6.8EXAMINATION OF PARTS........................................ 26
Page 3 of 34
1.0 INTRODUCTION AND SAFETY
1.1 General
These Instructions must always be kept
close to product's operating location or directly
with the product.
Flowserve's products are designed, developed and
manufactured with state-of-the-art technologies in
modern facilities. The unit is produced with great care
and commitment to continuous quality control,
utilising sophisticated quality techniques, and safety
requirements.
Flowserve is committed to continuous quality
improvement and being at service for any further
information about the product in its installation and
operation or about its support products, repair and
diagnostic services.
These instructions are intended to facilitate
familiarization with the product and its permitted use.
Operating the product in compliance with these
instructions is important to help ensure reliability in
service and avoid risks. The instructions may not take
into account local regulations; ensure such
regulations are observed by all, including those
installing the product. Always coordinate repair
activity with operations personnel, and follow all plant
safety requirements and applicable safety and health
laws/regulations.
HWMA USER INSTRUCTIONS ENGLISH 11/10
1.3 Disclaimer
Information in these User Instructions is believed
to be reliable. In spite of all the efforts of
Flowserve Corporation to provide sound and all
necessary information the content of this manual
may appear insufficient and is not guaranteed by
Flowserve as to its completeness or accuracy.
Flowserve manufactures products to exacting
International Quality Management System Standards
as certified and audited by external Quality
Assurance organisations. Genuine parts and
accessories have been designed, tested and
incorporated into the products to help ensure their
continued product quality and performance in use. As
Flowserve cannot test parts and accessories sourced
from other vendors the incorrect incorporation of such
parts and accessories may adversely affect the
performance and safety features of the products. The
failure to properly select, install or use authorised
Flowserve parts and accessories is considered to be
misuse. Damage or failure caused by misuse is not
covered by Flowserve's warranty. In addition, any
modification of Flowserve products or removal of
original components may impair the safety of these
products in their use.
1.4 Copyright
All rights reserved. No part of these instructions may
be reproduced, stored in a retrieval system or
transmitted in any form or by any means without prior
permission of Flowserve.
These instructions should be read
prior to installing, operating, using and
maintaining the equipment in any region
worldwide. The equipment must not be put into
service until all the conditions relating to safety
noted in the instructions have been met.
1.2 CE marking and approvals
It is a legal requirement that machinery and
equipment put into service within certain regions of
the world shall conform with the applicable CE
Marking Directives covering Machinery and, where
applicable, Low Voltage Equipment, Electromagnetic
Compatibility (EMC), Pressure Equipment Directive
(PED) and Equipment for Potentially Explosive
Atmospheres (ATEX).
Where applicable the Directives, and any additional
Approvals, cover important safety aspects relating to
machinery and equipment and the satisfactory
provision of technical documents and safety
instructions. Where applicable this document
incorporates information relevant to these Directives.
To establish Approvals and if the product itself is CE
Marked check the serial number plate and the
Certification.
1.5 Duty conditions
This product has been selected to meet the
specifications of your purchaser order. The
acknowledgement of these conditions has been sent
separately to the Purchaser. A copy should be kept
with these instructions.
The product must not be operated beyond
the parameters specified for the application. If
there is any doubt as to the suitability of the
product for the application intended, contact
Flowserve for advice, quoting the serial number.
If the conditions of service on your purchase order
are going to be changed (for example liquid pumped,
temperature or duty) it is requested that the user
seeks Flowserve´s written agreement before start up.
Page 4 of 34
1.6 Safety
1.6.1 Summary of safety markings
These user instructions contain specific safety
markings where non-observance of an instruction
would cause hazards. The specific safety markin gs
are:
This symbol indicates electrical safety instructions
where non-compliance will involve a high risk to
personal safety or the loss of life.
This symbol indicates safety instructions
where non-compliance would affect personal safety
and could result in loss of life.
This symbol indicates "hazardous and toxic
fluid" safety instructions where non-compliance would
affect personal safety and could result in loss of life.
This symbol indicates safety
instructions where non-compliance will involve some
risk to safe operation and personal safety and would
damage the equipment or property.
