ElmoMC Gold Bell User Manual

Gold Bell
Digital Servo Drive
Installation Guide
July 2014 (Ver. 1.004)
www.elmomc.com
Elmo Motion Control and the Elmo Motion Control logo are
EtherCAT Conformance Tested. EtherCAT® is a registered
This guide is delivered subject to the following conditions and restrictions:
This guide contains proprietary information belonging to Elmo Motion Control Ltd. Such
information is supplied solely for the purpose of assisting users of the Gold Bell servo drive in its installation.
The text and graphics included in this manual are for the purpose of illustration and
reference only. The specifications on which they are based are subject to change without notice.
Information in this document is subject to change without notice.
registered trademarks of Elmo Motion Control Ltd.
trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
Catalog Number
Document no. MAN-G-BELIG (Ver. 1.004)
Copyright  2014
Elmo Motion Control Ltd.
All rights reserved.
Revision History
Version Details
Ver. 1.0 Initial release
Ver. 1.001 Organized how the Gold DC Whistle features are presented in the document.
Ver. 1.002 Added a caution and recommendation on the type of cleaning solution to use
for the Elmo unit.
Section 5.5.2 - updated the supply output (VDD) voltage range value of the Digital Output Interface - TTL mode.
Updated Section 4.3.2.5: Connector J1 and Section 4.10.1: Digital Inputs
Updated Figure 23 and Figure 24.
Ver. 1.003 Changes to section 4.6
Ver. 1.004 General format updates
Elmo Worldwide
Head Office
Elmo Motion Control Ltd.
60 Amal St., P.O. Box 3078, Petach Tikva 49516 Israel
Tel: +972 (3) 929-2300 • Fax: +972 (3) 929-2322 •
info-il@elmomc.com
North America
Elmo Motion Control Inc.
42 Technology Way, Nashua, NH 03060 USA
Tel: +1 (603) 821-9979 • Fax: +1 (603) 821-9943 info-us@elmomc.com
Europe
Elmo Motion Control GmbH
Hermann-Schwer-Strasse 3, 78048 VS-Villingen Germany
Tel: +49 (0) 7721-944 7120 • Fax: +49 (0) 7721-944 7130 • info-de@elmomc.com
China
Elmo Motion Control Technology (Shanghai) Co. Ltd.
Room 1414, Huawen Plaza, No. 999 Zhongshan West Road, Shanghai (200051) China
Tel: +86-21-32516651 • Fax: +86-21-32516652 • info-asia@elmomc.com
Asia Pacific
Elmo Motion Control APAC Ltd.
B-601 Pangyo Innovalley, 621 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea (463-400)
Tel: +82-31-698-2010 Fax: +82-31-801-8078 info-asia@elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Table of Contents
Gold Bell Installation Guide
Chapter 1: Safety Information .......................................................................................... 8
1.1. Warnings ......................................................................................................................... 9
1.2. Cautions .......................................................................................................................... 9
1.3. Directives and Standards .............................................................................................. 10
1.4. CE Marking Conformance ............................................................................................. 10
1.5. Warranty Information .................................................................................................. 10
Chapter 2: Product Description ...................................................................................... 11
2.1. Functional Description .................................................................................................. 11
2.2. Product Features .......................................................................................................... 11
2.2.1. High Power Density ....................................................................................... 11
2.2.2. Supply Input ................................................................................................... 12
2.2.3. Servo Control ................................................................................................. 12
2.2.4. Advanced Filters and Gain Scheduling........................................................... 13
2.2.5. Motion Control .............................................................................................. 13
2.2.6. Fully Programmable ....................................................................................... 14
2.2.7. Feedback Ports Options ................................................................................. 14
2.2.8. Feedback Sensor Specifications ..................................................................... 14
2.2.9. Communications ............................................................................................ 15
2.2.10. Safety ............................................................................................................. 16
2.2.11. Digital Outputs ............................................................................................... 16
2.2.12. Differential Outputs ....................................................................................... 16
2.2.13. Digital Inputs .................................................................................................. 17
2.2.14. Differential Inputs .......................................................................................... 17
2.2.15. Analog Input .................................................................................................. 17
2.2.16. Built-In Protection ......................................................................................... 18
2.2.17. Status Indication ............................................................................................ 18
2.2.18. Automatic Procedures ................................................................................... 18
2.2.19. Accessories .................................................................................................... 18
2.3. System Architecture ..................................................................................................... 19
2.4. How to Use this Guide .................................................................................................. 20
5
Chapter 3: Technical Information ................................................................................... 21
3.1. Technical Data .............................................................................................................. 21
3.1.1. Auxiliary Supply ............................................................................................. 22
Chapter 4: Installation ................................................................................................... 23
4.1. Site Requirements ........................................................................................................ 23
4.2. Unpacking the Drive Components ................................................................................ 23
4.3. Connectors.................................................................................................................... 25
4.3.1.
Connector Types ............................................................................................ 25
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Safety Information
4.3.2. Pinouts ........................................................................................................... 26
4.3.2.1. Motor Power ................................................................................. 26
4.3.2.2. Main Power ................................................................................... 27
4.3.2.3. Auxiliary Power Connector ........................................................... 27
4.3.2.4. Connector J2 ................................................................................. 28
4.3.2.5. Connector J1 ................................................................................. 31
4.4. Mounting the Gold Bell ................................................................................................ 33
4.5. Integrating the Gold Bell on a PCB ............................................................................... 34
4.5.1. Traces ............................................................................................................. 34
4.5.2. Grounds and Returns ..................................................................................... 34
4.6. The Gold Bell Connection Diagram ............................................................................... 36
4.7. Main Power, Auxiliary Power and Motor Power .......................................................... 37
4.7.1. Motor Power.................................................................................................. 37
4.7.2. Main Power.................................................................................................... 39
4.7.3. Auxiliary Power Supply (Optional) ................................................................. 40
4.7.4. Single Supply .................................................................................................. 41
4.7.5. Separate Auxiliary (Backup) Supply ............................................................... 41
4.7.6. Shared Supply ................................................................................................ 42
4.8. STO (Safe Torque Off) Inputs ........................................................................................ 43
4.9. Feedback ....................................................................................................................... 46
4.9.1. Port A (J2) ...................................................................................................... 47
4.9.1.1. Incremental Encoder .................................................................... 48
4.9.1.2. Absolute Serial Encoder ................................................................ 49
4.9.1.3. Hall Sensors................................................................................... 50
4.9.2. Port B (J2) ....................................................................................................... 51
4.9.2.1. Incremental Encoder .................................................................... 52
4.9.2.2. Interpolated Analog Encoder ........................................................ 53
4.9.2.3. Resolver ........................................................................................ 53
4.9.3. Port C – Emulated Encoder Output (J2) ......................................................... 54
4.9.4. Analog Input .................................................................................................. 55
4.10. User I/Os ....................................................................................................................... 56
4.10.1. Digital Inputs (J1) ........................................................................................... 56
4.10.2. Digital Outputs (J1) ........................................................................................ 59
4.10.3. Analog Input .................................................................................................. 60
4.11. Communications ........................................................................................................... 61
4.11.1. RS-232 Communication (J2) ........................................................................... 61
4.11.2. CAN Communication (J2) ............................................................................... 63
4.11.3. USB 2.0 Communication (J2) ......................................................................... 65
4.11.4. EtherCAT Communication (J2) ....................................................................... 66
4.11.5. Ethernet Communication (J2) ........................................................................ 68
4.11.6. EtherCAT/Ethernet Line Interface ................................................................. 70
4.12. Powering Up ................................................................................................................. 70
4.13. Initializing the System ................................................................................................... 70
4.14. Heat Dissipation............................................................................................................ 70
4.14.1. Thermal Data ................................................................................................. 70
6
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Safety Information
4.14.2. Heat Dissipation Data .................................................................................... 71
4.14.3. How to Use the Charts ................................................................................... 71
Chapter 5: Technical Specifications ................................................................................ 72
5.1. Dimensions ................................................................................................................... 72
5.2. Environmental Conditions ............................................................................................ 73
5.3. Control Specifications ................................................................................................... 73
5.3.1. Current Loop .................................................................................................. 73
5.3.2. Velocity Loop ................................................................................................. 74
5.3.3. Position Loop ................................................................................................. 74
5.4. Feedbacks ..................................................................................................................... 75
5.4.1. Feedback Supply Voltage ............................................................................... 75
5.4.2. Feedback Options .......................................................................................... 75
5.4.2.1. Incremental Encoder Input ........................................................... 75
5.4.2.2. Digital Halls ................................................................................... 76
5.4.2.3. Interpolated Analog (Sine/Cosine) Encoder ................................. 76
5.4.2.4. Resolver ........................................................................................ 77
5.4.2.5. Absolute Serial Encoder ................................................................ 77
5.4.3. Port C Feedback Output ................................................................................ 78
5.5. I/Os ............................................................................................................................... 79
5.5.1. Digital Input Interfaces – TTL Mode .............................................................. 79
5.5.2. Digital Output Interface – TTL Mode ............................................................. 80
5.5.3. Analog Input .................................................................................................. 80
5.6. Safe Torque Off (STO) ................................................................................................... 81
5.6.1. STO Input Interfaces – TTL Mode .................................................................. 81
5.7. Communications ........................................................................................................... 82
5.8. Pulse-Width Modulation (PWM) .................................................................................. 82
5.9. Compliance with Standards .......................................................................................... 83
7
MAN-G-BELIG (Ve r. 1.004)

