Datasheet TK11950MTL, TK11948MTL, TK11940MTL, TK11935MTL, TK11930MTL Datasheet (TOKO)

...
Page 1
TK119xx
01S
VOLTAGE REGULATOR WITH RESET OUTPUT
FEATURES
Very Low Dropout Voltage
Reset Output for Microprocessor
Very Low Quiescent Current (No Load)
Internal Thermal/Overload Shutdown
Low Noise Voltage
Input and Output Voltage Sense
± 2.5 % Output Voltage Accuracy
CMOS or TTL On/Off Control
High Speed On/Off Transient (50 µs typ.)
DESCRIPTION
The TK119xx series are low power, linear regulators with built-in electronic switches. Built-in voltage comparators provide a reset logic ”low” level whenever the input or output voltage falls outside internally preset limits. The internal electronic switch can be controlled by CMOS or TLL levels. The device is in the “off” state when the control pin is biased “high”.
An internal PNP pass-transistor is used in order to achieve low dropout voltage (typically 200 mV at 50 mA load current). The device has very low quiescent current (130 µA) in the “on” mode with no load and 2 mA with 30 mA load. The quiescent current is typically 4 mA at 60 mA load. The current consumption in the “off” mode is 65 µA. An internal thermal shutdown circuit limits the junction temperature to below 150 oC. The load current is internally monitored and the device will shut down (no load current) in the presence of a short circuit at the output. The output noise is very low at 100 dB down from V external noise bypass capacitor is used. The TK119xx is available in a miniature SOT-23L surface mount package.
ORDERING INFORMATION
when an
OUT
FEA TURES
Battery Powered Systems
Cellular Telephones
Pagers
Personal Communications Equipment
Portable Instrumentation
Portable Consumer Equipment
Radio Control Systems
Toys
Low Voltage Systems
TK119xx
NOISE
BYPASS
CONTROL
RESET
OUTPUT
BLOCK DIAGRAM
V
IN
CONTROL
SHUT
DOWN
THERMAL
PROTECTION
ERROR
DETECTION
V
IN
GND
V
OUT
V
OUT
RESET
OUTPUT
VOLTAGE CODE
22 = 2.25 V 35 = 2.5 V 27 = 2.75 V 40 = 4.0 V 30 = 3.00 V 48 = 4.8 V 32 = 3.25 V 50 = 5.0 V
TK119 M
Tape/Reel Code
Voltage Code
TAPE/REEL CODE
TL: Tape Left
BANDGAP
NOISE
BYPASS
GND
January 1999 TOKO, Inc. Page 1
Page 2
TK119xx
ABSOLUTE MAXIMUM RATINGS
Supply Voltage ......................................................... 17 V
Operating Voltage Range............................... 1.8 to 16 V
Power Dissipation (Note 1) ................................ 400 mW
Storage Temperature Range ................... -55 to +150 °C
TK11922 ELECTRICAL CHARACTERISTICS
Test conditions: V
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
= 3.25 V, C
IN
= 10 µF, C
L
= 0.01 µF, T
N
Operating Temperature Range ...................-30 to +80 °C
Junction Temperature .......................................... 150 °C
Lead Soldering Temperature (10 s) ..................... 235 °C
= 25 °C, unless otherwise specified.
A
I
Q
I
DNG
I
YBTS
V
TUO
V
PORD
I
TUO
tnerruCtnecseiuQ
tnerruCdnuorGI
tnerruCybdnatSFFOtuptuO59061Aµ
egatloVtuptuO
egatloVtuoporDI
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
geRdaoLnoitalugeRdaoLI
V
TUO
/T
tneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
V
ON
V
TED
V
)RRE(TED
ecnareloT
egatloVesioNtuptuO
dlohserhTrotceteDegatloV
I
TUO
V
NI
TUO
I
TUO
I
TUO
TUO
NI
TUO
C
N
Am0=041003Aµ
I,V52.1=
TUO
Am0=083009Aµ
Am06=5.201Am
T,Am1=
A
C°52=71.252.233.2V
03-,Am1= TA≤ C°0831.252.273.2V
Am03=061053Vm
V52.21ot52.3=505Vm
Am08ot1=02001Vm
L
zH01 f C,zHk001
Fµ01=86Bd
L
,Fµ01=
Fµ10.0=
dlohserhTrotceteDegatloVwoL V
4-V
05smrVµ
59.0xV
TUO
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
V V
T
Note 1: Power dissipation is 400 mW when mounted as recommended. Derate at 3.2 mW/°C for operation above 25°C.
)NO(TNOC
)FFO(TNOC
R
emiTesiRtuptuO
tnerruClanimreTlortnoC
V
)NO(egatloVlortnoCNOtuptuO6.0V
)FFO(egatloVlortnoCFFOtuptuO2.2V
I
)NOotFFO(
TUO
C
N
V
V5=52001Aµ
TNOC
V61=54051Aµ
TNOC
C,Am03=
L
Fµ1.0=
,Fµ1.0=
05sµ
Page 2 January 1999 TOKO, Inc.
Page 3
TK11927 ELECTRICAL CHARACTERISTICS
Test conditions: V
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
= 3.75 V, C
IN
= 10 µF, C
L
= 0.01 µF, T
N
= 25 °C, unless otherwise specified.