This symbol indicates "strong magnetic
field" safety instructions where non-compliance would
affect personal safety, pacemakers, instruments or
stored data sensitive to magnetic fields.
HWMA USER INSTRUCTIONS ENGLISH 11/10
1.6.2 Personnel qualification and training
All personnel involved in the operation, installation,
inspection and maintenance of the unit must be
qualified to carry out the work involved. If the
personnel in question do not already possess the
necessary knowledge and skill, appropriate training
and instruction must be provided. If required the
operator may commission the manufacturer / supplier
to provide applicable training.
Always co-ordinate repair activity with operations and
health and safety personnel, and follow all plant
safety requirements and applicable safety and health
laws/regulations.
1.6.3 Safety action
This is a summary of conditions and actions to
help prevent injury to personnel and damage to
the environment and to equipment. For products
used in potentially explosive atmospheres
section 1.6.4 also applies.
PREVENT EXCESSIVE
EXTERNAL PIPE LOAD
Do not use pump as a support for piping. Do not
mount expansion joints so that their force, due to
internal pressure, acts on the pump flange.
ONLY CHECK DIRECTION OF
MOTOR ROTATION WITH COUPLING ELEMENT/
PINS REMOVED
Starting in reverse direction of rotation will damage
the pump.
This symbol indicates explosive atmosphere
marking according to ATEX. It is used in safety
instructions where non-compliance in the hazardous
area would cause the risk of an explosion.
This symbol is used in safety instructions to
remind not to rub non-metallic surfaces with a dry
cloth; ensure the cloth is damp. It is used in safety
instructions where non-compliance in the hazardous
area would cause the risk of an explosion.
The sign is not a safety symbol but
indicates an important instruction in the assembly
process.
This symbol indicates potential risks
connected with extremely high temperatures.
This symbol indicates potential risks
connected with extremely low temperatures.
ENSURE CORRECT
LUBRICATION
(See section 5 Commissioning, startup, operation and shutdown.)
START THE PUMP WITH
OUTLET VALVE PART OPENED
(Unless otherwise instructed at a specific point in the
user instructions.)
This is recommended to avoid the risk of overloading
and damaging the pump motor at full or zero flow.
Pumps may be started with the valve further open
only on installations where this situation cannot
occur. Pump outlet valve shall be adjusted to comply
with the duty following the run-up process (See
section 5 Commissioning, startup, operation and shutdown).
START THE PUMP WITH
OUTLET VALVE FULLY OPEN
This is recommended to avoid the risk of overloading
and damaging the pump motor where greater power
is taken at low or shut off flow. Pump outlet valve
shall be adjusted to comply with the duty following the
Page 5 of 34
HWMA USER INSTRUCTIONS ENGLISH 11/10
run-up process (See section 5 Commissioning,
startup, operation and shutdown).
NEVER RUN THE PUMP DRY
INLET VALVES TO BE FULLY
OPEN WHEN PUMP IS RUNNING
Running the pump at zero flow or below the
recommended minimum flow continuously will cause
damage to the seal.
DO NOT RUN THE PUMP AT
ABNORMALLY HIGH OR LOW FLOW RATES
Operating at a flow rate higher than normal or at a
flow rate with no back pressure on the pump may
overload the motor and cause cavitation. Low flow
rates may cause a reduction in
overheating of the pump, instability and
cavitation/vibration.
When ambient temperatures are
likely to drop below freezing point, the pump and any
cooling and flushing arrangements must be drai ned
or otherwise protected.
pump/bearing life,
HANDLING COMPONENTS
Many precision parts have sharp corners and the
wearing of appropriate safety gloves and equipment
is required when handling these components. To lift
heavy pieces above 25 kg (55 lbs) use a crane
corresponding to the mass and in accordance with
current local regulations.
NEVER DO MAINTENANCE WORK WHILST THE
UNIT IS CONNECTED TO POWER
HAZARDOUS LIQUIDS
When the pump is handling hazardous liquids care
must be taken to avoid exposure to the liquid by
appropriate sitting of the pump, limiting personnel
access and by operator training. If the liquid is
flammable and/or explosive strict safety procedures
must be applied.
