Datasheet FDP42AN15A0, FDB42AN15A0 Datasheet (Fairchild Semiconductor)

Page 1
FDP42AN15A0 / FDB42AN15A0
N-Channel PowerTrench® MOSFET 150V, 35A, 42m
FDP42AN15A0 / FDB42AN15A0
September 2002
Features
•r
•Q
• Low Miller Charge
• Low Qrr Body Diode
• UIS Capability (Single Pulse and Repetitive Pulse)
• Qualified to AEC Q101
Formerly developmental type 82864
MOSFET Maximum Ratings T
= 36mΩ (Typ.), V
DS(ON)
(tot) = 33nC (Typ.), V
g
GATE
SOURCE
TO-263AB
FDB SERIES
= 10V, ID = 12A
GS
= 10V
GS
DRAIN
(FLANGE)
DRAIN
(FLANGE)
= 25°C unless otherwise noted
C
Applications
• DC/D C C onverter s an d Of f-line UPS
• Distributed P ower Arc hitectures and VRMs
• Primary Switch for 24V and 48V Syst ems
• High Voltage Synchronous Rectifier
• Direct Injection / Diesel Injection Systems
• 42V Automotiv e Load Control
• Elec tr on ic Valve Train Sys tems
D
SOURCE
DRAIN
GATE
TO-220AB
FDP SERIES
G
S
Symbol Parameter Ratings Units
V
DSS
V
GS
Drain to Source Voltage 150 V Gate to Source Voltage ±20 V Drain Curr e nt Continuous (T
I
D
Continuous (T Continuous (T
= 25oC, VGS = 10V)
C
= 100oC, VGS = 10V) 24
C
= 25oC, VGS = 10V, with R
amb
= 43oC/W) 5 A
θJA
35 A
Pulsed Figure 4 A
E
AS
P
D
, T
T
J
STG
Single Pulse Avalanche Energy (Note 1) 90 mJ Power dissipation 150 W
o
Derate above 25
C1.00W/
Operating and Storage Temperature -55 to 175
o
C
o
C
Thermal Characteristi cs
R
θJC
R
θJA
R
θJA
This product has been designed to meet the extreme test conditions and environment demanded by the automotive
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality
©2002 Fairchild Semiconductor Corporation
Thermal Resistance Junction to Case TO-220,TO-263 1.0 Thermal Resistance Junction to Ambient TO-220,TO-263 62 Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad ar ea 43
industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.
systems certification.
FDP42AN15A0 / FDB42AN15A0 Rev. C
o
C/W
o
C/W
o
C/W
Page 2
Package Marking and Ordering Information
Device Marking Device Package Reel Size Tape Width Quantity
FDB42AN15A0 FDB42AN15A0 TO-263AB 330mm 24mm 800 units FDP42AN15A0 FDP42AN15A0 TO-220AB Tube N/A 50 units
FDP42AN15A0 / FDB42AN15A0
Electrical Characteristics
TC = 25°C unless otherwise noted
Symbol Parameter Test Con ditions Min Typ Max Units
Off Characteristics
B I
DSS
I
GSS
VDSS
Drain to Sou r c e Br ea k down Volt ag e ID = 250µA, VGS = 0V 150 - - V
V
= 120V - - 1
Zero Gate Voltage Drain Current
DS
= 0V TC = 150oC- -250
V
GS
Gate to Source Leakage Current VGS = ±20V - - ±100 nA
On Characteristics
V
GS(TH)
r
DS(ON)
Gate to Source Threshold Voltage VGS = VDS, ID = 250µA2-4V
= 12A, VGS = 10V - 0.036 0.042
I
D
I
= 6A, VGS = 6V - 0.040 0.060
Drain to S ou r c e On Re si st ance
D
= 12A, VGS = 10V,
I
D
T
= 175oC
J
- 0.090 0.107
Dynamic Characteristics
C C C Q Q Q Q Q
ISS OSS RSS
g(TOT) g(TH) gs gs2 gd
Input Capacitance Output Capacitanc e - 225 - pF Reverse Transfer Capacitance - 45 - pF
= 25V, VGS = 0V,
V
DS
f = 1MHz
Total Gate Charge at 10V VGS = 0V to 10V Threshold Gate Charge VGS = 0V to 2V - 4.2 5.4 nC Gate to Source Gate Charg e - 9.5 - nC Gate Charge Threshold to Plateau - 5.3 - nC
V
DD
I
= 12A
D
I
= 1.0m A
g
= 75V
Gate to Drain “Miller” Charge - 6.9 - nC
- 2150 - pF
30 39 nC
µA
Switching Characteristics
t
ON
t
d(ON)
t
r
t
d(OFF)
t
f
t
OFF
Turn-On Time Turn-On Delay Time - 11 - ns Rise Time - 19 - ns Turn-Off D elay Time - 27 - ns Fall Time - 23 - ns Turn-Off Time - - 74 ns
(VGS = 10V)
Drain-Source Diode Characteristics
V
SD
t
rr
Q
RR
Notes: 1: Starting TJ = 25°C, L = 0.2mH, IAS = 30A.
