Comtech EF Data MBT-4000 User Manual

IMPORTANT NOTE: The information contained in this document supersedes all previously published information regarding this product. Product specifications are subject to change without prior notice.
MBT-4000
Installation and Operation Manual
Part Number MN/MBT4000.IOM Revision 4
MBT-4000
Multi-Band Transceiver System
Installation and Operation Manual
Part Number MN/MBT4000.IOM
Revision 4
July 2, 2009
Copyright © 2009 Comtech EF Data. All rights reserved. Printed in the USA.
Comtech EF Data, 2114 West 7th Street, Tempe, Arizona 85281 USA, 480.333.2200, FAX: 480.333.2161
This page is intentionally blank.
ii
Errata A for MN/MBT4000.IOM Rev 4
)
Comtech EF Data Documentation Update
Subject:
Chapter 4, p. 4-2, Update Table 4-2, C-band frequency
Errata Part Number: ER-MNMBT4000.EA4 (Errata docum ents are not subject to revision.
PL M CO Number:
Comments:
C-0024197
See attached page(s). The new information will be included in the next released revision of the m anual.
ER-MNMBT4000.EA 4 PLM C-0024197
MBT-4000 Multi-Band Transceiver System Revision 4
y
System Operating Parameters MN/MBT4000.IOM
4.4 Block Down Converter Module (BDC-4000) Operating Parameters
The BDC-4000 translates a band-specific input frequency block (C-, X-, or Ku- or Ka-Band) from the LNA down to L-Band (950 to 2000 MHz).
Table 4-2. BDC-4000 C-, X-, KU-, and Ka-Ba nd Ope rating Pa r ameters
Band Frequency LO Frequenc
C-Band 3625 – 4200 MHz 2300 MHz No X-Band 7250 – 7750 MHz 6300 MHz No Ku-Band-W
(Single module containing three LOs)
Ka-Band 20.20 – 21.20 GHz
Notes:
1. No spectral inversion, selectable inversion for inverted Bl oc k Down Converter.
2. 10 dB gain adjustment.
10.95 – 11.70 GHz
11.7 – 12.20 GHz
12.250 – 12.75 GHz
10.00 GHz
10.75 GHz
11.30 GHz
4.5 Monitoring Operations via the LED Indicators
The MBT-4000 Multi-Band Transceiver System features two Light-Emitting Diode (LED) indicators – one for each operational unit (module). Each LED provides the user with visual cues to th e operati onal, onli n e, and of fline status of th e s ytem.
Figure 4-1 illustrates the location of the LED Indicators. Located on the top of the MBT-4000’s Base Module under a pivoting protective plate, the LEDs may be viewed by loosening the thumbscrew that keeps the plate in place; the user can then swing the plate away to reveal the LED display window.
Inverting
No
Appendix B. FAUL T S/EVENT S provides complete details for interpreting the LED Indicators.
Figure 4-1. MBT-4000 Multi-Band RF Transceiver LED Indicators
4–2

Table of Contents

TABLE OF CONTENTS .............................................................................................................. III
TABLES ...................................................................................................................................... VI
FIGURES .................................................................................................................................... VI
PREFACE .................................................................................................................................. VII
About this Manual
New in this Release ................................................................................................................................. vii
Reporting Comments or Suggestions Concerning this Manual .............................................................. vii
Conventions and References ................................................................................................................... viii
Cautions and Warnings .......................................................................................................................... viii
Recommended Standard Designations ................................................................................................... viii
Trademarks ............................................................................................................................................ viii
Metric Conversion ................................................................................................................................. viii
Electromagnetic Compatibility (EMC) Compliance ............................................................................... ix
EN 55022 –1998 Compliance .................................................................................................................. ix
EN 55082-1 – 1997 Compliance .............................................................................................................. ix
Federal Communications Commission (FCC) ......................................................................................... ix
Safety Compliance ...................................................................................................................................... x
EN 60950 – 1997 Compliance .................................................................................................................. x
Low Voltage Directive (LVD) .................................................................................................................. x
Warranty Policy ......................................................................................................................................... xi
Limitations of Warranty ........................................................................................................................... xi
Exclusive Remedies ................................................................................................................................ xii
Customer Support .................................................................................................................................... xiii
Online Customer Support ...................................................................................................................... xiii
.................................................................................................................................... vii
CHAPTER 1.INTRODUCTION ............................................................................................. 1–1
1.1 Overview ...................................................................................................................................... 1–1
1.2 Functional Description ............................................................................................................... 1–1
1.3 Common Features ....................................................................................................................... 1–2
1.4 Options ......................................................................................................................................... 1–2
iii
MBT-4000 Multi-Band Transceiver System Revision 4 Table of Contents MN/MBT4000.IOM
1.5 System Overview ......................................................................................................................... 1–3
1.6 Summary of Specifications ......................................................................................................... 1–4
1.6.1 Environmental & Physical .................................................................................................... 1–4
1.6.2 BUC-4000 Block Up Converter ODU .................................................................................. 1–4
1.6.3 BDC-4000 Block Down Converter ODU ............................................................................. 1–5
1.7 Dimensional Envelope ................................................................................................................ 1–6
CHAPTER 2.INSTALLATION .............................................................................................. 2–1
2.1 Unpacking and Inspection .......................................................................................................... 2–1
2.2 Installation ................................................................................................................................... 2–2
2.3 Operation ..................................................................................................................................... 2–2
CHAPTER 3.EXTERNAL CONNECTORS ........................................................................... 3–1
3.1 External Connectors Overview .................................................................................................. 3–1
3.2 MBT-4000 External Connectors ................................................................................................ 3–2
3.2.1 IF Signal Side Connectors ..................................................................................................... 3–3
3.2.1.1POWER (J1) ..................................................................................................................... 3–3
3.2.1.2COMM (J2) ....................................................................................................................... 3–3
3.2.1.3UNIT 1 COMM (J3) ......................................................................................................... 3–4
3.2.1.4IF Switch (J4) .................................................................................................................... 3–5
3.2.1.5Ext Ref (External Reference) (J5) .................................................................................... 3–5
3.2.1.6UNIT 2 COMM (J6) ......................................................................................................... 3–6
3.2.1.7Ground Connector ............................................................................................................. 3–7
3.2.1.8IF IN (J4, BUC-4000 ONLY)
........................................................................................... 3–7
3.2.1.9COMM (J6, BUC-/BDC-4000) ......................................................................................... 3–7
3.2.1.10 IF OUT (J4, BDC-4000 ONLY) ................................................................................... 3–8
3.2.2 RF Signal Side Connectors ................................................................................................... 3–8
3.2.2.1REDUNDANT LOOP (J7) ............................................................................................... 3–8
3.2.2.2AUX COMM 2 (J8) .......................................................................................................... 3–9
3.2.2.3AUX COMM 1 (J9) .......................................................................................................... 3–9
3.2.2.4RF SWITCH (J10) .......................................................................................................... 3–10
3.2.2.5RF OUT (J5, BUC-4000 ONLY) .................................................................................... 3–10
3.2.2.6RF IN (J5, BDC-4000 ONLY) ........................................................................................ 3–10
CHAPTER 4.SYSTEM OPERATING PARAMETERS .......................................................... 4–1
4.1 Overview ...................................................................................................................................... 4–1
4.2 Remote Configuration, Monitoring and Control ..................................................................... 4–1
4.3 Block Up Converter Module (BUC-4000) Operating Parameters .......................................... 4–1
iv
MBT-4000 Multi-Band Transceiver System Revision 4 Table of Contents MN/MBT4000.IOM
4.4 Block Down Converter Module (BDC-4000) Operating Parameters ..................................... 4–2
4.5 Monitoring Operations via the LED Indicators ....................................................................... 4–2
CHAPTER 5.FLASH UPGRADING ...................................................................................... 5–1
5.1 Overview ...................................................................................................................................... 5–1
5.2 Flash Upgrading via Internet ..................................................................................................... 5–1
5.2.1 Firmware File Transfer Procedure ........................................................................................ 5–2
5.3 Flash Upgrade Procedure ........................................................................................................... 5–3
APPENDIX A.REMOTE CONTROL .................................................................................... A–1
A.1 Overview ..................................................................................................................................... A–1
A.2 RS-485 ......................................................................................................................................... A–1
A.3 RS-232 ......................................................................................................................................... A–2
A.4 Basic Protocol ............................................................................................................................. A–2
A.5 Packet Structure ......................................................................................................................... A–2
A.5.1 Start of Packet ...................................................................................................................... A–3
A.5.2 Target Address ..................................................................................................................... A–3
A.5.3 Address Delimiter ................................................................................................................ A–3
A.5.4 Instruction Code ................................................................................................................... A–3
A.5.5 Instruction Code Qualifier ................................................................................................... A–4
A.5.6 Optional Message Arguments .............................................................................................. A–5
A.5.7 End of Packet ....................................................................................................................... A–5
A.6 Remote Commands and Queries .............................................................................................. A–6
APPENDIX B.FAULTS/EVENTS .........................................................................................
B–1
B.1 LED Status Indicators ............................................................................................................... B–1
B.2 Faults/Events .............................................................................................................................. B–2
B.2.1 Summary Faults ................................................................................................................... B–2
B.2.2 Configurable Summary Faults ............................................................................................. B–3
B.2.3 Informational Events ............................................................................................................ B–4
APPENDIX C.REDUNDANCY CONFIGURATION / OPERATION ..................................... C–1
C.1 Overview ..................................................................................................................................... C–1
C.2 Single-Base Redundancy Operation ......................................................................................... C–1
v
MBT-4000 Multi-Band Transceiver System Revision 4 Table of Contents MN/MBT4000.IOM
C.3 Dual-Base (Chain) Redundancy Operation ............................................................................. C–2
C.4 External Fault Monitoring ........................................................................................................ C–3
C.5 LNA Power Supply Current Monitoring ................................................................................. C–3
C.6 Gain Equalization of Redundant Units .................................................................................... C–4
C.7 Operational Configuration Commands ................................................................................... C–4
Tables
Table 3-1. MBT-4000 External Connectors ............................................................................................ 3–2
Table 3-2. POWER (J1) Pin Connections ................................................................................................. 3–3
Table 3-3. COMM (J2) Connector Pinouts ............................................................................................... 3–3
Table 3-4. UNIT 1 COMM (J3) Connector Pinouts ................................................................................. 3–4
Table 3-5. IF Switch (J4) Connector Pinouts ............................................................................................ 3–5
Table 3-6. UNIT 2 COMM (J6) Connector Pinouts ................................................................................. 3–6
Table 3-7. UNIT 2 COMM (J6) Connector Pinouts ................................................................................. 3–7
Table 3-8. REDUNDANT LOOP (J7) Connector Pinouts ....................................................................... 3–8
Table 3-9. AUX COMM 2 (J8) Connector Pinouts .................................................................................. 3–9
Table 3-10. AUX COMM 1 (J9) Connector Pinouts ................................................................................ 3–9
Table 3-11. RF Switch (J10) Connector Pinouts .................................................................................... 3–10
Table 4-1. BUC-4000 C-, X-, Ku-, and Ka-Band Operating Parameters ................................................. 4–1
Table 4-2. BDC-4000 C-, X-, KU-, and Ka-Band Operating Parameters ................................................. 4–2
Table B-1. MBT-4000 Summary Faults .................................................................................................. B–2
Table B-2. BDC-4000/BUC-4000 Summary Faults ................................................................................ B–2
Table B-3. MBT-4000 Configurable Summary Faults ............................................................................ B–3
Table B-4. BDC-4000 Configurable Summary Faults ............................................................................. B–4
Table B-5. MBT-4000 Informational Events ........................................................................................... B–4
Table B-6. BDC-4000/BUC-4000 Informational Events ......................................................................... B–4
Figures
Figure 1 -1. Comtech EF Da ta MBT-4000 Mult i- B a n d R F T r ansceiver ..................................................... 1–1
Figure 1-2. MBT-4000 Operational Schematic ........................................................................................ 1–2
Figure 1-3. Operational Diagram for Dual-Base (Chain) Redundancy Option ........................................ 1–3
Figure 1-4. MBT-4000 Dimensional Envelope ........................................................................................ 1–6
Figure 3-1. MBT-4000 External Connectors ............................................................................................ 3–1
Figure 3-2. Unit 1 Base Module to Converter Module Connection .......................................................... 3–4
Figure 3-3. Unit 2 Base Module to Converter Module Connection .......................................................... 3–6
Figure 4-1. MBT-4000 Multi-Band RF T ransceiver LED Indicators ......................................................... 4–2
Figure 5-1. Flash Update via Internet ....................................................................................................... 5–1
Figure B-1. MBT-4000 LED Indicators .................................................................................................. B–1
Figure B-2. Faulted System Example ...................................................................................................... B–2
Figure C-1. Dual-Base (Chain) Redundancy Operation .......................................................................... C–2
vi

About this Manual

This manual provides installation and operation information for the Comtech EF Data MBT-4000 Multi-Band Transceiver System. Thi s is a technical document inten ded for earth station engineers, technicians, and operators responsible for the operation and maintenance of the MBT-4000.
Comtech EF Data has reviewed this manual thoroughly in order to provide an easy-to-use guide to your equipment. All statements, techn ical information, and recommendation s in this manual and in any guides or related documents are believed reliable, but the accuracy and co mpleteness thereof are not guaranteed or warranted, and they are not intended to be, nor should they be understood to be, representations or warranties concerning the products described. Further, Comtech EF Data reserves the right to make changes in th e specifications of the products describe d in this manual at any time without notice and without obligation to notify any person of such changes.
If you have any questions regarding your equipment or the information in this manual, contact the Comtech EF Data Customer Support Department.

