fx - 991ZA PLUS II
(NATURAL-V.P.A.M.)
User’s Guide
EN
CASIO Worldwide Education Website
https://edu.casio.com
Manuals are available in multi languages at
https://world.casio.com/manual/cal c/
Table of Contents
Before Using the Calculator.................................................... 4
About this Manual.................................................................................... 4
Initializing the Calculator..........................................................................4
Precautions..............................................................................................4
Safety Precautions..........................................................................................4
Handling Precautions......................................................................................5
Ge t t i n g St a r t e d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
R em ov i ng t he H ar d C as e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
T ur ni ng P ow er O n and O f f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
A dj us t i ng D i s pl ay C ont r as t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
K ey M ar k i ngs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
R eadi ng t he D i s pl ay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
U s i ng M enus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
C a lc u la tio n Mo d e s a n d C a lc u la to r S e tu p ............................. 1 0
Ca l c u l a t i o n M o d e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0
Co n f i g u r i n g t h e Ca l c u l a t o r Se t u p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1
I ni t i al i z i ng C al c ul at or S et t i ngs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
In p u ttin g E x p r e s s io n s a n d V a lu e s ........................................ 1 6
Ba s i c I n p u t Ru l e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6
I n p u t t i n g wi t h Na t u r a l Di s p l a y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7
√
Fo r m Ca l c u l a t i o n Ra n g e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7
Us i n g V a l u e s a n d Ex p r e s s i o n s a s Ar g u m e n t s ( Na t u r a l Di s p l a y o n l y ) . . . . 1 8
Ov e r wr i t e I n p u t M o d e ( L i n e a r Di s p l a y o n l y ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9
Co r r e c t i n g a n d Cl e a r i n g a n Ex p r e s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9
B a s ic C a lc u la tio n s .................................................................. 2 0
T o g g l i n g Ca l c u l a t i o n Re s u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0
Fr a c t i o n Ca l c u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1
Pe r c e n t Ca l c u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2
De g r e e , M i n u t e , Se c o n d ( Se x a g e s i m a l ) Ca l c u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2
M u l t i - St a t e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3
Us i n g En g i n e e r i n g No t a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3
Re m a i n d e r Ca l c u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4
Prime Factorization................................................................................25
Calculation History and Replay..............................................................25
Calculation History........................................................................................25
Replay...........................................................................................................26
Using Memory Functions....................................................................... 26
Answer Memory (Ans)/Previous Answer Memory (PreAns)......................... 26
Variables (A, B, C, D, E, F, M, X, Y).............................................................. 28
Independent Memory (M)..............................................................................28
1
Clearing the Contents of All Memories..........................................................29
Function Calculations............................................................30
Pi (π ), Natural Logarithm Base e ............................................................ 30
Trigonometric Functions........................................................................ 30
Hyperbolic Functions............................................................................. 30
Angle Unit Conversion........................................................................... 31
Exponential Functions............................................................................31
Logarithmic Functions............................................................................31
Po we r Fu n c t i o n s a n d Po we r Ro o t Fu n c t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2
I n t e g r a t i o n Ca l c u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3
I nt egr at i on C al c ul at i on P r ec aut i ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
T i ps f or S uc c es s f ul I nt egr at i on C al c ul at i ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Di f f e r e n t i a l Ca l c u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5
D i f f er ent i al C al c ul at i on P r ec aut i ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Σ Ca l c u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6
Re c t a n g u l a r - Po l a r Co o r d i n a t e Co n v e r s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7
Fa c t o r i a l Fu n c t i o n ( ! ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8
Ab s o l u t e V a l u e Fu n c t i o n ( Ab s ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8
Ra n d o m Nu m b e r ( Ra n # ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8
Ra n d o m I n t e g e r ( Ra n I n t # ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8
Pe r m u t a t i o n ( n P r ) a n d Co m b i n a t i o n ( n C r ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9
Ro u n d i n g Fu n c t i o n ( Rn d ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9
Gr e a t e s t Co m m o n Di v i s o r ( GCD) a n d L e a s t Co m m o n M u l t i p l e ( L CM ) . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0
Us i n g CAL C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0
Us i n g SOL VE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1
S ol ut i on S c r een C ont ent s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
C ont i nue S c r een . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Sc i e n t i f i c Co n s t a n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4
M e t r i c Co n v e r s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 6
U s in g C a lc u la tio n Mo d e s ....................................................... 4 8
Co m p l e x Nu m b e r Ca l c u l a t i o n s ( CM PL X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 8
C M P LX M ode C al c ul at i on E x am pl es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
U s i ng a C om m and t o S pec i f y t he C al c ul at i on R es ul t F or m at . . . . . . . . . . . . . . . . . . . . . . . 49
St a t i s t i c a l Ca l c u l a t i o n s ( ST A T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9
I nput t i ng D at a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Statistics Calculation Screen.........................................................................52
Using the Statistics Menu..............................................................................52
Calculating Estimated Values........................................................................57
Performing Normal Distribution Calculations................................................ 58
Base-n Calculations (BASE-N).............................................................. 58
Specifying the Number Mode of a Particular Input Value..............................60
Converting a Calculation Result to another Type of Value............................60
Logical and Negation Operations..................................................................61
2
Equation Calculations (EQN).................................................................62
Changing the Current Equation Type Setting................................................63
EQN Mode Calculation Examples.................................................................63
Matrix Calculations (MATRIX)................................................................65
Matrix Answer Memory................................................................................. 66
Assigning and Editing Matrix Variable Data.................................................. 66
Matrix Calculation Examples.........................................................................67
Creating a Numerical Table from Two Functions (TABLE).....................68
Vector Calculations (VECTOR)..............................................................71
V ec t or A ns w er M em or y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A s s i gni ng and E di t i ng V ec t or V ar i abl e D at a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
V ec t or C al c ul at i on E x am pl es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Di s t r i b u t i o n Ca l c u l a t i o n s ( DI ST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4
V ar i abl es t hat A c c ept I nput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Li s t S c r een ( B i nom i al P D , B i nom i al C D , P oi s s on P D , P oi s s on C D ) . . . . . . . . . . . . . 75
D I S T M ode C al c ul at i on E x am pl es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
I n e q u a l i t y Ca l c u l a t i o n s ( I NEQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 8
C hangi ng t he I nequal i t y T y pe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
I N E Q M ode C al c ul at i on E x am pl es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
S pec i al S ol ut i on D i s pl ay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Ra t i o Ca l c u l a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1
C hangi ng t he R at i o E x pr es s i on T y pe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
R A T I O M ode C al c ul at i on E x am pl e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
T e c h n ic a l In fo r m a tio n ............................................................ 8 3
Er r o r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3
D i s pl ay i ng t he Loc at i on of an E r r or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
C l ear i ng t he E r r or M es s age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
E r r or M es s ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Be f o r e As s u m i n g M a l f u n c t i o n o f t h e Ca l c u l a t o r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6
Re p l a c i n g t h e Ba t t e r y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6
Ca l c u l a t i o n Pr i o r i t y Se q u e n c e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 7
Ca l c u l a t i o n Ra n g e s , Nu m b e r o f Di g i t s , a n d Pr e c i s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8
C al c ul at i on R ange and P r ec i s i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
F unc t i on C al c ul at i on I nput R anges and P r ec i s i on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Sp e c i f i c a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1
V e r i f y i n g t h e Au t h e n t i c i t y o f Y o u r Ca l c u l a t o r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1
F r e q u e n tly A s k e d Qu e s tio n s ................................................. 9 3
Frequently Asked Questions..................................................................93
3
Before Using the Calculator
About this Manual
• In no event shall CASIO Computer Co., Ltd. be liable to anyone for
special, collateral, incidental, or consequential damages in connection
with or arising out of the purchase or use of this product and items that
c o m e wi t h i t .
