Version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.4.3 4-Port (Flowing Reference Gas) Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
1.4.4 Sample System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.5 Extra Cable (optional). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.4.6 Power Supply (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.7 TMO2D-TC Display (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.4.8 XDP Display (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.5 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Chapter 2. Installation
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.2 Mounting the XMTC Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.3 Mounting the Sample System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
2.3.1 Manual, 2-Port (Sealed Reference Gas) Sample System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
2.3.2 Manual, 4-Port (Flowing Reference Gas) Sample System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Sample Systems with Automatic Switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Wiring the XMTC Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.4.1 Grounding the Enclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.4.2 CE Mark Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.4.3 Cable Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.4.4 Wiring the Signal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Connecting to Other Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
2.5.1 PS5R-C24 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
2.5.2 TMO2D Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.5.3 XDP Display. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.5.4 Moisture Series Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
XMTC User’s Manual v
Contents
Chapter 3. Operation and Programming
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.2 Powering Up the XMTC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.3 Starting the Sample Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.4 Programming with IDM™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
3.5 The Edit Functions Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
3.6 Field Cal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
3.6.1 Perform Cal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
3.6.2 Configure Cal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
3.6.3 Calibration Drifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
3.6.4 Clear Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.6.5 Hold Last Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.7 4-20 mA Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
3.7.1 4-20 mA Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
3.7.2 4 and 20 mA Cal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.7.3 4-20 mA % Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
3.7.4 % Gas Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
3.8 Error Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
3.8.1 Total Drift Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
3.8.2 Drift/Cal Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
3.8.3 Gas mV Under/Over Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
3.8.4 Gas % Under/Over Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
3.9 Factory Cal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
3.9.1 Edit # of Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
3.9.2 Edit Point X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
3.10 The Advanced Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
3.10.1 Fast Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
3.10.2 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
3.10.3 Meter ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Chapter 4. Calibration
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
4.2 Gas Ranges and Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
4.3 Required Equipment and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
4.4 Preparing the Transmitter for Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
4.5 2-Port (Sealed Reference Gas) Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
4.6 4-Port (Flowing Reference Gas) Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Chapter 5. Specifications
5.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
5.2 Functional. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
5.3 Physical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
5.4 Accessories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
vi XMTC User’s Manual
Contents
Appendix A. Supplemental Information
A.1 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
A.2 Calibration Specification Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
A.3 XMTC PCB Subassemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
A.4 Sample Calibration Sheet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
A.5 Relative Thermal Conductivity of Common Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Appendix B. Typical Applications
B.1 H2 in N2 in Heat Treat Furnace Atmospheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
B.1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.1.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.1.3 Basic Operating Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
B.1.4 Permanent Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
B.1.5 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
B.1.6 Detailed Operating Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 1
B.2 H2 Purity in H2-Cooled Electricity Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
B.2.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
B.2.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
B.2.3 Basic Operating Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
B.2.4 How Previously Handled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
B.2.5 Permanent Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
B.2.6 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
B.2.7 Detailed Operating Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 6
Appendix C. Installation and Wiring Diagrams
Appendix D. The Enhanced Advanced Option
D.1 Entering the Enhanced Advanced Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
D.2 Heater. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
D.3 Balance Bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
D.4 Factory Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
D.5 Temperature Comp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
Appendix E. CE Mark Compliance
E.1 CE Mark Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
E.2 EMI Filter Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
E.3 Wiring the Signal Connections for the Weatherproof Version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
E.4 Wiring the Signal Connections for the Explosion/Flameproof Version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
Appendix F. Certifications
F.1 EC-Type Examination Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
F.2 IECEx Certificate of Conformity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
XMTC User’s Manual vii
Contents
[no content intended for this page]
viii XMTC User’s Manual

Chapter 1. Features and Capabilities

Chapter 1. Features and Capabilities

1.1 Introduction

This chapter introduces you to the features and capabilities of the GE XMTC Thermal Conductivity Transmitter. The following topics are discussed:
Basic features of the XMTC thermal conductivity transmitter
Theory of operation
A system description of the XMTC, available options, and sample systems Information on optional
components is also provided, including a 24 VDC power supply, extra cable, and the TMO2D-TC Display.
A brief discussion of typical XMTC applications
XMTC technical specifications can be found in Chapter 5, Specifications. Ordering information can be found in Appendix A, Supplemental Information.