PREFACE

New in this Release

This manual (CEFD P/N MN/MBT4000.IOM) has been revised in its entirety to comply with
current Comtech EF Data Technical Publications standards and practices.
All Errata and/or Addenda content generated since publication of the previous revision
(MN/MBT4000.IOM Rev 3, released June 3, 2005) has been incorporated into this revision.
The Flash Upgrade procedure outlined in Chapter 5 serves to supersede CEFD Application
Note P/N AN/MBT4000 (released June 22, 2006) in its entirety.

Reporting Comments or Suggestions Concerning this Manual

Comments and suggestions regarding the content and design of this manual are appreciated. To submit comments, please contact the Comtech EF Data Technical Publications Department:
TechnicalPublications@comtechefdata.com
vii
.
MBT-4000 Multi-Band Transceiver System Revision 4 Preface MN/MBT4000.IOM

Conventions and References

Cautions and Warnings

IMPORTANT or NOTE indicates information cri tical for proper equipm ent functio n.
IMPORTANT
CAUTION indicates a hazardous situation that, if not avoided, may result in minor or moderate injury. CAUTION may also be used to indicate other unsafe
CAUTION
practices or risks of property damage.
WARNING indicates a potentially hazardous situation that, if not avoided,
WARNING
could result in death or serious injury.

Recommended Standard Designations

Recommended Standard (RS) Designations have been superseded by the new designation of the Electronic Industries Association (EIA). References to the old designations are shown only when depicting actual text displayed on the screen of the unit (RS-232, RS-485, etc.). All other references in the manual will be shown with the EIA designations.

Trademarks

Other product names mentioned in this manual may be trademarks or registered trademarks of their respective companies and are hereby acknowledged.

Metric Conversion

Metric conversion information is located on the inside back cover of this manual. This information is provided to assist the operator in cross-referencing non-metric to metric conversions.
viii
MBT-4000 Multi-Band Transceiver System Revision 4 Preface MN/MBT4000.IOM

Electromagnetic Compatibility (EMC) Compliance

This is a Class A product. In a domestic environment, it may cause radio interference that requires the user to take adequate protection measures.

EN 55022 –1998 Compliance

This equipment meets the radio disturbance characteristic specifications for information technology equipment as defined per EN 55022 1998.

EN 55082-1 – 1997 Compliance

This equipment meets the EMC/generic immunity standard as defined per EN 55082-1 1997.

Federal Communications Commission (FCC)

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment.
This equipment generates, uses, and can radiate radio frequency energy. If not installed and used in accordance with the instruction manual, it may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference; in which case, users are required to correct the interference at their own expense.
To ensure compliance, properly shielded cables for DATA I/O shall be used. More specifically, these cables shall be shielded from end to end, ensuring a continuous shield.
NOTE
ix
MBT-4000 Multi-Band Transceiver System Revision 4 Preface MN/MBT4000.IOM

Safety Compliance

EN 60950 – 1997 Compliance

Applicable testing is routinely performed as a condition of manufacturing on all units to ensure compliance with safety requirements of the European Union Low Voltage Directive (EN 60950). This equipment meets the Safety of Information Technology Equipment specification as defined in EN 60950.

Low Voltage Directive (LVD)

The following information is applicable for EN 60950:
International Symbols:
NOTE
<HAR>
!
Symbol Definition Symbol Definition
~
For additional symbols, refer to Cautions and Warnings listed earlier in this Preface.
Type of power cord required for use in the European Union.
CAUTION: Double-pole/Neutral Fusing ACHTUNG: Zweipolige bzw. Neutralleiter-Sicherung
Alternating Current
Fuse
Protective Earth / Safety Ground
Chassis Ground
x
MBT-4000 Multi-Band Transceiver System Revision 4 Preface MN/MBT4000.IOM

Warrant y Policy

Comtech EF Data products are warranted against defects in material and workmanship for a specific period from the date of shipment, and this period varies by product. In most cases, the warranty period is two years. During the warranty period, Comtech EF Data will, at its option, repair or replace products that prove to be defective. Repairs are warranted for the remainder of the original warranty or a 90 day extended warranty, whichever is longer. Contact Comtech EF Data for the warranty period specific to the product purchased.
For equipment under warranty, the owner is responsible for freight to Comtech EF Data and all related customs, taxes, tariffs, insurance, etc. Comtech EF Data is responsible for the freight charges only for return of the equipment from the factory to the owner. Co mtech EF Data will return the equipment by the same method (i.e., Air, Express, Surface) as the equipment was sent to Comtech EF Data.
All equipment returned for warranty repair must have a valid RMA number issued prior to return and be marked clearly on the return packaging. Comtech EF Data strongly recommends all equipment be returned in its original packaging.
Comtech EF Data Corporation’s obligations under this warranty are limited to repair or replacement of failed parts, and the return shipment to the buyer of the repaired or replaced parts.

Limitations of Warranty

The warranty does not apply to any part of a product that has been installed, altered, repaired, or misused in any way that, in the opinion of Comtech EF Data Corporation, would affect the reliability or detracts from the performance of any part of the product, or is damaged as the result of use in a way or with equipment that had not been previously approved by Comtech EF Data Corporation.
The warranty does not apply to any product or parts thereof where the serial number or the serial number of any of its parts has been a ltered, defaced, or rem oved.
The warranty does not cover damage or loss incurred in transporta tion of the pr oduct.
The warranty does not cover replacement or repair necessitated by loss or damage from any cause beyond the control of Comtech EF Data Corporation, such as lightning or other natural and weather related events or wartime environments.
The warranty does not cover any labor involved in the removal and or reinstallation of warranted equipment or parts on site, or any labor required to diagnose the necessity for repair or replacement.
The warranty excludes any responsibility by Comtech EF Data Corporation for incidental or consequential damages arising from the use of the equipment or products, or for any inability to use them either separate from or in c ombina tion w ith a ny ot her eq uipm ent or pr oduc ts.
xi
MBT-4000 Multi-Band Transceiver System Revision 4 Preface MN/MBT4000.IOM
A fixed charge established for each product will be imposed for all equipment returned for warranty repair where Comtech EF Data Corporation cannot identify the cause of the reported failure.

Exclusive Remedies

Comtech EF Data Corporation’s warranty, as stated is in lieu of all other warranties, expressed, implied, or statutory, including those of merchantability and fitness for a partic ular purpose . The buyer shall pass on to any purchaser, lessee, or other user of Comtech EF Data Corporation’s products, the aforementioned warranty, and shall indemnify and hold harmless Comtech EF Data Corporation from any claims or liability of such purchaser, lessee, or user based upon allegations that the buyer, its agents, or employees have made additional warranties or representations as to product preference or use.
The remedies provided herein are the buyer’s sole and exclusive remedies. Comtech EF Data shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory.
xii
MBT-4000 Multi-Band Transceiver System Revision 4 Preface MN/MBT4000.IOM

Customer Support

Contact the Comtech EF Data Customer Support Department for:
Product support or training
Reporting comments or suggestions concerning manuals
Information on upgrading or returning a product
A Customer Support representative may be reached at:
Comtech EF Data Attention: Customer Support Department 2114 West 7th Street Tempe, Arizona 85281 USA
480.333.2200 (Main Comtech EF Data number)
480.333.4357 (Customer Support Desk)
480.333.2161 FAX
To return a Comtech EF Data product (in-warranty and out-of-warranty) for repair or replacement:
Contact the Comtech EF Data Custo mer Support Department. Be prepared to supply the
Customer Support representative with the model number, serial number, and a description of the problem.
Request a Return Material Authorization (RMA) number from the Comtech EF Data
Customer Support representative.
Pack the pro duct in its original shipping carton/packaging to ensure that the product is not
damaged during shipping.
Ship the product back to Comtech EF Data. (Shipping charges should be prepaid.)

Online Customer Support

An RMA number request can be requested electronically by contacting the Customer Support Department through the online support page at
Click on “Service” for detailed instructions on our return procedures.
Click on the “RMA Request Form” hyperlink, then fill out the form completely before
sending.
Send e-mail to the Customer Support Department at service@comtechefdata.com.
For information regarding this product’s warranty policy, refer to the Warranty Policy, p. xii.
www.comtechefdata.com/support.asp:
xiii
MBT-4000 Multi-Band Transceiver System Revision 4 Preface MN/MBT4000.IOM
Notes:
xiv

1.1 Overview

Comtech EF Data’s MBT-4000 Multi-Band RF Transceiver, shown in Figure 1-1, is designed to perform C-, X-, or Ku-Band RF to L-Band down conversion and L-Band to C-, X-, or Ku- or Ka­Band RF up conversion.

Chapter 1. INTRODUCTION

Figure 1-1. Comtech EF Data MBT-4000 Multi-Band RF Transceiver

1.2 Functional Description

The MBT-4000 is designed to perform the following functions:
C-, X-, or Ku-Band RF to L-Band down conversion
L-Band to C-, X-, or Ku-Band RF up conversion
RF Band switching in minimal time without requiring tools
Easy expansion for providing a redundant system or other frequency bands
Automatic band identification for the Block Up converter (BUC), Block Down Converter
(BDC), and antenna feed (if the feeds provide an identifying connector)
1–1
MBT-4000 Multi-Band Transceiver System Revision 4 Introduction MN/MBT4000.IOM
System status verification via LEDs located behind a removable cover
Flexible configuration:
2 Ups 2 Downs 1Up / 1 Down
Figure 1-2 d
From
Modem
To
Modem
To
Modem
To
Modem
70 MHz
70 MH z
70 MH z
70 MH z
epicts the operation schematic for a typical MBT-4000 application.
LBC-4000
IF In
IF Out
LBC-4000
IF Out
IF Out
RF Out
RF In
RF In
RF In
IDU
Ref In M&C
Ref In
M&C
L-Band
5 MHz
L-Band
L-Band
5 MHz
L-Band
RS-485
RS-485
5 MH z
RS-485
L-Band Splitter
BUC-4000C
IF In
RF Out
Ref In M&C
BDC-4000C
IF O u t
M ulti-Band Tra nsceiver
RF IN
Figure 1-2. MBT-4000 Operational Schematic
To C-Band HPA
From C-Ban d LNA

1.3 Common Features

Meets or exceeds MIL-STD-188-164A
Low phase noise
Auto band sensing capability
Functions in 1 MHz step sizes

1.4 Options

Functions in 1 kHz step sizes
Dual-Base (Chain) Redundancy Operation (see Figure 1-3)
1–2
MBT-4000 Multi-Band Transceiver System Revision 4 Introduction MN/MBT4000.IOM
Figure 1-3. Operational Diagram for Dual-Base (Chain) Redundancy Option

1.5 System Overview

The MBT-4000 Multi-Band Tranceiver System is constructed in a modular configuration. Figure 1-4 illustrates the key components of this configuration.
Common to the configuration for any frequency band of operation is a base module, which provides the Monitor and Control (M&C), Power Supply, and Reference function.
Band-specific BUC and BDC modules can be mounted to the base module with clip-type fasteners. BUC and BDC modules for other bands and spares for all modules are stored in a transit case until needed.
1–3
MBT-4000 Multi-Band Transceiver System Revision 4
9
7
Introduction MN/MBT4000.IOM

1.6 Summary of Specifications

1.6.1 Environmental & Physical

Dimensions (excluding connectors)
Temperature
Operating
Non-operating ODU: MBT-4000
Operational Humidity Operational Altitude Prime Power External Reference Input
Frequency Stability
ODU: BUC-4000 IDU: LBC-4000
Over time Over temperature
See Figure 1-4
-40º – 122ºF (-40º to 50ºC) 14º – 122ºF (-10º to 50ºC)
-58º
160ºF (-50º to 71ºC)
5 – 95 non-condensing 10,000 ft above sea level
90
260 VAC, 47-63 Hz
Either 5 MHz or 10 MHz ±5 dBm optional
-
/day, 1x10
1x10 40º – 55ºC, 1x10-8

1.6.2 BUC-4000 Block Up Converter ODU

Input Frequency Range
Output Frequency (by model)
Input/Output Impedance Input Return Loss Output Return Loss Input Connector Output Connector
Gain User Attenuation Range
Output Power, P1dB Third Order Intercept
Spurious
BUC-4000C BUC-4000X BUC-4000Ku BUC-4000Ka
Carrier Related Non-Carrier Related
950 – 2000 MHz 5860 – 6650 MHz 7900 – 8400 MHz
13.75 – 14.50 GHz
30.00 – 31.00 GHz
27.50 – 28.50 GHz (optional)
28.50 – 29.50 GHz (optional)
29.50 – 30.10 GHz (optional) 50Ω 15 dB minimum 18 dB minimum Type ‘N’ Female Type ‘N’ Female (C-, X-, and Ku-Band) 15 dB nominal at minimum attenuation
(18 dB for Ku-Band BUC) 0 – 10 dB +10 dBm minimum +20 dBm minimum
-60 dBc
-60 dBm
-
/year
1–4
MBT-4000 Multi-Band Transceiver System Revision 4 Introduction MN/MBT4000.IOM

1.6.3 BDC-4000 Block Down Converter ODU

Output Frequency Range
BUC-4000C BUC-4000X
Input Frequency (by model)
Input/Output Impedance Input Return Loss Output Return Loss Input Connector Output Connector Gain User Attenuation Range Output Power, P1dB Third Order Intercept Spurious (Carrier Related) Noise Figure
BUC-4000Ku BUC-4000Ka
950 – 2000 MHz 3400 – 4200 MHz 7250 – 7750 MHz
10.95 – 12.75 GHz
20.20 – 21.20 GHz
17.70 – 18.70 GHz (optional band)
18.70 – 19.20 GHz (optional band)
19.20 – 20.20 GHz (optional band) 50Ω 18 dB minimum 15 dB minimum Type ‘N’ Female (C-, X-, and Ku-Band) Type ‘N’ Female 15 dB nominal at minimum attenuation 0 – 10 dB, in 0.25 dB steps (0.1 dB optional) +12 dBm minimum +22 dBm minimum
-60 dBc 15 dB maximum @ 0 dB attenuation
1–5
MBT-4000 Multi-Band Transceiver System Revision 4 Introduction MN/MBT4000.IOM

1.7 Dimensional Envelope

Figure 1-4. MBT-4000 Dimensional Envelope
1–6

Chapter 2. INSTALLATION

2.1 Unpacking and Inspection

Inspect shipping containers for damage. If shipping containers are damaged, keep them until the contents of the shipment have been carefully inspected and checked for normal operation.
The MBT-5003 L-Band Up/Down Converter System and its Installation and Operation Manual are packaged and shipped in a pre-formed, reusable cardboard carton containing foam spacing for maximum shipping protection.
Do not use any cutting tool that will extend more than 1” into the container
CAUTION
Unpack and inspect the MBT-4000 as follows:
Step Procedure
and cause damage to the transceiver.
1
2 Remove the cardboard/foam space covering the MBT-4000. 3 Remove the MBT-4000 and manual from the carton. 4 Save the packing material for storage or reshipment purposes. 5 Inspect the equipment for any possible damage incurred during shipment. 6 Check the equipment against the packing list to ensure the shipment is correct.
7 Refer to the next section (Section 2.2) for installation instructions.
2–1
Cut the tape at the top of the carton indicated by OPEN THIS END.
MBT-4000 Multi-Band Transceiver System Revision 4 Installation MN/MBT4000.IOM

2.2 Installation

The Base Module for the MBT-4000 system – which provides the M&C, Power Supply, and Reference interfaces – may be located near or on the antenna. Guide pins and mechanical clamps keep the band­specific BUC and BDC modules in place on top of the Base Module.
Cables to the antenna and IDU complete the installation. For complete information on the MBT-4000’s connectors, including the pinout tables, refer to Chapter 3. EXTERNAL CONNECTORS.
To change the band of operation, the cables to the BUC/BDC modules are disconnected and the modules are unlatched from the Base unit, allowing removal and replacement of the existing modules with appropriate band-specific modules.