Chapter 1: Safety Information

Warning:
Caution:
Gold Bell Installation Guide
In order to achieve the optimum, safe operation of the Gold Bell servo drive, it is imperative that you implement the safety procedures included in this installation guide. This information is provided to protect you and to keep your work area safe when operating the Gold Bell and accompanying equipment.
Please read this chapter carefully before you begin the installation process.
Before you start, ensure that all system components are connected to earth ground. Electrical safety is provided through a low-resistance earth connection.
Only qualified personnel may install, adjust, maintain and repair the servo drive. A qualified person has the knowledge and authorization to perform tasks such as transporting, assembling, installing, commissioning and operating motors.
The Gold Bell servo drive contains electrostatic-sensitive components that can be damaged if handled incorrectly. To prevent any electrostatic damage, avoid contact with highly insulating materials, such as plastic film and synthetic fabrics. Place the product on a conductive surface and ground yourself in order to discharge any possible static electricity build-up.
8
To avoid any potential hazards that may cause severe personal injury or damage to the product during operation, keep all covers and cabinet doors shut.
The following safety symbols are used in this manual:
This information is needed to avoid a safety hazard, which might cause bodily injury.
This information is necessary for preventing damage to the product or to other equipment.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Safety Information

1.1. Warnings

To avoid electric arcing and hazards to personnel and electrical contacts, never
connect/disconnect the servo drive while the power source is on.
Power cables can carry a high voltage, even when the motor is not in motion. Disconnect
the Gold Bell from all voltage sources before it is opened for servicing.
The Gold Bell servo drive contains grounding conduits for electric current protection. Any
disruption to these conduits may cause the instrument to become hot (live) and dangerous.
After shutting off the power and removing the power source from your equipment, wait at
least 1 minute before touching or disconnecting parts of the equipment that are normally loaded with electrical charges (such as capacitors or contacts). Measuring the electrical contact points with a meter, before touching the equipment, is recommended.

1.2. Cautions

The Gold Bell servo drive contains hot surfaces and electrically-charged components during
operation.
9
The maximum DC power supply connected to the instrument must comply with the
parameters outlined in this guide.
When connecting the Gold Bell to an approved isolated 12–95 VDC auxiliary power supply,
connect it through a line that is separated from hazardous live voltages using reinforced or double insulation in accordance with approved safety standards.
Before switching on the Gold Bell, verify that all safety precautions have been observed
and that the installation procedures in this manual have been followed.
Do not clean any of the Gold Bell drive's soldering with solvent cleaning fluids of pH greater
than 7 (8 to 14). The solvent corrodes the plastic cover causing cracks and eventual damage to the drive's PCBs.
Elmo recommends using the cleaning fluid Vigon-EFM which is pH Neutral (7).
For further technical information on this recommended cleaning fluid, select the link:
http://www.zestron.com/fileadmin/zestron.com-usa/daten/electronics/Product_TI1s/TI1­VIGON_EFM-US.pdf
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Safety Information

1.3. Directives and Standards

The Gold Bell conforms to the following industry safety standards:
Safety Standard Item
10
In compliance with
Adjustable speed electrical power drive systems
IEC/EN 61800-5-1, Safety
Recognized UL 508C Power Conversion Equipment
In compliance with UL 840 Insulation Coordination Including Clearances and
Creepage Distances for Electrical Equipment
In compliance with UL 60950-1 (formerly UL 1950)
Safety of Information Technology Equipment Including Electrical Business Equipment
In compliance with EN 60204-1 Low Voltage Directive 73/23/EEC
The Gold Bell servo drive has been developed, produced, tested and documented in accordance with the relevant standards. Elmo Motion Control is not responsible for any deviation from the configuration and installation described in this documentation. Furthermore, Elmo is not responsible for the performance of new measurements or ensuring that regulatory requirements are met.

1.4. CE Marking Conformance

The Gold Bell servo drive is intended for incorporation in a machine or end product. The actual end product must comply with all safety aspects of the relevant requirements of the European Safety of Machinery Directive 98/37/EC as amended, and with those of the most recent versions of standards EN 60204-1 and EN 292-2 at the least.
According to Annex III of Article 13 of Council Directive 93/68/EEC, amending Council Directive 73/23/EEC concerning electrical equipment designed for use within certain voltage limits, the Gold Bell meets the provisions outlined in Council Directive 73/23/EEC. The party responsible for ensuring that the equipment meets the limits required by EMC regulations is the manufacturer of the end product.

1.5. Warranty Information

The products covered in this manual are warranted to be free of defects in material and workmanship and conform to the specifications stated either within this document or in the product catalog description. All Elmo drives are warranted for a period of 12 months from the time of installation, or 18 months from time of shipment, whichever comes first. No other warranties, expressed or implied — and including a warranty of merchantability and fitness for a particular purpose — extend beyond this warranty.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)

Chapter 2: Product Description

Gold Bell Installation Guide

2.1. Functional Description

The Gold Bell is an advanced high power density servo drive. It provides top servo performance, advanced networking and built in safety, all in a small PCB mountable package. The Gold Bell has a fully featured motion controller and local intelligence.
The Gold Bell operates from a DC power source. The drive can operate as a stand-alone device or as part of a multi-axis system in a distributed configuration on a real-time network.
The Gold Bell drive is easily set up and tuned using the Elmo Application Studio (EAS) software tools. As part of the Gold product line, it is fully programmable with the Elmo motion control language. For more information about software tools refer to the Elmo Application Studio Software Manual.
The Gold Bell is available in a variety of models. There are multiple power rating options, two different communications options, a number of feedback options and different I/O configuration possibilities.
11

2.2. Product Features

Note: The features described in this chapter relate to the range of Gold Bell models.
Depending on the model you have purchased, not all features are available.
To see the features for your model, look at the product label on the Gold Bell and use the product catalog number schematic that appears at the beginning of this manual and on page 24 to determine which specific features are available to you.

2.2.1. High Power Density

The Gold Bell delivers up to 1.6 kW of continuous power or 3.2 kW of peak power in a 49.4 cc (3.02 in
3
) package (55 x 59 x 15 mm or 2.17” x 2.32” x 0.6”)
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Product Description

2.2.2. Supply Input

Single DC Power Supply: Power to the Gold Bell is provided by a single 12 V to 95 V isolated
DC power source (not included with the Gold Bell). A “smart” control-supply algorithm enables the Gold Bell to operate with only one power supply with no need for an auxiliary power supply for the logic.
Optional Backup Supply: If backup functionality is required in case of power loss, e.g., to
keep the original position, an external 12 V to 95 V isolated supply should be connected. This is more flexible than the requirement for 24 VDC supply. If backup is not needed, a single power supply is used for both the power and logic circuits.
There are multiple voltage ratings of the Gold Bell (12 V to 95 V), so you must use the correct power supply according to the maximum operating voltage of the Gold Bell. See Section Chapter 3: Technical Information.

2.2.3. Servo Control

12
Advanced and extremely fast vector control algorithm (current loop bandwidth: 4 kHz)
Current/Torque sampling rate: up to 25 kHz (40 μs)
Velocity sampling rate: up to 12.5 kHz (80 μs)
Position sampling rate: up to 12.5 kHz (80 μs)
Electrical commutation frequency: up to 4 kHz
Current closed loop bandwidth exceeds 4 kHz
Position/Velocity/Acceleration command range – full 32 bit
Position over velocity, with full dual loop support
Current gain scheduling to compensate for the motor’s non-linear characteristics
Advanced filtering: Low pass, Notch, General Biquad
Current loop gain scheduling to compensate for bus voltage variations
Velocity gain scheduling for ultimate velocity loop performance
Gains and filter scheduling vs. position for mechanical coupling optimization, speed and
position tracking errors
High order filters gain scheduling vs. speed and position
S-curve Profile Smoothing
Cogging, BEMF and
ωxL compensation
Dual Loop Operation supported by Auto Tuning
Fast, easy and efficient advanced Auto Tuning
Incremental encoder frequency of up to 75 Megacounts/sec
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Product Description
Motion profiler numeric range:
9
Position up to ±2 x 10Velocity up to 2 x 10Acceleration up to 2 x 10
counts
9
counts/sec
9
counts/sec2

2.2.4. Advanced Filters and Gain Scheduling

“On-the-Fly” gain scheduling of current and velocity
Velocity and position with “1-2-2” PIP controllers
Automatic commutation alignment
Automatic motor phase sequencing
Current gain scheduling to compensate for the motor's non-linear characteristics
Advanced filtering: Low pass, Notch, General Biquad
Current loop gain scheduling to compensate for bus voltage variations
13
Velocity gain scheduling for reliable velocity loop performance
Gains & filter scheduling vs. position for mechanical coupling optimization, speed and
position tracking errors
High order filters gain scheduling vs. speed and position

2.2.5. Motion Control

Motion control programming environment
Motion modes: PTP, PT, PVT, ECAM, Follower, Dual Loop, Current Follower, Fast event
capturing inputs
Full DS-402 motion mode support, in both the CANopen and CANopen over EtherCAT (CoE)
protocols, including Cyclic Position/Velocity modes. Fast (Hardware) event capturing inputs, supporting < 1 μs latch latency
Fast (hardware) Output Compare, with < 1 μs latency
Output compare repetition rate:
Fixed Gap: UnlimitedTable based: 4 kHz
Motion Commands: Analog current and velocity, Pulse-Width Modulation (PWM) current
and velocity, digital (software), Pulse and Direction
Distributed Motion Control
EAS (Elmo Application Studio) software: an efficient and user friendly auto tuner
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Product Description