• M o r e o v e r , CASI O Co m p u t e r Co . , L t d . s h a l l n o t b e l i a b l e f o r a n y c l a i m o f
a n y k i n d wh a t s o e v e r b y a n y o t h e r p a r t y a r i s i n g o u t o f t h e u s e o f t h i s
p r o d u c t a n d t h e i t e m s t h a t c o m e wi t h i t .
• Un l e s s s p e c i f i c a l l y s t a t e d , a l l s a m p l e o p e r a t i o n s i n t h i s m a n u a l a s s u m e
t h a t t h e c a l c u l a t o r i s i n i t s i n i t i a l d e f a u l t s e t u p . Us e t h e p r o c e d u r e u n d e r
"I n i t i a l i z i n g t h e Ca l c u l a t o r " t o r e t u r n t h e c a l c u l a t o r t o i t s i n i t i a l d e f a u l t
s e t u p .
• Th e c o n t e n t s o f t h i s m a n u a l a r e s u b j e c t t o c h a n g e wi t h o u t n o t i c e .
• Th e d i s p l a y s a n d i l l u s t r a t i o n s ( s u c h a s k e y m a r k i n g s ) s h o wn i n t h i s
m a n u a l a r e f o r i l l u s t r a t i v e p u r p o s e s o n l y , a n d m a y d i f f e r s o m e wh a t f r o m
t h e a c t u a l i t e m s t h e y r e p r e s e n t .
• QR Co d e i s a r e g i s t e r e d t r a d e m a r k o f DENSO W A VE I NCORPORA TED
i n J a p a n a n d i n o t h e r c o u n t r i e s .
• Co m p a n y a n d p r o d u c t n a m e s u s e d i n t h i s m a n u a l m a y b e r e g i s t e r e d
t r a d e m a r k s o r t r a d e m a r k s o f t h e i r r e s p e c t i v e o wn e r s .
I n i t i al i z i n g t h e C al cu l at o r
Pe r f o r m t h e f o l l o wi n g p r o c e d u r e wh e n y o u wa n t t o i n i t i a l i z e t h e c a l c u l a t o r
a n d r e t u r n t h e c a l c u l a t i o n m o d e a n d s e t u p t o t h e i r i n i t i a l d e f a u l t s e t t i n g s .
No t e t h a t t h i s o p e r a t i o n a l s o c l e a r s a l l d a t a c u r r e n t l y i n c a l c u l a t o r m e m o r y .
( CL R) ( Al l ) ( Y e s )
P r ecau t i o n s
Be sure to read the following safety precautions before using the
calculator.
Safety Precautions
Battery
• Keep batteries out of the reach of small children.
4
• Use only the type of battery specified for this calculator in this
manual.
Handling Precautions
• Even if the calculator is operating normally, replace the battery
according to the schedule shown below. Continued use after the
specified number of years may result in abnormal operation. Replace
the battery immediately after display figures become dim.
f x - 9 9 1 ZA PL US I I : Ev e r y t h r e e y e a r s
• A d e a d b a t t e r y c a n l e a k , c a u s i n g d a m a g e t o a n d m a l f u n c t i o n o f t h e
c a l c u l a t o r . Ne v e r l e a v e a d e a d b a t t e r y i n t h e c a l c u l a t o r .
• The ba t t e r y t ha t c om e s wi t h t he c a l c ul a t or i s f or f a c t or y t e s t i ng,
a nd i t di s c ha r ge s s l i ght l y dur i ng s hi pm e nt a nd s t or a ge . Be c a us e of
t he s e r e a s ons , i t s ba t t e r y l i f e m a y be s hor t e r t ha n nor m a l .
• Do n o t u s e a n i c k e l - b a s e d p r i m a r y b a t t e r y wi t h t h i s p r o d u c t .
I n c o m p a t i b i l i t y b e t we e n s u c h b a t t e r i e s a n d p r o d u c t s p e c i f i c a t i o n s c a n
r e s u l t i n s h o r t e r b a t t e r y l i f e a n d p r o d u c t m a l f u n c t i o n .
• A v o i d u s e a n d s t o r a g e o f t h e c a l c u l a t o r i n a r e a s s u b j e c t e d t o
t e m p e r a t u r e e x t r e m e s , a n d l a r g e a m o u n t s o f h u m i d i t y a n d d u s t .
• Do n o t s u b j e c t t h e c a l c u l a t o r t o e x c e s s i v e i m p a c t , p r e s s u r e , o r b e n d i n g .
• Ne v e r t r y t o t a k e t h e c a l c u l a t o r a p a r t .
• Us e a s o f t , d r y c l o t h t o c l e a n t h e e x t e r i o r o f t h e c a l c u l a t o r .
• W h e n e v e r d i s c a r d i n g t h e c a l c u l a t o r o r b a t t e r i e s , b e s u r e t o d o s o i n
a c c o r d a n c e wi t h t h e l a ws a n d r e g u l a t i o n s i n y o u r p a r t i c u l a r a r e a .
G et t i n g S t ar t ed
Re m ov i ng t he Ha r d Ca s e
Be f o r e u s i n g t h e c a l c u l a t o r , s l i d e i t s h a r d c a s e d o wn wa r d s t o r e m o v e i t ,
a n d t h e n a f f i x t h e h a r d c a s e t o t h e b a c k o f t h e c a l c u l a t o r a s s h o wn i n t h e
i l l u s t r a t i o n b e l o w .
5
Turning Power On and Off
• Press
to turn on the calculator.