2.3 Operation

Once all pertinent connections have been made between the MBT-4000 and other equipment, refer to Chapter 4. SYSTEM OPERATING PARAMETERS for further information.
2–2
Chapter 3. EXTERNAL

3.1 External Connectors Overview

As shown in Figure 3-1, connectors provided on the MBT4000 Multi-Band Transceiver System provide all necessary external connections between the the transceiver and other equipment.
Note: This figure depicts an MBT-4000 configuration with (1) BUC-4000 Block Up Converter Module and (1) BDC-4000 Block Down Converter Module installed.
RF Side
CONNECTORS
(Cable Loops removed for clarity)
IF Side
Figure 3-1. MBT-4000 External Connectors
3–1
MBT-4000 Multi-Band Transceiver System Revision 4 External Connectors MN/MBT4000.IOM

3.2 MBT -4000 External Connectors

Table 3-1 summarizes the external connections and identifies the chapter sections providing connector pinout information.
Table 3-1. MBT-4000 External Connectors
Signal Side
(Sect.)
IF
(3.2.1)
RF
(3.2.2)
Module
MBT-4000 Base
BUC-4000
BDC-4000
MBT-4000 Base
BUC-4000 BDC-4000
Ref
Des
J1 J2 J3
J4 J5 J6
N/A
J4 J6 J4 J6
J7 J8
J9
J10
J5 J5
Name Sect. Function
POWER 3.2.1.1
COMM 3.2.1.2
UNIT 1 COMM 3.2.1.3
IF SWITCH 3.2.1.4
EXT REF 3.2.1.5
UNIT 2 COMM 3.2.1.6
N/A 3.2.1.7
IF IN 3.2.1.8 COMM 3.2.1.9 IF OUT 3.2.1.10 COMM 3.2.1.9
REDUNDANT
LOOP AUX COMM 2 3.2.2.2 AUX COMM 1 3.2.2.3
RF SWITCH 3.2.2.4
RF OUT 3.2.2.5
RF IN 3.2.2.6
3.2.2.1
AC Power Serial communication and Summary
Fault Communicate to BxC Unit 1
Monitor & Control IF Switch External 10 MHz Reference Input Communicate to BxC Unit 2 #10-32 Ground stud IF Input Communicate to Base Unit IF Input Communicate to Base Unit Connected for dual base redundant
operation External Equipment Monitoring Monitor and Control RF Switch
RF Output RF Input
3–2
MBT-4000 Multi-Band Transceiver System Revision 4 External Connectors MN/MBT4000.IOM

3.2.1 IF Signal Side Connectors

3.2.1.1 POWER (J1)
Table 3-2. POWER (J1) Pin Connections
Pin Signal
A
LINE
3.2.1.2 COMM (J2)
B NEUTRAL C
GND
NOTE - Mating Connectors:
CEFD P/N CN/MS-STPG03F02 (ITT Cannon KPT06B-12-3S)
Table 3-3. COMM (J2) Connector Pinouts
Pin Signal
A RS 485 Rx+ B RS 485 Rx­C RS 485 Tx+ D RS 485 Tx­E RS 232 RD F NC G RS 232 TD H NC
J NC K SUM FLT COMM L SUM FLT NO
M SUM FLT NC N NC
P NC
R NC
S NC T GND
U GND
V NC
NOTE - Mating Connectors:
CEFD P/N CN/MS3116J14-19P (Cannon MS3116J14-19P)
3–3
MBT-4000 Multi-Band Transceiver System Revision 4 External Connectors MN/MBT4000.IOM
3.2.1.3 UNIT 1 COMM (J3)
The J3 UNIT 1 COMM connector is used for connecting the MBT-4000 Base Module Unit 1 section to the J6 COMM connector featured on both the BUC-4000 Block Up Converter and BDC-4000 Block Down Converter Modules via the 15-15 Power & Signal Harness (CEFD P/N CA/WR10963-1), as shown in Figure 3-2.
Table 3-4. UNIT 1 COMM (J3) Conn
Pin Signal
A SUM FLT
M RxD BXC
C Tx+ BXC D GND E +7.5V F +7.5V G +15V H GND
J Rx+ BXC
K Rx- BXC
L Tx- BXC B TxD BXC N SPARE P 10 MHz REF R SPARE
ector Pinouts
NOTE – Mating Connector:
CEFD P/N CN/8LT5-15B15PN
Figure 3-2. Unit 1 Base Module to Converter Module Connection
3–4
MBT-4000 Multi-Band Transceiver System Revision 4 External Connectors MN/MBT4000.IOM
3.2.1.4 IF Switch (J4)
Table 3-5. IF Switch (J4) Connector Pinouts
Pin Signal
A POS 1 IF B GND C POS 2 IF D POS 1 IND IF E GND F POS 2 IND IF NOTE - Mating Connectors:
CEFD P/N CN/MS3116J10-6P (Cannon MS3116J10-6P)
3.2.1.5 Ext Ref (External Reference) (J5)
The J5 EXT REF connector is a Type ‘N’ female connector, used to provide an External 10MHz Reference Input.
3–5
MBT-4000 Multi-Band Transceiver System Revision 4 External Connectors MN/MBT4000.IOM
3.2.1.6 UNIT 2 COMM (J6)
The J6 UNIT 2 COMM connector is used for connecting the MBT-4000 Base Module Unit 2 section to the J6 COMM connector featured on both the BUC-4000 Block Up Converter and BDC-4000 Block Down Converter Modules, via the 15-15 Power & Signal Harness (CEFD P/N CA/WR10963-1), as shown in Figure 3-3.
Table 3-6. UNIT 2 COMM (J6) Connector Pinouts
Pin Signal
A SUM FLT
M RxD BXC
C Tx+ BXC D GND E +7.5V F +7.5V
G +15V
H GND
J Rx+ BXC K Rx- BXC L Tx- BXC B TxD BXC N SPARE P 10 MHz REF R SPARE
NOTE – Mating Connector CEFD P/N CN/8LT5-15B15PN
Figure 3-3. Unit 2 Base Module to Converter Module Connection
3–6
MBT-4000 Multi-Band Transceiver System Revision 4 External Connectors MN/MBT4000.IOM
3.2.1.7 Ground Connector
A #10-32 stud is used for connecting a common chassis ground among equipment.
3.2.1.8 IF IN (J4, BUC-4000 ONLY)
The J4 IF IN connector, lo cated on the BUC-4000 Block Up Converter Module, is a Type ‘N’ female connector, used to provide the IF Input signal for the upconverter.
3.2.1.9 COMM (J6, BUC-/BDC-4000)
The J6 COMM connector, featured on both the BUC-4000 Block Up Converter and BDC-4000 Block Down Converter Modules, is used for connecting the module to the MBT-4000 Base Module J3 UNIT 1 COMM or J6 UNIT 2 COMM connectors via the 15-15 Power & Signal Harness (CEFD P/N CA/WR10963-1), as shown in Figure 3-2 and Figure 3-3.
Table 3-7. UNIT 2 COMM (J6) Connector Pinouts
Pin Signal
A SUM FLT
B TxD BXC C Tx+ BXC D GND E +7.5V F +7.5V G +15V H GND
J Rx+ BXC K Rx- BXC
L Tx- BXC M RxD BXC N SPARE P 10 MHz REF R SPARE
NOTE – Mating Connector: CEFD P/N CN/8LT5-15B15SN
3–7
MBT-4000 Multi-Band Transceiver System Revision 4 External Connectors MN/MBT4000.IOM
3.2.1.10 IF OUT (J4, BDC-4000 ONLY)
The J4 IF OUT connector, located on the BDC-4000 Block Down Converter Module, is a Type ‘N’ female connector, used to provide the downcoverted IF Output signal.

3.2.2 RF Signal Side Connectors

3.2.2.1 REDUNDANT LOOP (J7)
The J7 REDUNDANT LOOP connector is used to connect the MBT-4000 Base Module, via the Redundant Loop Bus Cable (CEFD P/N CA/WR11224), to another base unit for a dual base (redundant) setup.
Table 3-8. REDUNDANT LOOP (J7) Connector Pinouts
Pin Signal
A SW POS 2 DRIVE OUT
B GND C SW POS 2 DRIVE OUT D RF SW IND OUT
E IF SW IND OUT
F SW POS 1 DRIVE IN G SW POS 2 DRIVE IN H RF SW IND IN
J IF SW IND IN
K MBT A IND
L MBT B IND M NC N BXC 1 FLT OUT
P BXC 2 FLT OUT R BXC 1 FLT IN
S BXC 2 FLT IN
T NC U TX
V RX
3–8
MBT-4000 Multi-Band Transceiver System Revision 4 External Connectors MN/MBT4000.IOM
3.2.2.2 AUX COMM 2 (J8)
Table 3-9. AUX COMM 2 (J8) Connector Pinouts
Pin Signal
A AUX Rx + B B AUX Rx – B C AUX Tx + B D AUX Tx – B E +12.6V LNA B F
I02 A/Fault
G
I02 B
H GND
NOTE - Mating Connectors:
CEFD P/N CN/MS3116J12-8P (Cannon MS3116J12-8P)
3.2.2.3 AUX COMM 1 (J9)
Table 3-10. AUX COMM 1 (J9) Connector Pinouts
Pin Signal
A AUX Rx + A B AUX Rx – A C AUX Tx + A D AUX Tx – A E +12.6V LNA A F
IO1 A/Fault
G
IO1 B
H GND
NOTE - Mating Connectors:
CEFD P/N CN/MS3116J12-8P (Cannon MS3116J12-8P)
3–9
MBT-4000 Multi-Band Transceiver System Revision 4 External Connectors MN/MBT4000.IOM
3.2.2.4 RF SWITCH (J10)
Table 3-11. RF Switch (J10) Connector Pinouts
Pin Signal
A POS 1 RF B GND C POS 2 RF D POS 1 IND RF E GND F POS 2 IND RF
NOTE – Mating Connectors:
CEFD P/N CN/MS3116J10-6P (Cannon MS3116J10-6P)
3.2.2.5 RF OUT (J5, BUC-4000 ONLY )
The J5 RF OUT conn ector, located on the BUC-4000 Block Up Converter Module, is a Type ‘N’ female connector, used to provide the upconverted RF Output.
3.2.2.6 RF IN (J5, BDC-4000 ONLY)
The J5 RF IN connector, located on the BDC-4000 Block Down Converter Module, is a Type ‘N’ female connector, used to provide RF Input for the downcoverter.
3–10
Chapter 4. SYSTEM OPERATING
PARAMETERS

4.1 Overview

An introduction to the Monitoring and Control (M&C) features o f the MBT-4000 Multi-Band RF Transceiver, as well as the operating parameters for the BUC-4000 Block Up Converter and BDC-4000 Block Down Converter, are provided in this chapter.

4.2 Remote Configuration, Monitoring and Control

Remote monitoring and control (M&C) of the MBT-4000 is possible via use of a remotely­connected PC or dumb terminal. From this location, the user may issue commands and queries to configure, control, and monitor one or more MBT-4000 systems.
Complete information for these features is provided in Appendix A. REMOTE CONTROL.