Gland Packing must not be used when pumping
hazardous liquids.
condition these are extremely dangerous and skin
contact must be avoided.
GUARDS MUST NOT BE REMOVED WHILE
PUMP IS OPERATIONAL
THERMAL SHOCK
Rapid changes in the temperature of the liquid within
the pump can cause thermal shock, which can result
in damage or breakage of components and should b e
avoided.
NEVER APPL Y HEAT TO REMOVE
IMPELLER
Trapped lubricant or vapour could cause an
explosion.
HOT AND COLD PAR TS
If hot or freezing components or auxiliary heating
supplies can present a danger to operators, they
must
be shielded to avoid accidental contact. If
complete protection is not possible, the machine
access must be limited to maintenance staff only.
Note: bearing housings must not be insulated and
drive motors and bearings may be hot.
If the temperature is greater than 68 °C (155 °F) or
below 5 °C (41 °F) in a restricted zone, or exceeds
local regulations, action as above shall be taken.
1.6.4 Products used in potentially explosive
atmospheres
Measures are required to:
• Avoid excess temperature
• Prevent build up of explosive mixtures
• Prevent the generation of sparks
• Prevent leakages
• Maintain the pump to avoid hazard
The following instructions for pumps and pump units
when installed in potentially explosive atmospheres
must be followed to help ensure explosion protection.
Both electrical and non-electrical equipment must
meet the requirements of European Directive
94/9/EC.
1.6.4.1 Scope of compliance
DRAIN PUMP AND ISOLATE PIPEWORK
BEFORE DISMANTLING THE PUMP
The appropriate safety precautions should be taken
where the pumped liquids are hazardous.
FLUORO-ELASTOMERS (When fitted)
When a pump has experienced temperatures over
250 °C (482 ºF), partial decomposition of fluoroelastomers (example: Viton) will occur . In this
Page 6 of 34
Use equipment only in the zone for which it is
appropriate. Always check that the driver, drive
coupling assembly, seal and pump equipment are
suitably rated and/or certified for the classification of
the specific atmosphere in which they are to be
installed.
Where Flowserve has supplied only the bare shaft
pump, the Ex rating applies only to the pump. The
HWMA USER INSTRUCTIONS ENGLISH 11/10
party responsible for assembling the pump set shall
select the coupling, driver and any additional
equipment, with the necessary CE Certificate/
Declaration of Conformity establishing it is suitable for
the area in which it is to be installed.
The output from a variable frequency drive (VFD) can
cause additional heating affects in the motor and so,
for pump sets with a VFD, the ATEX Certification for
the motor must state that it covers the situation where
electrical supply is from the VFD. This is particular
requirement still applies even if the VFD is in a safe
area.
1.6.4.2 Marking
An example of ATEX equipment marking is shown
below. The actual classification of the pump will be
engraved on the nameplate.
II 2 GD c IIC135ºC (T4)
Equipment Group
I = Mining
II = Non-mining
Category
2 or M2 = High level protection
3 = normal level of protection
Gas and/or Dust
G = Gas; D= Dust
c = Constructional safety
(in accordance with En13463-5)
Gas Group (Equipment Category 2 only)
IIA – Propane (Typical)
IIB – Ethylene (Typical)
IIC – Hydrogen (T y pical)
Maximum surface temperature (Temperature Class)
(see section 1.6.4.3)
1.6.4.3 Avoiding excessive surface temperatures
Temperature
class to
EN 13463-1
T6
T5
T4
T3
T2
T1
Maximum
surface
temperature
permitted
85 °C (185 °F)
100 °C(212 °F)
135 °C (275 °F)
200 °C (392 °F)
300 °C (572 °F)
450 °C (842 °F)
Temperature limit of liquid
handled (* depending on
material and construction
variant - check which is
lower)
Consult Flowserve
Consult Flowserve
110 °C (230 °F) *
175 °C (347 °F) *
270 °C (518 °F) *
350 °C (662 °F) *
The responsibility for compliance with the
specified maximum liquid temperature is with the
plant operator.