• Press (OFF) to turn off the calculator.
Note
• The calculator also will turn off automatically after approximately 10 minutes or
approximately 60 minutes of non-use. Press the
on.
key to turn the calculator back
Adj us t i ng Di s pl a y Cont r a s t
1 . Pr e s s
2 . Us e a n d t o a d j u s t d i s p l a y c o n t r a s t .
3 . Af t e r t h e s e t t i n g i s t h e wa y y o u wa n t , p r e s s .
( SETUP) ( CONT ) .
I m p o rt a n t !
• If a d j u s ti n g d i s p l a y c o n tra s t d o e s n o t i m p ro v e d i s p l a y re a d a b i l i ty , i t p ro b a b l y m e a n s
th a t b a tte ry p o w e r i s l o w . R e p l a c e th e b a tte ry .
Ke y Ma r k i ngs
Pr e s s i n g t h e
a l t e r n a t e f u n c t i o n o f t h e s e c o n d k e y . Th e a l t e r n a t e f u n c t i o n i s i n d i c a t e d b y
t h e t e x t p r i n t e d a b o v e t h e k e y .
o r k e y f o l l o we d b y a s e c o n d k e y p e r f o r m s t h e
(1) Keycap function (2) Alternate function
• Characters enclosed in brackets (┌ ┐) that are the same color as i are
used in the CMPLX Mode.
• Characters enclosed in brackets (┌ ┐) that are the same color as DEC,
HEX, BIN, and OCT are used in the BASE-N Mode.
6
• The following shows an example of how an alternate function operation
is represented in this manual.
Example:
* Indicates the function that is accessed by the key operation (
) before it. Note that this is not part of the actual key operation
you perform.
• The following shows an example of how a key operation to select an onscreen menu item is represented in this manual.
Example:
* I n d i c a t e s t h e m e n u i t e m t h a t i s s e l e c t e d b y t h e n u m b e r k e y
o p e r a t i o n (
o p e r a t i o n y o u p e r f o r m .
• Th e c u r s o r k e y i s m a r k e d wi t h f o u r a r r o ws , i n d i c a t i n g d i r e c t i o n , a s
s h o wn i n t h e i l l u s t r a t i o n n e a r b y . I n t h i s m a n u a l , c u r s o r k e y o p e r a t i o n i s
i n d i c a t e d a s
(sin-1)* 1
(COMP)*
) b e f o r e i t . No t e t h a t t h i s i s n o t p a r t o f t h e a c t u a l k e y
, , , a n d .
Re a di ng t he Di s pl a y
Th e t wo - l i n e d i s p l a y m a k e s i t p o s s i b l e t o v i e w b o t h t h e i n p u t e x p r e s s i o n
a n d i t s r e s u l t a t t h e s a m e t i m e .
( 1 ) I n p u t e x p r e s s i o n
( 2 ) Ca l c u l a t i o n r e s u l t
( 3 ) I n d i c a t o r s
• I f a
m e a n s t h e d i s p l a y e d c a l c u l a t i o n r e s u l t c o n t i n u e s t o t h e r i g h t . Us e
a n d t o s c r o l l t h e c a l c u l a t i o n r e s u l t d i s p l a y .
• I f a i n d i c a t o r a p p e a r s o n t h e r i g h t s i d e o f t h e i n p u t e x p r e s s i o n , i t
m e a n s t h e d i s p l a y e d c a l c u l a t i o n c o n t i n u e s t o t h e r i g h t . Us e a n d
to scroll the input expression display. Note that if you want to scroll the
input expression while both the and indicators are displayed, you
will need to press first and then use and to scroll.
i n d i c a t o r a p p e a r s o n t h e r i g h t s i d e o f t h e c a l c u l a t i o n r e s u l t , i t
7
Display indicators
This indicator: Means this:
The keypad has been shifted by pressing the
key. The keypad will unshift and this indicator will
disappear when you press a key.
The alpha input mode has been entered by
p r e s s i n g t h e
b e e x i t e d a n d t h i s i n d i c a t o r wi l l d i s a p p e a r wh e n
y o u p r e s s a k e y .
M Th e r e i s a v a l u e s t o r e d i n i n d e p e n d e n t m e m o r y .
Th e c a l c u l a t o r i s s t a n d i n g b y f o r i n p u t o f a v a r i a b l e
ST O
RCL
ST A T Th e c a l c u l a t o r i s i n t h e ST A T M o d e .
CM PLX Th e c a l c u l a t o r i s i n t h e CM PL X M o d e .
n a m e t o a s s i g n a v a l u e t o t h e v a r i a b l e . Th i s
i n d i c a t o r a p p e a r s a f t e r y o u p r e s s
Th e c a l c u l a t o r i s s t a n d i n g b y f o r i n p u t o f a v a r i a b l e
n a m e t o r e c a l l t h e v a r i a b l e ' s v a l u e . Th i s i n d i c a t o r
a p p e a r s a f t e r y o u p r e s s
k e y . Th e a l p h a i n p u t m o d e wi l l
.
( ST O) .
M A T Th e c a l c u l a t o r i s i n t h e M A TRI X M o d e .
VCT Th e c a l c u l a t o r i s i n t h e VECT OR M o d e .
Th e d e f a u l t a n g l e u n i t i s d e g r e e s .
Th e d e f a u l t a n g l e u n i t i s r a d i a n s .
Th e d e f a u l t a n g l e u n i t i s g r a d s .
FI X A f i x e d n u m b e r o f d e c i m a l p l a c e s i s i n e f f e c t .
SCI A fixed number of significant digits is in effect.
Math Natural Display is selected as the display format.
8
Calculation history memory data is available and
can be replayed, or there is more data above/
below the current screen.
Disp
The display currently shows an intermediate result
of a multi-statement calculation.
Important!
• Fo r s o m e ty p e o f c a l c u l a ti o n th a t ta k e s a l o n g ti m e to e x e c u te , th e d i s p l a y m a y s h o w
o n l y th e a b o v e i n d i c a to rs (w i th o u t a n y v a l u e ) w h i l e i t p e rfo rm s th e c a l c u l a ti o n
i n te rn a l l y .
Us i ng Me nus
So m e o f t h e c a l c u l a t o r ' s o p e r a t i o n s a r e p e r f o r m e d u s i n g m e n u s . Pr e s s i n g
o r , f o r e x a m p l e , wi l l d i s p l a y a m e n u o f a p p l i c a b l e f u n c t i o n s .
Th e f o l l o wi n g a r e t h e o p e r a t i o n s y o u s h o u l d u s e t o n a v i g a t e b e t we e n
m e n u s .
