Datasheet FDD6N50, FDU6N50 Datasheet (Fairchild)

Page 1

FDD6N50/FDU6N50

500V N-Channel MOSFET

FDD6N50/FDU6N50 500V N-Channel MOSFET
January 2006
TM
UniFET
• 6A, 500V, R
• Low gate charge ( typical 12.8 nC)
•Low C
•Fast switching
• 100% avalanche tested
• Improved dv/dt capability
( typical 9 pF)
rss
= 0.9 @VGS = 10 V
DS(on)
GS
D-PAK
FDD Series
D
GSD
Description
These N-Channel enhancement mode power field effect transistors are produced using Fairchild’s proprietary, planar stripe, DMOS technology.
This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switched mode power supplies and active power factor correction.
D
I-PAK
FDU Series
G
S
Absolute Maximum Ratings
Symbol Parameter FDD6N50/FDU6N50 Unit
V
DSS
I
D
I
DM
V
GSS
E
AS
I
AR
E
AR
dv/dt Peak Diode Recovery dv/dt (Note 3) 4.5 V/ns
P
D
T
J, TSTG
T
L
Drain-Source Voltage 500 V
Drain Current - Continuous (TC = 25°C)
- Continuous (TC = 100°C)
Drain Current - Pulsed
Gate-Source voltage ±30 V
Single Pulsed Avalanche Energy
Avalanche Current (Note 1) 6 A
Repetitive Avalanche Energy (Note 1) 8.9 mJ
Power Dissipation (TC = 25°C)
- Derate above 25°C
Operating and Storage Temperature Range -55 to +150 °C
Maximum Lead Temperature for Soldering Purpose, 1/8” from Case for 5 Seconds
(Note 1)
(Note 2)
6
3.8
24 A
270 mJ
89
0.71
300 °C
W/°C
A A
W
Thermal Characteristics
Symbol Parameter Min. Max. Unit
R
θJC
R
θJA
©2006 Fairchild Semiconductor Corporation 1 www.fairchildsemi.com
FDD6N50/FDU6N50 REV. A
Thermal Resistance, Junction-to-Case -- 1.4 °C/W
Thermal Resistance, Junction-to-Ambient -- 83 °C/W
Page 2
Package Marking and Ordering Information
Device Marking Device Package Reel Size Tape Widt h Quantity
FDD6N50 FDD6N50TM D-PAK 380mm 16mm 2500
FDD6N50 FDD6N50TF D-PAK 380mm 16mm 2000
FDU6N50 FDU6N50TU I-PAK - - 70
FDD6N50/FDU6N50 500V N-Channel MOSFET
Electrical Characteristics T
= 25°C unless otherwise noted
C
Symbol Parameter Conditions Min. Typ. Max Units
Off Characteristics
BV
DSS
BV / ∆T
I
DSS
I
GSSF
I
GSSR
On Characteristics
V
GS(th)
R
DS(on)
g
FS
Dynamic Characteristics
C
iss
C
oss
C
rss
Switching Characteristics
t
d(on)
t
r
t
d(off)
t
f
Q
g
Q
gs
Q
gd
Drain-Source Diode Characteristics and Maximum Ratings
I
S
I
SM
V
SD
t
rr
Q
rr
Drain-Source Breakdown Voltage VGS = 0V, ID = 250µA 500 -- -- V
Breakdown Voltage Temperature
DSS
Coefficient
J
Zero Gate Voltage Drain Current VDS = 500V, VGS = 0V
ID = 250µA, Referenced to 25°C -- 0.5 -- V/°C
VDS = 400V, TC = 125°C
--
--
--
--
Gate-Body Leakage Current, Forward VGS = 30V, VDS = 0V -- -- 100 nA
Gate-Body Leakage Current, Reverse VGS = -30V, VDS = 0V -- -- -100 nA
Gate Threshold Voltage VDS = VGS, ID = 250µA 3.0 -- 5.0 V
Static Drain-Source On-Resistance
Forward Transconductance VDS = 40V, ID = 3A
Input Capacitance VDS = 25V, VGS = 0V,
Output Capacitance -- 95 190 pF
VGS = 10V, ID = 3A -- 0.76 0.9
(Note 4)
-- 2.5 -- S
-- 720 940 pF
f = 1.0MHz