2.2.6. Fully Programmable

Third generation programming structure
Event capturing interrupts
Event triggered programming

2.2.7. Feedback Ports Options

There are Port A and Port B feedback input ports that are flexible and configurable. Each
port can be programmed to serve as:
Commutation feedback and/orVelocity feedback and/orPosition feedback
Port A supports the following sensors, depending on the specific model:
Incremental encoder Incremental encoder and digital HallAbsolute serial encoderAbsolute serial encoder and digital Hall (for dual loop)
14
Port B supports the following sensors, depending on the specific model:
Incremental encoderAnalog encoderAnalog HallResolver
Port C is a flexible and configurable feedback output port. It supports the Encoder
emulation outputs of Port A or Port B or internal variables
Analog input (±10 V ptp) support:
Velocity feedback (tachometer) Position feedback (potentiometer)

2.2.8. Feedback Sensor Specifications

Incremental Encoder – up to 75 Megacounts per second (15 MHz on A/B)
Digital Halls:
Up to 4 kHz commutation frequency5 V logicInput voltage up to 15 VDC
Incremental encoder with digital Halls for commutation – up to 75 Megacounts per second
for encoder
Interpolated Analog (Sine/Cosine) Encoder:
Supports 1 V PTP Sin/Cos
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Product Description
Sin/Cos frequency: up to 500 kHzInternal interpolation: up to ×8192Automatic correction of amplitude mismatch, phase mismatch, signal offsetEmulated encoder output of the analog encoder
Analog Hall Sensor:
One feedback electrical cycle = one electrical cycle of the motorSupports 1 V PTP Sin/Cos Sin/Cos Frequency: up to 500 kHzInternal Interpolation: up to ×8192Automatic correction of amplitude mismatch, phase mismatch, signal offset
Resolver
14-bit resolution Up to 512 revolutions per second (RPS) Emulated encoder outputs of the resolver
Auxiliary encoder inputs (ECAM, follower, etc.) single-ended, unbuffered
15
Tachometer & Potentiometer
Absolute serial encoders:
NRZ (Panasonic, Tamagawa, Mitutoyo, etc.)EnDAT 2.2BiSS/SSI
The Gold Bell can provide power (5 V, 2x200 mA max) for encoders, resolvers or Halls.

2.2.9. Communications

Fast and efficient EtherCAT and CAN networking
EtherCAT Slave:
CoE (CANopen over EtherCAT) EoE (Ethernet over EtherCAT) FoE (File over EtherCAT) for firmware downloadSupports Distributed ClockEtherCAT cyclic modes supported down to a cycle time of 250 μs
CANopen (DS-301, DS-305, DS-402)
Ethernet TCP/IP
UDP Telnet
USB 2.0
RS-232 (TTL logic level)
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Product Description

2.2.10. Safety

IEC 61800-5-2, Safe Torque Off (STO)
Two STO (Safe Torque Off) inputsOptically isolated TTL Level (5 V logic)Open collector and open emitter
UL 508C recognition
UL 60950 compliance
CE EMC compliance

2.2.11. Digital Outputs

Two separate programmable digital outputs
Optically isolated sink and source for TTL level
16
Pulse and Direction inputs (single-ended)
PWM current command output for torque and velocity
Optional functions:
Fast output compareBrake control Amplifier fault indicationGeneral purposeServo enable indicationOutput level: up to 30 VOpen collector and open emitter

2.2.12. Differential Outputs

Three differential outputs:
Port C EIA-422 differential output line transmitters Response time < 1 μs Output current: ± 15 mA.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Product Description

2.2.13. Digital Inputs

Six separate programmable digital inputs
TTL Level (5 V logic)Optically isolatedFast digital capture data <5 μs
Optional functions:
Fast event captureInhibit/Enable motion Stop motion under control (hard stop)Motion reverse and forward limit switchesBegin on inputAbort motion HomingGeneral purpose
17

2.2.14. Differential Inputs

Six very fast differential event capture inputs 5 V logic
Via Port A or B (three on each port, depending on model)EIA-422 Differential input line receiver Response time < 1 μs

2.2.15. Analog Input

One Analog Input – up to 14-bit resolution
Input: ±10 V
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Product Description

2.2.16. Built-In Protection

Software error handling
Abort (hard stops and soft stops)
Extensive Status reporting
Protection against:
Shorts between motor power outputs Shorts between motor power outputs and power input/return Failure of internal power suppliesOverheatingOver temperature Motor current
2
i
t motor current
Continuous temperature measurement. Temperature can be read on-the-fly; a warning can
be initiated x degrees before temperature disable is activated.
18
Over/under voltage Loss of feedbackFollowing errorCurrent limits

2.2.17. Status Indication

Output for a bi-color LED

2.2.18. Automatic Procedures

Commutation alignment
Phase sequencing
Current loop offset adjustment
Current loop gain tuning
Current gain scheduling
Velocity loop offset adjustment
Velocity gain tuning
Velocity gain scheduling
Position gain tuning

2.2.19. Accessories

External heatsink. See Section 4.4 for details. Catalog number: WHI-HEATSINK-2.
Cable Kit (TBD)
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Product Description

2.3. System Architecture

19
Figure 1: Gold Bell System Block Diagram
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Product Description

2.4. How to Use this Guide

In order to install and operate your Elmo Gold Bell servo drive, you will use this manual in conjunction with a set of Elmo documentation. Installation is your first step; after carefully reading the safety instructions in the first chapter, the following chapters provide you with installation instructions as follows:
Chapter 3 - Installation, provides step-by-step instructions for unpacking, mounting,
connecting and powering up the Gold Bell.
Chapter 4 - Technical Specifications, lists all the drive ratings and specifications.
Upon completing the instructions in this guide, your Gold Bell servo drive should be successfully mounted and installed. From this stage, you need to consult higher-level Elmo documentation in order to set up and fine-tune the system for optimal operation.
The Gold Product Line Software Manual, which describes the comprehensive software used
with the Gold Bell.
The Gold Product Line Command Reference Manual, which describes, in detail, each
software command used to manipulate the Gold Bell motion controller.
20
The Elmo Application Studio Software Manual, which includes explanations of all the
software tools that are part of the Elmo Application Studio software environment.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)

Chapter 3: Technical Information

Gold Bell Installation Guide
21

3.1. Technical Data

Feature Units 1/100 2.5/100 5/100 10/100 15/100 20/100
Minimum supply voltage VDC 12
Nominal supply voltage VDC 85
Maximum supply voltage VDC 95
Maximum continuous power
W 80 200 400 800 1200 1600
output
Efficiency at rated power (at
% > 99
nominal conditions)
Maximum output voltage > 95% of DC bus voltage at f = 22 kHz
Auxiliary power supply VDC 12 to 95 VDC
(up to 6 VA inc. 5 V/2 x 200 mA for encoder)
Amplitude sinusoidal/DC
A 1.0 2.5 5 10 15 20
continuous current
Sinusoidal continuous RMS
A 0.7 1.8 3.5 7 10.6 14.1
current limit (Ic)
Peak current limit A 2 x Ic
Weight g (oz) 55 g (1.94 oz)
Dimensions mm
(in)
(55 x 59 x 15 mm or 2.17” x 2.32” x 0.6”)
49.4 cc (3.02 in3) package
Digital in/Digital out/Analog in 6/2/1
Mounting method PCB mount
Table 1: Technical Data
Note on current ratings: The current ratings of the Gold Bell are given in units of DC
amperes (ratings that are used for trapezoidal commutation or DC motors). The RMS (sinusoidal commutation) value is the DC value divided by 1.41.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Technical Information

3.1.1. Auxiliary Supply

Feature Details
Auxiliary power supply Isolated DC source only
Auxiliary supply input voltage 12 V to 95 V
Auxiliary supply input power 4 VA without external loading
6 VA with full external loading
22
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)

Chapter 4: Installation

Gold Bell Installation Guide
The Gold Bell must be installed in a suitable environment and properly connected to its voltage supplies and the motor.

4.1. Site Requirements

You can guarantee the safe operation of the Gold Bell by ensuring that it is installed in an appropriate environment.
Feature Value
23
Ambient operating temperature
Maximum non-condensing humidity 90%
Operating area atmosphere No flammable gases or vapors permitted in area
Models for extended environmental conditions are available.
Caution: The Gold Bell dissipates its heat by convection. The maximum ambient
operating temperature of 40 °C (104 °F) must not be exceeded.
0 °C to 40 °C (32 °F to 104 °F)

4.2. Unpacking the Drive Components

Before you begin working with the Gold Bell, verify that you have all of its components, as follows:
The Gold Bell servo drive
The Elmo Application Studio (EAS) software and software manual
The Gold Bell is shipped in a cardboard box with Styrofoam protection.
To unpack the Gold Bell:
1. Carefully remove the servo drive from the box and the Styrofoam.
2. Check the drive to ensure that there is no visible damage to the instrument. If any damage
has occurred, report it immediately to the carrier that delivered your drive.
3. To ensure that the Gold Bell you have unpacked is the appropriate type for your
requirements, locate the part number sticker on the side of the Gold Bell. It looks like this:
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
4. Verify that the Gold Bell type is the one that you ordered, and ensure that the voltage
meets your specific requirements.
The part number at the top gives the type designation as follows:
24
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.3. Connectors

The Gold Bell has nine connectors.