• Y o u c a n s e l e c t a m e n u i t e m b y p r e s s i n g t h e n u m b e r k e y t h a t
c o r r e s p o n d s t o t h e n u m b e r t o i t s l e f t o n t h e m e n u s c r e e n .
• Th e
a n o t h e r m e n u b e l o w t h e c u r r e n t o n e . Th e i n d i c a t o r m e a n s a n o t h e r
m e n u a b o v e . Us e
• T o c l o s e a m e n u wi t h o u t s e l e c t i n g a n y t h i n g , p r e s s .
i n d i c a t o r i n t h e u p p e r r i g h t c o r n e r o f a m e n u m e a n s t h e r e i s
a n d t o s wi t c h b e t we e n m e n u s .
9
Calculation Modes and
Calculator Setup
Calculation Mode
Before starting a calculation, you must first enter the correct mode as
i n d i c a t e d i n t h e t a b l e b e l o w .
W he n y ou wa nt t o pe r f or m t hi s t y pe of
ope r a t i on:
Ge n e r a l c a l c u l a t i o n s
Co m p l e x n u m b e r c a l c u l a t i o n s
St a t i s t i c a l a n d r e g r e s s i o n c a l c u l a t i o n s
Ca l c u l a t i o n s i n v o l v i n g s p e c i f i c n u m b e r
s y s t e m s ( b i n a r y , o c t a l , d e c i m a l , h e x a d e c i m a l )
Eq u a t i o n s o l u t i o n
M a t r i x c a l c u l a t i o n s
Ge n e r a t i o n o f a n u m e r i c a l t a b l e b a s e d o n e o r
t wo f u n c t i o n s
Pe r f or m t hi s k e y
ope r a t i on:
( COM P)
( CM PL X)
( ST A T)
( BASE- N)
( EQN)
( M A TRI X)
( T ABL E)
V e c t o r c a l c u l a t i o n s
Di s t r i b u t i o n c a l c u l a t i o n s
I n e q u a l i t y s o l u t i o n
Ra t i o c a l c u l a t i o n s
Note
• The initial default calculation mode is the COMP Mode.
10
( VECT OR)
( DI ST)
( I NEQ)
( RA TI O)
Configuring the Calculator Setup
Pressing (SETUP) displays the setup menu, which you can use to
control how the calculations are executed and displayed. The setup menu
has two screens, which you can jump between using
Un d e r l i n e d ( _ _ _ ) s e t t i n g s a r e i n i t i a l d e f a u l t s .
Spe c i f y i ng t he Di s pl a y For m a t
and .
T o s pe c i f y t hi s
di s pl a y f or m a t :
Na t ur a l Di s pl a y
( M t hI O- M a t hO)
Na t ur a l Di s pl a y
( M t hI O- Li ne O)
Li ne a r Di s pl a y
( Li ne I O)
Na t u r a l Di s p l a y ( M t h I O- M a t h O, M t h I O- L i n e O) c a u s e s f r a c t i o n s , i r r a t i o n a l
n u m b e r s , a n d o t h e r e x p r e s s i o n s t o b e d i s p l a y e d a s t h e y a r e wr i t t e n o n
p a p e r .
M t h I O- M a t h O d i s p l a y s i n p u t a n d c a l c u l a t i o n r e s u l t s u s i n g t h e s a m e f o r m a t
a s t h e y a r e wr i t t e n o n p a p e r .
M t h I O- L i n e O d i s p l a y s i n p u t t h e s a m e wa y a s M t h I O- M a t h O, b u t
c a l c u l a t i o n r e s u l t s a r e d i s p l a y e d i n l i n e a r f o r m a t .
L i n e a r Di s p l a y ( L i n e I O) c a u s e s f r a c t i o n s a n d o t h e r e x p r e s s i o n s t o b e
d i s p l a y e d i n a s i n g l e l i n e .
Pe r f or m t hi s k e y ope r a t i on:
( SETUP) ( M t h I O) ( M a t h O)
( SETUP) ( M t h I O) ( L i n e O)
( SETUP) ( L i n e I O)
Ex a m p l e s :
MthIO-MathO
11
MthIO-LineO
(Number Format: Norm 1)
MthIO-LineO
(Number Format: Norm 2)
L i n e I O
( Nu m b e r Fo r m a t : No r m 1 )
N o t e
• Th e c a l c u l a to r s w i tc h e s to L i n e a r D i s p l a y a u to m a ti c a l l y w h e n e v e r y o u e n te r th e S T A T ,
B A S E -N , M A TR IX , o r V E C T OR M o d e .
Spe c i f y i ng t he De f a ul t Angl e Uni t
T o s pe c i f y t hi s a s t he
Pe r f or m t hi s k e y ope r a t i on:
de f a ul t a ngl e uni t :
De g r e e s
Ra d i a n s
Gr a d s
( SETUP) ( De g )
( SETUP) ( Ra d )
( SETUP) ( Gr a )
9 0 ° = π / 2 r a d i a n s = 1 0 0 g r a d s
Spe c i f y i ng t he Num be r For m a t
Specifies the number of digits for display of a calculation result.
To specify this: Perform this key operation:
Number of Decimal
(SETUP) (Fix) -
Places
12
Number of Significant
Digits
(SETUP) (Sci) -
Exponential Display
Range
(SETUP) (Norm) (Norm 1) or
(Norm 2)
Fix: The value you specify (from 0 to 9) controls the number of decimal
places for displayed calculation results. Calculation results are rounded off
t o t h e s p e c i f i e d d i g i t b e f o r e b e i n g d i s p l a y e d .
Ex a m p l e : ( L i n e I O) 1 0 0 ÷ 7 = 1 4 , 2 8 6 ( Fi x 3 )
1 4 , 2 9 ( Fi x 2 )
Sc i : Th e v a l u e y o u s p e c i f y ( f r o m 0 t o 9 ) c o n t r o l s t h e n u m b e r o f s i g n i f i c a n t
d i g i t s f o r d i s p l a y e d c a l c u l a t i o n r e s u l t s . Ca l c u l a t i o n r e s u l t s a r e r o u n d e d o f f
t o t h e s p e c i f i e d d i g i t b e f o r e b e i n g d i s p l a y e d .
Ex a m p l e : ( L i n e I O) 1 ÷ 7 = 1 , 4 2 8 6 × 1 0 - 1 ( Sc i 5 )
1 , 4 2 9 × 1 0 - 1 ( Sc i 4 )
1 , 4 2 8 5 7 1 4 2 9 × 1 0 - 1 ( Sc i 0 )
Nor m : Se l e c t i n g o n e o f t h e t wo a v a i l a b l e s e t t i n g s ( No r m 1 , No r m 2 )
d e t e r m i n e s t h e r a n g e i n wh i c h r e s u l t s wi l l b e d i s p l a y e d i n e x p o n e n t i a l
f o r m a t . Ou t s i d e t h e s p e c i f i e d r a n g e , r e s u l t s a r e d i s p l a y e d u s i n g n o n -
e x p o n e n t i a l f o r m a t .