A
TK119xx
I
Q
I
DNG
I
YBTS
V
TUO
V
PORD
I
TUO
tnerruCtnecseiuQ
tnerruCdnuorGI
tnerruCybdnatSFFOtuptuO59061Aµ
egatloVtuptuO
egatloVtuoporDI
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
geRdaoLnoitalugeRdaoLI
V
TUO
/T
tneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
V
ON
V
TED
V
)RRE(TED
ecnareloT
egatloVesioNtuptuO
dlohserhTrotceteDegatloV
I
TUO
V
NI
TUO
I
TUO
I
TUO
TUO
NI
TUO
C
N
Am0=041003Aµ
I,V57.1=
TUO
Am0=083009Aµ
Am06=5.201Am
T,Am1=
A
C°52=76.257.238.2V
03-,Am1= TA≤ C°0836.257.278.2V
Am03=061053Vm
V57.21ot57.3=505Vm
Am08ot1=02001Vm
L
zH01 f C,zHk001
Fµ01=86Bd
L
,Fµ01=
Fµ10.0=
dlohserhTrotceteDegatloVwoL V
4-V
05smrVµ
59.0xV
TUO
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
V V
T
)NO(TNOC
)FFO(TNOC
R
emiTesiRtuptuO
tnerruClanimreTlortnoC
V
)NO(egatloVlortnoCNOtuptuO6.0V
)FFO(egatloVlortnoCFFOtuptuO4.2V
I
)NOotFFO(
TUO
C
N
V
V5=52001Aµ
TNOC
V61=54051Aµ
TNOC
C,Am03=
L
Fµ1.0=
,Fµ1.0=
05sµ
January 1999 TOKO, Inc. Page 3
Page 4
TK119xx
TK11930 ELECTRICAL CHARACTERISTICS
Test conditions: V
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
= 4.0 V, C
IN
= 10 µF, C
L
= 0.01 µF, T
N
= 25 °C, unless otherwise specified.
A
I
Q
I
DNG
I
YBTS
V
TUO
V
PORD
I
TUO
tnerruCtnecseiuQ
tnerruCdnuorGI
tnerruCybdnatSFFOtuptuO59061Aµ
egatloVtuptuO
egatloVtuoporDI
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
geRdaoLnoitalugeRdaoLI
V
TUO
/T
tneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
V
ON
V
TED
V
)RRE(TED
ecnareloT
egatloVesioNtuptuO
dlohserhTrotceteDegatloV
I
TUO
V
NI
TUO
I
TUO
I
TUO
TUO
NI
TUO
C
N
Am0=041003Aµ
I,V0.2=
TUO
Am0=083009Aµ
Am06=5.201Am
T,Am1=
A
C°52=29.20.380.3V
03-,Am1= TA≤ C°0888.20.321.3V
Am03=061053Vm
V0.31ot0.4=505Vm
Am08ot1=02001Vm
L
zH01 f C,zHk001
Fµ01=86Bd
L
,Fµ01=
Fµ10.0=
dlohserhTrotceteDegatloVwoL V
4-V
05smrVµ
59.0xV
TUO
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
V V
T
)NO(TNOC
)FFO(TNOC
R
emiTesiRtuptuO
tnerruClanimreTlortnoC
V
)NO(egatloVlortnoCNOtuptuO6.0V
)FFO(egatloVlortnoCFFOtuptuO4.2V
I
)NOotFFO(
TUO
C
N
V
V5=52001Aµ
TNOC
V61=54051Aµ
TNOC
C,Am03=
L
Fµ1.0=
,Fµ1.0=
05sµ
Page 4 January 1999 TOKO, Inc.
Page 5
TK11932 ELECTRICAL CHARACTERISTICS
Test conditions: V
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
= 4.25 V, C
IN
= 10 µF, C
L
= 0.01 µF, T
N
= 25 °C, unless otherwise specified.
A
TK119xx
I
Q
I
DNG
I
YBTS
V
TUO
V
PORD
I
TUO
tnerruCtnecseiuQ
tnerruCdnuorGI
tnerruCybdnatSFFOtuptuO59061Aµ
egatloVtuptuO
egatloVtuoporDI
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
geRdaoLnoitalugeRdaoLI
V
TUO
/T
tneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
V
ON
V
TED
V
)RRE(TED
ecnareloT
egatloVesioNtuptuO
dlohserhTrotceteDegatloV
I
TUO
V
NI
TUO
I
TUO
I
TUO
TUO
NI
TUO
C
N
Am0=041003Aµ
I,V52.2=
TUO
Am0=083009Aµ
Am06=5.201Am
T,Am1=
A
C°52=71.352.333.3V
03-,Am1= TA≤ C°0831.352.373.3V
Am03=061053Vm
V52.31ot52.4=505Vm
Am08ot1=02001Vm
L
zH01 f C,zHk001
Fµ01=86Bd
L
,Fµ01=
Fµ10.0=
dlohserhTrotceteDegatloVwoL V
4-V
05smrVµ
59.0xV
TUO
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
V V
T
)NO(TNOC
)FFO(TNOC
R
emiTesiRtuptuO
tnerruClanimreTlortnoC
V
)NO(egatloVlortnoCNOtuptuO6.0V
)FFO(egatloVlortnoCFFOtuptuO4.2V
I
)NOotFFO(
TUO
C
N
V
V5=52001Aµ
TNOC
V61=54051Aµ
TNOC
C,Am03=
L
Fµ1.0=
,Fµ1.0=
05sµ
January 1999 TOKO, Inc. Page 5
Page 6
TK119xx
TK11935 ELECTRICAL CHARACTERISTICS
Test conditions: V
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
= 4.5 V, C
IN
= 10 µF, C
L
= 0.01 µF, T
N
= 25 °C, unless otherwise specified.