1.2 Basic Features

The XMTC is a transmitter that measures the thermal conductivity of a binary (or pseudo-binary) gas mixture
containing hydrogen, carbon dioxide, methane or helium, and provides a 4-20 mA signal proportional to the concentration of one of the gases in the mixture. It offers several unique design features:
Ultra-stable thermistors and a temperature-controlled measuring cell (55°C/131°F standard, 70°C/158°F
optional) provide excellent zero and span stability, as well as tolerance of ambient temperature variations.
The measuring cell design makes it highly resistant to contamination and flow vibrations. Since it has no
moving parts, the transmitter can handle the shock and vibration found in many industrial applications.
A 2-port version for measurement of zero-based gas mixtures using a sealed reference gas (air or nitrogen) and
a 4-port version for measurement of zero-suppressed gas mixtures (and some other special calibrations) using a flowing reference gas are available.
The XMTC modular construction means that the unit can be field-calibrated quickly and easily. If desired, the
plug-in measuring cell can be replaced with a pre-calibrated spare in minutes.
The XMTC transmitter, with weatherproof or explosion-proof packaging, is designed to be installed as close as
possible to the process sample point. It can be located up to 4000 ft (1200 m) from a display or recorder, using inexpensive unshielded cable.
XMTC User’s Manual 1
Chapter 1. Features and Capabilities
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
SO
2
CO
2
Air/N
2
CH
4
Ne
He
H
2
C
4
H
6

1.3 Theory of Operation

The XMTC measures the concentration of a gas in a binary gas mixture by measuring the thermal conductivity of the sample gas and comparing it to the thermal conductivity of a selected reference gas.
Two ultra-stable, glass-coated thermistors are used: one in contact with the sample gas, and the other in contact with a selected reference gas. The thermistors are mounted so that they are in close proximity to the stainless steel walls of the sample chamber. The entire sensor is heated to 55°C/131°F, (or 70°C/158°F) and the thermistors are heated above the sensor temperature using a constant current source. The thermistors lose heat to the walls of the sample chamber at a rate that is proportional to the thermal conductivity of the gas surrounding them. Thus, each thermistor will reach a different equilibrium temperature. The temperature difference between the two thermistors is detected in an electrical bridge circuit. It is then amplified and converted to a 4-20 mA output proportional to the concentration of one of the constituents of the binary gas mixture. For example:
To measure 0 to 25% H
calibration, the zero gas would be 100% N
To measure 90-100% H
the zero gas would be 90% H
Note: The XMTC has polarity adjustment jumpers which permit the measurement of gases (such as CO
relative thermal conductivity less than air/nitrogen.
Appendix A, Supplemental Information, contains a table of Relative Thermal Conductivity of Common Gases. Figure 1 below shows some of these values graphically.
in N2, the reference gas would be air (2-port version, sealed reference gas), and for
2
(i.e. 0% H2) and the span gas would be 25% H2 in N2.
2
in N2, the reference gas would be 100% H2 (4-port version, flowing reference gas),
2
in N2, and the span gas would be 100% H2 (the same as the reference gas).
2
) that have a
2
Figure 1: Relative Thermal Conductivity of Some Common Gases
2 XMTC User’s Manual
Chapter 1. Features and Capabilities

1.4 System Description

The basic XMTC measurement system consists of an XMTC Transmitter mounted in a sample system. The sample system is mandatory, and can either be provided by GE or constructed according to GE recommendations. The XMTC is supplied with a standard 10 ft (3 m), 4-wire cable for power and output connections, with lengths up to 4000 ft (1200 m) available. Optionally available from GE are a 24-VDC power supply to power the XMTC, a remote display with programming and control capabilities, and several analyzers which can be interfaced with the XMTC.