Temperature classification “Tx” is used when the
liquid temperature varies and when the pump is
required to be used in differently classified potentially
explosive atmospheres. In this case the user is
responsible for ensuring that the pump surface
temperature does not exceed that permitted in its
actual installed location.
Do not attempt to check the direction of rotation with
the coupling element/pins fitted due to the risk of
severe contact between rotating and stationary
components.
Where there is any risk of the pump being run against
a closed valve generating high liquid and casing
external surface temperatures it is recommended that
users fit an external surface temperature protection
device.
Avoid mechanical, hydraulic or electrical overload by
using motor overload trips or a Power Monitor and
make routine vibration monitoring.
In dirty or dusty environments, regular checks must
be made and dirt removed from areas around close
clearances, bearing housings and motors.
1.6.4.4 Preventing the build up of explosive
mixtures
ENSURE THE EQUIPMENT TEMPERATURE
CLASS IS SUITABLE FOR THE HAZARD ZONE
Pumps have a temperature class as stated in the
ATEX Ex rating on the nameplate. These are based
on a maximum ambient of 40 °C (104 °F); refer to
Flowserve for higher ambient temperatures.
The surface temperature on the pump is influenced
by the temperature of the liquid handled. The
maximum permissible liquid temperature depends on
the temperature class and must not exceed the
values in the table that follows. The temperature rise
at the seals and bearings and due to the minimum
permitted flow rate is taken into account in the
temperatures stated.
Page 7 of 34
ENSURE THE PUMP IS PROPERLY FILLED
AND VENTED AND DOES NOT RUN DRY
Ensure the pump and relevant suction and discharge
pipeline system is totally filled with liquid at all times
during the pump operation, so that an explosive
atmosphere is prevented. In addition it is essential to
make sure that seal chambers, auxiliary shaft seal
systems and any heating and cooling systems are
properly filled.
If the operation of the system cannot avoid this
condition the fitting of an appropriate Dry Run
protection device is recommended (eg liquid
detection or a Power Monitor).
HWMA USER INSTRUCTIONS ENGLISH 11/10
To avoid potential hazards from fugitive emissions of
vapour or gas to atmosphere the surrounding area
must be well ventilated.
1.6.4.5 Preventing sparks
To prevent a potential hazard from mechanical
contact the coupling guard must be non-sparking and
anti-static.
To avoid the potential hazard from random induced
current generating a spark the earth contact on the
baseplate must be used.
Avoid electrostatic charge: do not rub nonmetallic surfaces with a dry cloth; ensure cloth is
damp.
The coupling must be selected to comply with
94/9/EC and correct alignment must be maintained.
1.6.4.5 Preventing leakage
The pump must only be used to handle liquids
for which it has been approved to have the correct
corrosion resistance.
Avoid entrapment of liquid in the pump and
associated piping due to closing of suction and
discharge valves, which could cause dangerous
excessive pressures to occur if there is heat input to
the liquid. This can occur if the pump is stationary or
running.
Bursting of liquid containing parts due to freezing
must be avoided by draining or protecting the pump
and ancillary systems.
Where there is the potential hazard of a loss of a seal
barrier fluid or external flush, the fluid must be
monitored.
If leakage of liquid to atmosphere can result in a
hazard, the installation of a liquid detection device is
recommended.
1.6.4.6 Maintenance to the centrifugal pump to
avoid the hazard
CORRECT MAINTENANCE IS REQUIRED
TO AVOID POTENTIAL HAZARDS WHICH GIVE A
RISK OF EXPLOSION
The responsibility for compliance with
maintenance instructions is with the plant
operator.
To avoid potential explosion hazards during
maintenance, the tools, cleaning and painting
materials used must not give rise to sparking or
adversely affect the ambient conditions. Where there
is a risk from such tools or materials, maintenance
must be conducted in a safe area.
