ElmoMC SimplIQ Digital Servo Drives-Cello Installation Guide

Page 1
Cello
Digital Servo Drive
Installation Guide
July 2014 (Ver. 1.602)
www.elmomc.com
Page 2
This guide is delivered subject to the following conditions and restrictions:
This guide contains proprietary information belonging to Elmo Motion
Control Ltd. Such information is supplied solely for the purpose of assisting users of the Cello servo drive in its installation.
The text and graphics included in this manual are for the purpose of
illustration and reference only. The specifications on which they are based are subject to change without notice.
Elmo Motion Control and the Elmo Motion Control logo are trademarks of
Elmo Motion Control Ltd.
Information in this document is subject to change without notice.
Document no. MAN-CELIG (Ver. 1.602)
Copyright  2014
Elmo Motion Control Ltd.
All rights reserved.
Catalog Number
Cable Kits
Catalog Numbers:
CBL-CELKIT01 (can be ordered separately)
CBL-CELKIT02 (can be ordered separately)
For further details, see the documentation for these cable kits (MAN-CBLKIT-CEL.pdf) .
Page 3
Revision History
Version Date Details
1.0 Initial release
1.3 Apr 2008 Updated Power Ratings table in 4
1.4 Aug 2008 Added Section 3.4.7.4: Differential Pulse-and-Direction Input
1.5 Mar 2010 MTCR 07-009-56: added note to Section 3.4.8.2
1.6 July 2012 Formatted according to new template, updated Catalog Number
1.601 Feb 2013 Added a caution and recommendation on the type of cleaning
solution to use for the Elmo unit.
1.602 July 2014 General format update
Page 4
Elmo Worldwide
Head Office
Elmo Motion Control Ltd.
60 Amal St., POB 3078, Petach Tikva 49516 Israel
Tel: +972 (3) 929-2300 Fax: +972 (3) 929-2322 info-il@elmomc.com
North America
Elmo Motion Control Inc.
42 Technology Way, Nashua, NH 03060 USA
Tel: +1 (603) 821-9979 Fax: +1 (603) 821-9943 info-us@elmomc.com
Europe
Elmo Motion Control GmbH
Hermann-Schwer-Strasse 3, 78048 VS-Villingen Germany
Tel: +49 (0) 7721-944 7120 • Fax: +49 (0) 7721-944 7130 • info-de@elmomc.com
China
Elmo Motion Control Technology (Shanghai) Co. Ltd.
Room 1414, Huawen Plaza, No. 999 Zhongshan West Road, Shanghai (200051) China
Tel: +86-21-32516651 Fax: +86-21-32516652 info-asia@elmomc.com
Asia Pacific
Elmo Motion Control APAC Ltd.
B-601 Pangyo Innovalley, 621 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea (463-400)
Tel: +82-31-698-2010 Fax: +82-31-801-8078 info-asia@elmomc.com
Page 5
MAN-CELIG (Ve r. 1.602)
Table of Contents
Cello Installation Guide
1 Safety Information .......................................................................................... 7
1.1 Warnings .....................................................................................................................8
1.2 Cautions ......................................................................................................................8
1.3 Directives and Standards ............................................................................................9
1.4 CE Marking Conformance ...........................................................................................9
1.5 Warranty Information ................................................................................................9
2 Introduction ................................................................................................. 10
2.1 Drive Description ..................................................................................................... 10
2.2 Product Features ..................................................................................................... 10
2.2.1 Current Control ......................................................................................... 10
2.2.2 Velocity Control ........................................................................................ 11
2.2.3 Position Control ........................................................................................ 11
2.2.4 Advanced Position Control (Advanced model only) ................................. 11
2.2.5 Communication Options ........................................................................... 11
2.2.6 Feedback Options ..................................................................................... 12
2.2.7 Fault Protection ........................................................................................ 12
2.3 System Architecture ................................................................................................ 13
2.4 How to Use this Guide ............................................................................................. 13
5
3 Installation ................................................................................................... 15
3.1 Before You Begin ..................................................................................................... 15
3.1.1 Site Requirements .................................................................................... 15
3.1.2 Hardware Requirements .......................................................................... 15
3.2 Unpacking the Drive Components ........................................................................... 17
3.3 Mounting the Cello .................................................................................................. 18
3.4 Connecting the Cables ............................................................................................. 19
3.4.1 Wiring the Cello ........................................................................................ 19
3.4.2 Connecting the Power Cables ................................................................... 22
3.4.2.1 Connecting the Motor Cable ................................................... 22
3.4.2.2 Connecting the Main Power Cable .......................................... 23
3.4.3 Connecting the Optional Backup Supply Cable (24 V) .............................. 24
3.4.4 Feedback and Control Cable Assemblies .................................................. 25
3.4.5 Main Feedback Cable (FEEDBACK A) ........................................................ 25
3.4.6 Main and Auxiliary Feedback Combinations ............................................ 34
3.4.7 Auxiliary Feedback (FEEDBACK B) ............................................................. 35
3.4.7.1 Main Encoder Buffered Outputs or Emulated Encoder Outputs
Option on FEEDBACK B (YA[4]=4) ............................................ 35
3.4.7.2 Differential Auxiliary Encoder Input Option on FEEDBACK B
(YA[4]=2) .................................................................................. 38
3.4.7.3 Single-Ended Auxiliary Input Option on FEEDBACK B (YA[4]=2)40
3.4.7.4 Pulse-and-Direction Input Option on FEEDBACK B (YA[4]=0) .. 42
Page 6
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Table of Contents
3.4.8 I/O Cables ................................................................................................. 46
3.4.8.1 General I/O Port (J1) ................................................................ 46
3.4.8.2 General Input Port (J2) ............................................................ 48
3.4.9 Communication Cables ............................................................................. 50
3.4.9.1 RS-232 Communication ........................................................... 50
3.4.9.2 CAN Communication................................................................ 51
3.5 Powering Up ............................................................................................................ 53
3.6 Initializing the System .............................................................................................. 53
4 Technical Specifications ................................................................................ 54
4.1 Features ................................................................................................................... 54
4.1.1 Motion Control Modes ............................................................................. 54
4.1.2 Advanced Positioning Motion Control Modes ......................................... 54
4.1.3 Advanced Filters and Gain Scheduling...................................................... 54
4.1.4 Fully Programmable .................................................................................. 54
4.1.5 Feedback Options ..................................................................................... 55
4.1.6 Input/Output ............................................................................................ 55
4.1.7 Built-In Protection .................................................................................... 56
4.2 Cello Dimensions ..................................................................................................... 57
4.3 Power Ratings .......................................................................................................... 58
4.4 Environmental Conditions ....................................................................................... 59
4.5 Cello Connections .................................................................................................... 60
4.5.1 Backup Supply (Optional) ......................................................................... 61
4.6 Control Specifications .............................................................................................. 61
4.6.1 Current Loop ............................................................................................. 61
4.6.2 Velocity Loop ............................................................................................ 62
4.6.3 Position Loop ............................................................................................ 62
4.7 Feedbacks ................................................................................................................ 63
4.7.1 Feedback Supply Voltage .......................................................................... 63
4.7.2 Incremental Encoder Input ....................................................................... 63
4.7.3 Digital Halls ............................................................................................... 64
4.7.4 Interpolated Analog (Sine/Cosine) Encoder ............................................. 64
4.7.5 Resolver .................................................................................................... 65
4.7.6 Tachometer............................................................................................... 65
4.7.7 Potentiometer .......................................................................................... 65
4.7.8 Encoder Outputs ....................................................................................... 66
4.8 I/Os .......................................................................................................................... 67
4.8.1 Digital Input Interfaces ............................................................................. 67
4.8.2 Digital Output Interface ............................................................................ 68
4.8.3 Analog Input ............................................................................................. 70
4.9
Communications ...................................................................................................... 70
4.10 Pulse-Width Modulation (PWM) ............................................................................. 70
4.11 Mechanical Specifications ....................................................................................... 70
4.12 Compliance with Standards ..................................................................................... 71
6
Page 7
MAN-CELIG (Ve r. 1.602)

1 Safety Information

Warning:
Caution:
Cello Installation Guide
In order to achieve the optimum, safe operation of the Cello servo drive, it is imperative that you implement the safety procedures included in this installation guide. This information is provided to protect you and to keep your work area safe when operating the Cello and accompanying equipment.
Please read this chapter carefully before you begin the installation process.
Before you start, ensure that all system components are connected to earth ground. Electrical safety is provided through a low-resistance earth connection.
Only qualified personnel may install, adjust, maintain and repair the servo drive. A qualified person has the knowledge and authorization to perform tasks such as transporting, assembling, installing, commissioning and operating motors.
The Cello servo drive contains electrostatic-sensitive components that can be damaged if handled incorrectly. To prevent any electrostatic damage, avoid contact with highly insulating materials, such as plastic film and synthetic fabrics. Place the product on a conductive surface and ground yourself in order to discharge any possible static electricity build-up.
7
To avoid any potential hazards that may cause severe personal injury or damage to the product during operation, keep all covers and cabinet doors shut.
The following safety symbols are used in this manual:
This information is needed to avoid a safety hazard, which might cause bodily injury.
This information is necessary for preventing damage to the product or to other equipment.
www.elmomc.com
Page 8
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Safety Information

1.1 Warnings

To avoid electric arcing and hazards to personnel and electrical contacts, never
connect/disconnect the servo drive while the power source is on.
Power cables can carry a high voltage, even when the motor is not in motion.
Disconnect the Cello from all voltage sources before it is opened for servicing.
After shutting off the power and removing the power source from your
equipment, wait at least 1 minute before touching or disconnecting parts of the equipment that are normally loaded with electrical charges (such as capacitors or contacts). Measuring the electrical contact points with a meter, before touching the equipment, is recommended.