©2002 Fairchild Semiconductor Corporation
Source to Drain Diode Voltage Reverse Recovery Time ISD = 12A, dISD/dt = 100A/µs- -82ns
Reverse Recovered Charge ISD = 12A, dISD/dt = 100A/µs - - 204 nC
- - 46 ns
V
= 75V, ID = 12A
DD
V
= 10V, RGS = 7.5
GS
I
= 12A - - 1.2 5 V
SD
= 6A - - 1.0 V
I
SD
FDP42AN15A0 / FDB42AN15A0 Rev. C
Page 3
FDP42AN15A0 / FDB42AN15A0
Typical Characteristics T
= 25°C unless otherwise noted
C
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0255075100 175
125
TC, CASE TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
0.01
-5
10
SINGLE PULSE
-4
10
10
40
30
20
, DRAIN CURRENT (A)
D
10
I
150
0
25 50 75 100 125 150 175
Figure 2. Maximum Continuous Drain Curr ent vs
-3
t, RECTANGULAR PULSE DURATION (s)
-2
10
TC, CASE TEMPERATURE (oC)
Case Temperature
P
DM
NOTES: DUTY FACTOR: D = t1/t PEAK TJ = PDM x Z
-1
10
θJC
10
x R
0
t
1
t
2
2
+ T
θJC
C
1
10
500
VGS = 10V
100
, PEAK CURRENT (A)
DM
I
10
-5
10
©2002 Fairchild Semiconductor Corporation
Figure 3. Normalized Maximum Transient Thermal Impedance
TC = 25oC FOR TEMPERATURES
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS:
I = I
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
Figure 4. Peak Current Capability
175 - T
25
10
FDP42AN15A0 / FDB42AN15A0 Rev. C
C
150
0
10
1
Page 4
FDP42AN15A0 / FDB42AN15A0
Typical Characteristics T
200
100
10
OPERATION IN THIS
AREA MAY BE
LIMITED BY r
1
, DRAIN CURRENT (A)
D
I
SINGLE PULSE TJ = MAX RATED
TC = 25oC
0.1 1 10 100 300
DS(ON)
VDS, DRAIN TO SOURCE VOLTAGE (V)
= 25°C unless otherwise noted
C
10µs
100µs
DC
Figure 5. Forward Bias Safe Operating Area
80
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX V
= 15V
DD
60
1ms
10ms
100
10
, AVALANCHE CURRENT (A)
AS
I
1
0.001 0.01 0.1 1 10
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R 0 t
= (L/R)ln[(IAS*R)/(1.3*RATED BV
AV
STARTING TJ = 150oC
tAV, TIME IN AVALANCHE (ms)
- VDD)
DSS
- VDD) +1]
DSS
STARTING TJ = 25oC
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching
Capability
80
VGS = 20V
60
VGS = 10V
VGS = 6V
40
TJ = 25oC
, DRAIN CURRENT (A)
D
I
20
0
345678
TJ = 175oC
TJ = -55oC
VGS, GATE TO SOURCE VOLTAGE (V)
40
, DRAIN CURRENT (A)
D
I
20
PULSE DURATION = 80µs
0
012345
DUTY CYCLE = 0.5% MAX
VDS, DRAIN TO SOURCE VOLTAGE (V)
Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics
50
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
45
40
DRAIN TO SOURCE ON RESISTANCE(mΩ)
35
0 10203040
ID, DRAIN CURRENT (A)
VGS = 6V
VGS = 10V
2.5
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
VGS = 5V
TC = 25oC
VGS = 10V, ID =12A
Figure 9. Drain to So urce On Resistanc e v s Drai n