4.3 Block Up Converter Module (BUC-4000) Operating Parameters

The BUC-4000 translates the MBT-4000 L-Band output carrier to the desired output frequency (C, X-, or Ku- or Ka-Band) with an output level capable of driving a High-Power Amplifier (HPA).
Table 4-1. BUC-4000 C-, X-, Ku-, and Ka-Band Operating Parameters
Band Frequency LO Frequency Inverting
C-Band 5850 – 6650 MHz 4900 MHz No X-Band 7900 – 8400 MHz 6950 MHz No Ku-Band-W 13.75 – 14.50 GHz 12.800 GHz No Ka-Band 30.00 – 31.00 GHz
Notes:
1. No spectral inversion.
2. 10dB gain adjustment.
4–1
MBT-4000 Multi-Band Transceiver System Revision 4 System Operating Parameters MN/MBT4000.IOM

4.4 Block Down Converter Module (BDC-4000) Operating Parameters

The BDC-4000 translates a band-specific input frequency block (C-, X-, or Ku- or Ka-Band) from the LNA down to L-Band (950 to 2000 MHz).
Table 4-2. BDC-4000 C-, X-, KU-, and Ka-Band Operating Parameters
Band Frequency LO Frequency Inverting
C-Band 3400 – 4200 MHz 5150 MHz Yes X-Band 7250 – 7750 MHz 6300 MHz No Ku-Band-W
(Single module containing three LOs)
Ka-Band 20.20 – 21.20 GHz
Notes:
1. No spectral inversion, selectable inversion for inverted Block Down Conve rter.
2. 10 dB gain adjustment.
10.95 – 11.70 GHz
11.7 – 12.20 GHz
12.250 – 12.75 GHz
10.00 GHz
10.75 GHz
11.30 GHz
No

4.5 Monitoring Operations via the LED Indicators

The MBT-4000 Multi-Band Transceiver System features two Light-Emitting Diode (LED) indicators – one for each operational unit (module). Each LED provides the user with visual cues to the operational, online, and offline status of the sytem.
Figure 4-1 illustrates the location of the LED Indicators. Located on the top of the MBT-4000’s Base Module under a pivoting protective plate, the LEDs may be viewed by loosening the thumbscrew that keeps the plate in place; the user can then swing the plate away to reveal the LED display window.
Appendix B. FAULTS/EVENTS provides complete details for interpreting the LED Indicators.
Figure 4-1. MBT-4000 Multi-Band RF Transceiver LED Indicators
4–2

Chapter 5. FLASH UPGRADING

5.1 Overview

This chapter provides procedural information for upgrading the firmware for the Base Module of the Comtech EF Data MBT-4000 Multi-Band Transceiver System. This is a technical document intended for users – i.e., earth station engineers, technicians, and operators – responsible for the operation and maintenance of the MBT-4000. This chapter also assumes that the user has familiarity with Microsoft Windows-based operating systems.

5.2 Flash Upgrading via Internet

The MBT-4000 uses internal ‘Flash memory’ technology; this makes firmware upgrading very simple, and updates can now be sent via the Inte rnet ( Figure 5-1)
This chapter outlines the complete upgrading process as follows:
New firmware update for upgrading the MBT-4000 Base Unit is transferred to a user-
provided PC intended for Monitor and Control (M&C) of the MBT-4000 system.
, via E-mail, or on CD.
By simply connecting the MBT-4000 to an available serial port on the user-provided PC, the
upgrade can then be performed without opening the MBT-4000 base unit. (Note: The block up and down converter modules are factory-serviced items, and are not updated during this procedure.)
Once the firmware update is extracted from the transferred archive file, the upgrade
process is executed via use of a utility program, FLSHCSAT.exe.
Figure 5-1. Flash Update via Internet
5–1
MBT-4000 Multi-Band Transceiver System Revision 4 Flash Upgrading MN/MBT4000.IOM

5.2.1 Firmware File Transfer Procedure

1. Identify the reflashable product, firmware number, and version for download. Using serial remote control, the current MBT-4000 firmware revision can be determined with
the following query: <0/ FRW?
2. Create a temporary directory (folder) on the user-provided external PC.
Windows: Select File > New > Folder, then rename the New Folder to "temp" or another
convenient, unused name. Assuming "temp" works, a "c:\temp" folder should now be created.
Note: The c: is the drive letter used in this example. Any valid writable drive letter can
be used.
CMD Prompt: At the command prompt (c:\>), type "mk dir t emp ” or “MD temp" without
quotes (mkdir and MD stand for make directory). This is the same as creating a new folder from Windows. There should now be a "c:\temp" subdirectory created (where c: is the drive letter used in the example).
3. Download the correct firmware file to this temporary folder as shown in Figure 5-1:
1. Go online to:
www.comtechefdata.com
2. Click on: Support tab
3. Click on: Software Downloads drop-down or hyperlink from Support page
4. Click on: Download Flash and Software Update Files icon
5. Click on: (Select a Product Line) Transceivers hyperlink
6. Select the appropriate firmware hyperlink from the roster of displayed MBT-4000
products/components.
The flashable files on the download server are organized by product p refix. Depending on the product for which it is intended, the file name may designate the firmware number (v erify that the correct firmware number is known – see Step 1); revision letter, if applicable; version; and release date. The naming convention for MBT-4000 Base Unit firmware is FW11811*.CCC (where the asterisk signifies the firmware revision letter).
The current version firmware release is provided. If applicable, one version prior to the current release is also available. Be sure to identify and download the desired version.
The downloadable files are stored in two formats: *.exe (self-extracting) and *.zip (compressed). Some firewalls will not allow the downloading of *.exe files. In this case, download the *.zip file instead.
For additional help with "zipped" file types, refer to PKZIP for Windows, WinZip, or ZipCentral help files. PKZIP for DOS is not supported due to file naming conventions.
5–2
MBT-4000 Multi-Band Transceiver System Revision 4 Flash Upgrading MN/MBT4000.IOM
4. Extract the files to the temporary folder on the PC, then verify the success of the file extraction
and transfer via the dir command. At least four files should be extracted:
ReleaseNotes_vX-X-X.pdf, where “X-X-X”
denotes the firmware version.
FW11811x.CCC, where "x" denotes the firmware
revision letter.
FLSHCSAT.EXE: CEFD Flash Upload Utility
Program.
CCCflash.hlp: FLSHCSAT Help File.
If these four files as identified are displayed, proceed to the next section to perform the flash upgrade.

5.3 Flash Upgrade Procedure

Step Procedure
Locate and Identify the MBT-4000 Multi-Band Transceiver System.
1
The illustration to the right serves to identify key features of a typical system.
Ensure that the MBT-4000 system is connected to a user-provided, Windows­based PC.
2
Note: If needed, the CA/WR12243-1 System Programming Cable is available from Comtech EF Data. Contact CEFD Customer Support for ordering information.
5–3
MBT-4000 Multi-Band Transceiver System Revision 4 Flash Upgrading MN/MBT4000.IOM
Double-click FLSHCSAT.EXE (filename or icon) to execute
3
the flash upload utility.
From the FLSHCSAT window, select the pertinent serial port used for communication between the user-provided PC and the
4
MBT-4000. (In this example, as noted at
A’, COM1 has been selected.)
A
Do not select a Baud Rate (noted at ‘B’) other than the default selection of 38400,
5
unless otherwise instructed by Comtech EF Data Technical Support.
Click on ‘Software Upload’,
6
as noted at ‘C’.
The user is prompted to select the firmware file to upload. Click ‘Choose File’,
then select the file from the temporary folder created
7
earlier by using the box to the right to navigate to the desired folder, then double­clicking on the firmware file using the box to the left.
Prior to continuing the upload process, the MBT-4000 system must be powered off. Disconnect the power cable
8
from the Base Unit, then click on ‘Start Upload’ to resume
the upload process.
B
C
5–4
MBT-4000 Multi-Band Transceiver System Revision 4 Flash Upgrading MN/MBT4000.IOM
When prompted, reconnect the power cable to the Base
9
Unit.
Once communication has been established between the PC and MBT-4000, the upload will take place – do
not interrupt this upload process.
10
Note: If the upload is not successful for any reason – e.g., the communications cable is not physically connected, the wrong COM port has been specified, the user inadvertently interrupted the upload, etc. – the user may troubleshoot the setup as needed, then click on ‘Repeat Upload’ or ‘Go Back to Start’ to resume/retry the upload process.
5–5
MBT-4000 Multi-Band Transceiver System Revision 4 Flash Upgrading MN/MBT4000.IOM
Upon successful completion of the upload, the user may click on ‘Go Back to Start’ (if, for example, more than one MBT-4000 system
11
requires upgrade), or ‘Close’ (to exit the FLSHCSAT program).
If needed, disconnect the System Programming Cable (CEFD P/N CA/WR12243-1)
12
and reconnect the original System Communications Connection Cable.
The LEDs on the MBT-4000 Base Unit will illuminate GREEN (unmuted) or YELLOW (muted) to indicate the current status of the Unit 1 and Unit 2 modules.
13
(Note: If either LED illuminates RED, refer to Appendix B. FAULTS/EVENTS for further information.)
The upgrade process has been successfully completed.
5–6

Appendix A. REMOTE CONTROL

A.1 Overview

This appendix describes the protocol and message command set for remote monitor and control of the MBT-4000 Multi-Band Transceiver System (more specifically, the BUC-4000 and BDC-4000 modules).
The electrical interface is either an RS-485 multi-drop bus (for the control of many devices) or an RS-232 connection (for the control of a single device), and data is transmitted in asynchronous serial form using ASCII characters. Control and status information is transmitted in packets of variable length, in accordance with the structure and protocol defined in later sections.

A.2 RS-485

For applications where multiple devices are to be monitored and controlled, a full-duplex (or 4­wire plus ground) RS-485 is preferred. Half-duplex (2-wire plus ground) RS-485 is possible, but is not preferred. In full-duplex RS-485 communications, there are two separate, isolated, independent, differential-mode twisted pairs, each handling serial data in different directions.
It is assumed that a 'Controller' device (a PC or dumb terminal) transmits data in a broadcast mode via one of the pairs. Many 'Target' devices are connected to this pair, and all simultaneously receive data from the Controller. The Controller is the only device with a line-driver connected to this pair – the Target devices have only line-receivers connected.
In the other direction, on the other pair each Target has a tri-stateable line driver connected, and the Controller has a line-receiver connected. All the line drivers are held in high-impedance mode until one (and only one) Target transmits back to the Controller. Each Target has a unique address, and each time the Controller transmits, the address of the intended recipient Target is included in a framed 'packet' of data. All of the Targets receive the packet, but only one (the intended) will reply. The Target enables its output line driver and transmits its return data packet back to the Controller in the other direction, on the physically separate pair.
RS-485 (full duplex) summary:
Two differential pairs – one pair for Controller-to-Target, one pair for Targe t-to-Con troller.
Controller-to-Target pair has one line driver (Controller) , and al l Targe ts have line-re ceivers.
Target-to-Controller pair has one line receiver (Controller), and all Targets have tri-state
drivers.
A–1
MBT-4000 Multi-Band Transceiver System Revision 4 Remote Control MN/MBT4000.IOM

A.3 RS-232

This is a much simpler configuration in which the Controller device is connected directly to the Target via a two-wire-plus-ground connection. Controller-to-Target data is carried, via RS-232 electrical levels, on one conductor, and Target-to-Controller data is carried in the other direction on the other conductor.

A.4 Basic Protocol

Whether in RS-232 or RS-485 mode, all data is transmitted as asynchronous serial characters, suitable for transmission and reception by a UART. The asynchronous character is fixed at 8-N-1 (8 data bits, no parity, one stop bit). Only two baud rates are supported: 9600 baud and 19200 baud.
All data is transmitted in framed packets. The Controller is assumed a PC or ASCII dumb terminal that is in charge of the process of monitor and control. The Controller is the only device that is permitted to initiate, at will, the transmission of data. Targets are only permitted to transmit when they have been specifically instructed to do so by the Controller.
All bytes within a packet are printable ASCII characters, less than ASCII code 127. In this context, the Carriage Return and Line Feed characters are considered printable.
All messages from Controller-to-Target require a response – with one exception: This will be either to return data that has been requested by the Controller, or to acknowledge reception of an instruction to change the configuration of the Target. The exception to this is when the Controller broadcasts a message (such as Set Time/Date) using Address 0, when the Target is set to RS-485 mode.

A.5 Packet Structure

Start of
Packet
<
ASCII code 60
(1 character)
Example: <0412/MUT=1{CR}
Start of
Packet
>
ASCII code 62
(1 character)
Target
Address
(4 or 6
characters)
Target
Address
(4 or 6
characters)
Controller-to-Target
Address
Delimiter
/
ASCII code 47
(1 character)
Address
Delimiter
/
ASCII code 47
(1 character) (3 characters)
Instruction
Code
(3 characters)
Target-to-Controller
Instruction
Code
Code
Qualifier
= or ?
ASCII codes
61 or 63
(1 character)
Code
Qualifier
=, ?, !, or *
ASCII codes
61,63,33 or 42
(1 character)
Optional
Arguments
(n characters)
Optional
Arguments
(From 0 to n
characters)
End of Packet
Carriage Return
ASCII code 13
(1 character)
End of Packet
Carriage Return,
Line Feed
ASCII codes
13,10
(2 characters)
Example: >0412/MUT={CR}{LF}
A–2
MBT-4000 Multi-Band Transceiver System Revision 4 Remote Control MN/MBT4000.IOM

A.5.1 Start of Packet

Controller-to-Target: This is the character '<' (ASCII code 60) Target-to-Controller: This is the character '>' (ASCII code 62)
Because this is used to provide a reliable indication of the start of packet, these two characters may not appear anywhere else within the body of the message.

A.5.2 Target Address

Up to 9,999 devices can be uniquely addressed. In both RS-232 and RS-485 applications, the permissible range of values is 1 to 9999. It is programmed into a target unit using the remote control port.
The BDC and BUC subdevices may also be addressed by appending the corresponding subdevice address. The subdevice address is ‘A1’ for the BUC and ‘A2’ for the BDC. For example, a mute command addressed to a BUC attached to an MBT-4000 at address 0412 will be:
<0412A1/MUT=1{CR} The format of the response will be: >0412A1/MUT={CR}{LF} Subdevice addresses cannot be changed.
The Controller sends a packet with the address of a Target - the destination of the packet. When the Target responds, the address used is the same address, to
IMPORTANT
indicate to the Controller the source of the packet. The Controller does not have its own address.

A.5.3 Address Delimiter

This is the ‘forward slash’ character '/' (ASCII code 47).