No r m 1 : 1 0 - 2 > | x | , | x | ≧ 1 0
No r m 2 : 1 0 - 9 > | x | , | x | ≧ 1 0
10
10
Ex a m p l e : ( L i n e I O) 1 ÷ 2 0 0 = 5 × 1 0 - 3 ( No r m 1 )
0 , 0 0 5 ( No r m 2 )
Spe c i f y i ng t he Fr a c t i on Di s pl a y For m a t
T o s pe c i f y t hi s
f r a c t i on di s pl a y
Pe r f or m t hi s k e y ope r a t i on:
f or m a t :
M i x e d
I m p r o p e r
( SETUP) ( a b / c )
( SETUP) ( d / c )
13
Specifying the Complex Number Format
To specify this
complex number
format:
Rectangular
Coordinates
Polar Coordinates
Spe c i f y i ng t he St a t For m a t
Sp e c i f i e s wh e t h e r o r n o t t o d i s p l a y a FREQ ( f r e q u e n c y ) c o l u m n i n t h e
ST A T M o d e St a t i s t i c s Ed i t o r .
T o s pe c i f y t hi s : Pe r f or m t hi s k e y ope r a t i on:
Sh o w FREQ Co l u m n ( SETUP) ( ST A T) ( ON)
Hi d e FREQ Co l u m n
Perform this key operation:
(SETUP) (CMPLX) (a +bi )
(SETUP) (CMPLX) (r∠ θ )
( SETUP) ( ST A T) ( OFF)
Spe c i f y i ng t he T a bl e For m a t
Sp e c i f i e s wh e t h e r t o u s e f u n c t i o n f ( x ) o n l y o r t h e t wo f u n c t i o n s f ( x ) a n d g ( x )
i n t h e T ABL E M o d e .
T o s pe c i f y t hi s : Pe r f or m t hi s k e y ope r a t i on:
f ( x ) o n l y ( SETUP) ( T ABL E) ( f ( x ) )
f ( x ) a n d g ( x )
Spe c i f y i ng t he Aut o Powe r Of f Se t t i ng
Y o u c a n s p e c i f y a t r i g g e r t i m e o f 1 0 m i n u t e s o r 6 0 m i n u t e s f o r Au t o Po we r
Of f .
To specify this: Perform this key operation:
10 Minutes (SETUP) (APO) (10Min.)
( SETUP) ( T ABL E) ( f ( x ) , g ( x ) )
60 Minutes
(SETUP) (APO) (60Min.)
14
Adjusting Display Contrast
(SETUP) ( CONT )
See "Getting Started" for details.
Initializing Calculator Settings
Perform the following procedure to initialize the calculator, which returns
the calculation mode to COMP and returns all other settings, including
setup menu settings, to their initial defaults.
(CLR) (Setup) (Yes)
Thi s s e t t i ng: I s i ni t i a l i z e d t o t hi s :
Ca l c u l a t i o n M o d e COM P
Di s p l a y Fo r m a t M t h I O- M a t h O
An g l e Un i t De g
Nu m b e r Fo r m a t No r m 2
Fr a c t i o n Di s p l a y
Fo r m a t
Co m p l e x Nu m b e r
Fo r m a t
St a t Fo r m a t OFF
T a b l e Fo r m a t
Au t o Po we r Of f 1 0 M i n .
d / c
a + b i
f ( x ) , g ( x )
15
Inputting Expressions and
Values
Basic Input Rules
Calculations can be input in the same form as they are written. When you
p r e s s
a u t o m a t i c a l l y a n d t h e r e s u l t wi l l a p p e a r o n t h e d i s p l a y .
Ex a m pl e 1 : 4 × s i n 3 0 × ( 3 0 + 1 0 × 3 ) = 1 2 0
t h e p r i o r i t y s e q u e n c e o f t h e i n p u t c a l c u l a t i o n wi l l b e e v a l u a t e d
* 1 I n p u t o f t h e c l o s i n g p a r e n t h e s i s i s r e q u i r e d f o r s i n , s i n h , a n d o t h e r
f u n c t i o n s t h a t i n c l u d e p a r e n t h e s e s .
* 2 Th e s e m u l t i p l i c a t i o n s y m b o l s ( × ) c a n b e o m i t t e d . A m u l t i p l i c a t i o n
s y m b o l c a n b e o m i t t e d wh e n i t o c c u r s i m m e d i a t e l y b e f o r e a n o p e n i n g
p a r e n t h e s i s , i m m e d i a t e l y b e f o r e s i n o r o t h e r f u n c t i o n t h a t i n c l u d e s
p a r e n t h e s e s , i m m e d i a t e l y b e f o r e t h e Ra n # ( r a n d o m n u m b e r ) f u n c t i o n ,
o r i m m e d i a t e l y b e f o r e a v a r i a b l e ( A, B, C, D, E, F , M , X, Y) , s c i e n t i f i c
c o n s t a n t s , π o r e .
* 3 Th e c l o s i n g p a r e n t h e s i s i m m e d i a t e l y b e f o r e t h e
o m i t t e d .
Ex a m pl e 2 : I n p u t e x a m p l e o m i t t i n g * 2 a n d * 3 o p e r a t i o n s i n t h e
a b o v e e x a m p l e .
3 0 3 0 1 0 3
4
o p e r a t i o n c a n b e
Note
• If the calculation becomes longer than the screen width during input, the screen will
scroll automatically to the right and the
this happens, you can scroll back to the left by using
• When Linear Display is selected, pressing
beginning of the calculation, while will jump to the end.
indicator will appear on the display. When
and to move the cursor.
will cause the cursor to jump to the
16
• When Natural Display is selected, pressing while the cursor is at the end of the
input calculation will cause it to jump to the beginning, while pressing
cursor is at the beginning will cause it to jump to the end.
• You can input up to 99 bytes for a calculation. Each numeral, symbol, or function
normally uses one byte. Some functions require three to 13 bytes.
• The cursor will change shape to
remaining. If this happens, end calculation input and then press
when there are 10 bytes or less of allowed input
while the
.
Inputting with Natural Display
Se l e c t i n g Na t u r a l Di s p l a y m a k e s i t p o s s i b l e t o i n p u t a n d d i s p l a y f r a c t i o n s
a n d c e r t a i n f u n c t i o n s ( l o g ,
Ab s ) j u s t a s t h e y a r e wr i t t e n i n y o u r t e x t b o o k .