It is recommended that a maintenance plan and
schedule is adopted (see section 6, Maintenance).to
include the following.
a) Any auxiliary systems installed must be
monitored, if necessary, to ensure they function
correctly.
b) Gland packings must be adjusted correctly to
give visible leakage and concentric alignment of
the gland follower to prevent excessive
temperature of the packing or follower.
c) Check for any leaks from gaskets and seals. The
correct functioning of the shaft seal must be
checked regularly
d) Check bearing lubricant level, and if the hours run
show a lubricant change is required.
e) Check that the duty condition is in the safe
operating range for the pump.
f) Check vibration, noise level and surface
temperature at the bearings to confirm
satisfactory operation.
g) Check dirt and dust is removed from areas
around close clearances, bearing housings and
motors.
h) Check coupling alignment and re-align if
necessary.
Page 8 of 34
1.7 Warning label
HWMA USER INSTRUCTIONS ENGLISH 11/10
Page 9 of 34
1.8 Specific machine performance
For performance parameters see section 1.5, Duty
conditions. When the Contract requirement specifies
these to be incorporated into user instructions these
are included here. Where performance data has been
supplied separately to the purchaser these should be
obtained and retained with these user instructions if
required.
1.9 Noise level
Attention must be given to the exposure of
personnel to the noise, and local legislation will
define when guidance to personnel on noise
limitation is required, and when noise exposure
reduction is mandatory. This is typically 80 to 85
dBA.
The usual approach is to control the exposure
time to the noise or to enclose the machine to
reduce emitted sound. You may have already
specified a limiting noise level when the
equipment was ordered, however if no noise
requirements were defined, then attention is
drawn to the following table to give an indication
of equipment noise level so that you can take
the appropriate action in your plant.
Pump noise level is dependent on a number of
operational factors, flow rate, pipework design
and acoustic characteristics of the building, and
so the values given are subject to a 3 dBA
tolerance and cannot be guaranteed.
Similarly the motor noise assumed in the “pump
and motor” noise is that typically expected from
standard and high efficiency motors when on
load directly driving the pump. Note that a motor
driven by an inverter may show an increased
noise at some speeds.
If a pump unit only has been purchased for fitting
with your own driver then the “pump only” noise
levels in the table should be combined with the
level for the driver obtained from the supplier.
Consult Flowserve or a noise specialist if
assistance is required in combining the values.
It is recommended that where exposure
approaches the prescribed limit, then site noise
measurements should be made.
The values are in sound pressure level L
m (3.3 ft) from the machine, for “free field
conditions over a reflecting plane”.
For estimating sound power level L
WA
then add 14 dBA to the sound pressure value.
at 1
pA
(re 1 pW)
HWMA USER INSTRUCTIONS ENGLISH 11/10
Page 10 of 34
HWMA USER INSTRUCTIONS ENGLISH 11/10
Octave MID BAND frequency [Hz]
3000 rpm
1500 rpm
3600 rpm
1800 rpm
Sound pressure readings are for information only and are not subject to guarantee by Flowserve/IDP.
Decibel readings do not include driver or system noise.
Pump tested at 100% of the best efficiency point at max.impeller diameter with water.
Difference between two
levels to be combined, dB
Add to the higher level to obtain
the combined noise level,dB
Note :
1) The values showed are measured at a distance of 1 mt. (horizontally) from major pump
surfaces and 1.5 mt. above the floor.
2) The values shown are expressed in dB (A)
3) For Noise Test Procedure refer to Works Standard L-109
4) The values shown have been derived from actual noise-test data and are based on the following conditions:
- Equipment is located in a free field above a reflecting plane in which the reductionin noise level
in all directions is 6db in each octave band for each doubling of distance.
- Background noise is 10dB minimum below all noise levels in each octave band.
- The values shown are at a distance of 1 meter (horizontally) from the major pump surface and
1,5 meters above the floor, using a standard pressure reference of 0,00002 newton per square meter.
- Overall noise level, dB(A) is determined at points of maximum noise level and the values of all
mid-band frequences are basis A scale readings.
When the required condition flow is outside the range of 75 to 125% BEP, a part load correction (PLC) must be
added to the noise level as follows:
Percent of BEP @
required impeller
diameter
74 to 62 or 126 to 136+1
61 to 50 or 137 to 150+2
49 to 38+3
37 to 25+4
01246910
10.5 032.521.5
PLC in
dB
Page 11 of 34
Loading...
+ 23 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.