4.3.1. Connector Types

Port Pins Type Function
25
J2 2x24 1.27 mm pitch
0.41 mm sq
Feedbacks, Digital Halls, Analog Inputs, Communications
J1 2x12 I/O, LEDs, STO
M4 1x2 2 mm pitch
M3 1x2 Motor power output 3
0.51 mm sq
Motor power output 4
M2 1x2 Motor power output 2
M1 1x2 Motor power output 1
PE 1x2 Protective earth
PR 1x2 Power input return
VP+ 1x2 Positive power input
VL+ 1x1 Auxiliary power input
Connector Location
Table 2: Connector Types
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.3.2. Pinouts

The pinouts in this section describe the function of each pin in the Gold Bell connectors that are listed in Table 2.
4.3.2.1. Motor Power
For full details see Section 4.7.1.
Pin Function Cable
Brushless Motor Brushed DC Motor Stepper Motor
PE Protective Earth Motor Motor Motor
M1 Motor phase Motor No Connection Motor
M2 Motor phase Motor Motor Motor
M3 Motor phase Motor Motor Motor
M4 Motor phase No Connection No Connection Motor
26
Pin Positions
Table 3: Motor Connector
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
4.3.2.2. Main Power
For full details see Section 4.7.2.
Pin Function Cable Pin Positions
VP+ Pos. Power input Power
PR Power return Power
PE Protective earth Power
Connector Type: 2 mm pitch 0.51 mm sq
27
Table 4: Connector for Main Power
4.3.2.3. Auxiliary Power Connector
For full details see Section 4.7.3.
Pin Function Pin Positions
VL+ Auxiliary Supply Input
PR Auxiliary Supply Return
Connector Type: 2 mm pitch 0.51 mm sq
Table 5: Auxiliary Supply Pins
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Feedback A/B/C, Digital Halls – see
Gold Bell Installation Guide Installation
4.3.2.4. Connector J2
Section 4.9.
Analog Inputs – see Section 4.9.4.
RS-232, EtherCAT, USB – see Section 4.11.
Connector Type: 1.27 mm pitch 0.41 mm sq
Note regarding the EtherCAT and CAN communication options:
28
The J2 Connector exports all supported communication links. However, note that CAN and EtherCAT are not available in the same version of the Gold Bell and are thus not operational simultaneously. See the part number diagram in Section 4.2 above for the different Gold Bell configurations.
Pin (J2) Signal Function
1 PortA_ENC_A+ /ABS_CLK+ Port A- channel A/ Absolute encoder
2 PortC_ENCO_A- Port C- channel A complement output
3 PortA_ENC_A-/ABS_CLK- Port A- channel A complement /
4 PortC_ENCO_A+ Port C- channel A output
5 PortA_ENC_B+/ABS_DATA+ Port A - channel B/ Absolute encoder
6 PortC_ENCO_B- Port C - channel B complement output
7 PortA_ENC_B-/ABS_DATA- Port A - channel B complement /
clock+
Absolute encoder clock-
Data+
Absolute encoder Data-
8 PortCENCO_B+ Port C - channel B output
9 PortA_ENC_INDEX+ Port A – index
10 PortC_ENCO_INDEX- Port C - index complement output
11 PortA_ENC_INDEX- Port A - index complement
12 PortC_ENCO_INDEX+ Port C - index output
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
Pin (J2) Signal Function
13 PortB_ENC_A+/SIN+ Port B - channel A
14 HC Hall sensor C input
15 PortB_ENC_A-/SIN- Port B - channel A complement
16 HB Hall sensor B input
17 PortB_ENC_B+/COS+ Port B - channel B
18 HA Hall sensor A input
19 PortB_ENC_B-/COS- Port B - channel B complement
20 ANARET Analog return
21 PortB_ENC_INDEX+/ANALOG_I+ Port B – index
RESOLVER_OUT+ Vref
22 ANALOG1+ Analog input 1
29
23 PortB_ENC_INDEX-/ANALOG_I- Port B – index complement
RESOLVER_OUT- Vref complement
24 ANALOG1- Analog input 1 complement
25 COMRET Common return
26 +3.3V 3.3 V supply voltage for EtherCAT LEDs
Note: The pin connector should only
be used for the 3.3V EtherCAT LED and EtherCAT RJ-45.
27 PHY_IN_RX+ EtherCAT In receive
28 EtherCAT: PHY_OUT_RX+ EtherCAT Out receive
CAN: Reserved Reserved
29 PHY_IN_RX- EtherCAT In receive complement
30 PHY_OUT_RX- EtherCAT Out receive complement
31 COMRET Common return
32 COMRET Common return
33 PHY_IN_TX+ EtherCAT In transmit
34 EtherCAT: PHY_OUT_TX+ EtherCAT Out transmit complement
CAN: Reserved Reserved
35 PHY_IN_TX- EtherCAT In transmit complement
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
Pin (J2) Signal Function
36 EtherCAT: PHY_OUT_TX- EtherCAT Out transmit complement
CAN: Reserved Reserved
37 PHY_IN_LINK_ACT EtherCAT In active LED
38 EtherCAT: PHY_OUT_LINK_ACT EtherCAT Out active LED
CAN: CAN_L CAN_L BUS Line(dominant low)
39 PHY_IN_SPEED EtherCAT In Speed LED
40 EtherCAT: PHY_OUT_SPEED EtherCAT Out Speed LED
CAN: CAN_H CAN_H BUS Line(dominant high)
41 USBD- USB data complement
42 USBD+ USB data
43 COMRET Common return
30
44 USB_VBUS USB VBUS 5V
45 RS232_RX RS232 receive
46 COMRET Common return
47 +5VE Encoder +5 V supply
48 RS232_TX RS232 transmit
Table 6: Connector J2 – Feedback and Analog Input
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
4.3.2.5. Connector J1
31
I/O, LEDs, STO (safety)
For full details on user I/Os, see Section 4.10.
For full details on STO, see Section
Connector Type: 1.27 mm pitch 0.41 mm sq
Pin (J1) Signal Function
1 Reserved Reserved
2 Reserved Reserved
3 INRET1_6 Programmable digital inputs 1–6 return
4 IN1 Programmable digital input 1
5 IN2 Programmable digital input 2
4.8.
6 IN3 Programmable digital input 3
7 IN4 Programmable digital input 4
8 IN5 Programmable digital input 5
9 IN6 Programmable digital input 6
10 STO_RET Safety signal return
11 STO2 Safety 2 input
12 STO1 Safety 1 input
13 LED_ETHERCAT ERR LED Status EtherCAT ERR
14 LED_ETHERCAT RUN LED Status EtherCAT RUN
15 OUT2 Programmable output 2
16 OUT1 Programmable output 1
17 OUTRET2 OUT 2 return
18 OUTRET1 OUT 1 return
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
Pin (J1) Signal Function
19 LED2 Bi-color indication output 2 (Cathode)
20 LED1 Bi-color indication output 1 (Anode)
21 OUT4 Programmable output 4 not isolated
(3.3V TTL level)
22 OUT3 Programmable output 3 not isolated
(3.3V TTL level)
23 COMRET Common return
24 Reserved Reserved
Table 7: Connector J1 – I/O, LEDs
32
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.4. Mounting the Gold Bell

The Gold Bell was designed for mounting on a printed circuit board (PCB) via 1.27 mm pitch
0.41 mm square pins and 2 mm pitch 0.51 mm square pins. When integrating the Gold Bell into a device, be sure to leave about 1 cm (0.4") outward from the heat sink to enable free air convection around the drive. We recommend that the Gold Bell be soldered directly to the board. Alternatively, though this is not recommended, the Gold Bell can be attached to socket connectors mounted on the PCB. If the PCB is enclosed in a metal chassis, we recommend that the Gold Bell be screw-mounted to it as well to help with heat dissipation. The Gold Bell has screw-mount holes on each corner of the heat sink for this purpose – see below.
33
All measurements are in mm.
Figure 2: Gold Bell Dimensions
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.5. Integrating the Gold Bell on a PCB

The Gold Bell is designed to be mounted on a PCB, either by soldering its pins directly to the PCB or by using suitable socket connectors. In both cases the following rules apply:

4.5.1. Traces

1. The size of the traces on the PCB (thickness and width) is determined by the current
carrying capacity required by the application.
The rated continuous current limit (Ic) of the Gold Bell is the current used for sizing
the motor traces (M1, M2, M3, M4 and PE) and power traces (VP+, PR and PE).
For control, feedbacks and Input/Output conductors, the actual current is very small
but a greater thickness and width of the conductors will contribute to better performance and less interference.
2. The traces should be as short as possible to minimize EMI and also to minimize the heat
generated by the conductors.
3. The spacing between the high voltage conductors (VP+, PR, M1, M2, M3, M4, VL) must be
at least:
34
Surface layer: 1.5 mm
Internal layer: 0.10 mm
Complying with the rules above will help satisfy UL safety standards, MIL-STD-275 and the IPC­D-275 standard for non-coated conductors, operating at voltages lower than 200 VDC.