, , , , , , , , , ∫ , d / d x , Σ ,
Ex a m pl e :
1 + √
( M t h I O- M a t h O)
2
2 2 1 2
I m p o rt a n t !
• C e rta i n ty p e s o f e x p re s s i o n s c a n c a u s e th e h e i g h t o f a n i n p u t e x p re s s i o n to b e g re a te r
th a n o n e d i s p l a y l i n e . Th e m a x i m u m a l l o w a b l e h e i g h t o f a n i n p u t e x p re s s i o n i s tw o
d i s p l a y s c re e n s (3 1 d o ts × 2 ). Fu rth e r i n p u t w i l l b e c o m e i m p o s s i b l e i f th e h e i g h t o f th e
c a l c u l a ti o n y o u a re i n p u tti n g e x c e e d s th e a l l o w a b l e l i m i t.
• N e s ti n g o f fu n c ti o n s a n d p a re n th e s e s i s a l l o w e d . Fu rth e r i n p u t w i l l b e c o m e i m p o s s i b l e
i f y o u n e s t to o m a n y fu n c ti o n s a n d /o r p a re n th e s e s . If th i s h a p p e n s , d i v i d e th e
c a l c u l a ti o n i n to m u l ti p l e p a rts a n d c a l c u l a te e a c h p a rt s e p a ra te l y .
N o t e
2 + √ 2
• Wh e n y o u p re s s a n d o b ta i n a c a l c u l a ti o n re s u l t u s i n g N a tu ra l D i s p l a y , p a rt o f th e
e x p re s s i o n y o u i n p u t m a y b e c u t o f f. If y o u n e e d to v i e w th e e n ti re i n p u t e x p re s s i o n
a g a i n , p re s s
Form Calculation Range
√
a n d th e n u s e a n d to s c ro l l th e i n p u t e x p re s s i o n .
Results that include square root symbols can have up to two terms (an
integer term is also counted as a term).
*
d √e
, √ form calculation
f
When a calculation result takes the form ±
a √b
±
c
results are displayed using formats like those shown below.
17
± a √b , ± d ± a √b ,
* The ranges of the coefficients (a , b , c , d , e , f ) are as shown below.
1 ≦ a < 100, 1 < b < 1000, 1 ≦ c < 100
0 ≦ d < 100, 0 ≦ e < 1000, 1 ≦ f < 100
(a , b , c , d , e , f are integers)
Example:
1 0 √ 2 + 1 5 × 3 √ 3 = 4 5 √ 3 + 1 0 √ 2 √ f o r m
9 9 √
9 9 9 = 3 1 2 9 , 0 8 9 1 6 5 ( = 2 9 7 √ 1 1 1 ) d e c i m a l f o r m
± a' √b ± d' √e
c'
U si n g V al u es an d E xp r essi o n s as
A r g u m en t s ( N at u r al D i sp l ay o n l y)
A v a l u e o r a n e x p r e s s i o n t h a t y o u h a v e a l r e a d y i n p u t c a n b e u s e d a s t h e
7
a r g u m e n t o f a f u n c t i o n . Af t e r y o u h a v e i n p u t
m a k e i t t h e a r g u m e n t o f √
Ex a m pl e : T o i n p u t 1 +
As s h o wn a b o v e , t h e v a l u e o r e x p r e s s i o n t o t h e r i g h t o f t h e c u r s o r a f t e r
( I NS) a r e p r e s s e d b e c o m e s t h e a r g u m e n t o f t h e f u n c t i o n t h a t i s
specified next. The range encompassed as the argument is everything up
to the first open parenthesis to the right, if there is one, or everything up to
the first function to the right (sin(30), log2(4), etc.)
This capability can be used with the following functions:
( ), , , ( ), ( ), ( ),
( ), ( ), , , ( ), (Abs).
, r e s u l t i n g i n
7
a n d t h e n c h a n g e i t t o 1 +
6
√
1
, f o r e x a m p l e , y o u c a n
6
7
.
6
7
( M t h I O- M a t h O)
√
6
7 6
( I NS)
,
18
Overwrite Input Mode (Linear
Display only)
You can select either insert or overwrite as the input mode, but only while
Linear Display is selected. In the overwrite mode, text you input replaces
the text at the current cursor location. You can toggle between the insert
and overwrite modes by performing the operations:
cursor appears as " " in the insert mode and as " " in the overwrite
m o d e .
N o t e
• N a tu ra l D i s p l a y a l w a y s u s e s th e i n s e rt m o d e , s o c h a n g i n g d i s p l a y fo rm a t fro m L i n e a r
D i s p l a y to N a tu ra l D i s p l a y w i l l a u to m a ti c a l l y s w i tc h to th e i n s e rt m o d e .
(INS). The
C o r r ect i n g an d C l ear i n g an
E xp r essi o n
T o de l e t e a s i ngl e c ha r a c t e r or f unc t i on:
M o v e t h e c u r s o r s o i t i s d i r e c t l y t o t h e r i g h t o f t h e c h a r a c t e r o r f u n c t i o n y o u
wa n t t o d e l e t e , a n d t h e n p r e s s
I n t h e o v e r wr i t e m o d e , m o v e t h e c u r s o r s o i t i s d i r e c t l y u n d e r t h e c h a r a c t e r
o r f u n c t i o n y o u wa n t t o d e l e t e , a n d t h e n p r e s s
T o i ns e r t a c ha r a c t e r or f unc t i on i nt o a c a l c ul a t i on:
Us e
i n s e r t t h e c h a r a c t e r o r f u n c t i o n a n d t h e n i n p u t i t . Be s u r e a l wa y s t o u s e t h e
i n s e r t m o d e i f L i n e a r Di s p l a y i s s e l e c t e d .
T o c l e a r a l l of t he c a l c ul a t i on y ou a r e i nput t i ng:
Pr e s s
a n d t o m o v e t h e c u r s o r t o t h e l o c a t i o n wh e r e y o u wa n t t o
.
.
.
19
Basic Calculations
Use the
basic calculations.
key to enter the COMP Mode when you want to perform
(COMP)
T o g g l i n g C al cu l at i o n R esu l t s
W h i l e Na t u r a l Di s p l a y i s s e l e c t e d , e a c h p r e s s o f wi l l t o g g l e t h e
c u r r e n t l y d i s p l a y e d c a l c u l a t i o n r e s u l t b e t we e n i t s f r a c t i o n f o r m a n d d e c i m a l
f o r m , i t s √ f o r m a n d d e c i m a l f o r m , o r i t s π f o r m a n d d e c i m a l f o r m .