Current
©2002 Fairchild Semiconductor Corporation
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
FDP42AN15A0 / FDB42AN15A0 Rev. C
Page 5
FDP42AN15A0 / FDB42AN15A0
Typical Characteristics T
1.2
1.0
0.8
NORMALIZED GATE
0.6
THRESHOLD VOLTAGE
0.4
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
= 25°C unless otherwise noted
C
VGS = VDS, ID = 250µA
Figure 11. Normalized G ate Threshol d Voltage vs
Junction Temperatur e
4000
C
= CGS + C
1000
C
C
+ C
OSS
DS
GD
C
= C
RSS
GD
100
C, CAPACITANCE (pF)
V
= 0V, f = 1MHz
GS
10
0.1 1 10 150 VDS, DRAIN TO SOURCE VOLTAGE (V)
ISS
GD
1.2 ID = 250µA
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
10
VDD = 75V
8
6
4
WAVEFORMS IN
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
0 5 10 15 20 25 30 35
Qg, GATE CHARGE (nC)
DESCENDING ORDER:
ID = 24A ID = 12A
Figure 13. Capacitance vs Drain to Sour ce
Voltage
©2002 Fairchild Semiconductor Corporation
Figure 14. Gat e Charge Waveforms for Constant
Gate Current
FDP42AN15A0 / FDB42AN15A0 Rev. C
Page 6
Test Circuits and Waveforms
V
DS
L
VARY tP TO OBTAIN REQUIRED PEAK I
V
GS
R
AS
G
+
V
DD
-
I
AS
DUT
t
0V
P
I
AS
0.01
0
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Wavef orm s
V
DS
V
DD
V
Q
I
g(REF)
L
V
GS
DUT
+
V
DD
-
V
GS
0
I
g(REF)
= 2V
Q
gs2
Q
g(TH)
Q
gs
0
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
BV
DSS
t
P
t
AV
Q
g(TOT)
DS
gd
V
GS
FDP42AN15A0 / FDB42AN15A0
V
DS
V
DD
V
= 10V
GS
V
GS
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
©2002 Fairchild Semiconductor Corporation
V
DS
R
L
V
GS
R
GS
DUT
+
V
DD
-
V
DS
0
V
GS
10%
0
t
d(ON)
90%
t
ON
t
r
t
d(OFF)
t
OFF
t
f
90%
10%
10%
90%
PULSE WIDTH
FDP42AN15A0 / FDB42AN15A0 Rev. C
50%50%
Page 7
Thermal Resistance vs. Mounting Pad Area
80
The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P application. Therefore the application’s ambient temperature, T must be reviewed to ensure that T Equation 1 mathematically represents the relationship and
(oC), and th ermal res istance R
A
is never exceeded.
JM
serve s as the basis for establ ishing the rating of the part.
TJMTA–()
P
----------------- ------------=
DM
R
θJA
In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power d issipati on rating s. Precise d etermin ation of P comple x and influenced by many factors:
1. Mou nting pad area ont o which the device is attached and whet her the re is copp er on one s ide or both side s of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For no n steady state applic ations, th e pulse widt h, the duty cycle and the transient thermal response of the part, the boa rd and the environment they are in.
Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the R copper (component side) area. This is for a horizontally
for the device as a function of the top
θJA
positi on ed FR-4 board w i th 1 oz c opper af ter 100 0 se c on ds of stea dy st ate pow er w ith n o air flow . Th is gr aph prov ides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice t hermal model or manually u tilizing the normalized maximum transient thermal impedance curve.
DM
(oC/W)
θJA
(EQ. 1)
, in an
is
DM
60
C/W)
o
(
θJA
R
40
20
Figure 21. Thermal Resistance vs Mounting
R
= 26.51+ 19.84/(0.262+Area) EQ.2
θJA
R
= 26.51+ 128/(1.69+Area) EQ.3
θJA
(0.645) (6.45) (64.5)
AREA, TOP COPPER AREA in2 (cm2)
1100.1
Pad Area
FDP42AN15A0 / FDB42AN15A0
Therma l resi stances correspondi ng to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inch es squ are and equ ation 3 is for area in cent imeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.
19.84
26.51
=
R
θJA
26.51
=
R
θJA
©2002 Fairchild Semiconductor Corporation
-------------------------------------+
0.262 Area+()
Area in Iches Squared
128
----------------------------------+
1.69 Area+()
Area in Centimeters Squared
(EQ. 2)
(EQ. 3)
FDP42AN15A0 / FDB42AN15A0 Rev. C
Page 8
PSPICE Electrical Model
.SUBCKT FDB 42AN15A0 2 1 3 ; rev June 11, 2002 Ca 12 8 6.0e-10 Cb 15 14 8e-10 Cin 6 8 2.1e-9
Dbod y 7 5 DbodyMOD Dbreak 5 11 Db reakMOD Dplcap 10 5 DplcapMOD
Ebreak 11 7 17 18 159.5 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1
It 8 17 1 Lgat e 1 9 4.81e-9
Ldrain 2 5 1.0e -9 Lsource 3 7 4.63e-9
RLgate 1 9 48.1 RLdr ai n 2 5 10 RLsource 3 7 46.3
Mmed 16 6 8 8 M m edMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD
Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 14e-3 Rgate 9 20 1.36 RSLC1 5 51 RSL CM OD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 20e-3 Rvthres 22 8 RvthresMO D 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BM OD S2a 6 15 14 13 S2AM OD S2b 13 15 14 13 S2BM OD
Vbat 22 19 DC 1
GATE
1
LGATE
RLGATE
RGATE
9
CA
ESG
+
EVTEMP
+
-
18 22
20
S1A
12
13814
S1B
EGS EDS
-
13
6 8
10
RSLC2
6
13
+
+
6 8
-
-
DPLCAP
EVTHRES
+
19
8
S2A
S2B
15
CIN
CB
-
+
-
5
51
5
51
21
MSTRO
14
5 8
RSLC1
+
ESLC
­50
RDRAIN
16
8
MMED
DBREAK
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
FDP42AN15A0 / FDB42AN15A0
LDRAIN
RLDRAIN
11
+
17
DBODY
18
-
LSOURCE
7
RLSOURCE
RVTEMP 19
­VBAT
+
22
DRAIN
2
SOURCE
3
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51))) *(PWR(V(5,51)/(1e-6 *65),3))} .MODEL DbodyMOD D (IS=2.4E-11 N=1.08 RS=4.2e-3 TRS1=2.2e-3 TRS2=2.5e-9
+ CJO=1.35e-9 M=6.3e-1 TT= 4. 8e-8 XTI=3.9) .MODEL DbreakMOD D (RS=1.5e-1 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=.43e-9 IS=1e-30 N=10 M=0.66)
.MODEL MmedMOD NMOS (VTO=3.5 KP=4 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=9.3e-1) .MODEL MstroMOD NMOS (VTO =4.0 KP=70 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL Mwe akMOD NMOS (VTO =3.12 KP=0. 06 IS=1e-30 N=10 T O X = 1 L=1u W=1u RG=9.3e-1 RS=.1)
.MODEL Rb reakMOD RES (T C1=1e-3 TC2= -15e-7) .MODEL Rd rai nMOD RES (TC1=1.7e-2 TC 2=4e-5) .MODEL RSLCMOD RES (TC1=2.5e-3 TC2=1e-6) .MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-5.3e -3 T C2=-1.5e-5 ) .MODEL RvtempMOD RES (T C1=-2.7e-3 TC2=1e-6)
.MODEL S1AMOD VSWITC H (RON =1e - 5 ROFF= 0. 1 VON=- 4 VOFF =-1 .5 ) .MODEL S1BMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 1.5 VO FF=- 4) .MODEL S2AMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= - 1 VOFF =0.5) .MODEL S2BMOD VSWITC H (RON= 1e- 5 ROFF = 0.1 VON= 0 .5 VOFF= -1) .ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electroni cs Specialist Conference Records, 1991, written by Wil liam J. Hepp and C. F rank Wheatley.