1.4.1 Packaging and Temperature Rating

The XMTC transmitter is self-contained, consisting of the thermal conductivity sensor and associated electronics. It requires 24 VDC power (1.2 A maximum at power-up), and provides a 4-20 mA output signal proportional to the concentration of one of the gases in the binary sample gas mixture.
The XMTC is designed to be installed in a sample system as close as possible to the process sample point. Thus, it is available in two environmental packages:
Weatherproof
Explosion-proof (with the addition of flame arrestors to the sample/reference gas inlet and outlet)
Each environmental package is available in a standard 2-port (sealed reference gas) version, or an optional 4-port (flowing reference gas) version.
The XMTC is supplied with a standard measurement cell operating temperature of 55°C (131°F). An optional 70°C (158°F) cell operating temperature is available.
Note: The 70°C (158°F) operating temperature should be selected only for high temperature applications, because it
results in reduced sensitivity.
XMTC User’s Manual 3
Chapter 1. Features and Capabilities

1.4.2 2-Port (Sealed Reference Gas) Version

This standard configuration (see Figure 2 below) is used for zero-based ranges with air or nitrogen at atmospheric pressure as the balance or background gas. It utilizes air with desiccant in a factory sealed chamber as the reference gas. The following standard ranges and gases are available:
Ranges: 0-2% Gases: H
0-5% CO 0-10% SO 0-25% He in N 0-50% Argon in N 0-100%
50-100% 80-100% 90-100% 95-100% 98-100%
in N2 or air
2
in N2 or air (min. range 0-5% CO2)
2
in air (min. range 0-2% SO2)
2
or air
2
or air
2
Figure 2: 2-Port (Sealed Reference Gas) XMTC
4 XMTC User’s Manual
Chapter 1. Features and Capabilities

1.4.3 4-Port (Flowing Reference Gas) Version

This optional configuration shown in Figure 3 below is used for zero-suppressed ranges and some other special applications. Typically, a flowing reference gas of 100% H
are available:
or CO2 is used. The following standard ranges and gases
2
Ranges: 90 to 100% Gases: H
in N
2
2
80 to 100% CO2 in N2 or air
He in N
or air
2
Note: For factory calibration pricing on the standard ranges and gases, or for pricing on other zero-suppressed
ranges and gases, please consult the factory.
Figure 3: 4-Port (Flowing Reference Gas) XMTC
XMTC User’s Manual 5
Chapter 1. Features and Capabilities

1.4.4 Sample System

Use of a sample system is mandatory with the XMTC. The design of the sample system depends on the conditions of the sample gas and the requirements of the application. In general, a sample system must deliver a clean, representative sample to the XMTC at a temperature, pressure and flow rate that are within acceptable limits. Standard XMTC sample conditions are as follows:
Temperature less than 50
o
C (122oF) for 55oC cell operating temperature
Atmospheric pressure
Flow rate 0.5 SCFH (250 cc/min)
GE offers sample systems for a wide variety of applications. Two standard sample systems for the XMTC are shown in Chapter 2, Installation. For assistance in designing your own sample system, please consult the factory.

1.4.5 Extra Cable (optional)

GE provides a 10 ft (3 m) length of 4-wire, color-coded cable with each XMTC to connect the power and outputs. Optional cables are available in lengths up to 4000 ft (1200 m). If you are using your own cable, refer to Table 1 on page 13 for recommendations.

1.4.6 Power Supply (optional)

The XMTC requires 24 VDC at a maximum start-up current of 1.2 A. The GE PS5R-C24 power supply converts 100/120/220/240 VAC to the required 24 VDC for the XMTC.

1.4.7 TMO2D-TC Display (optional)

The GE TMO2D-TC Display provides a two-line x 24 character back-lit LCD. It also features display and option programming, recorder outputs, alarm relays, and relays for driving sample system solenoids for automatic zero and span calibration of the XMTC. For information on the TMO2D-TC, please contact GE.

1.4.8 XDP Display (Optional)

The GE XDP Explosion-proof Display provides an integral, voltage-stabilized 24 VDC power supply, a 3-digit display with adjustable 4-20 mA input range, two SPDT alarm relays rated for 1 A/250 VAC, and a 4-20 mA output that is isolated from the input and adjustable to a second independent range if required. For information on the XDP, please contact GE.
6 XMTC User’s Manual
Chapter 1. Features and Capabilities