A
I
Q
I
DNG
I
YBTS
V
TUO
V
PORD
I
TUO
tnerruCtnecseiuQ
tnerruCdnuorGI
tnerruCybdnatSFFOtuptuO59061Aµ
egatloVtuptuO
egatloVtuoporDI
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
geRdaoLnoitalugeRdaoLI
V
TUO
/T
tneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
V
ON
V
TED
V
)RRE(TED
ecnareloT
egatloVesioNtuptuO
dlohserhTrotceteDegatloV
I
TUO
V
NI
TUO
I
TUO
I
TUO
TUO
NI
TUO
C
N
Am0=041003Aµ
I,V5.2=
TUO
Am0=083009Aµ
Am06=5.201Am
T,Am1=
A
C°52=14.305.395.3V
03-,Am1= TA≤ C°0873.305.336.3V
Am03=061053Vm
V5.31ot5.4=505Vm
Am08ot1=02001Vm
L
zH01 f C,zHk001
Fµ01=86Bd
L
,Fµ01=
Fµ10.0=
dlohserhTrotceteDegatloVwoL V
4-V
05smrVµ
59.0xV
TUO
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
V V
T
)NO(TNOC
)FFO(TNOC
R
emiTesiRtuptuO
tnerruClanimreTlortnoC
V
)NO(egatloVlortnoCNOtuptuO6.0V
)FFO(egatloVlortnoCFFOtuptuO4.2V
I
)NOotFFO(
TUO
C
N
V
V5=52001Aµ
TNOC
V61=54051Aµ
TNOC
C,Am03=
L
Fµ1.0=
,Fµ1.0=
05sµ
Page 6 January 1999 TOKO, Inc.
Page 7
TK11940 ELECTRICAL CHARACTERISTICS
Test conditions: V
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
= 5.0 V, C
IN
= 10 µF, C
L
= 0.01 µF, T
N
= 25 °C, unless otherwise specified.
A
TK119xx
I
Q
I
DNG
I
YBTS
V
TUO
V
PORD
I
TUO
tnerruCtnecseiuQ
tnerruCdnuorGI
tnerruCybdnatSFFOtuptuO59061Aµ
egatloVtuptuO
egatloVtuoporDI
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
geRdaoLnoitalugeRdaoLI
V
TUO
/T
tneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
V
ON
V
TED
V
)RRE(TED
ecnareloT
egatloVesioNtuptuO
dlohserhTrotceteDegatloV
I
TUO
V
NI
TUO
I
TUO
I
TUO
TUO
NI
TUO
C
N
Am0=041003Aµ
I,V0.3=
TUO
Am0=083009Aµ
Am06=5.201Am
T,Am1=
A
C°52=09.300.401.4V
03-,Am1= TA≤ C°0868.300.441.4V
Am03=061053Vm
V0.41ot0.5=505Vm
Am08ot1=02001Vm
L
zH01 f C,zHk001
Fµ01=86Bd
L
,Fµ01=
Fµ10.0=
dlohserhTrotceteDegatloVwoL V
4-V
05smrVµ
59.0xV
TUO
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
V V
T
)NO(TNOC
)FFO(TNOC
R
emiTesiRtuptuO
tnerruClanimreTlortnoC
V
)NO(egatloVlortnoCNOtuptuO6.0V
)FFO(egatloVlortnoCFFOtuptuO4.2V
I
)NOotFFO(
TUO
C
N
V
V5=52001Aµ
TNOC
V61=54051Aµ
TNOC
C,Am03=
L
Fµ1.0=
,Fµ1.0=
05sµ
January 1999 TOKO, Inc. Page 7
Page 8
TK119xx
TK11948 ELECTRICAL CHARACTERISTICS
Test conditions: V
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
= 5.8 V, C
IN
= 10 µF, C
L
= 0.01 µF, T
N
= 25 °C, unless otherwise specified.
A
I
Q
I
DNG
I
YBTS
V
TUO
V
PORD
I
TUO
tnerruCtnecseiuQ
tnerruCdnuorGI
tnerruCybdnatSFFOtuptuO59061Aµ
egatloVtuptuO
egatloVtuoporDI
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
geRdaoLnoitalugeRdaoLI
V
TUO
/T
tneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
V
ON
V
TED
V
)RRE(TED
ecnareloT
egatloVesioNtuptuO
dlohserhTrotceteDegatloV
I
TUO
V
NI
TUO
I
TUO
I
TUO
TUO
NI
TUO
C
N
Am0=041003Aµ
I,V8.3=
TUO
Am0=083009Aµ
Am06=5.201Am
T,Am1=
A
C°52=86.408.429.4V
03-,Am1= TA≤ C°0836.408.479.4V
Am03=061053Vm
V8.41ot8.5=505Vm
Am08ot1=02001Vm
L
zH01 f C,zHk001
Fµ01=86Bd
L
,Fµ01=
Fµ10.0=
dlohserhTrotceteDegatloVwoL V
4-V
05smrVµ
59.0xV
TUO
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
V V
T
)NO(TNOC
)FFO(TNOC
R
emiTesiRtuptuO
tnerruClanimreTlortnoC
V
)NO(egatloVlortnoCNOtuptuO6.0V
)FFO(egatloVlortnoCFFOtuptuO4.2V
I
)NOotFFO(
TUO
C
N
V
V5=52001Aµ
TNOC
V61=54051Aµ
TNOC
C,Am03=
L
Fµ1.0=
,Fµ1.0=
05sµ
Page 8 January 1999 TOKO, Inc.
Page 9
TK11950 ELECTRICAL CHARACTERISTICS
Test conditions: V
LOBMYSRETEMARAPSNOITIDNOCTSETNIMPYTXAMSTINU
= 6.0 V, C
IN
= 10 µF, C
L
= 0.01 µF, T
N
= 25 °C, unless otherwise specified.