4.5.2. Grounds and Returns

The returns in each functional block are listed below:
Functional Block Return Pin
Power PR (Power Return)
Internal Switch Mode P. S. PR (Power Return)
Analog input return ANLRET (J2/20)
Common return COMRET (J2/25,31,32,43,46; J1/23)
STO safety signal return STO_RET (J1/10)
Input Return IN_RET (J1/3)
Table 8: Grounds and Returns
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
The returns above are all shorted within the Gold Bell in a topology that results in optimum performance.
Caution: Follow these instructions to ensure safe and proper implementation. Failure to meet any of the below-mentioned requirements can result in drive, controller or host failure.
1. When wiring the traces of the above functions, on the Integration Board, the Returns of
each function must be wired separately to its designated terminal on the Gold Bell. DO NOT USE A COMMON GROUND PLANE. Shorting the commons on the Integration Board may cause performance degradation (ground loops, etc.).
2. Inputs: The six digital inputs are optically isolated from the other parts of the Gold Bell. All
six inputs share one return line, INRET. To retain isolation, the Input Return pin and all other conductors on the input circuit must be laid out separately.
3. STO: The two digital STO inputs are optically isolated from the other parts of the Gold Bell.
All six inputs share one return line, INRET. To retain isolation, the Input Return pin and all other conductors on the input circuit must be laid out separately
35
4. Outputs: The two digital outputs are optically isolated from the other parts of the Gold
Bell. To retain isolation, all the output circuit conductors must be laid out separately.
5. Return Traces: The return traces should be as large as possible, but without shorting each
other, and with minimal cross-overs.
6. Main Power Supply and Motor Traces: The power traces must be kept as far away as
possible from the feedback, control and communication traces.
7. PE Terminal: The PE (Protective Earth) terminal is connected directly to the Gold Bell’s
heat-sink which serves as an EMI common plane. The PE terminal should be connected to the system's Protective Earth. Any other metallic parts (such as the chassis) of the assembly should be connected to the Protective Earth as well.
8. Under normal operating conditions, the PE trace carries no current. The only time these
traces carry current is under abnormal conditions (such as when the device has become a potential shock or fire hazard while conducting external EMI interferences directly to ground). When connected properly the PE trace prevents these hazards from affecting the drive.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.6. The Gold Bell Connection Diagram

36
Figure 3: The Gold Bell Connection Diagram
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.7. Main Power, Auxiliary Power and Motor Power

The Gold Bell receives power from main and auxiliary supplies and delivers power to the motor that it controls.

4.7.1. Motor Power

Note: When connecting several drives to several similar motors, all should be wired in an
identical manner. This will enable the same settings to run on all drives.
Pin Function Cable
Brushless Motor Brushed DC Motor Stepper Motor
PE Protective Earth Motor Motor Motor
M1 Motor phase Motor No Connection Motor
M2 Motor phase Motor Motor Motor
M3 Motor phase Motor Motor Motor
37
M4 Motor phase No Connection No Connection Motor
Pin Positions
Table 9: Motor Connector
Connect the M1, M2, M3, M4 and PE pins on the Gold Bell in the manner described in Section
4.3.2.1. The phase connection is arbitrary as the Elmo Application Software (EAS) will automatically establish the proper commutation during setup. However, if you plan to copy the setup to other drives, then the phase order on all the drives must be the same.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
38
Figure 4: Brushless Motor Power Connection Diagram
Figure 5: DC Brushed Motor Power Connection Diagram
Figure 6: Stepper Motor Power Connection Diagram
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.7.2. Main Power

Pin Function Cable Pin Positions
VP+ Pos. Power input Power
PR Power return Power
PE Protective earth Power
39
Table 10: Connector for Main Power
Connect the VP+, PR and PE pins on the Gold Bell in the manner described in Section 4.3.2.1.
Note: The source of the Main Power Supply must be isolated.
Figure 7: Main Power Supply Connection Diagram (no Auxiliary Supply)
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.7.3. Auxiliary Power Supply (Optional)

Note: The source of the Auxiliary Supply must be isolated.
Connect the VL+ and PR pins on the Gold Bell in the manner described in Section 4.3.2.1.
Pin Function Pin Positions
VL+ Auxiliary Supply Input
PR Auxiliary Supply Return
40
Table 11: Auxiliary Supply Pins
Caution:
Power from the Gold Bell to the motor must come from the Main Supply and not from the Auxiliary Supply.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.7.4. Single Supply

A single isolated DC power supply can provide power for both the main power and the Auxiliary (Drive Logic) Supply. The drawing below shows how a single supply is connected.
41
Figure 8: Single Supply for both the Main Power Supply and the Auxiliary Supply

4.7.5. Separate Auxiliary (Backup) Supply

Power to the Auxiliary Supply can be provided by a separate Auxiliary Supply.
Figure 9: Separate Auxiliary Supply Connection Diagram
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.7.6. Shared Supply

A Main DC Power Supply can be designed to supply power to the drive’s logic as well as to the Main Power (see Figure 8 and the upper portion of Figure 10). If backup functionality is required for continuous operation of the drive’s logic in the event of a main power-out, a backup supply can be connected by implementing “diode coupling” (see the Aux. Backup Supply in Figure 10).
42
Figure 10: Shared Supply Connection Diagram
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.8. STO (Safe Torque Off) Inputs

Activation of Safe Torque Off causes the drive to stop providing power that can cause rotation (or motion in the case of a linear motor) to the motor.
This function may be used to prevent unexpected motor rotation (of brushless DC motors) without disconnecting the drive from the power supply.
The motor is active only as long as 5 V is provided to both STO1 and STO2. Whenever any input voltage is no longer present, power is not provided to the motor and the motor shaft continues to rotate to an uncontrolled stop.
The STO inputs are latched which means that the motor can be re-enabled by a software command only.
In circumstances where external influences (for example, falling of suspended loads) are present, additional measures such as mechanical brakes are necessary to prevent any hazard.
This function corresponds to an uncontrolled stop in accordance with Stop Category 0 of IEC 60204-1.
43
Note: This function does not protect against electrical shock, and additional measures to
turn the power off are necessary.
The following table defines the behavior of the motor as a function of the state of the STO inputs:
Signal – STO1 Signal – STO2 Function
Not Active Not Active Motor is disabled
Not Active Active Motor is disabled
Active Not Active Motor is disabled
Active Active Motor can be enabled
Table 12: Motor Behavior According to Safety Inputs
Note : In the Gold Bell, STO1 also latches a software disable condition.
Pin (J1) Signal Function
12 STO1 Safety 1 input
11 STO2 Safety 2 input
10 STO_RET STO return
Table 13: STO Inputs Pin Assignments
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
Figure 11: STO Input Functionality – Schematic Drawing
The figure below is for the TTL level.
44
Figure 12: STO Input Connection – TTL Level
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
The figure below is for PLC.
45
Figure 13: STO Input Connection – PLC
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.9. Feedback

Figure 14: Feedback Ports on J2
The Gold Bell has two configurable motion sensor input ports, namely, Port A and Port B, together with the emulated buffered output Port C. Motion sensors from the motor are controlled from other sources and can be connected to any of the available inputs on Port A or Port B.
46
The software configuration designates a role to each input, e.g., the incremental encoder on port B is the controlled motor position feedback, the Hall sensors on port A are commutation feedback, and the incremental encoder on port A is follower input.
For more information, about sensors and their use refer to the Gold Line Software Manual.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.9.1. Port A (J2)

Port A supports the following sensor inputs:
Digital Hall sensors
Incremental encoder or absolute serial encoder, depending on the specific model
Differential pulse-width modulation (PWM) signal input can be connected to port A in the models that support input from an incremental encoder. The PWM signal can be connected to the applicable pair of matching + and – encoder channels and is configurable by software.
Differential pulse and direction signal inputs can be connected to port A in the models that support input from an incremental encoder. The signals can be connected to the applicable pair of matching + and – encoder channels and are configurable by software.
47
Port A - Incremental Encoder
Port A - Absolute Serial Encoder
Pin (J2) Signal Function Signal Function
47 +5V Encoder +5V
+5V Encoder +5V supply
supply
25 SUPRET Supply return SUPRET Supply return
1
PortA_ENC_A+ Channel A+ ABS_CLK+ Abs encoder clock
+
3
5
7
9
11
14
16
PortA_ENC_A- Channel A- ABS_CLK- Abs encoder clock -
PortA_ENC_B+ Channel B+ ABS_DATA+ Abs encoder data +
PortA_ENC_B- Channel B- ABS_DATA- Abs encoder data -
PortA_ENC_Index+ Index+ Reserved Reserved
PortA_ENC_Index- Index- Reserved Reserved
HC Hall sensor C HC Hall sensor C
HB Hall sensor B HB Hall sensor B
18
HA Hall sensor A HA Hall sensor A
Table 14: Port A Pin Assignments
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
4.9.1.1. Incremental Encoder
48
Figure 15: Port A Incremental Encoder Input – Recommended Connection Diagram
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
4.9.1.2. Absolute Serial Encoder
49
Figure 16: Absolute Serial Encoder – Recommended Connection Diagram for Sensors
Supporting Data/Clock (e.g., Biss/SSI/EnDAT, etc.)
Figure 17: Absolute Serial Encoder – Recommended Connection Diagram for Sensors
Supporting Data Line Only (NRZ types, e.g., Panasonic / Mitutoyo / etc.)
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
4.9.1.3. Hall Sensors
50
Figure 18: Hall Sensors Connection Diagram
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.9.2. Port B (J2)