1
Ex a m pl e 1 : π ÷ 6 =
π = 0 , 5 2 3 5 9 8 7 7 5 6 ( M t h I O- M a t h O)
6
1
( π ) 6
Ex a m pl e 2 : ( √ 2 + 2 ) × √ 3 = √ 6 + 2 √ 3 = 5 , 9 1 3 5 9 1 3 5 8 ( M t h I O- M a t h O)
2 2 3
W h i l e L i n e a r Di s p l a y i s s e l e c t e d , e a c h p r e s s o f
c u r r e n t l y d i s p l a y e d c a l c u l a t i o n r e s u l t b e t we e n i t s d e c i m a l f o r m a n d f r a c t i o n
f o r m .
1
Ex a m pl e 3 : 1 ÷ 5 = 0 , 2 =
4
1
=
Example 4: 1 -
= 0,2 (LineIO)
5
5
( L i n e I O)
5
1
5
π
6
√ 6 + 2 √ 3 5 , 9 1 3 5 9 1 3 5 8
wi l l t o g g l e t h e
0 , 5 2 3 5 9 8 7 7 5 6
0 , 2 1 5
4 5
1
20
1 5 0,2
Important!
• Depending on the type of calculation result that is on the display when you press the
key, the conversion process may take some time to perform.
• With certain calculation results, pressing the
value.
• You cannot switch from decimal form to mixed fraction form if the total number of digits
used in the mixed fraction (including integer, numerator, denominator, and separator
symbols) is greater than 10.
N o t e
• Wi th N a tu ra l D i s p l a y (M a th O), i n p u tti n g o n e o f th e fo l l o w i n g c a l c u l a ti o n s a n d th e n
p re s s i n g
c a l c u l a ti o n th a t re s u l ts i n a √
P re s s i n g
re s u l t. Th e √
i n s te a d o f w i l l d i s p l a y th e c a l c u l a ti o n re s u l t i n d e c i m a l fo rm : a
fo rm o r π fo rm e x p re s s i o n , a d i v i s i o n c a l c u l a ti o n .
a fte r th a t w i l l s w i tc h to th e fra c ti o n fo rm o r π fo rm o f th e c a l c u l a ti o n
fo rm o f th e re s u l t w i l l n o t a p p e a r i n th i s c a s e .
key will not convert the displayed
F r act i o n C al cu l at i o n s
No t e t h a t t h e i n p u t m e t h o d f o r f r a c t i o n s i s d i f f e r e n t , d e p e n d i n g u p o n
wh e t h e r y o u a r e u s i n g Na t u r a l Di s p l a y o r L i n e a r Di s p l a y .
2
1
Ex a m pl e 1 :
+
3
( M t h I O- M a t h O) 2
Ex a m pl e 2 : 4 - 3
( M t h I O- M a t h O) 4
7
=
2
6
o r
( L i n e I O) 2
1
1
=
2
2
3 1 2
2 3 1 2
3 1 2 7 6
( ) 3 1 2
7
6
7
6
1
2
(LineIO) 4
Note
• Mixing fractions and decimal values in a calculation while Linear Display is selected
will cause the result to be displayed as a decimal value.
• Results of calculations that mix fraction and decimal values are always decimal.
3 1 2 1 2
21
• Fractions in calculation results are displayed after being reduced to their lowest terms.
To switch a calculation result between improper fraction and mixed
fraction form:
Perform the following key operation:
To switch a calculation result between fraction and decimal form:
Press
.
(a
bcd
)
c
Percent Calculations
I n p u t t i n g a v a l u e a n d p r e s s i n g
b e c o m e a p e r c e n t .
Ex a m pl e 1 : 1 5 0 × 2 0 % = 3 0
1 5 0
Ex a m pl e 2 : Ca l c u l a t e wh a t p e r c e n t a g e o f 8 8 0 i s 6 6 0 ( 7 5 % )
6 6 0
Ex a m pl e 3 : I n c r e a s e 2 5 0 0 b y 1 5 % ( 2 8 7 5 )
2 5 0 0
Ex a m pl e 4 : De c r e a s e 3 5 0 0 b y 2 5 % ( 2 6 2 5 )
3 5 0 0
2 5 0 0 1 5 ( % ) 2 8 7 5
3 5 0 0 2 5 ( % ) 2 6 2 5
2 0 ( % ) 3 0
8 8 0 ( % ) 7 5
( % ) c a u s e s t h e i n p u t v a l u e t o
D eg r ee, M i n u t e, S eco n d
( S exag esi m al ) C al cu l at i o n s
Y o u c a n p e r f o r m c a l c u l a t i o n s u s i n g s e x a g e s i m a l v a l u e s , a n d c o n v e r t
v a l u e s b e t we e n s e x a g e s i m a l a n d d e c i m a l .
Pe r f o r m i n g a n a d d i t i o n o r s u b t r a c t i o n o p e r a t i o n b e t we e n s e x a g e s i m a l
values, or a multiplication or division operation between a sexagesimal
value and a decimal value will cause the result to be displayed as a
sexagesimal value.
You also can convert between sexagesimal and decimal.
The following is the input format for a sexagesimal value: {degrees}
{minutes} {seconds} .
22
Note
• You must always input something for the degrees and minutes, even if they are zero.
Example 1: 2°20’30” + 39’30” = 3°00’00”
2
20 30 0 39 30 3°0’0”
Example 2: Convert 2°15’18” to its decimal equivalent.
2
15 18 2°15’18”
( Co n v e r t s s e x a g e s i m a l t o d e c i m a l . )
( Co n v e r t s d e c i m a l t o s e x a g e s i m a l . )
2 , 2 5 5
2 ° 1 5 ’ 1 8 ”
M u l t i - S t at em en t s
Y o u c a n u s e t h e c o l o n c h a r a c t e r ( : ) t o c o n n e c t t wo o r m o r e e x p r e s s i o n s
a n d e x e c u t e t h e m i n s e q u e n c e f r o m l e f t t o r i g h t wh e n y o u p r e s s
Ex a m pl e : 3 + 3 : 3 × 3
3 ( : ) 3 3 6
3
.
U si n g E n g i n eer i n g N o t at i o n
A s i m p l e k e y o p e r a t i o n t r a n s f o r m s a d i s p l a y e d v a l u e t o e n g i n e e r i n g
n o t a t i o n .
9
Ex a m pl e 1 : T r a n s f o r m t h e v a l u e 1 2 3 4 t o e n g i n e e r i n g n o t a t i o n , s h i f t i n g t h e
d e c i m a l p o i n t t o t h e r i g h t .