1.5 Typical Applications

The XMTC can be used in a wide variety of industrial applications where it is necessary to measure the concentration of one component of a binary gas mixture. It can also be used in pseudo-binary gas mixtures where the ratio of concentrations of the background gas components remains constant, and in gaseous mixtures where the thermal conductivity of the gas of interest is significantly different from that of the background gas. Some typical industries and applications include:
Metals Industry -
H
in heat treat furnace atmospheres
2
Electric Power Industry -
H
in generator cooling systems
2
Gas Production Industry -
Purity monitoring of argon, hydrogen, nitrogen, helium
Chemical Industry -
in ammonia synthesis gas
H
2
in methanol synthesis gas
H
2
in chlorine plants
H
2
Food Industry -
in fermentation processes
CO
2
Ethylene Oxide (ETO) sterilization
Steel Industry -
H
in blast furnace top gas
2
Petroleum Industry -
H
in hydrocarbon streams
2
Two very common applications are:
H
H
For more details on these applications, refer to Appendix B, Applications. For details on applications not shown in Appendix B, or if you wish to discuss your own application, please contact GE.
in N2 in heat treat furnace atmospheres: zero-based 0-25% H2, 2-Port (sealed reference gas, air)
2
purity in H2 electricity generator cooling: zero-suppressed, 80-100% H2, 4-Port (flowing reference gas,
2
100% H
)
2
XMTC User’s Manual 7
Chapter 1. Features and Capabilities
[no content intended for this page]
8 XMTC User’s Manual

Chapter 2. Installation

Chapter 2. Installation

2.1 Introduction

This chapter describes how to install the XMTC transmitter and its sample system. It also contains information on connecting the XMTC to optional system components. The following topics are discussed:
Mounting the XMTC transmitter
Installing a GE sample system
Wiring the XMTC transmitter
Connecting the XMTC transmitter to optional components

2.2 Mounting the XMTC Transmitter

This section applies only if you are mounting the XMTC transmitter in a sample system that has not been supplied by GE.
Your sample system should deliver a clean, representative sample to the XMTC at the proper temperature, pressure and flow rate. This usually means a clean, dry sample (free of solid and liquid particulates) at atmospheric pressure; a temperature no greater than 50°C (122°F); and a flow rate of approximately 0.5 SCFH (250 cc/min). Since factory calibration of the sensor is at atmospheric pressure and 0.5 SCFH, higher or lower operating pressure may necessitate field-calibration adjustment.
A simple sample system for a 2-Port XMTC might have inlet and outlet flow-regulating needle valves, a flow meter, and a pressure gauge, in addition to the XMTC transmitter.
The XMTC transmitter should be mounted in the sample system so that it is upright and level to within ±15°. Also, provide at least 9 in. (230 mm) of clearance above the top cover of the transmitter to allow access to the transmitter printed circuit board (PCB) for calibration and maintenance. For a 2-Port XMTC, connect the sample system Sample
Inlet and Sample Outlet ports to the appropriate XMTC port. For a 4-Port system, also connect the Reference Inlet and Reference Outlet ports to the appropriate XMTC ports.
Note: Refer to Appendix C, Installation and Wiring Diagrams, for port locations and other information.
WARNING! Be sure your installation conforms to all safety and electrical code requirements.
XMTC User’s Manual 9
Chapter 2. Installation
SPAN GAS
INLET
9.00
(229.5)
(MIN)
TRANSMITTER
SAMPLE GAS
INLET
ZERO GAS
INLET
SAMPLE GAS
OUTLET

2.3 Mounting the Sample System

You can order a complete sample system from the factory. This includes the XMTC transmitter and all necessary components and sample tubing mounted on a metal panel. Several standard sample systems are available, and custom-designed sample systems can be built to your exact specifications.
Mount the sample system as close to the process sample point as possible. Once the sample system is mounted, connect all inlet and outlet lines via the 1/4” compression fittings on the sample system. The sample line leading from the process to the sample system should be of 1/4” stainless steel tubing, and should be as short as possible in order to ensure a representative sample.
Following are descriptions of two standard sample systems:

2.3.1 Manual, 2-Port (Sealed Reference Gas) Sample System

Figure 4 below shows a basic sample system for a 2-Port (sealed reference gas) XMTC. This sample system consists of inlet needle valves for sample, zero, and span gases; a ball valve; a 2-port XMTC; a pressure gauge; and a flowmeter. All components are mounted on a painted steel plate. Other components could be added for filtration (filter/coalescer), pressure control (regulator), or flow control (pump).
Figure 4: Basic 2-Port Sample System (732-164)
10 XMTC User’s Manual
Chapter 2. Installation
9.00
(229.5)
(MIN)
TRANSMITTER