©2002 Fairchild Semiconductor Corporation
FDP42AN15A0 / FDB42AN15A0 Rev. C
Page 9
SABER Electrical Model
rev June 11, 20 02 template FDB 42AN15A0 n2, n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=2.4e-11,nl=1.08,rs=4.2e-3,trs1=2.2e-3,trs2=2.5e-9,cjo=1.35e-9,m=6.3e-1,tt=4.8e-8,xti=3.9) dp..model dbreakmod = (rs=1.5e-1,trs1=1 e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=.43e-9,isl=10e-30,nl=10,m=0.66) m..model mmedmod = (type=_n,vto=3.5,kp=4,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=4.0,kp=70,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=3.12,kp=0.06,is=1e-30, tox=1,rs=.1) sw_vcsp.. mo del s1amod = (ron=1e-5,roff=0. 1, von=-4,voff=-1.5) sw_vcsp.. mo del s1bmod = (ron=1e-5,roff=0. 1, von=-1.5,voff=-4) sw_vcsp.. mo del s2amod = (ron=1e-5,roff=0.1,von=-1,voff=0.5)
10
sw_vcsp.. mo del s2bmod = (ron=1e-5,roff=0.1,von=0.5,voff=-1) c.ca n12 n8 = 6.0e -10 c.cb n15 n14 = 8e- 10
RSLC2
c.cin n6 n8 = 2.1e -9 dp.dbody n7 n5 = model=dbodym od
dp.dbreak n5 n11 = model=dbr eakmod dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17 n18 = 159.5 spe.eds n14 n8 n5 n8 = 1
GATE
spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1
LGATE
1
RLGATE
RGATE
9
ESG
EVTEMP +
18 22
20
­6
8
+
6
-
spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1
i.it n8 n17 = 1 l.lgate n1 n9 = 4.81e-9
l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 4.63e-9
res.rlgate n1 n9 = 48.1 res.rldrai n n2 n5 = 10 res.rlsource n3 n7 = 46.3
CA
S1A
12
13814
S1B
EGS EDS
13
13
+
+
6 8
-
-
m.mmed n16 n6 n8 n8 = m odel=mmedm od, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l= 1u, w=1u m.mweak n16 n21 n8 n8 = model=mwea kmod, l=1u, w=1u
DPLCAP
EVTHRES
+
19
S2A
S2B
5
RSLC1
51
ISCL
MMED
8
DBREAK
11
MWEAK
EBREAK
+
RSOURCE
RBREAK
17 18
IT
RVTHRES
50 RDRAIN
16
21
-
8
MSTRO
CIN
15
CB
8
14
+
5 8
-
17 18
­7
RVTEMP 19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
FDP42AN15A0 / FDB42AN15A0
res.rbreak n17 n18 = 1, tc1=1e-3, tc 2=-15e-7 res.rdrain n50 n16 = 14e-3, tc1=1.7e-2,tc2=4e-5 res.rgate n9 n20 = 1.36 res.rslc1 n5 n51 = 1e-6, tc1=2.5e-3,tc2=1e-6 res.rslc2 n5 n50 = 1e3 res.rsour ce n8 n7 = 20e-3, tc1=1e -3, tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-5.3e-3,tc2=-1. 5e-5 res.rvtemp n18 n19 = 1, tc1=-2.7e-3,tc2=1e-6 sw_vcsp.s1 a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1 b n13 n12 n13 n8 = mode l= s1bmod sw_vcsp.s2 a n6 n15 n14 n13 = mode l= s2amod sw_vcsp.s2 b n13 n15 n14 n13 = model = s2bmod
v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n 5, n51)/(1e-9+a bs(v(n5,n51))))*((abs (v(n5,n51)* 1e6/65))** 3) )} }
©2002 Fairchild Semiconductor Corporation