1.2 Cautions

The Cello servo drive contains hot surfaces and electrically-charged
components during operation.
8
The maximum DC power supply connected to the instrument must comply with
the parameters outlined in this guide.
The Cello can operate only through an isolated power source, using an isolated
transformer and a rectifier circuit. Power to this device must be supplied by DC voltage, within the boundaries specified for the Cello. High voltages may damage the drive.
The DC power supply voltage range is defined in the table in Section 4.3.
Safety margins must be considered in order to avoid activating the under- or over-voltage protection against line variations and/or voltage drop under load. The transformer should be able to deliver the required power to the drive (including peak power) without significant voltage drops (10% maximum). While driving high-inertia loads, the power supply circuit must be equipped with a shunt regulator; otherwise, the drive will be disabled whenever the capacitors are charged above the maximum voltage.
Before switching on the Cello, verify that all safety precautions have been
observed and that the installation procedures in this manual have been followed.
Do not clean any of the Cello drive's soldering with solvent cleaning fluids of pH
greater than 7 (8 to 14). The solvent corrodes the plastic cover causing cracks and eventual damage to the drive's PCBs.
Elmo recommends using the cleaning fluid Vigon-EFM which is pH Neutral (7).
For further technical information on this recommended cleaning fluid, select the link:
http://www.zestron.com/fileadmin/zestron.com-usa/daten/electronics/Product_TI1s/TI1­VIGON_EFM-US.pdf
www.elmomc.com
Page 9
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Safety Information

1.3 Directives and Standards

The Cello conforms to the following industry safety standards:
Safety Standard Item
Approved IEC/EN 61800-5-1, Safety Adjustable speed electrical power drive systems
Recognized UL 508C Power Conversion Equipment
In compliance with UL 840 Insulation Coordination Including Clearances and
Creepage Distances for Electrical Equipment
9
In compliance with UL 60950-1 (formerly UL 1950)
Safety of Information Technology Equipment Including Electrical Business Equipment
In compliance with EN 60204-1 Low Voltage Directive 73/23/EEC
The Cello servo drive has been developed, produced, tested and documented in accordance with the relevant standards. Elmo Motion Control is not responsible for any deviation from the configuration and installation described in this documentation. Furthermore, Elmo is not responsible for the performance of new measurements or ensuring that regulatory requirements are met.

1.4 CE Marking Conformance

The Cello servo drive is intended for incorporation in a machine or end product. The actual end product must comply with all safety aspects of the relevant requirements of the European Safety of Machinery Directive 98/37/EC as amended, and with those of the most recent versions of standards EN 60204-1 and EN 292-2 at the least.
According to Annex III of Article 13 of Council Directive 93/68/EEC, amending Council Directive 73/23/EEC concerning electrical equipment designed for use within certain voltage limits, the Cello meets the provisions outlined in Council Directive 73/23/EEC. The party responsible for ensuring that the equipment meets the limits required by EMC regulations is the manufacturer of the end product.

1.5 Warranty Information

The products covered in this manual are warranted to be free of defects in material and workmanship and conform to the specifications stated either within this document or in the product catalog description. All Elmo drives are warranted for a period of 12 months from the time of installation, or 18 months from time of shipment, whichever comes first. No other warranties, expressed or implied — and including a warranty of merchantability and fitness for a particular purpose — extend beyond this warranty.
www.elmomc.com
Page 10
MAN-CELIG (Ve r. 1.602)

2 Introduction

Cello Installation Guide
This installation guide describes the Cello servo drive and the steps for its wiring, installation and powering up. Following these guidelines ensures maximum functionality of the drive and the system to which it is connected.

2.1 Drive Description

The Cello is a powerful servo drive that operates in digital current, velocity, position and advanced position modes, in conjunction with a permanent-magnet synchronous brushless motor or DC brush motor. The Cello features flexible sinusoidal and trapezoidal commutation, with vector control. The Cello can operate as a stand-alone device or as part of a multi-axis network in a distributed configuration.
The Cello drive is set up and tuned using Elmo’s Composer software. This Windows-based application enables users to quickly and simply configure the servo drive for optimal use with their motor.
10
Power to the Cello is provided by a 10 to 195 VDC source. A “smart” control-supply algorithm enables the Cello to operate with the power supply only, with no need for an auxiliary 24 Volt supply. If backup functionality is required for storing control parameters in case of power-outs, an external 24 VDC power supply can be connected, providing maximum flexibility and optional backup functionality when needed.
Two variations of the Cello are available: the Standard version and the Advanced version, which features advanced positioning capabilities. Both versions operate with RS-232 and/or CAN communication.

2.2 Product Features

2.2.1 Current Control

Fully digital
Sinusoidal commutation with vector control or trapezoidal commutation with
encoder and/or digital Hall sensors
12-bit current loop resolution
Automatic gain scheduling, to compensate for variations in the DC bus power
supply
www.elmomc.com
Page 11
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Introduction

2.2.2 Velocity Control

Fully digital
Programmable PI and FFW (feed forward) control filters
Sample rate two times current loop sample time
“On-the-fly” gain scheduling
Automatic, manual and advanced manual tuning and determination of optimal
gain and phase margins

2.2.3 Position Control

Programmable PIP control filter
Programmable notch and low-pass filters
Position follower mode for monitoring the motion of the slave axis relative to a
master axis, via an auxiliary encoder input
Pulse-and-direction inputs
11
Sample time: four times that of current loop
Fast event capturing inputs

2.2.4 Advanced Position Control (Advanced model only)

Position-based and time-based ECAM mode that supports a non-linear follower
mode, in which the motor tracks the master motion using an ECAM table stored in flash memory
PT and PVT motion modes
Dual (position/velocity) loop
Fast output compare (OC)

2.2.5 Communication Options

Depending on the application, Cello users can select from two communication options:
RS-232 serial communication
CAN for fast communication in a multi-axis distributed environment
www.elmomc.com
Page 12
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Introduction

2.2.6 Feedback Options

Incremental Encoder – up to 20 Mega-Counts (5 Mega-Pulse) per second
Digital Halls – up to 2 kHz
Incremental Encoder with Digital Halls for commutation – up to 20 Mega-
Counts per second for encoder
Absolute Encoder
Interpolated Analog (Sine/Cosine) Encoder – up to 250 kHz (analog signal)
Internal Interpolation – programmable up to x4096
Automatic Correction of:
amplitude mismatch
phase mismatch
signals offset
Encoder outputs, buffered, differential.
12
Resolver
Programmable 10 to 15 bit resolution
Up to 512 Revolutions Per Second (RPS)
Encoder outputs, buffered, differential
Tachometer and Potentiometer
Two inputs for Tachometer Feedback:
Up to ±50 VDC
Up to ±20 VDC
Potentiometer Feedback:
0 to 5 V voltage range
Resistance: 100 Ω to 1000 Ω
Elmo drives provide supply voltage for all the feedback options

2.2.7 Fault Protection

The Cello includes built-in protection against possible fault conditions, including:
Software error handling
Status reporting for a large number of possible fault conditions
Protection against conditions such as excessive temperature, under/over
voltage, loss of commutation signal, short circuits between the motor power outputs and between each output and power input/return
Recovery from loss of commutation signals and from communication errors
www.elmomc.com
Page 13
MAN-CELIG (Ve r. 1.602)
Auxiliary
Power
Supply
PWM
Controller
Power Stage
Protection
Current Feedback
Incremental
Encoder
24 VDC
I/Os
Incremental Encoder
Buffered Output
or
Emulated Output
Resolver
Analog
Encoder
Auxiliary
Encoder
or
or
Potentiometer
Tachometer
or
or
Communication
RS 232 and CANopen
Cello Installation Guide Introduction

2.3 System Architecture

13
Figure 1: Cello System Block Diagram

2.4 How to Use this Guide

In order to install and operate your Elmo Cello servo drive, you will use this manual in conjunction with a set of Elmo documentation. Installation is your first step; after carefully reading the safety instructions in the first chapter, the following chapters provide you with installation instructions as follows:
Chapter 3, Installation, provides step-by-step instructions for unpacking,
mounting, connecting and powering up the Cello.
Chapter 4, Technical Specifications, lists all the drive ratings and specifications.
Upon completing the instructions in this guide, your Cello servo drive should be successfully mounted and installed. From this stage, you need to consult higher-level Elmo documentation in order to set up and fine-tune the system for optimal operation. The following figure describes the accompanying documentation that you will require.
www.elmomc.com
Page 14
MAN-CELIG (Ve r. 1.602)
SimplIQ Command Reference Manual
Cello Installation Guide
SimplIQ Software Manual
Programming
Setup
Installation
Composer User Manual
CANopen Implementation Guide
Cello Installation Guide Introduction
14
Figure 2: Elmo Documentation Hierarchy
As depicted in the previous figure, this installation guide is an integral part of the Cello documentation set, comprising:
The Composer Software Manual, which includes explanations of all the
software tools that are part of Elmo’s Composer software environment.
The SimplIQ Command Reference Manual, which describes, in detail, each
software command used to manipulate the Cello motion controller.
The SimplIQ Software Manual, which describes the comprehensive software
used with the Cello.
www.elmomc.com
Page 15
MAN-CELIG (Ve r. 1.602)

3 Installation

Cello Installation Guide
The Cello must be installed in a suitable environment and properly connected to its voltage supplies and the motor.