A
TK119xx
I
Q
I
DNG
I
YBTS
V
TUO
V
PORD
I
TUO
tnerruCtnecseiuQ
tnerruCdnuorGI
tnerruCybdnatSFFOtuptuO59061Aµ
egatloVtuptuO
egatloVtuoporDI
tnerruCtuptuO 001Am
geReniLnoitalugeReniLV
geRdaoLnoitalugeRdaoLI
V
TUO
/T
tneiciffeoCerutarepmeT 2.0±C°/Vm
RRnoitcejeRelppiRC,zH004=f
V
ON
V
TED
V
)RRE(TED
ecnareloT
egatloVesioNtuptuO
dlohserhTrotceteDegatloV
I
TUO
V
NI
TUO
I
TUO
I
TUO
TUO
NI
TUO
C
N
Am0=041003Aµ
I,V0.4=
TUO
Am0=083009Aµ
Am06=5.201Am
T,Am1=
A
C°52=578.4000.5521.5V
03-,Am1= TA≤ C°08528.4000.5571.5V
Am03=061053Vm
V0.51ot0.6=505Vm
Am08ot1=02001Vm
L
zH01 f C,zHk001
Fµ01=86Bd
L
,Fµ01=
Fµ10.0=
dlohserhTrotceteDegatloVwoL V
4-V
05smrVµ
59.0xV
TUO
TED
4+%
V
TESER
egatloVnoitarutaSI
GALF
Aµ001=2.04.0V
SNOITACIFICEPSLANIMRETLORTNOC
I
TNOC
V V
T
)NO(TNOC
)FFO(TNOC
R
emiTesiRtuptuO
tnerruClanimreTlortnoC
V
)NO(egatloVlortnoCNOtuptuO6.0V
)FFO(egatloVlortnoCFFOtuptuO4.2V
I
)NOotFFO(
TUO
C
N
V
V5=52001Aµ
TNOC
V61=54051Aµ
TNOC
C,Am03=
L
Fµ1.0=
,Fµ1.0=
05sµ
January 1999 TOKO, Inc. Page 9
Page 10
TK119xx
TEST CIRCUIT
V
V
IN
+
+
1 µF
V
OUT
+
C
10 µF
L
I
OUT
OUT
V
CONT
NOISE BYPASS
C
I
CONT
+
N
0.01 µF
CONT
RESET OUTPUT
220 k
TIMING DIAGRAM
PRINCIPLE OF OPERATION
OUTPUT VOLTAGE 5 V
GLITCH
+
RESET OUTPUT
NOT
VALID
~5 V ~5 V
GLITCH
INPUT VOLTAGE
NOT
VALID
t
Page 10 January 1999 TOKO, Inc.
Page 11
TYPICAL PERFORMANCE CHARACTERISTICS
I
IN
(µA)
200
INPUT CURRENT AND CONTROL
CURRENT
VS.
CONTROL VOLTAGE
V
CONT
(V)
0 2.5 5.0
0
100
SHUTDOWN POINT
I
IN
I
CONT
I
CONT
(µA)
100
50
0
TA = 25 °C, unless otherwise specified.
TK119xx
GROUND CURRENT
OUTPUT CURRENT
10
(mA)
5
GND
I
0
0 50 100
I
(mA)
OUT
SATURATION VOLTAGE
RESET OUTPUT CURRENT
250
200
150
(mV)
SAT
100
V
VIN = 1 V
2 V
3 V
5 V
6 V
VS.
VS.
DROPOUT VOLTAGE
OUTPUT CURRENT
500
400
300
(mV)
200
DROP
V
100
0
0 50 100
I
(mA)
OUT
OUTPUT VOLTAGE
OUTPUT CURRENT
5
4
(V)
3
OUT
V
2
VS.
VS.
-50
-100
NOISE (dB)
NOISE LEVEL
FREQUENCY (TK11950)
VS.
I
= 25 mA
OUT
CL = 0.1 µF CN = 0.1 µF
50
0
0 0.5 1.0
I
(mA)
FLAG
LINE VOLTAGE STEP RESPONSE
7 V
IN
V
6 V
(20 mV / DIV)
OUT
V
January 1999 TOKO, Inc. Page 11
OUT
V
TIME (50 µs/DIV)
1
0
0 100 200
I
(mA)
OUT
LOAD CURRENT STEP RESPONSE
OUT
I
0 mA
(100 mV / DIV)
OUT
V
OUT
V
50 mA
TIME (50 µs/DIV)
0 500 k 1 M
CONT
V
0 V
CL = .1 µF
(1 V / DIV)
OUT
V
OUT
V
CL = 3.3 µF CN = 0.1 µF
f (Hz)
TURN-ON TIME VS. OUTPUT
CAPACITOR
2.4 V
1 µF
TIME (50 µs/DIV)
I
OUT
15 µF
4.7 µF
= 30 mA
10 µF
Page 12
TK119xx
I
(
A)
I
(
A)
I
(
A)
V
(V)
V
(V)
V
(
V)
119xx
C
L
10
F
V
OUT
V
IN
0.1
F
RIPPLE REJECTION CIRCUIT
C
N
0.01
F
SW
+
NOISE
CAPACITOR VALUE
300
200
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 °C, unless otherwise specified.
VS.
BYPASS
0
RIPPLE REJECTION
FREQUENCY
VS.
150
100
NOISE (µVrms)
50
0
1 pF
10 pF
100 pF
1000 pF
C
N
0.01 µF
GROUND CURRENT (ON MODE)
VS.
TEMPERATURE
10
m
GND
5
I
OUT
= 60 mA
I
= 30 mA
OUT
0
-50 0 50 100 TA (°C)
0.1 µF
CL = 0.1 µF
-50
RR (dB)
CL = 10 µF
-100 100 1 k 10 k 100 k
f (Hz)
STANDBY CURRENT (OFF MODE)
VS.