Port B supports any of the following sensors:
Incremental encoder, interpolated analog encoder or analog Hall sensors
Or
Resolver (separate hardware option)
Differential PWM signal input can be connected to port B in the models that support input from an incremental encoder. The PWM signal can be connected to the applicable pair of matching + and – encoder channels and is configurable by software.
Differential pulse and direction signal inputs can be connected to port B in the models that support input from an incremental encoder. The signals can be connected to the applicable pair of matching + and – encoder channels and are configurable by software.
51
Port B - Incremental or
Port B - Resolver
Interpolated Analog Encoder
Pin (J2) Signal Function Signal Function
47 +5V Encoder +5V
NC
supply
25 SUPRET Supply return SUPRET Supply return
13 PortB_ENC_A+/
SIN+
15 PortB_ENC_A-/
Channel A+ /
SIN+ Sine+
Sine+
Channel A- / Sine- SIN- Sine-
SIN-
17 PortB_ENC_B+/
COS+
19 PortB_ENC_B-/
COS-
21 PortB_ENC_INDEX
+/ Analog_Index+
23 PortB_ENC_INDEX-
/ Analog_Index-
Channel B+ / Cosine+
Channel B - / Cosine -
Index +/ Analog_Index+
Index -/ Analog_Index-
COS+ Cosine+
COS- Cosine-
RESOLVER_OUT+
Vref f=1/TS, 50 mA Max.
RESOLVER_OUT-
Vref complement f= 1/TS, 50 mA Maximum
Table 15: Port B Pin Assignments
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
4.9.2.1. Incremental Encoder
52
Figure 19: Port B Incremental Encoder Input – Recommended Connection Diagram
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
4.9.2.2. Interpolated Analog Encoder
53
Figure 20: Port B - Interpolated Analog Encoder Connection Diagram
4.9.2.3. Resolver
Figure 21: Port B – Resolver Connection Diagram
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.9.3. Port C – Emulated Encoder Output (J2)

Port C provides emulated encoder output derived from port A or port B feedback inputs, or from internal variables. The output options are:
Port A/B daisy chain (1:1) for incremental encoder
Encoder emulation: Emulate any input sensor, digital or analog, or use to emulate an
internal variable such as virtual profiler.
PWM output: any pair of outputs that is used as an encoder channel (e.g., channel A+ and
channel A-) can be configured by software to become PWM output.
Pulse & Direction output: The output pins that are assigned as channel A and channel B
when used as encoder out can be configured by software to become pulse and direction outputs, respectively.
This port is used when:
The Gold Bell is used as a current amplifier to provide position data to the position
controller.
54
The Gold Bell is used in velocity mode to provide position data to the position controller.
The Gold Bell is used as a master in follower or ECAM mode.
Pin (J2) Signal Function
2 PortC_ENCO_A- Buffered Channel A- output/Pulse-
/PWM-
4 PortC_ENCO_A+ Buffered Channel A+ output /
Pulse+/PWM+
6 PortC_ENCO_B- Buffered Channel B- output / Dir-
8 PortC_ENCO_B+ Buffered Channel B+ output / Dir+
10 PortC_ENCO_INDEX- Buffered Channel INDEX- output
12 PortC_ENCO_INDEX+ Buffered Channel INDEX+ output
Table 16: Port C Pin Assignment
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
55
Figure 22: Emulated Encoder Differential Output – Recommended Connection Diagram

4.9.4. Analog Input

An analog user input can be configured by software to be used as either tachometer velocity sensor input or potentiometer position feedback. For connection diagrams refer to Section 4.10.3.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.10. User I/Os

The Gold Bell has six programmable digital inputs (J1), four digital outputs (J1) and one analog input (J2).

4.10.1. Digital Inputs (J1)

Each of the pins below can function as an independent input. The inputs conform to the TTL level.
Pin (J1) Signal Function
3 INRET1-6 Programmable inputs 1 - 6 return
4 IN1 Programmable digital input 1
(event capture, home, general purpose, RLS, FLS, INH, PWM & dir input, pulse & dir input)
5 IN2 Programmable digital input 2
(event capture, home, general purpose, RLS, FLS, INH, PWM & dir input, pulse & dir input)
56
6 IN3 Programmable digital input 3
(event capture, home, general purpose, RLS, FLS, INH, PWM & dir input, pulse & dir input)
7 IN4 Programmable digital input 4
(event capture, home, general purpose, RLS, FLS, INH, PWM & dir input, pulse & dir input)
8 IN5 Programmable digital input 5
(event capture, home, general purpose, RLS, FLS, INH, PWM & dir input, pulse & dir input)
9 IN6 Programmable digital input 6
(event capture, home, general purpose, RLS, FLS, INH, PWM & dir input, pulse & dir input)
Table 17: Digital Input Pin Assignments
See Figure 23 for the TTL connection.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
57
Figure 23: Digital Input Connection Diagram – TTL Level
See the figure below for the PLC connection.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
58
Figure 24: Digital Input Connection Diagram – PLC
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.10.2. Digital Outputs (J1)

The outputs conform to the TTL level.
Pin (J1) Signal Function
16 OUT1 High speed programmable digital output 1, output
compare
15 OUT2 High speed programmable digital output 2, output
compare
18 OUTRET1 OUT 1 Return
17 OUTRET2 OUT 2 Return
Table 18: Digital Output Pin Assignment
59
Figure 25: Digital Output Connection Diagram – TTL Connection
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.10.3. Analog Input

Pin (J2) Signal Function
22 ANALOG1+ Analog input 1+
24 ANALOG1- Analog input 1-
20 ANARET Analog return
Table 19: Analog Input Pin Assignment
60
Figure 26: Analog Input with Single-Ended Source
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.11. Communications

The communication interface may differ according to the user’s hardware. The Gold Bell can communicate using the following options:
Standard EtherCAT
G-BELXXX/YYYSX G-BELXXX/YYYEX
CAN EtherCAT
USB 2.0 USB 2.0
Ethernet RS-232 (TTL Logic Level)
RS-232 (TTL Logic Level)
Table 20: Gold Bell Communication Options
For ease of setup and diagnostics of CAN communication, RS-232 and CAN can be used simultaneously.
61
Note: When the EtherCAT is connected, and FoE in operation, the USB cable connection
must be disconnected.

4.11.1. RS-232 Communication (J2)

RS-232 communication requires a cable connected from the Gold Bell to a serial interface on the PC. The interface is selected and set up in the Elmo Application Studio (EAS) software.
RS-232 communication of the Gold Bell is at the TTL logic level. It requires an RS-232 Line Driver/Receiver in order to translate the TTL logic level to the standard RS-232 voltage level.
Notes for connecting the RS-232 communication cable:
Connect the shield to the ground of the host (PC). Usually, this connection is soldered
internally inside the connector at the PC end. You can use the drain wire to facilitate connection.
The RS-232 communication port is non-isolated.
Ensure that the shield of the cable is connected to the shield of the connector used for
RS-232 communications. The drain wire can be used to facilitate the connection.
Pin (J2) Signal Function
45 RS232_Rx RS-232 receive (TTL logic level)
48 RS232_Tx RS-232 transmit (TTL logic level)
46 RS232_COMRET Communication return
Table 21: RS-232 Pin Assignments
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
Figure 27 describes the RS-232 connection diagram:
Figure 27: RS-232 Connection Diagram
Note that Elmo does not recommend a specific manufacturer. The following is an example of an RS-232 Line Driver/Receiver. The RS-232 Line Driver/Receiver operates with 3.3 V to 5 V VCC Supply.
62
Figure 28: RS-232 – Translator Block Diagram
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.11.2. CAN Communication (J2)

Note that CAN functionality is not available if you have the EtherCAT version.
In order to benefit from CAN communication, the user must have an understanding of the basic programming and timing issues of a CAN network.
Notes for connecting the CAN communication cable:
Connect the shield to the ground of the host (PC). Usually, this connection is soldered
internally inside the connector at the PC end. You can use the drain wire to facilitate connection.
Ensure that the shield of the cable is connected to the shield of the connector used for
communications. The drain wire can be used to facilitate the connection.
Make sure to have a 120-Ohm resistor termination at each of the two ends of the network
cable.
The Gold Bell’s CAN port is non-isolated.
63
Pin (J2) Signal Function
32 CAN_COMRET CAN Communication Return
38 CAN_L CAN_L bus line (dominant low)
40 CAN_H CAN_H bus line (dominant high)
Table 22: CAN Pin Assignments
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
64
Figure 29: CAN Network Diagram
Caution: When installing CAN communication, ensure that each servo drive
is allocated a unique ID. Otherwise, the CAN network may “hang”.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.11.3. USB 2.0 Communication (J2)

The USB network consists of a Host controller and multiple devices. The Gold Bell is a USB device.
Notes for connecting the USB communication cable:
Connect the shield to the ground of the host (PC). Usually, this connection is soldered
internally inside the connector at the PC end. You can use the drain wire to facilitate connection.
Ensure that the shield of the cable is connected to the shield of the connector used for
communications. The drain wire can be used to facilitate the connection.
Pin (J2) Signal Function
41 USBD- USB _N line
42 USBD+ USB _P line
43 USB COMRET USB Communication return
65
44 USB VBUS USB VBUS 5 V
Table 23: USB 2.0 Pin Assignments
Figure 30: USB Network Diagram
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.11.4. EtherCAT Communication (J2)