A.5.4 Instruction Code

This is a three-character alphabetic sequence that identifies the subject of the message. Wherever possible, the instruction codes have been chosen to have some significance. This aids in the readability of the message if seen in its raw ASCII form. Upper and lower case alphabetic characters (i.e., A-Z – ASCII codes 65-90, and a-z – ASCII codes 97-122) may be used.
A–3
MBT-4000 Multi-Band Transceiver System Revision 4 Remote Control MN/MBT4000.IOM

A.5.5 Instruction Code Qualifier

This single character further qualifies the preceding instruction code. Code Qualifiers obey the following rules:
1. From Controller-to-Target, the only permitted values are:
= (ASCII code 61)
? (ASCII code 63)
The = code is used as the assignment operator, and is used to indicate that the parameter defined by the preceding byte should be set to the value of the argument(s) that follow it. For example: MUT=1 would mean 'enable the Mute function.'
The ? (ASCII code 63) is used as the query operator, and is used to indicate that the Target should return the current value of the parameter defined by the preceding byte. For example: MUT? Would mean ‘retur n the curre nt state of the Mute function.’
2. From Target-to-Controller, the only permitted values are:
= (ASCII code 61)
? (ASCII code 63)
! (ASCII code 33)
* (ASCII code 42)
# (ASCII code 35)
The = code is used in two ways: First, if the Controller has sent a query code to a Target (for example: MUT?
would mean ‘return the current state of the Mute function’), the Target would then respond with MUT=x, where ‘x’ represents the state in question ( 1 being ‘enabled’, 2 being ‘disabled).
Second, if the Controller sends an instruction to set a parameter to a particular value, then, providing the value sent in the argument is valid, the Target will acknowledge the message by replying with MUT= (with no message arguments).
The ? code is only used as follows: If the Controller sends an instruction to set a parameter to a particular value,
then, if the value sent in the argument is not valid, the Target will acknowledge the message by replying (for example) with MUT? (with no message arguments). This indicates that there was an error in the argument of the message sent by the Controller.
The ! code is only used as follows: If the Controller sends an instruction code that the T arget does not recognize,
the Target will acknowledge the message by echoing the invalid instruction, followed by the ! character; for example, XYZ!
The * code is only used as follows: If the Controller sends an instruction to set a parameter to a particular value,
then, if the value sent in the argument is valid, but the target is in the wrong mode (e.g., Standby mode in Redundancy configuration) such that it will not permit that particular parameter to be changed at that time, the Target will acknowledge the message by replying (for example) with MUT* (with no message arguments).
The # code is only used as follows: If the controller sends an instruction code that the target cannot currently perform
because of hardware resource issues, then the target will acknowledge the message by echoing the invalid instruction, followed by the # character; for example, MUT# (with no message arguments).
A–4
MBT-4000 Multi-Band Transceiver System Revision 4 Remote Control MN/MBT4000.IOM

A.5.6 Optional Message Arguments

Arguments are not required for all messages. Arguments are ASCII codes for the characters 0 to 9 (ASCII codes 48-57), period (ASCII code 46), and comma (ASCII code 44).

A.5.7 End of Packet

Controller-to-Target: This is the 'Carriage Return' character (ASCII code 13).
Target-to-Controller: This is the two-character sequence 'Carriage Return', 'Line Feed' (ASCII
codes 13 and 10).
Both indicate the valid termination of a packet.
A–5
MBT-4000 Multi-Band Transceiver System Revision 4 Remote Control MN/MBT4000.IOM