3.1 Before You Begin

3.1.1 Site Requirements

You can guarantee the safe operation of the Cello by ensuring that it is installed in an appropriate environment.
Feature Value
15
Ambient operating temperature
Maximum operating altitude 2,000 m (6562 feet)
Maximum non-condensing humidity 90%
Operating area atmosphere No flammable gases or vapors permitted in area
Models for extended environmental conditions are available.
Caution: The Cello dissipates its heat by convection. The maximum operating ambient temperature of 0 °C to 40 °C (32 °F to 104 °F) must not be exceeded.
0 °C to 40 °C (32 °F to 104 °F)

3.1.2 Hardware Requirements

The components that you will need to install your Cello are:
Component Connector Described in Section Drawing
Main Power Cable VP+ PR 3.4.2.2
Motor Cable M1 M2 M3 3.4.2.1
Backup Supply Cable (if needed)
24V 3.4.3
www.elmomc.com
Page 16
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
Component Connector Described in Section Drawing
Main Feedback Cable FEEDBACK A 3.4.5
16
Auxiliary Feedback Cable (if needed)
Digital I/O Cable (if needed)
Digital Inputs and Analog Inputs Cable (if needed)
RS232 Communication Cable
FEEDBACK B 3.4.7 0
GENERAL I/O
3.4.8.1
J1
GENERAL I/O
3.4.8.2
J2
RS232 3.4.9.1
CAN Communication cable(s) (if needed)
PC for drive setup and tuning
Motor data sheet or manual
CAN (in)
CAN (out)
3.4.9.2
www.elmomc.com
Page 17
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation

3.2 Unpacking the Drive Components

Before you begin working with the Cello system, verify that you have all of its components, as follows:
The Cello servo drive
The Composer software and software manual
The Cello is shipped in a cardboard box with Styrofoam protection.
To unpack the Cello:
Carefully remove the servo drive from the box and the Styrofoam.
Check the drive to ensure that there is no visible damage to the instrument. If any damage has
occurred, report it immediately to the carrier that delivered your drive.
To ensure that the Cello you have unpacked is the appropriate type for your requirements,
locate the part number sticker on the side of the Cello. It looks like this:
17
The P/N number at the top gives the type designation as follows:
Verify that the Cello type is the one that you ordered, and ensure that the voltage meets your
specific requirements.
www.elmomc.com
Page 18
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation

3.3 Mounting the Cello

The Cello has been designed for two standard mounting options:
Wall Mount along the back (can also be mounted horizontally on a metal
surface)
Book Shelf along the side
M4 round head screws, one through each opening in the heat sink, are used to mount the Cello (see the diagram below).
18
Figure 3: Mounting the Cello
www.elmomc.com
Page 19
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation

3.4 Connecting the Cables

The Cello has ten connectors.

3.4.1 Wiring the Cello

Once the Cello is mounted, you are ready to wire the device. Proper wiring, grounding and shielding are essential for ensuring safe, immune and optimal servo performance of the Cello.
Caution: Follow these instructions to ensure safe and proper wiring:
Use twisted pair shielded cables for control, feedback and communication
connections. For best results, the cable should have an aluminum foil shield covered by copper braid, and should contain a drain wire.
The drain wire is a non-insulated wire that is in contact with parts of the cable, usually the shield. It is used to terminate the shield and as a grounding connection.
The impedance of the wire must be as low as possible. The size of the wire
must be thicker than actually required by the carrying current. A 24, 26 or 28 AWG wire for control and feedback cables is satisfactory although 24 AWG is recommended.
19
Use shielded wires for motor connections as well. If the wires are long, ensure
that the capacitance between the wires is not too high: C < 30 nF is satisfactory for most applications.
Keep all wires and cables as short as possible.
Keep the motor wires as far away as possible from the feedback, control and
communication cables.
Ensure that in normal operating conditions, the shielded wires and drain carry
no current. The only time these conductors carry current is under abnormal
conditions, when electrical equipment has become a potential shock or fire hazard while conducting external EMI interferences directly to ground, in order to prevent them from affecting the drive. Failing to meet this requirement can result in drive/controller/host failure.
After completing the wiring, carefully inspect all wires to ensure tightness,
good solder joints and general safety.
www.elmomc.com
Page 20
MAN-CELIG (Ve r. 1.602)
Optional
Ground
Power & Motor
CAN
Feedback B
RS-232
J2: I/O
J1: I/O
Feedback A
Cello Installation Guide Installation
The following connectors are used for wiring the Cello.
Type Function Port Connector Location
20
5-Pin Phoenix
st
(1
two pins)
Power VP+, PR
(provided)
5-Pin Phoenix
Motor M1, M2, M3 (last 3 pins) (provided)
3 ground
Ground PE, PE, PE
Backup Supply
screws
2-Pin Phoenix (provided)
Optional
Backup Supply
24 VDC
Table 1: Connectors on the “Bottom” of the Cello
Type Function Port Connector Location
15-Pin D-Sub Feedback A Feedback A
15-Pin D-Sub
General I/O J1 (high-density)
15-Pin D-Sub
General I/O J2 (high-density)
Table 2: Connectors on the “Front” of the Cello
Type Function Port Connector Location
8-Pin RJ-45 CAN CAN
8-Pin RJ-45 CAN CAN
15-Pin D-Sub
Feedback B Feedback B
(high-density)
8-Pin RJ-45 RS-232 RS-232
Table 3: Connectors on the “Top” of the Cello
www.elmomc.com
Page 21
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
21
Figure 4: Cello Detailed Connection Diagram
www.elmomc.com
Page 22
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation

3.4.2 Connecting the Power Cables

The main power connector, which is located on the bottom of the Cello, includes the following pins:
Pin Function Cable Pin Positions
VP+ Pos. Power input Power
PR Power return Power
PE Protective earth Power
22
AC Motor
DC Motor Cable
Cable
PE Protective earth Motor Motor
M1 Motor phase Motor N/C
M2 Motor phase Motor Motor
M3 Motor phase Motor Motor
Note: When connecting several motors, all must be wired in an identical manner.
Table 4: Connector for Main Power and Motor Cables
3.4.2.1 Connecting the Motor Cable
Connect the motor power cable to the M1, M2, and M3 terminals of the main power connector and the fourth wire to the PE (Protective Earth) on the heat sink (see diagram above). The phase connection order is arbitrary because the Composer will establish the proper commutation automatically during setup.
Notes for connecting the motor cables:
For best immunity, it is highly recommended to use a shielded (not twisted) cable for the motor connection. A 4-wire shielded cable should be used. The gauge is determined by the actual current consumption of the motor.
Connect the shield of the cable to the closest ground connection at the motor end.
Connect the shield of the cable to the PE terminal on the Cello.
Be sure that the motor chassis is properly grounded.
www.elmomc.com
Page 23
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
Figure 5: AC Motor Power Connection Diagram
3.4.2.2 Connecting the Main Power Cable
Connect the main power supply cable to the VP+ and PR terminals of the main power connector. Connect the Protective Earth wire to the PE terminal on the Cello’s heat sink.
Notes for connecting the DC power supply:
Be sure to isolate the source of the DC power supply.
23
For best immunity, it is highly recommended to use twisted cables for the DC power supply cable. A 3-wire shielded cable should be used. The gauge is determined by the actual current consumption of the motor.
Connect both ends of the cable shield to the closest ground connection, one end near the power supply and the other end to the PE terminal on the Cello’s heat sink.
For safety reasons connect the PR of the power supply to the closest ground connection.
Figure 6: Main Power Supply Connection Diagram
www.elmomc.com
Page 24
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation

3.4.3 Connecting the Optional Backup Supply Cable (24 V)

Power to the Cello is provided by a 10 to 195 VDC source. A “smart” control-supply algorithm enables the Cello to operate with the power supply only, with no need for an auxiliary 24 volt supply. If backup functionality is required for storing control parameters in case of power-outs, an external 24 VDC power supply can be connected, providing maximum flexibility and optional backup functionality when needed.
To connect the backup supply to the 24v port on the bottom of the Cello, use the 2-pin power plug provided with the Cello. Remember, you are working with DC power; be sure to exercise caution. The required voltage is 24 VDC.
Notes for 24 VDC backup supply connections:
Use a 24 AWG twisted pair shielded cable. The shield should have copper braid.
The source of the 24 VDC must be isolated.
For safety reasons, connect the return of the 24 VDC source to the closest ground.
Connect the cable shield to the closest ground near the 24 VDC source.
24
Before applying power, first verify the polarity of the connection.
Pin Signal Function Pin Positions
[+] +24VDC +24 VDC backup supply
[-] RET24VDC Return (common) of the 24 VDC
backup supply
Table 5: Backup Cable Plug
Figure 7: Backup Supply (24v) Connection Diagram
www.elmomc.com
Page 25
MAN-CELIG (Ve r. 1.602)
Connector
Drain wire Make sure that the braid
Cello Installation Guide Installation
“Smart” Control Supply Options:
Internal DC-to-DC converter that allows operation from DC power (no need for
an auxiliary external 24 VDC supply for normal operation)
24 VDC supply for backing up the control parameters if DC power is shut off