FDP42AN15A0 / FDB42AN15A0 Rev. C
Page 10
FDP42AN15A0 / FDB42AN15A0
PSPICE Thermal Model
REV 23 June 11 , 2002 FDB42AN15A0_Thermal CTHERM1 TH 6 2e-3
CTHERM2 6 5 4. 5e-3 CTHERM3 5 4 7e-3 CTHERM4 4 3 3e-2 CTHERM5 3 2 4e-2 CTHERM6 2 TL 8.5e-1
RTHERM1 TH 6 6.2e-2 RTHERM2 6 5 8. 2e-2 RTHERM3 5 4 9. 2e-2 RTHERM4 4 3 9. 7e-2 RTHERM5 3 2 0. 2 RTHERM6 2 TL 0.22
SABER Thermal Model
SABER ther m al m odel F DB42AN15A 0_T hermal template thermal_model th tl thermal_ c th , tl { ctherm.c th erm 1 th 6 =2e-3 ctherm.ctherm2 6 5 =4.5e-3 ctherm.ctherm3 5 4 =7e-3 ctherm.ctherm4 4 3 =3e-2 ctherm.ctherm5 3 2 =4e-2 ctherm.ctherm6 2 tl =8.5e-1
RTHERM1
RTHERM2
RTHERM3
RTHERM4
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
rtherm.rtherm1 th 6 =6.2e-2 rtherm.rt herm2 6 5 =8.2e-2 rtherm.rt herm3 5 4 =9.2e-2 rtherm.rt herm4 4 3 =9.7e-2 rtherm.rt herm5 3 2 =0.2 rthe r m.rtherm6 2 tl =0.2 2}
RTHERM5
RTHERM6
CTHERM5
2
CTHERM6
tl
CASE
©2002 Fairchild Semiconductor Corporation
FDP42AN15A0 / FDB42AN15A0 Rev. C
Page 11
TRADEMARKS
The following are registe red and unr egistered trademarks Fairchild Semiconductor owns or is aut horized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx™ ActiveArray™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ EcoSPARK™
2
E
CMOS™ EnSigna™ Across the board. Around the world.™ The Power Fr anchise™ Programma ble Active Droop™
FACT™ FACT Quiet Series™
®
FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™
2
I
C™
ImpliedDisconnect™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC
®
OPTOPLANAR™
PACMAN™ POP™ Power247™ PowerTrench
®
QFET™ QS™ QT Optoelectronics™ Quiet Ser ies™ RapidConfigure™ RapidConnect™ SILENT SWITCHER SMART START™
SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET
®
VCX™
®
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) ar e int ende d fo r s urgic al i mpla nt into the bo dy, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A c r it ic al c om ponent i s any com po ne n t o f a l ife supp or t device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Adva nce Information Formative or In
Design
Preliminary First Production This data s heet contains preliminary data, and
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Obsolete Not In Production This datasheet contains specifications on a product
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
supple m entary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Semiconductor reserves the righ t to make chan ges at any time without notice in order to improve design.
that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. I1
Loading...