A.6 Remote Commands and Queries

Where Column ‘C’ = Command; Column ‘Q’ = Query: Columns marked (X) indicate Command only, Query only, or Command/Query for Instruction Code.
Instr Code C Q Page
Instr Code C Q Page
AFR ATT
CAA
CAI CAS CCS
CID CLC CMS CUS DAT EAM
FRE
FRW
X X X X X
X X
X X X X
X
X X X X X X X
X
A-7 RED A-7 REF A-7 RET A-7 RMS A-8 RSN A-9 RUS
A-9 SBR A-10 SFS X A-21 A-11 SPA A-12 SSA A-12 SSW A-12 TIM A-12 TNA A-12 TSC
X X X X
X X X X
X X
X X X X X X X
X X
A-18 A-19 A-19 A-20 A-21 A-21 A-21
A-21 A-22 A-22 A-22 A-22 A-23
LCM
LCS
LCW
LFL LNA MUT OFM ONL
RAI
RAM
RAS RCS
X X X X X X X
X X X X X
X
X X X
X
X
A-13 A-13
A-13, A-14
A-14 A-15 A-15 A-24 A-15 A-16 A-16 A-17 A-18
A–6
XRF
X X
A-23
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Automatic Fault Recovery State
Attenuation ATT=xx.xx BDC
Clear All Stored Alarms
Concise AUX COMM I/O
Command
(Instruction
Code and
qualifier)
AFR=x All 1 byte, value
CAA= All None Command only.
N/A MBT n=Slot
alid on MBT,
BDC, or
BUC
BUC
Arguments
for Command
or Response
to Query
of 0, 1
5 bytes, numeric
1=AUX COMM 1 2=AUX COMM 2
(Note that all arguments are ASCII numeric codes – i.e.,
Description of Arguments
ASCII codes between 48 and 57)
Command or Query. Enable Automatic Fault Recovery on a BXC, where: 0=Disabled 1=Enabled
Example: AFR=1 Command or Query.
Valid attenuation level, in dB, at 0.25dB step size as factory default.
Example: ATT=08.25
Instructs the slave to clear all Stored Events. This command takes no arguments.
Query only. Used to Query the Concise AUX COMM I/O of the MBT-4000 base unit, where: n=1 (AUX COMM 1) or 2 (AUX COMM 2)
Example: <0001/CAI?n{cr} >0001?CAI=nabcd{cr}{lf}
Where:
n=1 or 2 (AUX COMM) a=12V (0=Off, 1=On) b=IOA (O=logic low [voltage input < 0.5], 1=logic high [voltage input > 2.7 vdc) c=IOB (O=logic low [voltage input < 0.5], 1=logic high [voltage input >2.7 vdc] d=Reserved (Always zero)
Response to
Command
(Target to
Controller)
AFR=(message OK) AFR? (received OK, but invalid arguments found) AFR*(message OK, but not permitted in current mode)
ATT=(message OK) ATT? (received OK, but invalid arguments found) ATT*(message OK, but not permitted in current mode) ATT! (Command not accepted by MBT­4000 base unit. It must be addressed to BUC or BDC sub­units)
CAA=(message OK) N/A N/A
CAI=(message OK) CAI? (received OK, but invalid arguments found) CAI*(message OK, but not permitted in current mode)
Query
(Instruction
Code and
qualifier)
AFR? AFR=x
CAI?n CAI=nabcd
Response to
(same format as
(see description for details of arguments)
Query
(Target to
Controller)
command
arguments)
A–7
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Concise Alarm Status
Command
(Instruction
Code and
qualifier)
N/A All 20 bytes,
alid on MBT,
BDC, or
BUC
Arguments
for Command
or Response
to Query
numeric
(Note that all arguments are ASCII numeric codes – i.e.,
Query only. Used to query the alarm status of the unit.
Example: <0001/CAS?{cr} >0001/CAS=abcdefghijkl{cr}{lf}
Where:
a through l = 0 or 1, 0=OK, 1=FLT
All:
a=+15V Power Supply b=+7.5V Power Supply c=+5.0V Power Supply
MBT-4000:
d=+28V Power Supply e=Ref Oscillator Lock Detect f=Intermodule Communications g=Max current on LNA power supply AUX COMM1 h=Max current on LNA power supply AUX COMM2 i=Current window LNA power supply AUX COMM1 j=Current window LNA power supply AUX COMM2 k=Fault input AUX COMM1 (Pin F, J9) l=Fault input AUX COMM2 (Pin F, J8)
BDC/BUC:
d=X (reserved for future use) e=Synthesizer Lock Detect f=Heat-sink Temperature g=LNA current (BDC only, reserved on BUC) h=Reserved, always zero i-l=Not sent.
Description of Arguments
ASCII codes between 48 and 57)
Response to
Command
(Target to
Controller)
N/A CAS? CAS=x…X
Query
(Instruction
Code and
qualifier)
Response to
Query
(Target to
Controller)
(see description for details of arguments)
A–8
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Concise Configuration Status
Circuit Identification
Command
(Instruction
Code and
qualifier)
N/A All 48 bytes
CID= All 24 bytes,
alid on MBT,
BDC, or
BUC
Arguments
for Command
or Response
to Query
(BDC) 41 bytes (BUC) 32 bytes (MBT) alphanumeric
alphanumeric
(Note that all arguments are ASCII numeric codes – i.e.,
Query only. Returns the summarized version of RCS.
Example for MBT-04000 base unit:
<0001/CCS?{cr} >0001/CCS=aa,bb,cc,dd,e,ff,g,h{cr}{lf}
Where:
aa=Frequency band for Unit 1 BXC (‘C”, ‘X”, ‘Ka’, ‘Ku’, or ‘NA’) bb=Frequency band for Unit 2 BXC (‘C’, ‘X’, ‘Ka’, ‘KU’, OR ‘NA’) cc=Direction for Unit 1 BXC (‘DN’=B DC, ‘UP’=BUC, ‘NA’=None) dd=Direction for Unit 2 BXC (‘DN’=BDC, ‘UP’=BUC, ‘NA’=None) e = X (reserved for future use) ff = X (reserved for future use) g = X (reserved for future use) h=External reference lock (1=locked, 0=Not locked)
Example BDC or BUC:
<0001A1/CCS?{cr}{lf} >0001A1/CCS=aaaaa,bb.bb,c,d.d,e,ff,g,hhhh,i,j,{CR}{lf}
Where:
aaaaa=Frequency in MHz bb.bb=Attenuation in dB c=mute state, 0=unmated, 1=muted d.d=slope adjust e=LNA current source (BDC only, BUC=X) ff=LNA current window (BDC only, BUC=XX) g=LNA fault logic (BDC only, BUC=X) hhhh=XXXX (reserved for future use) i=X (reserved for future use) j=Fault recovery, 0=Manual, 1=Auto
Command or Query. Used to identify or name the unit or station. First line is limited to 24 characters.
Example: CID={cr}
-Earth Station 1--
---Converter #1---
Description of Arguments
ASCII codes between 48 and 57)
Response to
Command
(Target to
Controller)
N/A CCS? CCS=x….x
CID=(message OK) CID?(received OK, but invalid arguments found)
Query
(Instruction
Code and
qualifier)
CID? CID=x…x
Response to
Query
(Target to
Controller)
(see description for details of arguments)
(see description for details of arguments)
A–9
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Calibrate LNA Current
Calibrate LNA Current
Command
(Instruction
Code and
qualifier)
CLC= BDC none Command only.
CLC=s MBT S=1 byte
alid on MBT,
BDC, or
BUC
Arguments
for Command
or Response
to Query
Value of 1 , 2 1=LNA A 2= LNA 2
(Note that all arguments are ASCII numeric codes – i.e.,
Description of Arguments
ASCII codes between 48 and 57)
This command is used to set the calibration point for the LNA current alarm feature.
Example: CLC=
Command only. This command is used to set the calibration point for the LNA current alarm feature, where s = Source: 1=LNA A (AUX COMM1) 2=LNA B(AUX COMM2)
Example: CLC=1
Response to
Command
(Target to
Controller)
CLC=(message ok) CLC?(received ok, but invalid arguments found) CLC*(message ok, but not permitted in current mode) CLC!(command not accepted by BDC sub-units.)
CLC=(message ok) CLC?(received ok, but invalid arguments found) CLC*(message ok, but not permitted in current mode) CLC!(command not accepted by BUC or BDC sub-units.)
Query
(Instruction
Code and
qualifier)
N/A N/A
N/A N/A
Response to
Query
(Target to
Controller)
A–10
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Concise Maintenance Status
Command
(Instruction
Code and
qualifier)
N/A All 40 bytes
alid on MBT,
BDC, or
BUC
Arguments
for Command
or Response
to Query
alphanumeric
(Note that all arguments are ASCII numeric codes – i.e.,
Query only. Used to query the maintenance status of the unit in concise format. Response is comma delimited as follows:
Example:
<0001/CMS?{cr} >0001/CMS=aaa.a,bbb.b,ccc.c,ddd.d,eee.e,fff.f,ggg.g,h,I,j,k{cr} {lf}
All:
aaa.a=+15V power supply bbb.b=+7.5V power supply ccc.=+5V power supply
MBT-4000 Base Unit:
ddd.d=+28V power supply eee.e=Ref oscillator tuning voltage fff.f= ggg.g= LNA current in mA for LNA B (AUX COMM2) h=local RF switch position (A, B, or N) i=Local IF switch position (A, B, or N) j=Remote RF switch position (A or B) k=Remote IF switch position (A or B)
Notes:
1. It is not possible to detect the absence of a remote switch.
2. N= Not present.
BDC:
ddd.d=XXX.X (reserved for future use) eee.e=Synthesizer tuning voltage fff.f=LNA current in mA. ggg.g= Unit temperature in °C. h – k= Not present
BUC:
ddd.d=XXX.X (reserved for future use) eee.e=Synthesizer tuning voltage fff.f=RF output power in dBm (reserved) ggg.g=Unit temperature in °C h – k= Not present
Description of Arguments
ASCII codes between 48 and 57)
XXX.X (reserved for future use)
Response to
Command
(Target to
Controller)
N/A CMS? CMS=…
Query
(Instruction
Code and
qualifier)
Response to
Query
(Target to
Controller)
(see description for details of arguments)
A–11
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Concise Utility Status
Set RTC (Real-Time­Clock) Date
Enable Aux Com Fault Input Monitoring
Operating RF Frequency
Retreive Firmware Number
Command
(Instruction
Code and
qualifier)
N/A MBT 21 bytes
DAT=mmddyy All 6 bytes,
EAM=nm MBT n=1 AUX
FRE=xxxxx.xxx BDC
N/A All Query only
alid on MBT,
BDC, or
BUC
BUC
Arguments
for Command
or Response
to Query
alphanumeric
numeric
COMM1 2=AUX COMM2 m=0 (disabled), 1 (monitoring enabled)
9 bytes, numeric
(Note that all arguments are ASCII numeric codes – i.e.,
Description of Arguments
ASCII codes between 48 and 57)
Query only. Used to query the utility status of the MBT-400 Base Unit, response is comma delimited, where: aaaa=Physical Address bbbb=Remote Baud Rate
Example: <0001/CUS? >0001/CUS=aaaa,bbbb{cr}{lf}
Command or Query. A command in the form mmddyy, where; dd = day of the month, between 01 and 31 mm = month of the year, between 01 and 12 yy = year, between 00 and 96 (2000 to 2096)
Example: DAT=042503 would be April 24, 2003. Command or Query.
EAM controls monitoring of external fault logic inputs to Aux Comm connectors (J8/J9 pin F). If enabled and external fault input is at Logic 1 ( > 2.6 vdc) a fault will be reported.
Note: The inputs may be driven by a contact closure relay. They have an internal pull-up resistor (4.7k) to +5 vdc.
Example: EAM=21 Command or Query
Valid Operating RF frequency, in MHz.
For Ku BDCs:
FRE values: 10950-11700 MH z an LO of 10000 MHz is a ctivated FRE values: 11701-12250 MH z an LO of 10700 MHz is a ctivated FRE values: 12251-12750 MH z an LO of 11300 MHz is a ctivated
Example: FRE=11300.000
Gets the Firmware Number of the unit.
Example: FRW=FW12001’cr’’lf’
Response to
Command
(Target to
Controller)
N/A CUS? CUS=x…x
DAT= (message OK) DAT? (received OK, but invalid arguments found) DAT* (message OK, but not permitted in current mode)
EAM=(message OK) EAM?(received OK, but invalid arguments found)
FRE=(message OK) FRE? (received OK, but invalid arguments found) FRE* (message OK, but not permitted in current mode) FRE! (command not accepted by MBT­4000 base unit. It must be addressed to BUC or BDC sub­units)
N/A FRW? FRW=FWxxxxx
Query
(Instruction
Code and
qualifier)
DAT?
EAM?n EAM=nm
FRE? FRE=xxxxx.xxx
Response to
Query
(Target to
Controller)
(see description for details of arguments)
DAT=mmddyy (same format as command arguments)
(same format as command arguments)
(see description of arguments)
A–12
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Monitor LNA Current
LNA Current Source
LNA Current Source
LNA Current Window
Command
(Instruction
Code and
qualifier)
N/A MBT
LCS=sx MBT s=1 byte,
LCS=x BDC x=1 byte,
LCW=xx BDC xx=2 bytes,
alid on MBT,
BDC, or
BUC
Arguments
for Command
or Response
to Query
s_xxx.x, s=1 byte, value of 1, 2 1=LNA A 2=LNA B
xxx.x=5 bytes, numeric
value of 1, 2 1=LNA A 2=LNA B
x=1 byte, value of 0, 1 0 = Disable 1 = Enable
value of 0, 1 0 = Disable 1 = Enable
numeric
Query only. Returns LNA Current Source Level in mA.
Example:
<0001/LCM?2 >0001/LCM=2_045.3{cr}{lf}
Command or Query. LNA Current Source Enable, where:
Example: LCS=10
Command or Query. LNA Current Source Enable, where:
Example: LCS=0
Command or Query. This command allows the user to set the alarm window in ± % of the calibrated LNA Current. Valid inputs are 20 to 50 in increments of 1%. In addition, setting the value to 99 disables the alarm function.
Default is Disabled. Example: LCW=30, set alarm window for LNA A (Aux Comm 1)
to ± 30%.
(Note that all arguments are ASCII numeric codes – i.e.,
Description of Arguments
ASCII codes between 48 and 57)
Source Enable 1=LNA A (Aux Comm 1) 0 = Disabled2=LNA B 2=LNB B (Aux Comm 2) 1 = Enabled
0 = Disabled 1 = Enabled
Response to
Command
(Target to
Controller)
LCM= (message ok) LCM? (received ok, but invalid arguments found) LCM! (command not accepted by BUC or BDC sub-units)
LCS= (message ok) LCS? (received ok, but invalid arguments found) LCS* (message ok, but not permitted in current mode) LCS! (command not accepted by BUC or BDC sub-units)
LCS= (message ok) LCS? (received ok, but invalid arguments found) LCS* (message ok, but not permitted in current mode) LCS! (command not accepted by BUC sub-units)
LCW= (message ok) LCW? (received ok, but invalid arguments found) LCW* (message ok, but not permitted in current mode) LCW! (command not accepted by BDC sub-units)
Query
(Instruction
Code and
qualifier)
LCM?s s=1 byte,
value of 1, 2
LCS?s s=1 byte,
value of 1, 2
LCS?
LCW? LCW=xx
Response to
Query
(Target to
Controller)
LCM=s_xxx.x
LCS=sx (same format as
command arguments)
LCS=x (same format as
command arguments)
(same format as command arguments)
A–13
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
LNA Current Window
LNA Fault Logic
LNA Fault Logic
Command
(Instruction
Code and
qualifier)
LCW=sxx MBT s=1 byte,
LFL=sx MBT s=1 byte,
LFL=x BDC x=1 byte,
alid on MBT,
BDC, or
BUC
Arguments
for Command
or Response
to Query
value of 1, 2 1=LNA A 2=LNA B
xx=2 bytes, numeric
value of 1, 2 1=LNA A 2=LNA B
x=1 byte, Value of 0, 1 0 = Disable 1 = Enable
Value of 0, 1 0 = Disable 1 = Enable
Command or Query. This command allows the user to set the alarm window in ± % of the calibrated LNA Current. Valid inputs are 20 to 50 in increments of 1%. In addition, setting the value to 99 disables the alarm function.
Default is Disabled. Example: LCW=130, set alarm window for LNA A (Aux Comm
1) to ± 30%. Command or Query.
Allows LNA Fault Logic to contribute to the summary fault relay, where: s = Source:
x = Enable:
Example: LFL=11 Command or Query.
Allows LNA Fault Logic to contribute to the summary fault relay as follows:
Example: LFL=1
(Note that all arguments are ASCII numeric codes – i.e.,
Description of Arguments
ASCII codes between 48 and 57)
1=LNA A (Aux Comm 1) 2=LNA B (Aux Comm 2)
0 = Disabled 1 = Enabled
Enable 0 = Disabled 1 = Enabled
Response to
Command
(Target to
Controller)
LCW= (message ok) LCW? (received ok, but invalid arguments found) LCW* (message ok, but not permitted in current mode) LCW! (command not accepted by BUC or BDC sub-units)
LFL= (message ok) LFL? (received ok, but invalid arguments found) LCS* (message ok, but not permitted in current mode) LFL! (command not accepted by BUC or BDC sub-units)
LFL= (message ok) LFL? (received ok, but invalid arguments found) LCS* (message ok, but not permitted in current mode) LFL! (command not accepted by BDC sub-units)
Query
(Instruction
Code and
qualifier)
LCW?s LCW=sxx
LFL?s s=1 byte,
Value of 1, 2
LFL?
Response to
Query
(Target to
Controller)
(same format as command arguments)
LFL=sx (same format as
command arguments)
LFL=x (same format as
command arguments)
A–14
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Retrieve next 5 unread Stored Alarms
Mute State MUT=x BDC
Online Status N/A MBT N/A Query only.
Command
(Instruction
Code and
qualifier)
N/A All 145 bytes Query only.
alid on MBT,
BDC, or
BUC
BUC
Arguments
for Command
or Response
to Query
1 byte, value of 0,1
(Note that all arguments are ASCII numeric codes – i.e.,
Description of Arguments
ASCII codes between 48 and 57)
The unit returns the oldest 5 Stored Events which have not yet been read over the remote control. Reply format: Sub-body{CR}Sub-body{CR}Sub-body{CR}Sub-body{CR}Sub­body, where Sub-body=YYYYYYYYYY ZZ hhmmss mmddyy: YYYYYYYYYY=being the fault description. ZZ= being the alarm type. FT = Fault OK = Clear IF = Information
If there are no new events, the unit will reply with LNA* Note: See Appendix B for a description of possible Alarm/Events
that may be found in the Alarm queue. Command or Query.
Mute the unit, where: 0 = Disabled, 1 = Enabled
Example: MUT=1
Used to query the online status of the unit (useful in redundant configurations).
Return position of corresponding RF switch.
Example:
<0001/ONL?{cr} >0001/ONL={cr}{lf} ON1=ON ,{cr} ON2=ON , {cr}{lf}
Response to
Command
(Target to
Controller)
N/A LNA? LNA=YY..ss
MUT= (message OK) MUT? (received OK, but invalid arguments found) MUT* (message OK, but not permitted in current mode) MUT! (command not accepted by MBT­4000 base unit. It must be addressed to BUC or BDC sub­units)
ONL= (message OK) ONL? (received OK, but invalid arguments found)
Query
(Instruction
Code and
qualifier)
MUT? MUT=x
ONL? ONL=x
Response to
Query
(Target to
Controller)
(see description for details of arguments)
(same format as command arguments)
A–15
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Retrieve AUX COMM I/O
Redundancy Mode
Command
(Instruction
Code and
qualifier)
N/A MBT 1 byte,
RAM=um MBT u=1 byte,
alid on MBT,
BDC, or
BUC
Arguments
for Command
or Response
to Query
value of n=1 or 2 1=Aux Comm1 2=Aux Comm2
value of 1, 2 1=Unit 1 2=Unit 2
m=1 byte, Value of 0, 1 0 = Manual 1 = Automatic
Query only. Used to Retrieve AUX COMM I/O of the MBT-4000 base unit, where: n=1 (Aux Comm 1) or 2 (Aux Comm 2).
Example: <0001/RAI?1
Note: 0 = Logic low or input voltage < 0.5 vdc.
1 = Logic level 1 or input voltage > 2.7 vdc. Command or Query.
Sets redundancy mode as follows: Unit: 1=Unit 1
Mode: 0 = Manual
Example: RAM=11
(Note that all arguments are ASCII numeric codes – i.e.,
Description of Arguments
ASCII codes between 48 and 57)
Returns: >0001/RAI= 12V1=On IO1A=0 IO1B=1 RSVD=0
2=Unit 2
1 = Automatic
Response to
Command
(Target to
Controller)
RAI = (message OK) RAI? (received OK, but invalid arguments found) RAI* (message OK, but not permitted in current mode)
RAM= (message OK) RAM? (received OK, but invalid arguments found) RAM* (message OK, but not permitted in current mode)
Query
(Instruction
Code and
qualifier)
RAI?n RAI=x….x
RAM?u u=1 byte,
Value of 1, 2
Response to
Query
(Target to
Controller)
(see description for details of arguments)
RAM=um (same format as command arguments)
A–16
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Retrieve Alarm Status
Command
(Instruction
Code and
qualifier)
N/A All 92 bytes MBT-
alid on MBT,
BDC, or
BUC
Arguments
for Command
or Response
to Query
4000 64 bytes (BUC), 74 bytes (BDC), alphanumeric
(Note that all arguments are ASCII numeric codes – i.e.,
Description of Arguments
ASCII codes between 48 and 57)
Query only. Used to Query the Alarm status of the unit
Example for MBT-4000 base:
<0001/RAS?{cr} >0001/RAS={cr} 15VT1=OK{cr} 7V5T1=OK{cr} 5VLT1=OK{cr} 28VT1=OK{cr} REFLD=OK{cr} IICST=OK{cr} LNAC1=OK{cr} LNAC2=OK{cr} LNAW1=OK{cr} LNAW2=OK{cr} LNAI1=OK{cr} LNAI2=OK{cr}{lf}
Example for BDC or BUC:
<0001A1/RAS?{cr} >0001A1/RAS={cr} 15VLT=OK{cr} 7V5LT=OK{cr} 5VOLT=OK{cr} REFLD=XX {cr} (reserved for future use) SYNLD=OK{cr} HSTMP=OK{cr} LNACR=OK{cr}{lf}
Note: LNACR will only appear for BDC.
Response to
Command
(Target to
Controller)
N/A RAS?
Query
(Instruction
Code and
qualifier)
Response to
Query
(Target to
Controller)
RAS=x….x (see description for details of arguments)
A–17
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Retrieve Configuration Status
Redundancy State
Command
(Instruction
Code and
qualifier)
N/A All 65 bytes
RED=x MBT 1 byte,
alid on MBT,
BDC, or
BUC
Arguments
for Command
or Response
to Query
(MBT-4000) 98 bytes (BDC), 76 bytes (BUC) alphanumeric
value of 0,1, or 2
(Note that all arguments are ASCII numeric codes – i.e.,
Query only. Used to Query the configuration status of the unit
Example for MBT-4000 base:
<0001/RCS?{cr} >0001/RCS={cr} BF1=X {cr} BF2=X {cr} BT1=DN{cr} BT2=UP{cr} RED=0{cr} RAM=00{cr} MBT=N, A, or B EXT=0{cr}{lf}
Example for BDC or BUC:
<0001A1/RCS?{cr} >0001A1/RCS={cr} FLO=06300{cr} ATT=01.00{cr} MUT=1{cr} SLP=0.3{cr} LCS=0{cr} LCW=99{cr} LFL=1{cr} REF=XXXX{cr} (reserved for future use) XRE=X{cr} (reserved for future use) AFR=0{cr}{lf}
Note: For BUC, LCS, LCW, & LFL will not be shown. Command or Query.
Controls redundancy state, where: 0=Off 1=Enables redundancy using single base unit 2=Enables redundancy using dual base units
Example: RED=1
Description of Arguments
ASCII codes between 48 and 57)
Response to
Command
(Target to
Controller)
N/A RCS?
RED= (message OK) RED? (received OK, but invalid arguments found) RED* (message OK, but not permitted in current mode)
Query
(Instruction
Code and
qualifier)
RED? RED=x
Response to
Query
(Target to
Controller)
RCS=x….x (see description for details of arguments)
(same format as command arguments)
A–18
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Reference Oscillator Adjust
Retrieve Equipment Type
Command
(Instruction
Code and
qualifier)
REF=xxxx MBT 4 bytes,
N/A All 22 bytes,
alid on MBT,
BDC, or
BUC
Arguments
for Command
or Response
to Query
numeric
alphanumeric
(Note that all arguments are ASCII numeric codes – i.e.,
Command or Query. Ref Osc Adjust, between 0000 and 0255. Resolution 0001.
Example: REF=0197 Note: REF cannot be adjusted when the unit is locked to an
external reference source. Query only.
The unit returns a string indicated the Model Number and the software version installed
Example: RET=BUC-4000 VER:1.0.3
Description of Arguments
ASCII codes between 48 and 57)
Response to
Command
(Target to
Controller)
REF= (message OK) REF? (received OK, but invalid arguments found) REF* (message OK, but not permitted in current mode)
N/A RET?
Query
(Instruction
Code and
qualifier)
REF? REF=xxxx
Response to
Query
(Target to
Controller)
(same format as command arguments)
RET=x….x (see description for details of arguments)
A–19
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Retrieve Maintenance Status
Command
(Instruction
Code and
qualifier)
N/A All MBT-4000 -
alid on MBT,
BDC, or
BUC
Arguments
for Command
or Response
to Query
103 bytes, alphanumeric
BDC – 98 bytes, alphanumeric
BUC – 98 bytes, alphanumeric
(Note that all arguments are ASCII numeric codes – i.e.,
Query only. Used to Query the maintenance status of the unit.
Example for MBT-4000 base: <0001/RMS?{cr} >0001/RMS={cr}{lf} 15VT1=015.1{cr} 7V5T1=007.7{cr} 5VLT1=005.0{cr} 28VT1=027.2{cr} REFVT=001.3{cr} LNA_1=000.0{cr} LNA_2=000.0{cr} RFSWP=B{cr} IFSWP=N{cr} RRFSW=B{cr} RIFSW=B{cr}{lf}
Example for BUC:
<0001A2/RMS={cr} >0001A2/RMS={cr}{lf} 15VT=015.1{cr} 7V5T=007.6{cr} 5VLT=005.2{cr} REFV=XXX.X{cr} (reserved for future use) SYNT=007.2{cr} POUT=XXX.X{cr} (reserved for future use) TEMP=+25.0{cr}{lf}
Example for BDC:
<0001A1/RMS={cr} >0001A1/RMS={cr}{lf} 15VT=015.1{cr} 7V5T=007.6{cr} 5VLT=005.2{cr} REFV=XXX.X{cr} (reserved for future use) SYNT=007.2{cr} LNAC=255.0{cr} TEMP=+25.0{cr}{lf}
Note: “REFV” will show tuning voltage of reference OSC for standalone. Otherwise REFV=xxx.x which means Not Applicable.
Description of Arguments
ASCII codes between 48 and 57)
Response to
Command
(Target to
Controller)
N/A RMS?
Query
(Instruction
Code and
qualifier)
Response to
Query
(Target to
Controller)
RMS=x….x (see description for details of arguments)
A–20
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Serial Number N/A All 9 bytes,
Retrieve Utility Status
Remote Baud Rate
Summary Fault Status
Remote Address
Command
(Instruction
Code and
qualifier)
N/A MBT 24 bytes
SBR=xxxx MBT 4 bytes, Command or Query.
N/A All N/A Query only.
SPA=xxxx MBT 4 byte,
alid on MBT,
BDC, or
BUC
Arguments
for Command
or Response
to Query
numeric 000000000 to 999999999
alphanumeric
numeric
(Note that all arguments are ASCII numeric codes – i.e.,
Description of Arguments
ASCII codes between 48 and 57)
Query only. Used to Query the units 9 digit serial number. Slave returns its S/N, in the form xxxxxxxxx.
Example: RSN=000000165 Query only.
Used to Query the utility status of the MBT-4000 base unit..
Example:
<0001/RUS={cr} >0001/RUS={cr}{lf} ADR=0001{cr} BDR=9600{cr}{lf}
Set remote baud rate as follows: 9600 = 9600 baud 19K2 = 19200 baud
Used to Query the status of the Summary Fault Relay, where: 0=OK 1=FT
Example: SFS? Command or Query.
Set Physical Address-between 0001 to 9999. Resolution 0001
Example: SPA=0412
Response to
Command
(Target to
Controller)
N/A RSN?
N/A RUS?
SBR= (message OK) SBR? (received OK, but invalid arguments found) SBR! (Command not accepted by BUC and BDC sub-units.)
N/A SFS?
SPA= (message OK) SPA? (received OK, but invalid arguments found) SPA! (Command not accepted by BUC and BDC sub-units.)
Query
(Instruction
Code and
qualifier)
SBR?
SPA?
Response to
Query
(Target to
Controller)
RSN= x….x (see description for details of arguments)
RUS=x….x (see description for details of arguments)
SBR=xxxx (same format as command arguments)
SFS=x (see description for details of arguments)
SPA=xxxx (same format as command arguments)
A–21
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Slope Adjust SSA=x.x BDC
Set Redundancy Switch
Set RTC Time TIM=hhmmss All 6 bytes,
Retrieve Number of unread Stored Alarms
Command
(Instruction
Code and
qualifier)
SSW=xy MBT 2 bytes Command only.
N/A All 2 bytes,
alid on MBT,
BDC, or
BUC
BUC
Arguments
for Command
or Response
to Query
3 bytes, numeric
numeric
numeric
(Note that all arguments are ASCII numeric codes – i.e.,
Description of Arguments
ASCII codes between 48 and 57)
Command or Query. Slope adjust level, valid from 0.0 to 1.0 with 0.1 resolution.
Example: SSA=0.3
SSW control the switches dedicated to Slot1 or 2, and sets them to either Port A or Port B.
Syntax: SSW=xy, where: x = 1 or 2 depicting Slot 1 or 2 y = A or B depicting the switch direction.
Direction A Switched to Converter on MBT_A B Switched to Converter on MBT_B
Command or Query. A command in the form hhmmss, indicating the time from midnight, where: hh = hours, between 00 and 23 mm = minutes, between 00 and 59 ss = seconds, between 00 and 59
Example: TIM=231259 would be 23 hours, 12 minutes and 59 seconds from midnight.
Query only. Returns the number of Stored Events which remain unread, in the form xx.
Example reply: TNA=18
Response to
Command
(Target to
Controller)
SSA= (message OK) SSA? (received OK, but invalid arguments found) SSA* (message OK, but not permitted in current mode) SSA! (command not accepted by MBT­4000 base unit. It must be addressed to BUC or BDC sub­units)
SSW=(message OK) SSW=xy
TIM = (message OK) TIM? (received OK, but invalid arguments found) TIM * (message OK, but not permitted in current mode)
N/A TNA?
Query
(Instruction
Code and
qualifier)
SSA?
N/A N/A
TIM?
Response to
Query
(Target to
Controller)
SSA=x.x (same format as command arguments)
TIM=hhmmss (same format as command arguments)
TNA=xx (see description for details of arguments)
A–22
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Terminal Status change
External Reference Fault Logic
Command
(Instruction
Code and
qualifier)
N/A All 1 byte,
XRF=x MBT 1 byte,
alid on MBT,
BDC, or
BUC
Arguments
for Command
or Response
to Query
value of 0,1
value of 0,1
(Note that all arguments are ASCII numeric codes – i.e.,
Query only. Used to Query the status of the Terminal Status. Where: 0=no change in status 1=change in status
Example: TSC=0 Command or Query.
XRF controls whether or not the Software monitors the external reference source. If enabled and no source is present, a fault will be reported. Where: 0=Ext Reference not monitored 1=Ext Reference is monitored and the lock state reported
Example: XRF=1
Description of Arguments
ASCII codes between 48 and 57)
Response to
Command
(Target to
Controller)
N/A TSC? TSC=x
XRF=(message OK) XRF?(received OK, but invalid arguments found)
Query
(Instruction
Code and
qualifier)
XRF? XRF=x
Response to
Query
(Target to
Controller)
(see description for details of arguments)
(see description for details of arguments)
A–23
MBT-4000 Multi-Band Transceiver System Revision 4
V
Remote Control MN/MBT4000.IOM
Parameter
Type
Mute offline OFM=um MBT u=1 byte,
Command
(Instruction
Code and
qualifier)
alid on MBT,
BDC, or
BUC
Arguments
for Command
or Response
to Query
value of 1, 2 1=Unit 1 2=Unit 2
m=1 byte, Value of 0, 1 0 = Manual 1 = Automatic
(Note that all arguments are ASCII numeric codes – i.e.,
Description of Arguments
ASCII codes between 48 and 57)
Command or Query. This command allows the user to enable muting for offline unit when in redundancy mode.
Note: The offline unit must start out as online for this command. Where:
OFM=10 would be existing behavior for the block in slot 1. OFM=11 would force a mute of the block in slot one if slot one is
offline as indicated by the switch position(blinking yellow or red LED). It would force an "un- mute" of the block in slot one if slot one is online and not faulted as indicated by the switch position(steady green LED).
OFM=20 would be existing behavior for the block in slot two. OFM=21 would force a mute of the block in slot one if slot two is
offline as indicated by the switch position(blinking yellow or red LED). It would force an "un- mute" of the block in slot two if slot two is online and not faulted as indicated by the switch position(steady green LED).
These settings would be kept in NVRAM and would come from the factory as "OFM=10" and "OFM=20"
Also, the offline unit must not be muted during this time. The offline unit has to be set for online, otherwise the OFM command won't work properly.
Response to
Command
(Target to
Controller)
OFM= (message OK) OFM? (received OK, but invalid arguments found) OFM! (command not accepted
Query
(Instruction
Code and
qualifier)
RAM?u u=1 byte,
Value of 1, 2
Response to
Query
(Target to
Controller)
RAM=um (same format as command arguments)
A–24