To use EtherCAT and Ethernet communication with the Gold Bell, it is required to use an isolation transformer. The most common solution is to use RJ-45 connectors that include transformer isolation.
This section describes how to connect the Gold Bell’s EtherCAT interface using the above mentioned connectors.
For other available options, please see Section 4.11.6.
Notes for EtherCAT Communication:
The EtherCAT IN port can be configured as an Ethernet port for TCP/IP – see the EtherCAT
Manual.
It is recommended to use CAT5e (or higher) cable. Category 5e cable is a high signal
integrity cable with four twisted pairs.
66
Pin (J/2) Signal Function
26 +3.3V 3.3 V for EtherCAT LEDs
27 PHY_IN_RX+ EtherCAT IN RX+ Line
29 PHY_IN_RX- EtherCAT IN RX- Line
31 PHY_IN_COMRET EtherCAT IN Communication Return
33 PHY_IN_TX+ EtherCAT IN TX+ Line
35 PHY_IN_TX- EtherCAT IN TX- Line
37 PHY_IN_LINK_ACT Indicates EtherCAT LINK
39 PHY_IN_SPEED Indicates EtherCAT Speed
28 PHY_OUT_RX+ EtherCAT OUT RX+ Line
30 PHY_OUT_RX- EtherCAT OUT RX- Line
32 PHY_OUT_ COMRET EtherCAT OUT Communication return
34 PHY_OUT_TX+ EtherCAT OUT TX+ Line
36 PHY_OUT_TX- EtherCAT OUT TX- Line
38 PHY_OUT_LINK_ACT Indicates EtherCAT LINK
40 PHY_OUT_SPEED Indicates EtherCAT Speed
Table 24: EtherCAT - Pin Assignments
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
67
Figure 31: EtherCAT Connection Schematic Diagram
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
The diagram above ignores line interface for simplicity.
When connecting several EtherCAT devices in a network, the EtherCAT master must always be the first device in the network. The output of each device is connected to the input of the next device. The output of the last device may remain disconnected. If redundancy is required, the output of the last device should be connected to the input of the EtherCAT master.
Figure 32: EtherCAT Network with no Redundancy
68
Figure 33: EtherCAT Network with Redundancy

4.11.5. Ethernet Communication (J2)

To use EtherCAT and Ethernet communication with the Gold Bell, it is required to use an isolation transformer. The most common solution is to use RJ-45 connectors that include transformer isolation.
This section describes how to connect the Gold Bell Ethernet interface using the above mentioned connectors.
For other available options, please see Section 4.11.6.
Notes for Ethernet Communication:
The EtherCAT IN port can be configured as an Ethernet port for TCP/IP – see the EtherCAT
Manual.
It is recommended to use CAT5e (or higher) cable. Category 5e cable is a high signal
integrity cable with four twisted pairs.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation
Pin (J2) Signal Function
26 +3.3V 3.3 V supply voltage for LEDs
27 PHY_IN_RX+ Ethernet In receive
29 PHY_IN_RX- Ethernet In receive complement
31 PHY_IN_COMRET Ethernet In Communication return
33 PHY_IN_TX+ Ethernet In transmit
35 PHY_IN_TX- Ethernet In transmit complement
37 PHY_IN_LINK_ACT Ethernet In Link/Active LED
39 PHY_IN_SPEED Ethernet In Speed LED
Table 25: Ethernet - Pin Assignments
69
Figure 34: Ethernet Network Schematic Diagram
The diagram above ignores line interface for simplicity.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Installation

4.11.6. EtherCAT/Ethernet Line Interface

Ethernet transceivers require either isolation transformers or capacitor coupling for proper functioning. The Gold Bell unit does not include such isolation, therefore you must take this into consideration when designing the integration board.
In Sections 4.11.4 and 4.11.5, a schematic connection with a standard RJ-45 connector that includes transformer isolation is described.
Other recommended connection options are:
Gold Bell to an RJ-45 connector without an integrated magnetic isolation (e.g., M12
connectors). An isolation transformer is required.
Connecting two EtherCAT ports on the same board can be done using capacitive coupling
or transformer coupling.
For more detailed explanations, including layout recommendations and component selection guidelines contact Elmo’s technical support.

4.12. Powering Up

70
After the Gold Bell is connected to its device, it is ready to be powered up.
Caution: Before applying power, ensure that the DC supply is within the specified range and that the proper plus-minus connections are in order.

4.13. Initializing the System

After the Gold Bell has been connected and mounted, the system must be set up and initialized. This is accomplished using the Composer, Elmo’s Windows-based software application. Install the application and then perform setup and initialization according to the directions in the Composer Software Manual.

4.14. Heat Dissipation

The best way to dissipate heat from the Gold Bell is to mount it so that its heatsink faces up. For best results leave approximately 10 mm of space between the Gold Bell's heatsink and any other assembly.

4.14.1. Thermal Data

Heat dissipation capability (θ): Approximately 10 °C/W.
Thermal time constant: Approximately 240 seconds (thermal time constant means that the
Bell will reach two-thirds of its final temperature after 4 minutes.)
Shut-off temperature: 86 °C 88 °C (measured on the heatsink).
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Whistle 100 Series Power Dissipation
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0
0.5
1
1.5
2
2.533.544.5
5
Peak Current (A)
Power Dissipation (W)
85VDC 70VDC 50VDC
Standard 40 °C Ambient Temp.
Heatsink
Heatsink
Gold Bell
Gold Bell Installation Guide Installation

4.14.2. Heat Dissipation Data

Heat dissipation is shown graphically below:
71
Required
not Required

4.14.3. How to Use the Charts

The charts above are based upon theoretical worst-case conditions. Actual test results show 30% – 50% better power dissipation.
To determine if your application needs a heatsink:
1. Allow the maximum heatsink temperature to be 80 °C or less.
2. Determine the ambient operating temperature of the Gold Bell.
3. Calculate the allowable temperature increase as follows:
For an ambient temperature of 40 °C, ΔT= 80 °C – 40 °C = 40 °C.
4. Use the chart to find the actual dissipation power of the drive. Follow the voltage curve to
the desired output current and then find the dissipated power.
5. If the dissipated power is below 4 W, the Gold Bell will not need additional cooling.
Note: The chart above shows that no heatsink is needed when the heatsink temperature is
80°C, the ambient temperature is 40 °C and the heat dissipated is 4 W.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)

Chapter 5: Technical Specifications

Gold Bell Installation Guide
This chapter provides detailed technical information regarding the Gold Bell. This includes its dimensions, power ratings, the environmental conditions under which it can be used, the standards to which it complies and other specifications.

5.1. Dimensions

72
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Technical Specifications

5.2. Environmental Conditions

Feature Details
Ambient operating temperature 0 °C to 40 °C (32 °F to 104 °F)
Storage temperature -20 °C to +85 °C ( -4 °F to +185 °F)
Maximum non-condensing humidity 90%
Maximum Operating Altitude 2,000 m (6562 feet)
Protection level IP64

5.3. Control Specifications

5.3.1. Current Loop

Feature Details
73
Controller type Vector, digital
Compensation for bus voltage
“On-the-fly” automatic gain scheduling
variations
Motor types
Stepper motors
AC brushless (sinusoidal)
DC brushless (trapezoidal)
DC brush
Linear motors
“Voice” coils
Current control
Fully digital
Sinusoidal with vector control
Programmable PI control filter based on a
pair of PI controls of AC current signals and constant power at high speed
Current loop bandwidth > 4 kHz closed loop
Current sampling time
Programmable 40 to 120 µsec
Current sampling rate Up to 25 kHz; default 20 kHz
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Technical Specifications

5.3.2. Velocity Loop

Feature Details
Controller type PI + Four advanced filters + Two advanced gain
scheduling filters
74
Velocity control
Fully digital
Programmable PI and feed forward control
filters
On-the-fly gain scheduling according to either
speed or position command or feedback
Automatic, quick, advanced or expert tuning
Velocity and position feedback options
Incremental Encoder
Digital Halls
Interpolated Analog (sin/cos) Encoder (optional)
Resolver (optional)
Absolute serial encoder
Note: With all feedback options, 1/T with
automatic mode switching is activated (gap, frequency and derivative).
Velocity loop bandwidth < 500 Hz
Velocity sampling time
80 to 240 µsec (2x current loop sample time)
Velocity sampling rate Up to 12.5 kHz; default 10 kHz
Velocity command options Internally calculated by either jogging or step
Note: All software-calculated profiles support
on-the-fly changes.