3.4.4 Feedback and Control Cable Assemblies

The Cello features easy-to-use D-Sub type connections for all Control and Feedback cables. Instructions and diagrams describing how to assemble those cables are presented below.
1. Use 24, 26 or 28 AWG twisted-pair shielded cables (24 AWG cable is recommended). For
best results, the shield should have aluminum foil covered by copper braid.
Use only a D-Sub connector with a metal housing.
Ideally, solder the drain wire to the connector body as shown in Figure 8. However, the shield may also be attached without soldering, as long as the braid shield is in tight contact with the metal housing of the D-type connector.
On the motor side connections, ground the shield to the motor chassis.
25
On controller side connections, follow the controller manufacturer’s recommendations
concerning the shield.
body
soldered to the metal housing
shield is in tight contact with the metal
housing
Figure 8: Feedback and Control Cable Assemblies
Note: All D-Sub type connectors, used with the Cello, should be assembled in this way.

3.4.5 Main Feedback Cable (FEEDBACK A)

The main feedback cable is used to transfer feedback data from the motor to the drive.
The Cello accepts the following as a main feedback mechanism:
Incremental encoder only
Incremental encoder with digital Hall sensors
Digital Hall sensors only
Interpolated Analog (Sine/Cosine) encoder (option)
Resolver (option)
Tachometer & Potentiometer
Absolute encoder
www.elmomc.com
Page 26
MAN-CELIG (Ve r. 1.602)
Incremental
Interpolated
Resolver
Tachometer and
CEL-XX/YYY_
CEL-XX/YYYI
CEL-XX/YYYR
CEL-XX/YYYT
Cello Installation Guide Installation
FEEDBACK A on the “front” of the Cello has a 15-pin D-Sub socket. Connect the Main Feedback cable from the motor to FEEDBACK A using a 15-pin, D-Sub plug with a metal housing. When assembling the Main Feedback cable, follow the instructions in Section 3.4.4 (Feedback and Control Cable Assemblies).
26
Encoder
Analog Encoder
Potentiometer
Pin Signal Function Signal Function Signal Function Signal Function
1 HC Hall sensor C
input
2 HA Hall sensor A
input
3 SUPRET Supply return SUPRET Supply return SUPRET Supply return SUPRET Supply return
4 +5V Encoder/Hall
+5V supply
5 CHA- Channel A
complement
6 CHA Channel A A+ Sine A S1 Sine A Tac 1+ Tacho Input 1 Pos.
7 INDEX- Index
complement
8 INDEX Index R+ Reference R1 Vref f=1/TS,
9 SUPRET Supply return SUPRET Supply return SUPRET Supply return SUPRET Supply return
10 HB Hall sensor B
input
HC Hall sensor C
input
HA Hall sensor A
input
+5V Encoder/Hall
+5V supply
A- Sine A
complement
R- Reference
complement
HB Hall sensor B
input
NC - HC Hall sensor C input
NC - HA Hall sensor A
input
+5V Encoder/Hall
+5V supply
S3 Sine A
complement
R2 Vref complement
f= 1/TS, 50 mA Maximum
50 mA Max.
NC - HB Hall sensor B input
+5V Encoder/Hall +5V
supply
Tac 1- Tacho Input 1
Neg. (20 V max)
(20 V max)
NC -
POT Potentiometer
Input
11 SUPRET Supply return SUPRET Supply return SUPRET Supply return SUPRET Supply return
12 +5V Encoder/Hall
+5V supply
13 SUPRET Supply return SUPRET Supply return SUPRET Supply return SUPRET Supply return
14 CHB- Channel B
complement
15 CHB Channel B B+ Cosine B S2 Cosine B Tac 2+ Tacho Input 2 Pos.
+5V Encoder/Hall
+5V supply
B- Cosine B
complement
+5V Encoder/Hall
+5V supply
S4 Cosine B
complement
+5V Encoder/Hall +5V
supply
Tac 2- Tacho Input 2
Neg. (50 V max)
(50 V max)
Table 6: Main Feedback Cable Pin Assignments (Part A)
www.elmomc.com
Page 27
MAN-CELIG (Ve r. 1.602)
CEL-XX/YYYQ
Cello Installation Guide Installation
Absolute Encoders
Pin Signal Heidenhain Stegmann
1 HC Hall C Hall C
2 HA Hall A Hall A
3 SUPRET Supply return Supply return
4 +5V EnDat (Heidenhain) Encoder +5 supply Halls supply +5V
5 A- Sine A complement Sine A
6 A+ Sine A Sine A complement
7 DATA- Data complement Data complement
8 DATA+ DATA DATA
9 SUPRET Supply return Supply return
10 HB Hall B Hall B
27
11 CLK- CLOCK complement -
12 +8V - Stegmann Encoder +8V supply
8 V @90 mA maximum
13 CLK+ CLOCK -
14 B- Cosine B complement Cosine B complement
15 B+ Cosine B Cosine B
Table 7: Main Feedback Cable Pin Assignments (Part B)
www.elmomc.com
Page 28
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
28
Figure 9: Main Feedback- Incremental Encoder Connection Diagram
www.elmomc.com
Page 29
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
29
Figure 10: Main Feedback – Interpolated Analog (Sine/Cosine) Encoder Connection Diagram
Figure 11: Main Feedback – Resolver Connection Diagram
www.elmomc.com
Page 30
MAN-CELIG (Ve r. 1.602)
Cello
CEL
only one tachometer port is available at a time
Up to 20v Max Feedback Input (use with applications having a Tacho voltage below 20v)
Up to 50v Max Feedback Input (use with applications having a Tacho voltage between 20v and 50v)
Cello
CEL0009B
Cello Installation Guide Installation
30
Figure 12: Main Feedback – Tachometer Feedback with Digital Hall Sensor
Connection Diagram for Brushless Motors
Figure 13: Main Feedback – Tachometer Feedback Connection Diagram for Brush Motors
www.elmomc.com
Page 31
MAN-CELIG (Ve r. 1.602)
Cello
CEL
Cello
CEL
Cello Installation Guide Installation
31
Figure 14: Main Feedback – Potentiometer Feedback with Digital Hall Sensor
Connection Diagram for Brushless Motors
Figure 15: Main Feedback –
Potentiometer Feedback Connection Diagram for Brush Motors and Voice Coils
www.elmomc.com
Page 32
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
32
Figure 16: Main Feedback – Stegmann Feedback Connection Diagram
www.elmomc.com
Page 33
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
33
Figure 17: Main Feedback – Heidenhain Feedback Connection Diagram
www.elmomc.com
Page 34
MAN-CELIG (Ve r. 1.602)
Feedback B Ports B1 and B2
FEEDBACK A 1
FEEDBACK B
Cello Installation Guide Installation

3.4.6 Main and Auxiliary Feedback Combinations

The Main Feedback is always used in motion control devices whereas Auxiliary Feedback is often, but not always used. The Auxiliary Feedback connector on the Cello, FEEDBACK B, has two ports, Port B1 (pins 1 to 5 and 10) and Port B2 (pins 6, 7 and 11 to 14). When used in combination with the Main Feedback port, FEEDBACK A, the ports can be set, by software, as follows:
Feedback A
34
Software Setting
Incremental Encoder Input
Interpolated Analog
(Sin/Cos) Encoder Input
Resolver Input
Tachometer Input
YA[4] = 4 YA[4] = 2 YA[4] = 0
FEEDBACK A input: Incremental Encoder
Port B1 output: Differential and Buffered Main Encoder Signal
Port B2 output: Same as B1
FEEDBACK A input: Analog
Encoder
Port B1 output: Analog Encoder Position Data Emulated in Incremental Encoder Format (signals are quadrature, differential and buffered)
Port B2 output: Same as B1
FEEDBACK A input: Resolver
Port B1 output: Resolver Position Data Emulated in Incremental Encoder Format (signals are quadrature, differential and buffered)
Port B2 output: Same as B1
FEEDBACK A input: Tachometer
Port B1 output: Tachometer
Position Data Emulated in Incremental Encoder Format (signals are quadrature, differential and buffered)
Port B2 output: Same as B1
FEEDBACK A input: Incremental
Encoder or Analog Encoder or Resolver or Tachometer or Potentiometer
Port B1: Differential or Single­Ended Auxiliary Encoder
Port B2: Differential and Buffered Auxiliary Encoder Signal
FEEDBACK A input: Incremental Encoder or Analog Encoder or Resolver or Tachometer or Potentiometer
Port B1: Differential or Single­Ended Pulse and Direction Commands
Port B2: Differential, Buffered and Pulse and Direction Signals
www.elmomc.com
Page 35
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
35
FEEDBACK A
Software Setting
Potentio­meter Input
Typical Applications
YA[4] = 4 YA[4] = 2 YA[4] = 0
FEEDBACK A input: Potentiometer
Port B1 output: Potentiometer Position Data Emulated in Incremental Encoder Format (signals are quadrature, differential and buffered)
Port B2 output: Same as B1
Any application
where the main encoder is used, not only for the drive, but also for other purposes such as position controllers and/or other drives.
Analog Encoder
applications where position data is required in the Encoder’s quadrature format.
Resolver
applications where position data is required in the Encoder’s quadrature format.
FEEDBACK B Ports B1 and B2
FEEDBACK A input: Incremental Encoder or Analog Encoder or Resolver or Tachometer or Potentiometer
Port B1: Differential or Single­Ended Auxiliary Incremental Encoder
Port B2: Differential and Buffered Auxiliary Encoder Signal
Any application where two feedbacks are used by the drive.
Port B1 serves as an input for the auxiliary incremental encoder (differential or single-ended).
Port B2 is used to output differential buffered Auxiliary Incremental Encoder signals.
For applications such as Follower, ECAM, or Dual Loop.
FEEDBACK A input: Incremental Encoder or Analog Encoder or Resolver or Tachometer or Potentiometer
Port B1: Differential or Single­Ended Pulse and Direction Commands
Port B2: Differential Buffered Pulse and Direction Signals
Port B1 serves as an input for Pulse & Direction commands (differential or single-ended).
Port B2 is used to output differential buffered Pulse & Direction signals.