TEMPERATURE
100
µ
50
STBY
0
-50 0 50 100 TA (°C)
CONTROL CURRENT
VS.
TEMPERATURE
50
40
µ
30
CONT
20
10
V
CONT
V
CONT
= 2.5 V
= 5 V
0
-50 0 50 100 TA (°C)
CONTROL VOLTAGE (OFF POINT)
VS. TEMPERATURE
2.0
4.85
VOLTAGE DETECTOR
VS. TEMPERATURE
500
DROPOUT VOLTAGE
VS.
TEMPERATURE
400
1.0
CONT
DET
4.75
m
300
DROP
200
100
0
-50 0 50 100 TA (°C)
Page 12 January 1999 TOKO, Inc.
4.65
-50 0 50 100 TA (°C)
0
-50 0 50 100
I
OUT
= 60 mA
I
OUT
TA (°C)
= 30 mA
Page 13
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TK11922
OUTPUT VOLTAGE
OUTPUT CURRENT
2.45
(V)
2.25
OUT
V
2.05
0 50 100
I
(mA)
OUT
VS.
TA = 25 °C, unless otherwise specified.
OUTPUT VOLTAGE
INPUT VOLTAGE
2.35
2.25
2.15
(V)
OUT
2.05
V
1.95
1.85 0 10 20
VIN (V)
VS.
TK119xx
LOW VOLTAGE DETECTOR
INPUT VOLTAGE
5.0
(V)
2.5
DET
V
0
0 2.5 5.0
VIN (V)
V
OUT
VS.
(V)
OUT
V
QUIESCENT CURRENT
INPUT VOLTAGE
500
250
(mA)
Q
I
0
0 10 20
VIN (V)
TK11927
OUTPUT VOLTAGE
OUTPUT CURRENT
2.95
(V)
2.75
OUT
V
VS.
VS.
OUTPUT VOLTAGE
INPUT VOLTAGE
2.75
I
= 0 mA
(V)
2.25
OUT
V
1.75
2.85
2.75
2.65
(V)
OUT
2.55
V
OUT
60 mA
1.75 2.25 3.75 VIN (V)
OUTPUT VOLTAGE
INPUT VOLTAGE
VS.
30 mA
VS.
OUTPUT VOLTAGE
2.25
(V)
2.20
OUT
V
2.15
(V)
DET
V
5.0
2.5
AMBIENT TEMPERATURE
-50 0 50 100 TA (°C)
LOW VOLTAGE DETECTOR
INPUT VOLTAGE
V
VS.
OUT
VS.
(V)
OUT
V
2.45
2.55 0 50 100
I
(mA)
OUT
2.35 0 10 20
VIN (V)
0
0 2.5 5.0
VIN (V)
January 1999 TOKO, Inc. Page 13
Page 14
TK119xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TK11927 (CONT.)
QUIESCENT CURRENT
INPUT VOLTAGE
500
250
(mA)
Q
I
0
0 10 20
VIN (V)
TK11930
OUTPUT VOLTAGE
OUTPUT CURRENT
3.45
(V)
3.25
OUT
V
VS.
VS.
TA = 25 °C, unless otherwise specified.
OUTPUT VOLTAGE
INPUT VOLTAGE
3.25
I
= 0 mA
(V)
2.75
OUT
V
2.25
3.35
3.25
3.15
(V)
OUT
3.05
V
OUT
60 mA
2.25 2.75 3.25 VIN (V)
OUTPUT VOLTAGE
INPUT VOLTAGE
VS.
30 mA
VS.
OUTPUT VOLTAGE
AMBIENT TEMPERATURE
2.80
(V)
2.75
OUT
V
2.70
-50 0 50 100 TA (°C)
LOW VOLTAGE DETECTOR
INPUT VOLTAGE
5.0
(V)
2.5
DET
V
VS.
V
VS.
OUT
(V)
OUT
V
2.95
3.05
0 50 100
I
(mA)
OUT
QUIESCENT CURRENT
INPUT VOLTAGE
500
250
(mA)
Q
I
0
0 10 20
VIN (V)
VS.
2.85 0 10 20
VIN (V)
OUTPUT VOLTAGE
INPUT VOLTAGE
3.75
I
= 0 mA
(V)
3.25
OUT
V
2.75
OUT
60 mA
2.75 3.25 3 .75 VIN (V)
VS.
30 mA
0
0 2.5 5.0
VIN (V)
OUTPUT VOLTAGE
3.30
(V)
3.25
OUT
V
3.20
AMBIENT TEMPERATURE
-50 0 50 100 TA (°C)
VS.
Page 14 January 1999 TOKO, Inc.
Page 15
TK11932
TK119xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 °C, unless otherwise specified.
OUTPUT VOLTAGE
OUTPUT CURRENT
3.45
(V)
3.25
OUT
V
3.05
0 50 100
I
(mA)
OUT
QUIESCENT CURRENT
INPUT VOLTAGE
500
250
(mA)
Q
I
VS.
VS.
OUTPUT VOLTAGE
INPUT VOLTAGE
3.35
3.25
3.15
(V)
OUT
3.05
V
2.95
2.85 0 10 20
VIN (V)
OUTPUT VOLTAGE
INPUT VOLTAGE
3.75
I
= 0 mA
(V)
3.25
OUT
V
OUT
VS.
VS.
30 mA
LOW VOLTAGE DETECTOR
INPUT VOLTAGE
5.0
(V)
2.5
DET
V
0
0 2.5 5.0
VIN (V)
OUTPUT VOLTAGE
3.30
(V)
3.25
OUT
V
AMBIENT TEMPERATURE
VS.