Appendix B. FAULTS/EVENTS

B.1 LED Status Indicators

The MBT-4000 Multi-Band Transceiver System features two Light-Emitting Diode (LED) indicators – one for each operational unit (module). Each LED provides the user with visual cues to the operational, online, and offline status for the sytem.
As shown in Figure B-1, the LEDs are found on the top of the MBT-4000’s base module, under a protective plate. To view the LEDs, loosen the thumbscrew that keeps the plate in place, then swing the plate away to reveal the LED display window.
Figure B-1. MBT-4000 LED Indicators
A steadily-lit LED indicates that the specified unit is ONLINE. A blinking LED indicates that th e specified unit is OFFLINE. The user is presented with MBT-4000 system status as per the following table:
UNIT STATUS LED COLOR UNIT STATE
GREEN
ONLINE
OFFLINE
B–1
YELLOW RED GREEN (blinking) YELLOW (blinking) RED (blinking)
No faults present; the unit is not muted. No faults present; the unit is muted. The unit is faulted. No faults present; the unit is not muted. No faults present; the unit is muted.
The unit is faulted.
MBT-4000 Multi-Band Transceiver System Revision 4 Faults/Events MN/MBT4000.IOM

B.2 Faults/Events

There are three types of Faults/Events that may occur and be recorded in the event log of an MBT-4000, BDC-4000, or BUC-4000:
Summary Faults
Configurable Summary Faults
Informational Events.
Each of these are described in further detail in the next subsections; Tables B1 through B6 list possible Fault/Event messages where applicable.
An example of a faulted system is shown in Figure B-2; here, Unit 2 has faulted.

B.2.1 Summary Faults

Summary Faults indicate improper operation. When a Summary Fault condition occurs, the Summary Fault Relay will be de-energized. If a Summary Fault occurs on a converter, it will mute. If a Summary Fault occurs on the base unit, the applicable converters (one or both) will be muted according to the specific error. If a Summary Fault occurs on the online unit of a redundant pair, the offline unit will detect the fault and assume online state. In all cases, a corresponding event message will be added to the event log.
Mnemonic Type Mute Description
15V PS1 Summary Fault All The 15 volt power supply is out of tolerance. 28V PS1 Summary Fault All The 28 volt power supply is out of tolerance. 5VT PS1 Summary Fault All The 5 volt power supply is out of tolerance. 7V5 PS1 Summary Fault All The 7.5 volt power supply is out of tolerance.
IIC BUS Summary Fault All
Table B-2. BDC-4000/BUC-4000 Summary Faults
Figure B-2. Faulted Sy
Table B-1. MBT-4000 Summary Faults
Unable to communication via the internal high speed communication bus
stem Example
Mnemonic Type Description
15V SUP Summary Fault The 15 volt power sup pl y is out of tolerance. 5VT SUP Summary Fault The 5 volt power supply is out of tolerance. 7V5 SUP Summary Fault The 7.5 volt power supply is out of tolerance. OVR TMP Summary Fault The maximum operating temperature has been e xce eded. PLL LD Summary Fault The PLL has lost lock.
B–2
MBT-4000 Multi-Band Transceiver System Revision 4 Faults/Events MN/MBT4000.IOM