Reverse Transfer Capacitance -- 9 13.5 pF
Turn-O n Delay Time VDD = 250V, ID = 6A
Turn-O n Ris e Ti me -- 55 120 ns
RG = 25
-- 6 20 ns
Turn-O ff Delay Time -- 25 60 ns
Turn-O ff Fall Time -- 35 80 ns
Total Gate Charge VDS = 400V, ID = 6A
Gate-Source Charge -- 3.7 -- nC
VGS = 10V
Gate-Drain Charge -- 5.8 -- nC
(Note 4, 5)
-- 12.8 16.6 nC
(Note 4, 5)
Maximum Continuous Drain-Source Diode Forward Current -- -- 6 A
Maximum Pulsed Drain-Source Diode Forward Current -- -- 24 A
Drain-Source Diode Forward Voltage VGS = 0V, IS = 6A -- -- 1.4 V
Reverse Recovery Time VGS = 0V, IS = 6A
Reverse Recovery Charge -- 1.7 -- µC
dIF/dt =100A/µs (Note 4)
-- 275 -- ns
10
1
µA µA
NOTES:
1. Repetitive Rating: Pulse width limited by maximum junction temperature
2. IAS = 6A, VDD = 50V, L=13.5mH, RG = 25, Starting TJ = 25°C
3. ISD 6A, di/dt 200A/µs, VDD BV
4. Pulse Test: Pulse width 300µs, Duty Cycle 2%
5. Essentially Independent of Operating Temperature Typical Characteristics
, Starting TJ = 25°C
DSS
FDD6N50/FDU6N50 REV. A
2 www.fairchildsemi.com
Page 3
Typical Performance Characteristics
Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics
20
V
GS
Top : 10.0 V
8.0V
7.5 V
7.0 V
15
6.5 V
6.0 V
5.5 V Bottom : 5.0 V
10
, Drain Current [A]
D
5
I
0
0 1020304050
VDS, Drain-Source Voltage [V]
Figure 3. On-Resistance Variation vs. Figure 4. Body Diode Forward Voltage
Drain Current and Gate Voltage Variation vs. Source Current
1
10
150
0
10
25
-1
, Drain Current [A]
D
10
I
-2
10
246810
-55
Notes :
1. 250レs Pulse Test
= 25
2. T
C
VGS , Gate-Source Voltage [V]
and Temperature
Note
1. VDS = 40V
s Pulse Test
2. 250
FDD6N50/FDU6N50 500V N-Channel MOSFET
2.5
2.0
1
10
VGS = 10V
1.5
1.0
[],Drain-Source On-Resistance
0.5
DS(ON)
R
0.0 0 5 10 15 20
VGS = 20V
Note : TJ = 25
ID, Drain Current [A]
0
10
150
, Reverse Drain Current [A]
DR
I
-1
10
0.20.40.60.81.01.21.41.61.8
25
Notes :
1. VGS = 0V
2. 250
s Pulse Test
VSD , Source-Drain Voltage [V]
Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics
C
= Cgs + Cgd (Cds = shorted)
iss
C
= Cds + C
oss
gd
C
= C
rss
gd
1000
100
Capacitance [pF]
10
0
10
C
iss
C
oss
C
rss
10
Notes :
1. VGS = 0 V
2. f = 1 MHz
1
VDS, Drain-Source Voltage [V]
12
10
8
6
4
, Gate-Source Voltage [V]
2
GS
V
0
051015
QG, Total Gate Charge [nC]
VDS = 100V
VDS = 250V
VDS = 400V
Note : ID = 6A
FDD6N50/FDU6N50 REV. A
3 www.fairchildsemi.com
Page 4
Typical Performance Characteristics (Continued)
Figure 7. Breakdown Voltage Variation Figure 8. On-Resistance Variation
vs. Temperature vs. Temperature
FDD6N50/FDU6N50 500V N-Channel MOSFET
1.2
3.0
2.5
1.1
2.0
1.0
, (Normalized)
BV
DSS
0.9
Notes :
1. VGS = 0 V
2. I
Drain-Source Breakdown Voltage
0.8
-100 -50 0 50 100 150 200
TJ, Junction Temperature [oC]
= 250 µA
D
1.5
, (Normalized)
DS(ON)
1.0
R
Drain-Source On-Resistance
0.5
0.0
-100 -50 0 50 100 150 200
Notes :
1. V
2. I
TJ, Junction Temperature [oC]