2.3.2 Manual, 4-Port (Flowing Reference Gas) Sample System

Figure 5 below shows a basic sample system for a 4-Port (flowing reference gas) XMTC. This sample system consists of inlet needle valves for sample, reference, and calibration gases; a 4-port XMTC; two pressure gauges; and two flow meters. All components are mounted on a painted steel plate. Other components could be added for filtration (filter/coalescer), pressure control (regulator), or flow control (pump).
Figure 5: Basic 4-Port Sample System (732-028)

2.3.3 Sample Systems with Automatic Switching

Also available from GE are sample systems with electrically-actuated, three-way solenoid valves. When used in conjunction with a TMO2D or XDP Display (with the Auto Cal option), these systems allow automatic switching of sample, zero, span, and reference gases during operation and calibration. Refer to Appendix B, Applications, for details on sample systems designed by GE for specific applications.
XMTC User’s Manual 11
Chapter 2. Installation
External Ground Screw

2.4 Wiring the XMTC Transmitter

CAUTION! Always apply power to the XMTC immediately af ter installation, espe cially when it is
mounted outdoors or in a humid area.
This section describes how to wire the XMTC for 24 VDC power, RS232 communication, 4-20 mA output, and optional devices.

2.4.1 Grounding the Enclosure

WARNING! The XMTC transmitter enclosure must be properly grounded.
Connect the external ground screw on the XMTC enclosure (see Figure 6 below) to a suitable earth ground.
Figure 6: Ground Screw Location
12 XMTC User’s Manual
Chapter 2. Installation

2.4.2 CE Mark Compliance

WARNING! To meet CE Mark requirements, you must shield and ground all electrical cables as
described in Appendix E.
WARNING! CE Mark compliance is required for all units installed in EU countries.
WARNING! Cable entries of an approved flameproof design are required. These must be
installed according to the manufacturer’s instructions. The choice of cable entry device may limit the overall installation category achieved.

2.4.3 Cable Specifications

Table 1 below shows the transmitter wiring connections for the standard GE XMTC cable, P/N X4(10). This cable can be used for distances up to 4000 ft (1200 m).
Table 1: GE 4-Wire XMTC Cable
Lead Color AWG Terminal
+24 VDC Line Red 22 TB1-1
24 VDC Return Black 22 TB1-2
4-20 mA (+) White 22 TB1-3
4-20 mA (-) Green 22 TB1-4
If you are using your own cable to wire the XMTC, refer to Table 2 below for the cable requirements.
Table 2: Non-GE 4-Wire XMTC Cable
Maximum Cable Length Wire Size
ft m AWG mm
2
450 130 22 0.35
700 200 20 0.60 1,050 320 18 1.00 1,700 500 16 1.20 2,800 850 14 2.00 4,000 1,200 12 3.00
XMTC User’s Manual 13
Chapter 2. Installation
TB1
TB2
SIGNAL CONNECTIONS
1 2 3 4 1 2 3
+24VDC Line (red) 1
24VDC Return (black) 2
+4 to 20 mA (white) 3
–4 to 20 mA (green) 4
RS232 RX (red) 1
RS232 TX (white) 2
RS232 GND (green) 3
2.4.3 Cable Specifications (cont.)
Table 3 below shows the connections for the GE standard 3-wire RS232 cable (P/N 704-668), which is available with a male or female DB-9 or a DB-25 connector. This cable is available in standard lengths of 6 ft (2 m) and 12 ft (4 m).
Table 3: GE 3-Wire RS232 Cable
Lead Color AWG Terminal
RX Red 22 TB2-1 TX White 22 TB2-2
GND Green 22 TB2-3
Note: See EIA-RS Serial Communications (document 916-054) for detailed RS232 wiring instructions.