3.4.7 Auxiliary Feedback (FEEDBACK B)

When using one of the auxiliary feedback options, the relevant functionality of FEEDBACK B ports are software selected for that option. Refer to the SimplIQ Command Reference Manual for detailed information about FEEDBACK B setup.
3.4.7.1 Main Encoder Buffered Outputs or Emulated Encoder Outputs Option on
FEEDBACK B (YA[4]=4)
Through FEEDBACK B (Ports B1 and B2) the Cello can provide two simultaneous buffered main, or emulated, encoder signals to other controllers or drives. This option can be used when:
The Cello is used as a current amplifier to provide position data to the position
controller.
The Cello is used in velocity mode, to provide position data to the position
controller.
The Cello is used as a master in Follower or ECAM mode.
www.elmomc.com
Page 36
MAN-CELIG (Ve r. 1.602)
5
15
10
1
11
6
Port B1 Port B2 Power
Cello Installation Guide Installation
Below are the signals on the Auxiliary Feedback ports when set up to run as a buffered outputs or emulated outputs of the main encoder (on FEEDBACK A):
Port Pin Signal Function Pin Positions
B1 1 CHA Auxiliary channel
A high output
B1 2 CHA- Auxiliary channel
A low output
B1 3 CHB Auxiliary channel
B high output
B1 4 CHB- Auxiliary channel
B low output
15-Pin High
Density D-Sub
Plug
B1 5 INDEX Auxiliary Index
high output
B2 6 CHAO Buffered channel
A output
36
B2 7 CHAO- Buffered channel
A complement output
PWR 8 +5V Encoder supply
voltage
PWR 9 SUPRET Encoder supply
voltage return
B1 10 INDEX- Auxiliary Index
low output
B2 11 CHBO Buffered channel
B output
B2 12 CHBO- Buffered channel
B complement output
B2 13 INDEXO Buffered Index
output
B2 14 INDEXO- Buffered Index
complement output
15-Pin High
Density D-Sub
Socket
PWR 15 SUPRET Supply return
Table 8: Main Encoder Buffered Outputs or Emulated Encoder Outputs on FEEDBACK B - Pin
Assignments
FEEDBACK B on the “top” of the Cello has a 15-pin high density D-Sub socket. Connect the Auxiliary Feedback cable, from the controller or other device, to FEEDBACK B using a 15-pin high density D-Sub plug with a metal housing. When assembling the Auxiliary Feedback cable, follow the instructions in Section 3.4.4 (Feedback and Control Cable Assemblies).
www.elmomc.com
Page 37
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
37
Figure 18: Main Encoder Buffered Output or Emulated Encoder Output on FEEDBACK B -
Connection Diagram
www.elmomc.com
Page 38
MAN-CELIG (Ve r. 1.602)
5
15
10
1
11
6
Port B1 Port B2 Power
Cello Installation Guide Installation
3.4.7.2 Differential Auxiliary Encoder Input Option on FEEDBACK B (YA[4]=2)
The Cello can be used as a slave by receiving the position of the master encoder data (on Port B1) in Follower or ECAM mode. In this mode Port B2 provides differential buffered auxiliary outputs for the next slave axis in follower or ECAM mode.
Below are the signals on the Auxiliary Feedback port when set up to run as a differential auxiliary encoder input:
Port Pin Signal Function Pin Positions
B1 1 CHA Auxiliary channel A high input
B1 2 CHA- Auxiliary channel A low input
B1 3 CHB Auxiliary channel B high input
B1 4 CHB- Auxiliary channel B low input
B1 5 INDEX Auxiliary Index high input
B2 6 CHAO Buffered channel A output
B2 7 CHAO- Buffered channel A complement output
15-Pin High Density
D-Sub Plug
38
PWR 8 +5V Encoder supply voltage
PWR 9 SUPRET Encoder supply voltage return
B1 10 INDEX- Auxiliary Index low input
B2 11 CHBO Buffered channel B output
B2 12 CHBO- Buffered channel B complement output
B2 13 INDEXO Buffered Index output
B2 14 INDEXO- Buffered Index complement output
15-Pin High Density
D-Sub Socket
PWR 15 SUPRET Supply return
Table 9: Differential Auxiliary Encoder Input Option on FEEDBACK B
Pin Assignments
FEEDBACK B on the “top” of the Cello has a 15-pin high density D-Sub socket. Connect the Auxiliary Feedback cable from the feedback device to FEEDBACK B using a 15-pin, high density D-Sub plug with a metal housing. When assembling the Auxiliary Feedback cable, follow the instructions in Section 3.4.4 (Feedback and Control Cable Assemblies).
www.elmomc.com
Page 39
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
39
Figure 19: Differential Auxiliary Encoder Input Option on FEEDBACK B -
Connection Diagram
www.elmomc.com
Page 40
MAN-CELIG (Ve r. 1.602)
5
15
10
1
11
6
Port B1 Port B2
Power N.C.
Cello Installation Guide Installation
3.4.7.3 Single-Ended Auxiliary Input Option on FEEDBACK B (YA[4]=2)
The Cello can be used as a slave by receiving the position data (on Port B1) of the master encoder in Follower or ECAM mode. In this mode Port B2 provides differential buffered auxiliary outputs for the next slave axis in Follower or ECAM mode.
Below are the signals on the Auxiliary Feedback ports when set up to run as a single-ended auxiliary input:
Port Pin Signal Function Pin Positions
B1 1 CHA Auxiliary channel A high input
2 NC Do not connect this pin
B1 3 CHB Auxiliary channel B high input
4 NC Do not connect this pin
40
B1 5 INDEX Auxiliary Index high input
B2 6 CHAO Channel A output
B2 7 CHAO- Channel A complement output
15-Pin High Density D-Sub
Plug
PWR 8 +5V Encoder supply voltage
PWR 9 SUPRET Encoder supply voltage return
10 NC Do not connect this pin
B2 11 CHBO Channel B output
B2 12 CHBO- Channel B complement output
B2 13 INDEXO Index output
15-Pin High Density D-Sub
B2 14 INDEXO- Index complement output
Socket
PWR 15 SUPRET Supply return
Table 10: Single-Ended Auxiliary Encoder Option on FEEDBACK B - Pin Assignments
FEEDBACK B on the “top” of the Cello has a 15-pin high density D-Sub socket. Connect the Auxiliary Feedback cable from the feedback device to FEEDBACK B using a 15-pin, high density D-Sub plug with a metal housing. When assembling the Auxiliary Feedback cable, follow the instructions in Section 3.4.4 (Feedback and Control Cable Assemblies).
www.elmomc.com
Page 41
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
41
Figure 20: Single-Ended Auxiliary Input Option on FEEDBACK B - Connection Diagram
www.elmomc.com
Page 42
MAN-CELIG (Ve r. 1.602)
5
15
10
1
11
6
Port B1 Port B2
Power N.C.
Cello Installation Guide Installation
3.4.7.4 Pulse-and-Direction Input Option on FEEDBACK B (YA[4]=0)
This mode is used for input of differential or single-ended pulse-and-direction position commands on Port B1. In this mode Port B2 provides differential buffered pulse-and-direction outputs for another axis.
Below are the signals on the Auxiliary Feedback ports when they are set up to run as a single­ended pulse-and-direction input:
Port Pin Signal Function Pin Positions
B1 1 PULS/CHA Pulse/Auxiliary channel A high input
2 NC Do not connect this pin
B1 3 DIR/CHB Direction/Auxiliary channel B high input
4 NC Do not connect this pin
5 NC Do not connect this pin
42
B2 6 CHAO Channel A output
B2 7 CHAO- Channel A complement output
15-Pin D-Sub Plug
PWR 8 +5V Encoder supply voltage
PWR 9 SUPRET Encoder supply voltage return
10 NC Do not connect this pin
B2 11 CHBO Channel B output.
B2 12 CHBO- Channel B complement output
13 NC Do not connect this pin
14 NC Do not connect this pin
15-Pin D-Sub Socket
PWR 15 SUPRET Supply return
Table 11: Pulse-and-Direction Auxiliary Encoder Pin Assignment on FEEDBACK B
FEEDBACK B on the “top” of the Cello has a 15-pin high density D-Sub socket. Connect the Auxiliary Feedback cable from the Pulse and Direction Controller to FEEDBACK B using a 15-pin, high density D-Sub plug with a metal housing. When assembling the Auxiliary Feedback cable, follow the instructions in Section 3.4.4 (Feedback and Control Cable Assemblies).
www.elmomc.com
Page 43
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
43
Figure 21: Pulse-and-Direction Input Option on FEEDBACK B - Connection Diagram
www.elmomc.com
Page 44
MAN-CELIG (Ve r. 1.602)
5
15
10
1
11
6
Port B1 Port B2
Power N.C.
Cello Installation Guide Installation
Below are the signals on the Auxiliary Feedback ports when they are set up to run as differential pulse-and-direction input:
Port Pin Signal Function Pin Positions
B1 1 PULS/CHA Pulse/Auxiliary channel A high input
B1 2 PULS-/CHA- Pulse-/Auxiliary channel A low input
B1 3 DIR/CHB Direction/Auxiliary channel B high input
B1 4 DIR-/CHB- Direction-/Auxiliary channel B low input
5 NC Do not connect this pin
44
B2 6 CHAO Channel A output
B2 7 CHAO- Channel A complement output
15-Pin D-Sub Plug
PWR 8 +5V Encoder supply voltage
PWR 9 SUPRET Encoder supply voltage return
10 NC Do not connect this pin
B2 11 CHBO Channel B output.
B2 12 CHBO- Channel B complement output
13 NC Do not connect this pin
14 NC Do not connect this pin
15-Pin D-Sub Socket
PWR 15 SUPRET Supply return
Table 12: Differential Pulse-and-Direction Auxiliary Encoder Pin Assignment on FEEDBACK B
www.elmomc.com
Page 45
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
45
Figure 22: Differential Pulse-and-Direction Input Option on FEEDBACK B - Connection
Diagram
www.elmomc.com
Page 46
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation

3.4.8 I/O Cables

The Cello has two I/O ports, J1 and J2. J1 is a general I/O which can be used to connect 6 digital inputs and 5 digital outputs. J2 is an input port for connecting up to 4 separate digital inputs and 2 analog inputs:
I/O J1 Port J2 Port Total
Digital Input 6 4 10
Digital Output 5 - 5
Analog Input - 2 2
3.4.8.1 General I/O Port (J1)
Port J1 has a 15-pin high density D-Sub plug. When assembling this I/O cable, follow the instructions in Section 3.4.4 (Feedback and Control Cable Assemblies) using a 15-pin high density metal case D-Sub female connector (socket).
46
Pin Signal Function Pin Positions
1 IN1 Programmable input 1
2 IN2 Programmable input 2
3 IN3 Programmable input 3
4 OUT2 Programmable output 2
5 OUT3 Programmable output 3
6 IN4 Programmable input 4
7 IN7 Programmable input 7
8 IN8 Programmable input 8
9 INRET General input return
10 OUTRET2-3 Programmable output return 2 & 3
11 OUT4 Programmable output 4
12 OUTRET4-5 Programmable output return 4 & 5
13 OUT5 Programmable output 5
14 OUT1 Programmable output 1
15 OUTRET 1 Programmable output return 1
Table 13: J1 I/O Cable - Pin Assignments
www.elmomc.com
Page 47
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
47
Figure 23: General J1 I/O Connection Diagram
www.elmomc.com
Page 48
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
3.4.8.2 General Input Port (J2)
Port J2 has a 15-pin high density D-Sub socket. When assembling this I/O cable, follow the instructions in Section 3.4.4 (Feedback and Control Cable Assemblies) using a 15-pin high density metal case D-Sub male connector (plug).
Note: Analog Inputs 1 and 2 are functionally identical. However, note that the velocity and
current commands can only be given on Analog Input 1.
Pin Signal Function Pin Positions
1 IN5 Programmable input 5 (high-speed input)
2 IN6 Programmable input 6 (high-speed input)
3 IN9 Programmable input 9
4 IN10 Programmable input 10
5 ANLIN1+ Analog input 1
48
6 INRET5 Programmable input return 5 (high-speed input)
7 INRET6 Programmable input return 6 (high-speed input)
8 INRET9 Programmable input return 9
9 INRET10 Programmable input return 10
10 ANLIN1- Analog input 1
11 ANLIN2+ Analog input 2
12 ANLIN2- Analog input 2
13 ANLRET Analog return
14 ANLRET Analog return
15 SUPRET Supply return
Table 14: General Input J2 Cable - Pin Assignments
www.elmomc.com
Page 49
MAN-CELIG (Ve r. 1.602)
high speed
input
Cello Installation Guide Installation
49
Figure 24: General Input J2 Connection Diagram
www.elmomc.com
Page 50
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation

3.4.9 Communication Cables

The communication cables use an 8-pin RJ-45 plug that connect to the RS-232 and CAN ports on the “top” of the Cello.
The communication interface may differ according to the user’s hardware. The Cello can communicate using the following options:
a. RS-232, full duplex
CAN
RS-232 communication requires a standard, commercial 3-core null-modem cable connected from the Cello to a serial interface on the PC. The interface is selected and set up in the Composer software.
In order to benefit from CAN communication, the user must have an understanding of the basic programming and timing issues of a CAN network. The interface is electrically isolated by optocouplers.
For ease of setup and diagnostics of CAN communication, RS-232 and CAN can be used simultaneously.
50
3.4.9.1 RS-232 Communication
Notes for connecting the RS-232 communication cable:
Use a 26 or 28 AWG twisted pair shielded cable. The shield should have aluminum foil covered by copper braid with a drain wire.
Connect the shield to the ground of the host (PC). Usually, this connection is soldered internally inside the connector at the PC end. You can use the drain wire to facilitate connection.
The male RJ plug must have a shield cover.
Ensure that the shield of the cable is connected to the shield of the RJ plug. The drain wire can be used to facilitate the connection.
Pin Signal Function Pin Locations
1, 2 N/A
3 Tx RS-232 transmit
4 N/A
5 COMRET Communication return
6 Rx RS-232 receive
7, 8 N/A
Table 15: RS-232 Cable - Pin Assignments
www.elmomc.com
Page 51
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
Figure 25: RS-232 Connection Diagram
3.4.9.2 CAN Communication
Notes for connecting the CAN communication cable:
51
Use 26 or 28 AWG twisted pair shielded cables. For best results, the shield should have aluminum foil and covered by copper braid with a drain wire
Connect the shield to the ground of the host (PC). Usually, this connection is soldered internally inside the connector at the PC end. You can use the drain wire to facilitate connection.
The male RJ plug must have a shield cover.
Ensure that the shield of the cable is connected to the shield of the RJ plug. The drain wire can be used to facilitate the connection.
Connect a termination 120-Ω resistor at each of the two ends of the network cable.
Pin Signal Function Pin Positions
1 CAN_H CAN_H busline (dominant high)
2 CAN_L CAN_L busline (dominant low)
3 CAN_GND CAN ground
4, 5 N/A
6 CAN_SHLD Shield, connected to the RJ plug cover
7 CAN_GND CAN Ground
8 N/A
Table 16: CAN Cable – Pin Assignments
www.elmomc.com
Page 52
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation
52
Figure 26: CAN Connection Diagram
Caution:
When installing the CAN communications, ensure that each servo drive is allocated a unique ID. Otherwise, the CAN network may hang.
www.elmomc.com
Page 53
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Installation

3.5 Powering Up

After the Cello has been mounted, check that the cables are intact. The Cello servo drive is then ready to be powered up.
Caution: Before applying power, ensure that the DC supply is within the range specified for your specific type of Cello and that the proper plus-minus connections are in order.

3.6 Initializing the System

After the Cello has been connected and mounted, the system must be set up and initialized. This is accomplished using the Composer, Elmo’s Windows-based software application. Install the application and then perform setup and initialization according to the directions in the Composer Software Manual.
53
www.elmomc.com
Page 54
MAN-CELIG (Ve r. 1.602)

4 Technical Specifications

Cello Installation Guide
This chapter provides detailed technical information regarding the Cello. This includes its dimensions, power ratings, the environmental conditions under which it can be used, the standards to which it complies and other specifications.

4.1 Features

The Cello's features determine how it controls motion, as well as how it processes host commands, feedback and other input.