Figure 9. Maximum Safe Operating Area Figure 10. Maximum Drain Current
vs. Case Temperature
2
Operation in This Area
10
is Limited by R
1
10
0
10
DS(on)
8
10 us
100 us
6
1 ms
10 ms
DC
4
D
GS
= 3 A
= 10 V
, Drain Current [A] I
D
-1
10
-2
10
1. TC = 25 oC
2. T
3. Single Pulse
0
10
Notes :
= 150 oC
J
1
10
VDS, Drain-Source Voltage [V]
, Drain Current [A]
D
I
2
2
10
3
10
0
25 50 75 100 125 150
TC, Case Temperature [∩ ]
Figure 11. Transient Thermal Response Curve
0
10
D=0.5
0.2
0.1
-1
10
0.05
0.02
(t), Thermal Response
0.01
JC
Z
-2
10
-5
10
single pulse
-4
10
-3
10
-2
10
t1, Square Wave Pulse Duration [sec]
Notes :
1. Z
(t) = 1.4 ∩ /W Max.
JC
2. D uty F actor, D =t
3. TJM - TC = PDM * Z
P
DM
t
1
-1
10
10
1/t2
(t)
JC
t
2
0
1
10
FDD6N50/FDU6N50 REV. A
4 www.fairchildsemi.com
Page 5
Gate Charge Test Circuit & Waveform
Resistive Switching Test Circuit & Waveforms
FDD6N50/FDU6N50 500V N-Channel MOSFET
FDD6N50/FDU6N50 REV. A
Unclamped Inductive Switching Test Circuit & Waveforms
5 www.fairchildsemi.com
Page 6
Peak Diode Recovery dv/dt Test Circuit & Waveforms
FDD6N50/FDU6N50 500V N-Channel MOSFET
FDD6N50/FDU6N50 REV. A
6 www.fairchildsemi.com
Page 7
Mechanical Dimensions
FDD6N50/FDU6N50 500V N-Channel MOSFET
D-PAK
FDD6N50/FDU6N50 REV. A
Dimensions in Millimeters
7 www.fairchildsemi.com
Page 8
Mechanical Dimensions (Continued)
FDD6N50/FDU6N50 500V N-Channel MOSFET
I-PAK
FDD6N50/FDU6N50 REV. A
Dimensions in Millimeters
8 www.fairchildsemi.com
Page 9
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx™ ActiveArray™ Bottomless™
FPS™
Build it Now™ CoolFET™ CROSSVOLT™ DOME™ EcoSPARK™
2
E
CMOS™ EnSigna™ FACT™
FACT Quiet Series™
Across the board. Around the world.™ The Power Franchise Programmable Active Droop™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE T O ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY , FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT
CONVEY ANY LICENSE UNDER ITS PA TENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
®
FAST FAST r™
LittleFET™
FRFET™ GlobalOptoisolator™ GTO™ HiSeC™
2
I
C™ i-Lo™ ImpliedDisconnect™
IntelliMAX™
®
ISOPLANAR™ MICROCOUPLER™
MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC
®
OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerEdge™
PowerSaver™ PowerTrench
®
QFET QS™ QT Optoelectronics™
®
TCM™
TinyLogic Quiet Series™ RapidConfigure™ RapidConnect™ μSerDes™ ScalarPump™ SILENT SWITCHER SMART ST ART™ SPM™ Stealth™ SuperFET™ SuperSOT™-3
SuperSOT™-6 SuperSOT™-8 SyncFET™
TINYOPTO™ TruTranslation™ UHC™ UltraFET UniFET™
®
VCX™ Wire™
®
®
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORA TION. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
PRODUCT STA TUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Formative or In Design
First Production
Full Production
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or
effectiveness.
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. I18
Loading...