V
VS.
OUT
(V)
OUT
V
60 mA
0
0 10 20
VIN (V)
2.75
2.75 3.25 3 .75 VIN (V)
3.20
-50 0 50 100 TA (°C)
TK11935
V
VS.
OUT
OUTPUT VOLTAGE
OUTPUT CURRENT
3.7
(V)
3.5
OUT
V
3.3
0 50 100
I
(mA)
OUT
VS.
OUTPUT VOLTAGE
INPUT VOLTAGE
3.6
3.5
3.4
(V)
OUT
3.3
V
3.2
3.1 0 10 20
VIN (V)
VS.
LOW VOLTAGE DETECTOR
INPUT VOLTAGE
5.0
(V)
2.5
DET
V
0
0 2.5 5.0
VIN (V)
January 1999 TOKO, Inc. Page 15
(V)
OUT
V
Page 16
TK119xx
V
DET
(V)
5.0
LOW VOLTAGE DETECTOR
VS.
INPUT VOLTAGE
VIN (V)
0 2.5 5.0
0
2.5
V
OUT
V
OUT
(V)
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TK11935 (CONT.)
QUIESCENT CURRENT
INPUT VOLTAGE
500
250
(mA)
Q
I
0
0 10 20
VIN (V)
TK11940
VS.
TA = 25 °C, unless otherwise specified.
OUTPUT VOLTAGE
INPUT VOLTAGE
4.0
I
= 0 mA
(V)
OUT
V
OUT
3.5
60 mA
3.0
3.0 3.5 4.0 VIN (V)
VS.
30 mA
OUTPUT VOLTAGE
AMBIENT TEMPERATURE
3.55
(V)
3.50
OUT
V
3.45
-50 0 50 100 TA (°C)
VS.
OUTPUT VOLTAGE
OUTPUT CURRENT
4.2
(V)
4.0
OUT
V
3.8
0 50 100
QUIESCENT CURRENT
500
250
(mA)
Q
I
I
(mA)
OUT
INPUT VOLTAGE
VS.
VS.
OUTPUT VOLTAGE
INPUT VOLTAGE
4.1
4.0
3.9
(V)
OUT
3.8
V
3.7
3.6 0 10 20
VIN (V)
OUTPUT VOLTAGE
INPUT VOLTAGE
4.5
I
= 0 mA
(V)
OUT
V
OUT
4.0
VS.
VS.
30 mA
4.05
(V)
4.00
OUT
V
OUTPUT VOLTAGE
AMBIENT TEMPERATURE
VS.
60 mA
0
0 10 20
VIN (V)
3.5
3.5 4.0 4.5 VIN (V)
3.95
-50 0 50 100 TA (°C)
Page 16 January 1999 TOKO, Inc.
Page 17
TK11948
5.0
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 °C, unless otherwise specified.
OUTPUT VOLTAGE
OUTPUT CURRENT
VS.
OUTPUT VOLTAGE
INPUT VOLTAGE
4.9
4.8
VS.
5.0
TK119xx
LOW VOLTAGE DETECTOR
INPUT VOLTAGE
VS.
(V)
4.8
OUT
V
4.6
0 50 100
I
(mA)
OUT
QUIESCENT CURRENT
INPUT VOLTAGE
500
250
(mA)
Q
I
0
0 10 20
VIN (V)
TK11950
OUTPUT VOLTAGE
OUTPUT CURRENT
5.2
VS.
VS.
4.7
(V)
OUT
4.6
V
4.5
4.4 0 10 20
VIN (V)
OUTPUT VOLTAGE
INPUT VOLTAGE
5.3
I
= 0 mA
(V)
OUT
V
OUT
4.8
60 mA
4.3
4.3 4.8 5.3 VIN (V)
OUTPUT VOLTAGE
INPUT VOLTAGE
5.1
5.0
VS.
30 mA
VS.
(V)
V
2.5
DET
V
0
0 2.5 5.0
VIN (V)
OUTPUT VOLTAGE
4.85
(V)
4.80
OUT
V
4.75
5.0
AMBIENT TEMPERATURE
-50 0 50 100 TA (°C)
LOW VOLTAGE DETECTOR
INPUT VOLTAGE
OUT
VS.
VS.
(V)
OUT
V
(V)
5.0
OUT
V
4.8
0 50 100
I
(mA)
OUT
4.9
(V)
OUT
4.8
V
4.7
4.6 0 10 20
VIN (V)
(V)
2.5
DET
V
0
0 2.5 5.0
VIN (V)
V
OUT
January 1999 TOKO, Inc. Page 17
(V)
OUT
V
Page 18
TK119xx
TK11950 (CONT.)
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 °C, unless otherwise specified.
QUIESCENT CURRENT
INPUT VOLTAGE
500
250
(mA)
Q
I
0
0 10 20
VIN (V)
VS.
OUTPUT VOLTAGE
INPUT VOLTAGE
5.5
I
= 0 mA
(V)
OUT
V
OUT
5.0
60 mA
4.5
4.5 5.0 5.5 VIN (V)
VS.
30 mA
OUTPUT VOLTAGE
AMBIENT TEMPERATURE
5.05
(V)
5.00
OUT
V
4.95
-50 0 50 100 TA (°C)
VS.
Page 18 January 1999 TOKO, Inc.
Page 19
DEFINITION AND EXPLANATION OF TECHNICAL TERMS
TK119xx
QUIESCENT CURRENT (IQ)
The quiescent current is the current which flows through the ground terminal under no load conditions (I
GROUND CURRENT (I
GND
)
OUT
= 0 mA).