B.2.2 Configurable Summary Faults

Configurable Summary Faults operate the same as Summary Faults, except Configurable Summary Faults may be enabled/disabled via remote commands.
Table B-3. MBT-4000 Configurable Summary Faults
Mnemonic Type Mute Description
The IO1A/FAULT input (AUX COMM 1) indicates a fault. Monitoring for this fault is enabled using the EAM command.
The IO2A/FAULT input (AUX COMM 2) indicates a fault. The converter attached to UNIT 2 COMM (J6) has been muted.
The +12.6 V LNA A (AUX COMM 1) power supply current has exceeded the maximum limit of 350 mA and has been disabled. The converter attached to UNIT 1 COMM (J3) has been muted. The LNA power supply—and thus this fault—is enabled using the LCS command.
This fault is cleared by a LCS command or power cycle. The +12.6 V LNA B (AUX COMM 2) power supply current
has exceeded the maximum limit of 350 mA and has been disabled. The converter attached to UNIT 2 COMM (J6) has been muted. The LNA power supply—and thus this fault—is enabled using the LCS command.
This fault is cleared by a LCS command or power cycle. The +12.6 V LNA A (AUX COMM 1) power supply current is
outside the programmed window. (The power supply is not disabled in response to this fault.) The converter attached to UNIT 1 COMM (J3) has been muted. LNA current window monitoring is configured and enabled using the LCS, CLC and LCW commands.
This fault is cleared by a LCS command, CLC command, LCW command or power cycle.
The +12.6 V LNA B (AUX COMM 2) power supply current is outside the programmed window. (The power supply is not disabled in response to this fault.) The converter attached to UNIT 2 COMM (J6) has been muted. LNA current window monitoring is configured and enabled using the LCS, CLC and LCW commands.
This fault is cleared by a LCS command, CLC command, LCW command or power cycle.
The External Reference Monitor has lost lock with the external reference signal. All attached converters (UNIT 1 and UNIT 2) have been muted. Monitoring for this fau lt is enabled using the XRF command. This fault is cleared when lock has been regained.
The IO1A/FAULT input (AUX COMM 1) indicates a fault. Monitoring for this fault is enabled using the EAM-1X command.
The IO2A/FAULT input (AUX COMM 2) indicates a fault. Monitoring for this fault is enabled using the EAM-2X command.
AUXCOM1
AUXCOM2
LNACUR1
LNACUR2
LNAWIN1
LNAWIN2
REF LD
LNAI1
LNAI2
Configurable
Summary Fault
Configurable
Summary Fault
Configurable
Summary Fault
Configurable
Summary Fault
Configurable
Summary Fault
Configurable
Summary Fault
Configurable
Summary Fault
Configurable
Summary Fault
Configurable
Summary Fault
Slot 1
Slot 2
Slot 1
Slot 2
Slot 1
Slot 2
All
Slot 1
Slot 2
B–3
MBT-4000 Multi-Band Transceiver System Revision 4 Faults/Events MN/MBT4000.IOM
Table B-4. BDC-4000 Configurable Summary Faults
Mnemonic Type Description
The +12.6 V LNA power supply current (via center conductor of coa x
LNA CUR
LNA WIN
Configurable
Summary Fault
Configurable
Summary Fault
connector) has exceeded the maximum limit of 350 mA and h as been disabled. The LNA power supply—and thus this fault—is enabled using the LCS command.
The +12.6 V LNA A power supply current (via center conductor of coax connector) is outside the programmed window. (The power supply is not disabled in response to this fault.) LNA current window monitoring is configured and enabled using the LCS, CLC and LCW commands.

B.2.3 Informational Events

Informational Events are operation conditions which may be important, but are not considered improper operation and will not cause a converter to mute.
Table B-5. MBT-4000 Informational Events
Mnemonic Type Mute Description
In redundancy mode, the BxC corresponding to slot 1 is not of the same type. Redundancy mode switched to manual (RAM=10).
In redundancy mode, the BxC corresponding to slot 2 is not of the same type. Redundancy mode switched to manual (RAM=20).
The Event LOG Queue was cleared in response to rec eipt of a CAA command.
BXCTYP1
BXCTYP2
LOG CLR
PWR OFF
PWR ON
Informational
Event
Informational
Event
Informational
Event
Informational
Event
Informational
Event
None
None
None
None Power off was detected.
None Power on was detected.
Table B-6. BDC-4000/BUC-4000 Informational Events
Mnemonic Type Description
LOG CLR
PWR OFF
PWR ON
Informational
Event
Informational
Event
Informational
Event
The Event LOG Queue was cleared in response to receipt of a CAA command.
Power off was detected.
Power on was detected.
B–4
CONFIGURATION / OPERATION

C.1 Overview

The MBT-4000 is designed to operate in both stand-alone and redundant configurations. Every MBT-4000 base contains the circuitry and logic necessary to perform all the functions of a backup controller in either a single base and dual base configuration. The BDC-4000 is capable of supplying LNA power over the center conductor of the coaxial cable. This power supply features current monitoring with programmable failure limits. Overcurrent and undercurrent failures can participate in overall fault indication and redundant switchover criteria.
Each MBT-4000 base includes two “AUX COMM” connectors. Each of these connectors includes a logic input intended to be connected to contact closure fault indications of external equipment. Thus, external equipment failure may participate in overall fault indication and redundant switchover operation.
Each AUX COMM connector also is capable of supplying power to external LNAs (or other devices). This power supply features current monitoring with programmable failure limits. Overcurrent and undercurrent failures can participate in overall fault indication and redundant switchover criteria.
Each MBT-4000 base includes two “switch drive” connectors. Each of these connectors is intended for driving and monitoring a 28V latching switch. In most installations, one switch drive connector will drive an RF waveguide switch, while the second switch drive connector will drive an IF(L-Band) coaxial switch.
Appendix C. REDUNDANCY

C.2 Single-Base Redundancy Operation

Single-Base Redundancy Operation is not supported in the MBT-4000.
C–1
MBT-4000 Multi-Band Transceiver System Revision 4 Redundancy Configuration / Operation MN/MBT4000.IOM

C.3 Dual-Base (Chain) Redundancy Operation

LNA 2
LNA 1
AUX COMM 2
AUX COMM 2
AUX COMM 1
SSPA 2
SSPA 1
J8
J10
J8
J10
AUX COMM 1
BDC 2 (Slot 2)
1:1 MBT SUBSYSTEM
BUC 2 (Slot 1)
J7
J9
J7
BDC 1 (Slot 2)
1:1 MBT SUBSYSTEM
BUC 1 (Slot 1)
J9
J6
J3
UNIT 1 COMM
REDUNDANCY INTERLINK CABLE
MBT A MBT B
J6
J3
UNIT 1 COMM
UNIT 2 COMM
UNIT 2 COMM
J5
J5
SWITCH 2 IF
LOAD
SWITCH 1 IF
LOAD
L-BAND OUT
RX
L-BAND MODEM
TX
L-BAND IN
REJECT FILTER
RX
REJECT
FILTER
RF SWITCHES
SHOWN IN POSITION
TX
B
SWITCH 2 RF
WAVEGUIDE
LOAD
WAVEGUIDE
SWITCH 1 RF
Figure C-1. Dual-Base (Chain) Redundancy Operation
Figure C-1 illustrates
a typical Dual-Base (Chain) Redundancy configuration. The two MBT-4000 base units cooperate in monitoring the health of the four BxCs (and each other). In case of a fault on an online BxC the MBT-4000 base containing the corresponding standby BxC, will automatically switch over to the standby BxC in accordance with the following rules:
1. In dual-base (chain) redundancy operation, the redundancy is ‘slot’ based. The
corresponding pairs reside in the same ‘slot’ of the opposite MBT-4000 base, the pair of BxCs connected to J3 UNIT 1 COMM (Slot 1) on each base form a redundant pair. The BxCs connected to J6 UNIT 2 COMM (Slot 2) on each base form the other redundant pair. Typically, one pair is used for up conversion and the other for down.
2. The corresponding BxCs in a pair must be of the same type.
3. The Redundancy Interlink Cable (CEFD P/N CA/WR11224-1 or equivalent) must be
installed.
4. Base unit identification(MBT-A or MBT-B) is driven by the redundancy interlink cable.
Hard wired connections within the cable designate one MBT-4000 base as MBT-A and the other as MBT-B. The cable is labeled accordingly.
5. The RF and IF switches connected to MBT-A correspond to the redundant pair of BxCs
installed on J3 UNIT 1 COMM (Slot 1).
C–2
MBT-4000 Multi-Band Transceiver System Revision 4 Redundancy Configuration / Operation MN/MBT4000.IOM
6. The RF and IF switches connected to MBT-B correspond to the redundant pair of BxCs
installed on J6 UNIT 2 COMM (Slot 2).
7. When a BxC attached to MBT-A is online, the corresponding RF and IF switches will be
switched to position A. When a BxC attached to MBT-B is online, the corresponding switches will be switched to position B.
For a switchover to occur:
1. Both MBT-4000 base units must be set to redundancy mode 2, the RED=2 command
must have been received by each base.
2. Both BxCs must be set to automatic mode. For example, if the redundant pair is on Slot 2
of the bases, the command RAM=21 must have been received by each base.
3. The corresponding standby BxC must not be in faulted state.

C.4 External Fault Monitoring

Each MBT-4000 base includes two logic inputs, one per AUX COMM connector, that may be connected to contact closure fault indications of external equipment (usually an SSPA or LNA). Thus, external equipment failure may participate in overall fault indication and redundant switchover operation according to the following rules:
1. An open connection (or 2.7 V min) indicates a fault condition exists.
2. A closed connection (or 0.7 V max) indicates no fault condition exists.
3. Maximum voltage range on fault logic inputs is –12V to +12V.
4. The fault inputs correspond to a slot, the fault input of AUX COM 2 corresponds to the
BxC installed as UNIT 2. The fault input of AUX COM 1 corresponds to the BxC installed as UNIT 1.
5. To enable fault input checking the EFI=nm command is usedwnput parameter ‘n’ can
equal 1for AUX COM 1 input, or 2 for AUX COMM 2 input. The mode parameter ‘m’ can equal 0 for disabled, or 1 for enabled. Each input must be enabled individually.

C.5 LNA Power Supply Current Monitoring

The MBT-4000 base and BDC-4000 are capable of supplying power to external LNAs. The MBT-4000 base supplies the power from a pin in the AUX COMM connectors; the BDC-4000 supplies the power over the center conductor of the coaxial cable. These power supplies feature current monitoring with programmable failure limits. Overcurrent and undercurrent failures can participate in overall fault indication and redundant switchover criteria.
The following commands and rules configure operation of this feature:
1. The power supplies are +12.6V with a 350 mA current limit.
2. No more than two of the four possible supplies should be enabled simultaneously.
3. An individual supply is enabled by issuing the ‘LCS=sm’ command as follows: a. ‘s’ is the source. Valid values are 1 or 2 where: 1=AUX COMM 1 supply and
2=AUX COMM 2 supply. The BDC-4000 only has a single current source, so ‘s’ must be set to 1 on a BDC-4000.
C–3
MBT-4000 Multi-Band Transceiver System Revision 4 Redundancy Configuration / Operation MN/MBT4000.IOM
b. ‘m’ is the mode. Valid values are 0=OFF or 1=ON.
4. In case of excessive current (more than 350 mA), the supply will be disabled and a fault will be posted. The ‘LCS=sm’ command must be sent again to re-enable the supply.
5. To enable programmable current monitoring, the following steps are taken: a. The desired output is enabled as outlined above. b. The nominal current is calibrated using the CLC=s command, where ‘s’ is the source
as described previously.
c. The programmable current window is specified using the LCW=sxx command.
Where ‘s’ is the source as described previously and ‘xx’ is the allowable percentage of variance from nominal (set by the CLC command). Acceptable values for ‘xx’ are 20 to 50 in increments of 1%. In addition, a value of ‘99’ for ‘xx’ disables the alarm function.
d. If a current is detected outside this window, a LNA current fault will be posted, but
the supply will not be disabled.

C.6 Gain Equalization of Redundant Units

Gain equalization in an MBT-4000 system is accomplished by issuing individual attenuation settings to the specific BxCs.

C.7 Operational Configuration Commands

In automatic redundancy mode, configuration commands (with the exception of attenuation and LNA power supply configuration) sent to the online unit will be mirrored in the offline unit. In auto mode, commands sent to the offline unit will be rejected.
In manual mode, configuration commands are not mirrored. However, upon reverting to “auto” mode, online unit configuration will transfer to the offline unit, again with the exception of attenuation and LNA power supply configuration.
C–4

METRIC CONVERSIONS

Units of Length
Unit Centimeter Inch Foot Yard Mile Meter Kilometer Millimeter
1 centimeter 0.3937 0.03281 0.01094
1 inch 2.540 0.08333 0.2778
1 foot 30.480 12.0 0.3333
1 yard 91.44 36.0 3.0
1 meter 100.0 39.37 3.281 1.094
1 mile
1 mm — 0.03937 — — — — — —
1 kilometer — — — — 0.621 — — —
1.609 x 10
5
6.336 x 104 5.280 x 103 1.760 x 103
6.214 x 10
1.578 x 10
1.893 x 10
5.679 x 10
6.214 x 10
-6
-5
-4
-4
-4
0.01 — —
0.254 — 25.4
0.3048 — —
0.9144 — —
— — —
1.609 x 103
1.609 —
Temperature Conversions
Temperature
Water freezes 32 0
Water boils 212 100
° Fahrenheit ° Centigrade
Formulas
° C = (F - 32) * 0.555
° F = (C * 1.8) + 32
Absolute 0 -459.69 -273.16
Units of Weight
Unit Gram
Ounce
Avoirdupois
Ounce
Troy
Pound
Avoirdupois
Pound
Troy
Kilogram
1 gram 0.03527 0.03215 0.002205 0.002679 0.001
1 oz. avoir. 28.35 0.9115 0.0625 0.07595 0.02835
1 oz. troy 31.10 1.097 0.06857 0.08333 0.03110
1 lb. avoir. 453.6 16.0 14.58 1.215 0.4536
1 lb. Troy 373.2 13.17 12.0 0.8229 0.3732
1 kilogram
1.0 x 10
3
35.27 32.15 2.205 2.679 —
2114 WEST 7TH STREET TEMPE ARIZONA 85281 USA
480 333 2200 PHONE
480
333 2161 FAX
Loading...