5.3.3. Position Loop

Feature Details
Controller type “1-2-2” PIP + three advanced filters + one
advanced gain scheduling filter
Position command options
Position loop bandwidth < 200 Hz
Position sampling time
Position sampling rate Up to 12.5 kHz; default 10 kHz
Software
Pulse and Direction
80 to 240 µsec (2x current loop sample time)
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Technical Specifications

5.4. Feedbacks

5.4.1. Feedback Supply Voltage

The Gold Bell has two feedback ports (Main and Auxiliary). The Gold Bell supplies voltage only to the main feedback device and to the auxiliary feedback device if needed.
Feature Details
Encoder supply voltage 5 V ± 5% @ 2 x 200 mA (maximum)

5.4.2. Feedback Options

The Gold Bell can receive and process feedback input from diverse types of devices.
5.4.2.1. Incremental Encoder Input
Feature Details
75
Encoder format
A, B and Index
Differential
Quadrature
Interface RS-422
Input resistance
Differential: 120
Maximum incremental encoder frequency Maximum absolute: 75 Megacounts per
second (18 MHz on A/B)
Minimum quadrature input period (PIN) 53 nsec
Minimum quadrature input high/low period
26 nsec
(PHL)
Minimum quadrature phase period (PPH) 13 nsec
Maximum encoder input voltage range
Common mode: ± 7 V
Differential mode: ± 7 V
Figure 35: Main Feedback - Encoder Phase Diagram
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Technical Specifications
5.4.2.2. Digital Halls
Feature Details
76
Hall inputs
H
, HB, HC
A
Single ended inputs
Built in hysteresis of 1 V for noise
immunity
Input voltage Nominal operating range: 0 V < V
Maximum absolute: -1 V < V High level input voltage: V Low level input voltage: V
InLow
In_Hall
InHigh
In_Hall
< 15 V
> 2.5 V
< 1 V
Input current Sink current (when input pulled to the
common): 5 mA
Maximum frequency f
MAX
: 4 kHz
5.4.2.3. Interpolated Analog (Sine/Cosine) Encoder
Feature Details
Analog encoder format Sine and Cosine signals
Analog input signal level
Offset voltage: 2.2 V to 2.8 V
< 5 V
Differential, 1 V peak to peak
Input resistance
Maximum analog signal frequency f
Differential: 120
: 500 kHz
MAX
Interpolation multipliers Programmable: x4 to x8192
Maximum “counts” frequency 2 x 10
Automatic error correction
9
counts/sec
Signal amplitudes mismatch
Signal phase shift
Signal offsets
Encoder outputs See Port C Encoder Outputs Specifications,
Section 5.4.3.
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Technical Specifications
5.4.2.4. Resolver
Feature Details
77
Resolver format
Sine/Cosine
Differential
Input resistance
Differential 2.49 k
Resolution Programmable: 10 to 15 bits
Maximum electrical frequency (RPS) 512 revolutions/sec
Resolver transfer ratio 0.5
Reference frequency 1/Ts (Ts = sample time in seconds)
Reference voltage Supplied by the Gold Bell
Reference current up to ±50 mA
Encoder outputs See Port C Encoder Output Specifications,
Section 5.4.3.
5.4.2.5. Absolute Serial Encoder
Feature Details
Encoder format
NRZ (Panasonic, Tamagawa, Mitutoyo,
etc.)
EnDAT 2.2
BiSS/SSI
Interface
RS-485
Clock – Differential output line
Data – Differential bidirectional line
Input Resistance
Differential 120
Transmission Rate Up to 2.5 MHz
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Technical Specifications

5.4.3. Port C Feedback Output

Feature Details
78
Emulated output
A, B, Index
Differential
Interface RS-422
Output current capability Maximum output current: IOH (max) = 2 mA
> 3.0 V
OH
= 2 mA
OL
< 0.4 V
OL
Available as options
High level output voltage: V
Minimum output current: I
Low level output voltage: V
Emulated encoder output of any sensor
on Port A or Port B
Daisy chain Port A or Port B
Emulated encoder output of internal
variables
Emulated encoder outputs of the
tachometer
Emulated encoder outputs of the
potentiometer
Maximum frequency f
: 8 MHz pulses/output
MAX
Edge separation between A & B Programmable number of clocks to allow
adequate noise filtering at remote receiver of emulated encoder signals (default 2 MHz)
Index (marker) Length of pulse is one quadrature (one
quarter of an encoder cycle) and synchronized to A&B
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Technical Specifications

5.5. I/Os

The Gold Bell has:
6 Digital Inputs
2 Digital Outputs
1 Analog Input

5.5.1. Digital Input Interfaces – TTL Mode

Feature Details
Type of input Optically isolated
Input current for all inputs Iin = 3.8 mA @ Vin = 5 V
High-level input voltage 2.4 V < Vin < 15 V, 5 V typical
Low-level input voltage 0 V < Vin < 0.8 V
79
Minimum pulse width
Execution time (all inputs): the time from application of voltage on input until execution is complete
High-speed inputs – 1–6 minimum pulse width, in high-speed mode
> 250 µsec
0 < T < 250 µsec
T > 5 µsec if the input functionality is set to latch/capture (index/strobe).
Notes:
Home mode is high-speed mode and can
be used for fast capture and precise homing.
Highest speed is achieved when turning
on optocouplers.
Capture with differential input
Port A, Port B Index
Figure 36: Digital Input Schematic
T > 0.1 µsec if the differential input functionality is set to touch probe/capture (index/strobe).
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Technical Specifications

5.5.2. Digital Output Interface – TTL Mode

Feature Details
80
Type of output
Optically isolated
Source/Sink
Supply output (VDD) 5 V to 15 V
Max. output current I
(max) (V
out
= Low)
out
VOL at maximum output voltage (low level) V
10 mA
(on) ≤ 0.4 V
out
RL The external resistor RL must be selected to
limit the output current to no more than 10 mA.
Executable time
0 < T < 250 µsec
Figure 37: Digital Output Schematic

5.5.3. Analog Input

Feature Details
Maximum operating differential voltage ± 10 V
Maximum absolute differential input voltage
Differential input resistance 3.74 kΩ
Analog input command resolution 14-bit
± 16 V
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Technical Specifications

5.6. Safe Torque Off (STO)

The Gold Bell has two STO (Safe Torque Off) inputs.

5.6.1. STO Input Interfaces – TTL Mode

Feature Details
Type of input Optically isolated
Input current for all inputs Iin = 3.8 mA @ Vin = 5 V
High-level input voltage 2.4 V < Vin < 15 V, 5 V typical
Low-level input voltage 0 V < Vin < 0.8 V
Minimum pulse width >3 ms
81
Figure 38: STO Input Schematic
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Technical Specifications

5.7. Communications

Specification Details
82
RS-232
CAN
EtherCAT
Signals:
RxD , TxD , COMRET
Full duplex, serial communication for
setup and control
Baud Rate of 9,600 to 57,600 bit/sec
CAN bus Signals:
CAN_H, CAN_L, CAN_RET
Maximum Baud Rate of 1 Mbit/sec.
Version:
DS 301 v4.01
Layer Setting Service and Protocol Support:
DS 305
Device Profile (drive and motion control):
DS 402
100base-T
Baud Rate: 100 Mbit/sec
CAT5 Cable
CoE, FoE, EoE
Ethernet
100base-T
Baud Rate: 100 Mbit/sec
CAT5 Cable
UDP, Telnet
USB
USB 2.0 Device mode

5.8. Pulse-Width Modulation (PWM)

Feature Details
PWM resolution Minimum 10-bit
Default 12-bit
Maximum 14-bit
PWM switching frequency on the load 2/Ts (factory default 40 kHz on the motor)
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Technical Specifications

5.9. Compliance with Standards

Specification Details
Quality Assurance
ISO 9001:2008 Quality Management
Design
Approved IEC/EN 61800-5-1, Safety Printed wiring for electronic equipment
(clearance, creepage, spacing, conductors sizing, etc.)
MIL-HDBK- 217F Reliability prediction of electronic equipment
(rating, de-rating, stress, etc.)
83
UL 60950
IPC-D-275
Printed wiring for electronic equipment (clearance, creepage, spacing, conductors sizing, etc.)
IPC-SM-782
IPC-CM-770
UL 508C
UL 840
In compliance with VDE0160-7 (IEC 68) Type testing
Safety
Recognized UL 508C Power Conversion Equipment
In compliance with UL 840 Insulation Coordination Including Clearances
and Creepage Distances for Electrical Equipment
In compliance with UL 60950 Safety of Information Technology Equipment
Including Electrical Business Equipment
In compliance with IEC/EN 61800-5-1, Safety
Adjustable speed electrical power drive systems
In compliance with EN 60204-1 Low Voltage Directive 73/23/EEC
www.elmomc.com
MAN-G-BELIG (Ve r. 1.004)
Gold Bell Installation Guide Technical Specifications
Specification Details
EMC
Approved IEC/EN 61800-3, EMC Adjustable speed electrical power drive
systems
84
In compliance with EN 55011 Class A with
Electromagnetic compatibility (EMC)
EN 61000-6-2: Immunity for industrial environment, according to:
IEC 61000-4-2 / criteria B IEC 61000-4-3 / criteria A IEC 61000-4-4 / criteria B IEC 61000-4-5 / criteria B IEC 61000-4-6 / criteria A IEC 61000-4-8 / criteria A IEC 61000-4-11 / criteria B/C
Workmanship
In compliance with IPC-A-610, level 3 Acceptability of electronic assemblies
PCB
In compliance with IPC-A-600, level 2 Acceptability of printed circuit boards
Packing
In compliance with EN 100015 Protection of electrostatic sensitive devices
Environmental
In compliance with 2002/96/EC Waste Electrical and Electronic Equipment
regulations (WEEE)
Note: Out-of-service Elmo drives should be
sent to the nearest Elmo sales office.
In compliance with 2002/95/EC (effective July 2006)
Restrictions on Application of Hazardous Substances in Electric and Electronic Equipment (RoHS)
www.elmomc.com
Loading...