4.1.1 Motion Control Modes

Current/Torque - up to 14 kHz sampling rate
Velocity - up to 7 kHz sampling rate
Position - up to 3.5 kHz sampling rate
54

4.1.2 Advanced Positioning Motion Control Modes

PTP, PT, PVT, ECAM, Follower, Pulse and Direction, Dual Loop
Fast event capturing inputs
Fast output compare (OC)

4.1.3 Advanced Filters and Gain Scheduling

“On-the-Fly” gain scheduling of current and velocity
Velocity and position with “1-2-4” PIP controllers
Automatic commutation alignment
Automatic motor phase sequencing

4.1.4 Fully Programmable

Third generation programming structure with motion commands
Event capturing interrupts
Event triggered programming
www.elmomc.com
Page 55
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Technical Specifications

4.1.5 Feedback Options

Incremental Encoder – up to 20 Mega-Counts (5 Mega-Pulse) per second
Digital Halls – up to 2 kHz
Incremental Encoder with Digital Halls for commutation – up to 20 Mega-
Counts per second for encoder
Absolute Encoder
Interpolated Analog (Sine/Cosine) Encoder – up to 250 kHz (analog signal)
Internal Interpolation - up to x4096
Automatic Correction of amplitude mismatch, phase mismatch, signals offset
Encoder outputs, buffered, differential.
Resolver
Programmable 10 to 15 bit resolution
Up to 512 revolutions per second (RPS)
55
Encoder outputs, buffered, differential
Elmo drives provide supply voltage for all the feedback options
Tachometer, Potentiometer

4.1.6 Input/Output

Analog Inputs – up to 14-bit resolution
Programmable digital inputs, optically isolated
Inhibit/Enable motion
Software and analog reference stop
Motion limit switches
Begin on input
Abort motion
General-purpose
Homing
2 Fast event capture inputs, optically isolated IN5-IN6
Programmable digital outputs
Brake Control
Amplifier fault indication
General-purpose
Servo enable indication
www.elmomc.com
Page 56
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Technical Specifications
Buffered and differential outputs of the main encoder with up to 5 MHz pulses
Buffered and differential outputs of the auxiliary encoder
Emulated output of the resolver or interpolated analog encoder
Fast output compare (OC), optically isolated

4.1.7 Built-In Protection

Software error handling
Abort (hard stops and soft stops)
Status reporting
Protection against
Shorts between motor power outputs
Shorts between motor power outputs and power input/return
Failure of internal power supplies
56
Overheating
Over/Under voltage
Loss of feedback
Following errors
Current limits
www.elmomc.com
Page 57
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Technical Specifications

4.2 Cello Dimensions

57
www.elmomc.com
Page 58
MAN-CELIG (Ve r. 1.602)
2400
2.25
10.6
Cello Installation Guide Technical Specifications

4.3 Power Ratings

Feature Units
5/60
10/60
15/60
15RMS/60
30/60
3/100
10/100
Minimum supply voltage
Nominal supply voltage
Maximum supply voltage
Maximum continuous power output
Efficiency at rated power (at nominal conditions)
Maximum output voltage
Auxiliary supply voltage
Auxiliary power supply VA 12
VDC 10 20 40
VDC 50 85 170
VDC 59 95 195
W 240 480 720 1000 1440 260 800 1200 1700 2400 360 960 1600
% > 97
97% of DC bus voltage at f=22 kHz
VDC 24 ± 20%
58
15/100
15RMS/100
30/100
2/200
6/200
10/200
15/200
15RMS/200
3400
Amplitude
A 5 10 15 21 30 3.3 10 15 21 30 sinusoidal/DC continuous current
Sinusoidal continuous
A 3.5 7.1
15 21.2 2.3 7.1 10.6 15 21.2 1.6 4.2 7.1 10.6 15
RMS current limit (Ic)
Peak current limit A 2 x Ic
Output power without
% 100 75 100 100 75 50
additional heatsink
Weight g
640 g (22.6 ounces)
(oz)
Dimensions mm
150 x 25.4 x 105 (5.9" x 1.0" x 4.1")
(in)
Digital in/Digital out/
10/5/2
Analog in
Mounting method Wall mount (on back or on side)
6 10 15 21
www.elmomc.com
Page 59
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Technical Specifications

4.4 Environmental Conditions

Feature Details
59
Operating ambient temperature according to IEC60068-2-2
Storage temperature
Maximum non-condensing humidity according to IEC60068-2-78
Maximum Operating Altitude
Mechanical Shock according to IEC60068-2-27
Vibration according to IEC60068-2-6
0 °C to 40 °C (32 °F to 104 °F)
-20 °C to +85 °C ( -4 °F to +185 °F)
95%
2,000 m (6562 feet)
15g / 11ms Half Sine
5 Hz ≤ f ≤ 10 Hz: ±10mm
10 Hz ≤ f ≤ 57 Hz: 4G
57 Hz ≤ f ≤ 500 Hz:5G
www.elmomc.com
Page 60
MAN-CELIG (Ve r. 1.602)
3
2
Optional Back-up
Ground
Power & Motor
CAN
Feedback B
RS-232
J2: I/O
J1: I/O
Feedback A
Cello Installation Guide Technical Specifications

4.5 Cello Connections

The following connectors are used for wiring the Cello.
Pins Type Maker & Part No. Mating Connector Port
60
5 5.00 mm Pitch
Header and Plug
Phoenix Header MSTBA 2.5 HC/5-G
Phoenix Plug (supplied) MSTBT 2.5 HC/5-ST
M4 screws PE, PE, PE
3.81 mm Pitch Header and Plug
Phoenix Header MC 1.5/2-G-3.81
Phoenix Plug (supplied) MC 1.5/2-ST-3.81
Connector Location
Power Supply
Table 17: Connectors on the Bottom of the Cello
Pins Type Port Connector Location
15 D-Sub Socket FEEDBACK A
15 High Density D-Sub Plug J1
VP+, PR
M1, M2, M3
24V
15 High Density D-Sub Socket J2
Table 18: Connectors on the Front of the Cello
Pins Type Port Connector Location
8 RJ-45 CAN
8 RJ-45 CAN
15 High Density D-Sub Socket FEEDBACK B
8 RJ-45 RS-232
Table 19: Connectors on the Top of the Cello
www.elmomc.com
Page 61
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Technical Specifications

4.5.1 Backup Supply (Optional)

Feature Details
Auxiliary power supply DC source only
Auxiliary supply input voltage 24 V ±20%
Auxiliary supply input power 10 W
Note: The Cello can operate without a 24 Volt backup power supply.

4.6 Control Specifications

4.6.1 Current Loop

Feature Details
Controller type Vector, digital
Compensation for bus voltage variations “On-the-fly” gain scheduling
61
Motor types AC brushless (sinusoidal)
DC brushless (trapezoidal)
DC brush
Linear motors
Moving coils
Current control Fully digital
Sinusoidal with vector control
Programmable PI control filter based on a pair of PI controls of AC current signals and constant power at high speed
Current loop bandwidth < 2.5 kHz
Current sampling time
Programmable 70 to 100 µsec
Current sampling rate Up to 16 kHz; default 11 kHz
www.elmomc.com
Page 62
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Technical Specifications

4.6.2 Velocity Loop

Feature Details
Controller type PI
Velocity control Fully digital
Programmable PI and FFW control filters
On-the-fly gain scheduling
Automatic, manual and advanced manual tuning
62
Velocity and position feedback options
Incremental Encoder
Digital Halls
Interpolated Analog (Sine/Cosine) Encoder (optional)
Resolver (optional)
Note: With all feedback options, 1/T with automatic mode switching is activated (gap, frequency and derivative).
Velocity sampling time
140 to 200 µsec (x2 current loop sample time)
Velocity sampling rate Up to 8 kHz; default 5.5 kHz
Velocity command options Analog
Internally calculated by either jogging or step
Note: All software-calculated profiles support on-the-fly changes.

4.6.3 Position Loop

Feature Details
Controller type “1-2-4” PIP
Position command options Software
Pulse and Direction
Position sampling time
280 to 400 µsec (x 4 current loop sample time)
Position sampling rate Up to 4 kHz; default 2.75 kHz
www.elmomc.com
Page 63
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Technical Specifications

4.7 Feedbacks

The Cello can receive and process feedback input from diverse types of devices.