Ground current is the current which flows through the ground pin(s). It is defined as IIN - I
, excluding control
OUT
current.
LINE REGULATION (LINE REG)
Line regulation is the relationship between change in output voltage due to a change in input voltage.
LOAD REGULATION (LOAD REG)
Load regulation is the relationship between change in output voltage due to a change in load current.
DROPOUT VOLTAGE (V
DROP
)
This is a measure of how well the regulator performs as the input voltage decreases. The smaller the number, the further the input voltage can decrease before regulation problems occur. Nominal output voltage is first measured when VIN = V
OUT(TYP)
+ 1 at a chosen load current. When the output voltage has dropped 100 mV from the nominal, VIN - V
is the dropout voltage. This voltage is affected
OUT
by load current and junction temperature.
PACKAGE POWER DISSIPATION (PD)
This is the power dissipation level at which the thermal sensor is activated. The IC contains an internal thermal sensor which monitors the junction temperature. When the junction temperature exceeds the monitor threshold of 150 °C, the IC is shut down. The junction temperature rises as the difference between the input power (VIN x IIN) and the output power (V
OUT
x I
) increases. The rate of
OUT
temperature rise is greatly affected by the mounting pad configuration on the PCB, the board material, and the ambient temperature. When the IC mounting has good thermal conductivity, the junction temperature will be low even if the power dissipation is great. When mounted on the recommended mounting pad, the power dissipation of the SOT-23L is increased to 400 mW. For operation at ambient temperatures over 25 °C, the power dissipation of the SOT-23L device should be derated at 3.2 mW/°C. To determine the power dissipation for shutdown when mounted, attach the device on the actual PCB and deliberately increase the output current (or raise the input voltage) until the thermal protection circuit is activated. Calculate the power dissipation of the device by subtracting the output power from the input power. These measurements should allow for the ambient temperature of the PCB. The value obtained from PD /(150 °C - TA) is the derating factor. The PCB mounting pad should provide maximum thermal conductivity in order to maintain low device temperatures. As a general rule, the lower the temperature, the better the reliability of the device. The thermal resistance when mounted is expressed as follows:
OUTPUT NOISE VOLTAGE
Tj = 0jA x PD + T
A
This is the effective AC voltage that occurs on the output voltage under the condition where the input noise is low and with a given load, filter capacitor, and frequency range.
For Toko ICs, the internal limit for junction temperature is 150 °C. If the ambient temperature (TA) is 25 °C, then:
THERMAL PROTECTION
150 °C = 0jA x PD + 25 °C
This is an internal feature which turns the regulator off
0jA = 125 °C/ P
D
when the junction temperature rises above 150 °C. After the regulator turns off, the temperature drops and the regulator output turns back on. Under certain conditions, the output waveform may appear to be an oscillation as the output turns off and on and back again in succession.
PD is the value when the thermal sensor is activated. A simple way to determine PD is to calculate VIN x IIN when the output side is shorted. Input current gradually falls as temperature rises. You should use the value when thermal equilibrium is reached.
January 1999 TOKO, Inc. Page 19
Page 20
TK119xx
DEFINITION AND EXPLANATION OF TECHNICAL TERMS (CONT.)
The range of usable currents can also be found from the graph below.
(mW)
P
D
3
D
PD
6
4
5
25 50 75 150
TA (°C)
Procedure:
1) Find P
D
2) PD1 is taken to be PD x (~ 0.8 - 0.9)
3) Plot PD1 against 25 °C
4) Connect P
to the point corresponding to the 150 °C
D1
with a straight line.
5) In design, take a vertical line from the maximum
operating temperature (e.g., 75 °C) to the derating curve.
6) Read off the value of PD against the point at which the
vertical line intersects the derating curve. This is taken as the maximum power dissipation, DPD.
The maximum operating current is:
I
OUT
= (D
PD
/ (V
IN(MAX) - VOUT
)
500
TA (°C)
MOUNTED
FREE AIR
150
400
300
(mW)
D
200
P
100
0
0 50 100
SOT-23L POWER DISSIPATION
Page 20 January 1999 TOKO, Inc.
Page 21
APPLICATION INFORMATION
INPUT/OUTPUT DECOUPLING CAPACITOR CONSIDERATIONS
Voltage regulators require input and output decoupling capacitors. The required values of these capacitors vary with application. Capacitors made by different manufacturers can have different characteristics, particularly with regard to high frequencies and Equivalent Series Resistance (ESR) over temperature. The type of capacitor is also important. For example, a 4.7 µF aluminum electrolytic may be required for a certain application. If a tantalum capacitor is used, a lower value of 2.2 µF would be adequate. It is important to consider the temperature characteristics of the decoupling capacitors. While Toko regulators are designed to operate as low as -30 °C, many capacitors will not operate properly at this temperature. The capacitance of aluminum electrolytic capacitors may decrease to 0 at low temperatures. This may cause oscillation on the output of the regulator since some capacitance is required to guarantee stability. Thus, it is important to consider the characteristics of the capacitor over temperature when selecting decoupling capacitors.
The ESR is another important parameter. The ESR will increase with temperature but low ESR capacitors are often larger and more costly. In general, tantalum capacitors offer lower ESR than aluminum electrolytic, but new low ESR aluminum electrolytic capacitors are now available from several manufacturers. Usually a bench test is sufficient to determine the minimum capacitance required for a particular application. After taking thermal characteristics and tolerance into account, the minimum capacitance value should be approximately two times the value. The recommended minimum capacitance for the TK119xx is 2.2 µF for a tantalum capacitor or 3.3 µF for an aluminum electrolytic. Please note that linear regulators with a low dropout voltage have high internal loop gains which require care in guarding against oscillation caused by insufficient decoupling capacitance. The use of high quality decoupling capacitors suited for your application will guarantee proper operation of the circuit.