2.4.4 Wiring the Signal Connections

The XMTC power input, analog output, and RS232 connections are made to terminal blocks TB1 and TB2, which are accessed by removing the XMTC cover. See Figure 7 below for the location and pin designations for terminal blocks TB1 and TB2. Also refer to Appendix C, Installation and Wiring Diagrams.
CAUTION! Do not make any connections to unassigned or unused terminals.
Figure 7: XMTC Signal Wiring Connections
14 XMTC User’s Manual
Chapter 2. Installation
2.4.4 Wiring the Signal Connections (cont.)
Use the following steps to make the proper wiring connections:
WARNING! Cable entries of an approved explosion-proof design are required. These must be
installed according to the manufacturer’s instructions. The choice of cable entry device may limit the overall installation category achieved.
1. Install the selected cable entry device, such as conduit or seal-off, in accordance with the manufacturer’s
instructions.
Note: If installation of the cable entry device is only partially complete, GE recommends tagging the device to ensur e
the safety of subsequent users.
2. Route the cable into the XMTC.
3. Unplug the TB1 and TB2 connectors by pulling them straight off the PCB, and loosen the screws on the sides
of the connectors.
4. Connect the power leads:
CAUTION! Connecting the +24 VDC line (red) lead to any terminal except TB1-1 will damage
the XMTC.
a. Insert the 4-wire cable +24 VDC line (red) lead into pin TB1-1 and tighten the screw. b. Insert the 4-wire cable 24 VDC return (black) lead into pin TB1-2 and tighten the screw.
5. Connec t the an alog output leads: a. Insert the 4-wire cable + 4-20 mA (white) lead into pin TB1-3 and tighten the screw. b. Insert the 4-wire cable – 4-20 mA (green) lead into pin TB1-4 and tighten the screw.
IMPORTANT: You can use either an RS232 serial port (discussed in Step 6) or an RS485 serial port (discussed in Step 7),
but not both.
6. Connect the RS232 serial port leads: a. Insert the 3-wire cable RX (red) lead into pin TB2-1 and tighten the screw. b. Insert the 3-wire cable TX (white) lead into pin TB2-2 and tighten the screw. c. Insert the 3-wire cable GND (green) lead into pin TB2-3 and tighten the screw.
XMTC User’s Manual 15
Chapter 2. Installation
Jumper J7
Jumper J8
RX 1
TX 2
GND 3
1 TD OUT 2 3 4 RD IN
XMTC (TB2) RS485 Converter
Red
White
Green
2.4.4 Wiring the Signal Connections (cont.)
7. Connect the RS485 serial port leads. a. Locate the jumpers J7 and J8 on the main PCB, using Figure 8 below as a guide. Move the jumpers from
the left (RS232) side to the right (RS485) side.
b. Connect the other end of the cable to the RS485 converter, as shown in Figure 8 below.
Figure 8: Jumper Locations and RS485 Connections
8. Carefully plug the TB1 and TB2 connectors back onto the PCB, and reinstall the cover on the XMTC.
9. Connect the other ends of the cables to the 24 VDC power supply, the 4-20 mA input of the display device, and
the serial port of the computer or terminal (see the instruction manuals for those devices for details).
16 XMTC User’s Manual
Chapter 2. Installation
Line AC2
Neut AC1
PS5R-C24
24 Volt
Power Supply
+24 VDC
GND
GND
GND
Neut AC1
Line AC2
AC Input
XMTC Transmitter
Red
Output Device
Green
White
Black
TB1-1
+Vin
Black
TB1-2
RTN
White
TB1-3
4-20+
Green
TB1-4
4-20-
Red
TB2-1
RX
White
TB2-2
TX
Green
TB2-3
GND
RS232
Terminal
or PC

2.5 Connecting to Other Components

This section gives interconnection details for using other GE devices in conjunction with your XMTC.

2.5.1 PS5R-C24 Power Supply

The GE 24-Volt power supply converts 100/120/220/240 VAC to 24 VDC for use with the XMTC. Figure 9 below shows an interconnection diagram for the XMTC and the PS5R-C24 power supply.
Figure 9: Interconnection Diagram
XMTC User’s Manual 17
Chapter 2. Installation

2.5.2 TMO2D Display

The GE TMO2D Display provides a two-line x 24 character back-lit LCD. It also features display and option programming, recorder outputs, alarm relays, and optional relays for driving sample system solenoids for automatic zero and span calibration of the XMTC. See Figure 72 on page 83 for an interconnection diagram for the XMTC and the TMO2D, and refer to the TMO2D User’s Manual (910-084) for details on its operation.