4.7.1 Feedback Supply Voltage

Feature Details
Main encoder supply voltage 5 V ±5% @ 200 mA maximum
Auxiliary encoder supply voltage 5 V ±5% @ 200 mA maximum

4.7.2 Incremental Encoder Input

Feature Details
Encoder format A, B and Index
Differential
Quadrature
63
Interface: RS-422
Input resistance
Differential: 120
Maximum incremental encoder frequency: Maximum: 5 MHz pulses
Minimum quadrature input period (PIN) 112 nsec
Minimum quadrature input high/low period (PHL) 56 nsec
Minimum quadrature phase period (PPH) 28 nsec
Maximum encoder input voltage range
Common mode: ±7 V Differential mode: ±7 V
Figure 27: Encoder Phase Diagram
www.elmomc.com
Page 64
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Technical Specifications

4.7.3 Digital Halls

Feature Details
Halls inputs HA, HB, HC.
Single ended inputs
Built in hysteresis for noise immunity.
64
Input voltage Nominal operating range: 0 V < V
Maximum absolute: -1 V < V High level input voltage: V Low level input voltage: V
InHigh
InLow
In_Hall
> 2.5 V
< 1 V
< 5 V
In_Hall
< 15 V
Input current Sink current (when input pulled to the common): 3
mA
Source current: 1.5 mA (designed to also support open collector Halls)
Maximum frequency f
MAX
: 2 kHz

4.7.4 Interpolated Analog (Sine/Cosine) Encoder

Feature Details
Analog encoder format Sine and Cosine signals
Analog input signal level Offset voltage: 2.2 V to 2.8 V
Differential, 1 V peak to peak
Input resistance
Differential 120
Maximum analog signal frequency f
: 250 kHz
MAX
Interpolation multipliers Programmable: x4 to x4096
Maximum “counts” frequency 80 mega-counts/sec “internally”
Automatic error correction
Signal amplitudes mismatch Signal phase shift Signal offsets
www.elmomc.com
Page 65
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Technical Specifications

4.7.5 Resolver

Feature Details
Resolver format Sine/Cosine
Differential
65
Input resistance
Differential 2.49 k
Resolution Programmable: 10 to 15 bits
Maximum electrical frequency (RPS) 512 revolutions/sec
Resolver transfer ratio 0.5
Reference frequency 1/Ts (Ts = sample time in seconds)
Reference voltage Supplied by the Cello
Reference current up to ±50 mA

4.7.6 Tachometer*

Feature Details
Tachometer format Differential
Maximum operating differential voltage for TAC1+, TAC1-
Maximum absolute differential input voltage for TAC1+, TAC1-
Maximum operating differential voltage for TAC2+, TAC2-
±20 V
±25 V
±50 V
Maximum absolute differential input
±60 V
voltage for TAC2+, TAC2-
Input resistance for TAC1+, TAC1- 46 kΩ
Input resistance for TAC2+, TAC2- 100 kΩ
Resolution 14 bit
* Only one Tachometer port can be used at a time (either TAC1+/TAC1- or TAC2+/TAC2-). TAC1+/TAC1- is used in applications with having a Tachometer of less than 20 V. TAC2+/TAC2- is used in applications with having a Tachometer of between 20 V and 50 V.

4.7.7 Potentiometer

Feature Details
Potentiometer Format Single-ended
Operating Voltage Range 0 to 5 V supplied by the Cello
www.elmomc.com
Page 66
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Technical Specifications
Feature Details
Potentiometer Resistance 100 Ω to 1 kΩ … above this range, linearity is
affected detrimentally
Input Resistance 100 kΩ
Resolution 14 Bit

4.7.8 Encoder Outputs

Feature Details
Encoder output format A, B, Index
Differential outputs
Quadrature
Interface RS-422
66
Port B1 output current capability
Driving differential loads of 200 Ω on INDEX/INDEX-, CHB/CHB- and CHA/CHA­pairs
Port B2 output current capability INDEXO/INDEXO-, CHBO/CHBO- and
CHAO/CHAO- pairs are not loaded
Available as options Two simultaneous buffered outputs of main-
incremental encoder input
Two simultaneous emulated encoder outputs of analog encoder input
Two simultaneous emulated encoder outputs of resolver input
Buffered output of auxiliary input
Maximum frequency f
: 5 MHz pulses/output
MAX
Index (marker) Length of pulse is one quadrature (one quarter of an
encoder cycle) and synchronized to A&B
www.elmomc.com
Page 67
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Technical Specifications

4.8 I/Os

The Cello has:
10 Digital Inputs
5 Digital Outputs
2 Analog Input

4.8.1 Digital Input Interfaces

Feature Details
Type of input Optically isolated
Single ended
PLC level
Input current
= 2.2 mA for Vin = 12 V
* I
in
67
Input current for high speed inputs
= 4.4 mA for Vin = 12 V
* I
in
High-level input voltage 12 V < Vin < 30 V, 24 V typical
Low-level input voltage 0 V < Vin < 6.5 V
Minimum pulse width > 4 x TS, where TS is sampling time
Execution time (all inputs): the time from application of voltage on input until execution is complete
If input is set to one of the built-in functions — Home, Inhibit, Hard Stop, Soft Stop, Hard and Soft Stop, Forward Limit, Reverse Limit or Begin — execution is immediate upon detection: 0 < T < 4 x TS
If input is set to General input, execution depends on program. Typical execution time: ≅ 0.5 msec.
High-speed inputs - minimum pulse width, in high-speed mode (IN5 - IN6)
T < 5 µsec
Notes:
Home mode is high-speed mode and can be used for fast capture and precise homing.
High speed input has a digital filter set to same value as digital filter (EF) of main encoder.
Highest speed is achieved when turning on optocouplers.
www.elmomc.com
Page 68
MAN-CELIG (Ve r. 1.602)
J2: General
J1: General
General input return
Cello Installation Guide Technical Specifications
Feature Details
Connector Location
68
purpose I/O
purpose I/O
Figure 28: Digital Input Schematic

4.8.2 Digital Output Interface

Feature Details
Type of output Optically isolated
Open collector and open emitter
Maximum supply output (VCC) 30 V
Max. output current I
(max) (V
out
= Low)
out
(max) ≤ 15 mA
I
out
VOL at maximum output voltage (low
V
(on) ≤ 0.3 V + 0.02 * I
out
out
(mA)
level)
RL The external resistor RL must be selected to limit the
output current to no more than 15 mA.
Executable time If output is set to one of the built-in functions —
Home flag, Brake or AOK — execution is immediate upon detection: 0 < T < 4 x TS
If output is set to General output and is executed from a program, the typical time is approximately 0.5 msec.
www.elmomc.com
Page 69
MAN-CELIG (Ve r. 1.602)
J2: General
J1: General
Cello Installation Guide Technical Specifications
Feature Details
Connector Location
69
purpose I/O
purpose I/O
Figure 29: Digital Output Schematic
www.elmomc.com
Page 70
MAN-CELIG (Ve r. 1.602)
CAN
port
CAN
port
RS-232
port
Cello Installation Guide Technical Specifications

4.8.3 Analog Input

Feature Details
Maximum operating differential voltage ± 10 V
Maximum absolute differential input voltage ± 16 V
Differential input resistance 3 kΩ
Analog input command resolution 14-bit

4.9 Communications

Specification Details Connector Location
RS-232 Signals:
RxD , TxD , Gnd
Full duplex, serial communication for setup and control.
Baud Rate of 9,600 to 115,200 bit/sec.
70
CAN CAN bus Signals:
CAN_H, CAN_L, CAN_GND
Maximum Baud Rate of 1 Mbit/sec.
Version:
DS 301 V4.01
Device Profile (drive and motion control):
DS 402

4.10 Pulse-Width Modulation (PWM)

Feature Details
PWM resolution 12-bit
PWM switching frequency on the load 2/Ts (factory default 22 kHz on the motor)

4.11 Mechanical Specifications

Feature Details
Mounting method Wall Mount
Overall dimensions 150 x 105 x 25.4 mm (5.9 x 4.13 x 1 in)
Weight 640 g (22.6 oz)
www.elmomc.com
Page 71
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Technical Specifications

4.12 Compliance with Standards

Specification Details
Quality Assurance
ISO 9001:2008 Quality Management
Design
Approved IEC/EN 61800-5-1, Safety Printed wiring for electronic equipment
(clearance, creepage, spacing, conductors sizing, etc.)
MIL-HDBK- 217F Reliability prediction of electronic equipment
(rating, de-rating, stress, etc.)
71
UL 60950
IPC-D-275
Printed wiring for electronic equipment (clearance, creepage, spacing, conductors sizing, etc.)
IPC-SM-782
IPC-CM-770
UL 508C
UL 840
In compliance with VDE0160-7 (IEC 68) Type testing
Safety
Recognized UL 508C Power Conversion Equipment
In compliance with UL 840 Insulation Coordination Including Clearances
and Creepage Distances for Electrical Equipment
In compliance with UL 60950 Safety of Information Technology Equipment
Including Electrical Business Equipment
Approved IEC/EN 61800-5-1, Safety Adjustable speed electrical power drive
systems
In compliance with EN 60204-1 Low Voltage Directive 73/23/EEC
www.elmomc.com
Page 72
MAN-CELIG (Ve r. 1.602)
Cello Installation Guide Technical Specifications
Specification Details
EMC
Approved IEC/EN 61800-3, EMC Adjustable speed electrical power drive
systems
72
In compliance with EN 55011 Class A with
Electromagnetic compatibility (EMC)
EN 61000-6-2: Immunity for industrial environment, according to:
IEC 61000-4-2 / criteria B IEC 61000-4-3 / criteria A IEC 61000-4-4 / criteria B IEC 61000-4-5 / criteria B IEC 61000-4-6 / criteria A IEC 61000-4-8 / criteria A IEC 61000-4-11 / criteria B/C
Workmanship
In compliance with IPC-A-610, level 3 Acceptability of electronic assemblies
PCB
In compliance with IPC-A-600, level 2 Acceptability of printed circuit boards
Packing
In compliance with EN 100015 Protection of electrostatic sensitive devices
Environmental
In compliance with 2002/96/EC Waste Electrical and Electronic Equipment
regulations (WEEE)
In compliance with 2002/95/EC (effective July 2006)
Note: Out-of-service Elmo drives should be
sent to the nearest Elmo sales office.
Restrictions on Application of Hazardous Substances in Electric and Electronic Equipment (RoHS)
www.elmomc.com
Loading...