TK119xx
V
IN
+
SOT-23L BOARD LAYOUT
NOISE BYPASS CAPACITOR SECTION
The noise bypass capacitor (CN) should be connected as close as possible to pin 1 and ground. The recommended value for CN is 0.01 µF. The noise bypass terminal has a high impedance and care should be taken if the noise bypass capacitor is not used. This terminal is susceptible to external noise, and oscillation can occur when CN is not used and the solder pad for this pin is too large.
RESET OUTPUT CONSIDERATIONS
It is important to note the accuracy of the regulator and voltage detector functions when they are combined within one IC. The figure below illustrates the voltage regulator and voltage detector implemented with individual reference voltages.
V
MAX
GND
GND
CONTROL
RESET
V
OUT
+
V
BOARD LAYOUT
R
MIN
MAX
Copper pattern should be as large as possible. Power dissipation is 400 mW for the SOT-23L package. A low ESR capacitor is recommended. For low temperature operation, select a capacitor with a low ESR at the lowest
R
MIN
operating temperature to prevent oscillation, degradation of ripple rejection and increase in noise. The minimum
NON-TOKO APPROACH
recommended capacitance is 2.2 µF. January 1999 TOKO, Inc. Page 21
Page 22
TK119xx
RESET OUTPUT
V
IN
1 µF
C
N
0.01 µF
+
R
RESET
+
4.7 µF
V
OUT
APPLICATION INFORMATION (CONT.)
Note: V
MIN
- R
0 is possible, meaning the two ranges
MAX
may overlap. The figure below illustrates the TK119xx. The TK119xx
utilizes the same reference voltage for both the voltage regulator and the voltage detector functions. As a result, the detector voltage is always constant (V
x 0.95 %)
OUT
from the output voltage. With this approach, the two ranges do not overlap.
V
MAX
V
MIN
R
MAX
R
MIN
TOKO APPROACH
TYPICAL APPLICATIONS
CONTROL FUNCTION UTILIZED
HANDLING MOLDED RESIN PACKAGES
All plastic molded packages absorb some moisture from the air. If moisture absorption occurs prior to soldering the device into the printed circuit board, increased separation of the lead from the plastic molding may occur, degrading the moisture barrier characteristics of the device. This property of plastic molding compounds should not be overlooked, particularly in the case of very small packages, where the plastic is very thin.
In order to preserve the original moisture barrier properties of the package, devices are stored and shipped in moisture proof bags filled with dry air. The bags should not be opened or damaged prior to the actual use of the devices. If this is unavoidable, the devices should be stored in a low relative humidity environment (40 to 65%) or in an enclosed environment with desiccant.
CONTROL FUNCTION NOT UTILIZED
V
IN
+
CMOS OR TTL GATE
1 µF
LOW = ON
C
0.01 µF
R
RESET
N
+
4.7 µF
RESET OUTPUT
V
OUT
LOW VOLTAGE SHUTDOWN
V
IN
Note: Parallel connection of control pins is allowed
+
1 µF
if all devices use identical input voltages.
39 K R Choose for correct High Logic level.
RESET
220 K
0.01 µF
RESET
SW
C
N
V
OUT
+
4.7 µF
Page 22 January 1999 TOKO, Inc.
Page 23
PACKAGE OUTLINE
TK119xx
SOT-23L (SOT-23L-6)
+0.15
- 0.05
0.4
456
Product Code
123
e e
0.95 0.95
+0.3
- 0.1
3.5
(3.4)
0.1
0.32 5 PL
M
Marking
Voltage Code
+0.15
- 0.05
Marking Information
Marking TK11922 G22 TK11927 G27 TK11930 G30
0.6
1.0
3.0 e1
0.1
M
Recommended Mount Pad
0.3
ee
0.95 0.95
2.2
TK11932 G3 TK11935 G35 TK11940 G40 TK11948 G4 TK11950 G5
1.2
Dimensions are shown in millimeters Tolerance: x.x = ± 0.2 mm (unless otherwise specified)
1.4 max
0 - 0.1
+0.15
- 0.05
0.15
+ 0.3
3.3
15 max
0.4
Toko America, Inc. Headquarters 1250 Feehanville Drive, Mount Prospect, Illinois 60056 Tel: (847) 297-0070 Fax: (847) 699-7864
TOKO AMERICA REGIONAL OFFICES
Midwest Regional Office Toko America, Inc. 1250 Feehanville Drive Mount Prospect, IL 60056 Tel: (847) 297-0070 Fax: (847) 699-7864
Western Regional Office Toko America, Inc. 2480 North First Street , Suite 260 San Jose, CA 95131 Tel: (408) 432-8281 Fax: (408) 943-9790
Eastern Regional Office Toko America, Inc. 107 Mill Plain Road Danbury, CT 06811 Tel: (203) 748-6871 Fax: (203) 797-1223
Semiconductor Technical Support Toko Design Center 4755 Forge Road Colorado Springs, CO 80907 Tel: (719) 528-2200 Fax: (719) 528-2375
Visit our Internet site at http://www.tokoam.com
The information furnished by TOKO, Inc. is believed to be accurate and reliable. However, TOKO reserves the right to make changes or improvements in the design, specification or manufacture of its products without further notice. TOKO does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under any patent or patent rights of TOKO, Inc.
January 1999 TOKO, Inc. Page 23
All Rights Reserved
IC-119-TK119xx
0798O0.0K
Printed in the USA© 1999 Toko, Inc.
Loading...