2.5.3 XDP Display

The XDP Explosion-proof Display Package provides an integral, voltage-stabilized 24 VDC power supply, a 3-digit display with adjustable 4-20 mA input range, two SPDT alarm relays rated for 1 A/250 VAC, and a 4-20 mA output that is isolated from the input and adjustable to a second independent range if required. The XDP is supplied in a weatherproof and explosion-proof enclosure that is rated for EEx d IIC T6 and IP66. See Figure 72 on page 83 for interconnection diagrams for the XMTC and the MIS-1, MIS-2 and MMS-3 analyzers, and refer to the XDP User’s Manual (910-204) for details on its operation.

2.5.4 Moisture Series Analyzers

The GE Moisture Image Series 1 (MIS-1) and Moisture Monitor Series 3 (MMS-3) analyzers accept inputs from a variety of sensors (including the XMTC) and offer new graphical and digital user interfaces, improved performance, and low range calibration. See Figure 72 on page 83 for interconnection diagrams for the XMTC and the MIS-1 and MMS-3 analyzers, and refer to the appropriate User’s Manual for details on operating the MIS-1 (910-108) or MMS-3 (910-110) analyzer.
18 XMTC User’s Manual

Chapter 3. Operation and Programming

Chapter 3. Operation and Programming

3.1 Introduction

This chapter provides information on operating the XMTC transmitter. The following topics are discussed:
Powering up the XMTC
Basic sample gas considerations
Programming the XMTC with GE Instrument Data Manager (IDM™) software
If you have not already done so, please read Chapter 2, Installation, for details on mounting and wiring the XMTC and the sample system.

3.2 Powering Up the XMTC

WARNING! It is the responsibility of the user to ensure that all cable entry devices and covers
are properly installed and secure prior to applying power to the XMTC.
The XMTC does not have a power switch. It begins operating as soon as it is connected to a 24 VDC power source. Because the XMTC is controlled at a constant 55°C (131°F) operating temperature, allow 30 minutes for the unit to warm up and reach temperature stability. During this time, you can establish a sample gas flow through the sample system.

3.3 Starting the Sample Gas

Open the necessary valves to establish a sample gas flow of 0.5 SCFH (250 cc/min) at atmospheric pressure. Make sure that nothing obstructs the flow of sample gas, thereby causing a pressure buildup in the sensing chamber. For proper operation, the XMTC should be vented to atmosphere.
Note: Unless otherwise specified, the XMTC is factory calibrated at atmospheric pressure and 0.5 SCFH
(250 cc/min) and should therefore be operated at atmospheric pressure. Operating the XMTC at any other pressure will necessitate a field calibration at that pressure in order to maintain accuracy. See Chapter 4,
Calibration, for more information.
If you are using the 4-Port (flowing reference gas) configuration, open the necessary valves to establish a reference gas flow of 0.5 SCFH (250 cc/min) at atmospheric pressure.
Note: If desired, you can use a reference gas flow as low as 5 cc/min to conserve gas.
XMTC User’s Manual 19
Chapter 3. Operation and Programming

3.4 Programming with IDM™

The XMTC is factory-programmed and ready for immediate use. However, if you wish to check or change the calibration, you can access the XMTC programming from your PC, using GE Instrument Data Manager (IDM) software. IDM also allows you to upload or download site files, display data, and log and view real-time data and diagnostic data in numeric, bar chart or line chart formats. For further information on the display and logging functions, refer to the Instrument Data Manager User’s Manual (910-185).
Note: Be sure to install Instrument Data Manager on your PC before attempting to program the XMTC.

3.5 The Edit Functions Menu

To access the XMTC calibration, you must open the Edit Functions menu in the Instrument window. See Chapter 5, Using the Instrument Menu, in the Instrument Data Manager User’s Manual for more information on the Instrument
Menu. The menu consists of the five commands shown in Figure 10 below. To access a command, select it from the list of options.
Note: While following the programming instructions, refer to Figure 51 on page 41 and Figure 52 on page 42.
Figure 10: Edit Functions Menu
Three buttons appear on the right side of all menu windows: Previous Item, Next Item/Enter, and Exit Page (see Figure 11 on page 21):
Clicking on Previous Item returns you to the previous window (either the command menu or the previous
parameter entered).
Next Item/Enter confirms the selection or data entered, and either opens the next window or returns you to the
command menu (depending on your position in the program).
Exit Page returns you to the command menu.
20 XMTC User’s Manual
Loading...
+ 96 hidden pages