1 2 3 4
Example 2: Transform the value 123 to engineering notation, shifting the
decimal point to the left.
123
(←) 0,123×10
23
1 2 3 4
1 , 2 3 4 × 1 0
1 2 3 4 × 1 0
123
3
0
3
(←) 0,000123×10
Remainder Calculations
You can use the ÷R function to obtain the quotient and remainder in a
division calculation.
Ex a m pl e : T o c a l c u l a t e t h e q u o t i e n t a n d r e m a i n d e r o f 5 ÷ 2 ( q u o t i e n t = 2 ,
r e m a i n d e r = 1 )
( M t h I O- M a t h O)
5
( L i n e I O)
5
( ÷ R) 2
( ÷ R) 2
6
N o t e
• On l y th e q u o ti e n t v a l u e o f a ÷ R c a l c u l a ti o n i s s to re d i n A n s m e m o ry .
• A s s i g n i n g th e re s u l t o f a re m a i n d e r d i v i s i o n c a l c u l a ti o n to a v a ri a b l e w i l l a s s i g n th e
q u o ti e n t v a l u e o n l y . P e rfo rm i n g th e o p e ra ti o n 5
(X ) (w h i c h a s s i g n s th e re s u l t o f 5 ÷ R 2 to X ) w i l l a s s i g n a v a l u e o f 2 to X .
• If a ÷ R c a l c u l a ti o n i s p a rt o f a m u l ti -s te p c a l c u l a ti o n , o n l y th e q u o ti e n t i s p a s s e d o n to
th e n e x t o p e ra ti o n .
E x a m p l e : 1 0
• Op e ra ti o n o f th e
th e d i s p l a y .
1 7 (÷ R ) 6 → 1 0 2 → 1 2
a n d k e y s i s d i s a b l e d w h i l e a re m a i n d e r d i v i s i o n re s u l t i s o n
(÷ R ) 2 (S T O)
Ca s e s whe n Re m a i nde r Di v i s i on be c om e s Non- r e m a i nde r Di v i s i on
I f e i t h e r o f t h e c o n d i t i o n s b e l o w e x i s t s wh e n y o u p e r f o r m a r e m a i n d e r
d i v i s i o n o p e r a t i o n , t h e c a l c u l a t i o n wi l l b e t r e a t e d a s n o r m a l ( n o n -
r e m a i n d e r ) d i v i s i o n .
• W h e n e i t h e r t h e d i v i d e n d o r t h e d i v i s o r i s a v e r y l a r g e v a l u e
Example: 20000000000 (÷R) 17
→ Calculated as: 20000000000 ÷ 17
• When the quotient is not a positive integer, or if the remainder is not a
positive integer or positive fractional value
Example:
5 (÷R) 2
→ Calculated as: -5 ÷ 2
24
Prime Factorization
In the COMP Mode, a positive integer no more than 10 digits long can be
factored to prime factors.
Example 1: To perform prime factorization on 1014
1014
( F ACT)
W h e n y o u p e r f o r m p r i m e f a c t o r i z a t i o n o n a v a l u e t h a t i n c l u d e s a f a c t o r t h a t
i s p r i m e n u m b e r wi t h m o r e t h a n t h r e e d i g i t s , t h e p a r t t h a t c a n n o t b e
f a c t o r e d wi l l b e e n c l o s e d i n p a r e n t h e s e s o n t h e d i s p l a y .
Ex a m pl e 2 : T o p e r f o r m p r i m e f a c t o r i z a t i o n o n 4 1 0 4 6 7 6 ( = 2 2 × 1 0 1 3 2 )
4 1 0 4 6 7 6
( F ACT)
An y o n e o f t h e f o l l o wi n g o p e r a t i o n s wi l l e x i t p r i m e f a c t o r i z a t i o n r e s u l t
d i s p l a y .
- Pr e s s i n g
- Pr e s s i n g a n y o f t h e f o l l o wi n g k e y s : o r .
- Us i n g t h e s e t u p m e n u t o c h a n g e t h e a n g l e u n i t s e t t i n g ( De g , Ra d , Gr a )
o r t h e d i s p l a y d i g i t s s e t t i n g ( Fi x , Sc i , No r m ) .
( F ACT) o r .
1014
4 1 0 4 6 7 6
N o t e
• Y o u w i l l n o t b e a b l e to e x e c u te p ri m e fa c to ri z a ti o n w h i l e a d e c i m a l v a l u e , fra c ti o n , o r
n e g a ti v e v a l u e c a l c u l a ti o n re s u l t i s d i s p l a y e d . T ry i n g to d o s o w i l l c a u s e a m a th e rro r
(M a th E R R OR ).
• Y o u w i l l n o t b e a b l e to e x e c u te p ri m e fa c to ri z a ti o n w h i l e th e re s u l t o f a c a l c u l a ti o n th a t
u s e s P o l , R e c , ÷ R i s d i s p l a y e d .
Calculation History and Replay
Calculation History
In the COMP, CMPLX, or BASE-N Mode, the calculator remembers up to
approximately 200 bytes of data for the newest calculation.
You can scroll through calculation history contents using and .
25
Example:
1 + 1 = 2
2 + 2 = 4
3 + 3 = 6
(Scrolls back.)
(Scrolls back again.)
N o t e
• C a l c u l a ti o n h i s to ry d a ta i s a l l c l e a re d w h e n e v e r y o u p re s s , w h e n y o u c h a n g e to a
d i f fe re n t c a l c u l a ti o n m o d e , w h e n y o u c h a n g e th e d i s p l a y fo rm a t, o r w h e n e v e r y o u
p e rfo rm th e fo l l o w i n g o p e ra ti o n s :
(C L R ) (A l l ) (Y e s ).
1 1 2
2
2 4
3
3 6
(C L R ) (S e tu p ) (Y e s ),
Re pl a y
W h i l e a c a l c u l a t i o n r e s u l t i s o n t h e d i s p l a y , y o u c a n p r e s s
e d i t t h e e x p r e s s i o n y o u u s e d f o r t h e p r e v i o u s c a l c u l a t i o n .
o r t o
4
2
Ex a m pl e : 4 × 3 + 2 = 1 4
4 × 3 - 7 = 5
4
3 2 1 4
( Co n t i n u i n g )
7 5
U si n g M em o r y F u n ct i o n s
Ans w e r Me m or y ( Ans ) / P r e v i ous Ans w e r Me m or y
( P r e Ans )
Th e l a s t c a l c u l a t i o n r e s u l t o b t a i n e d i s s t o r e d i n An s ( a n s we r ) m e m o r y . Th e
c a l c u l a t i o n r e s u l t o b t a i n e d p r i o r t o t h e l a s t o n e i s s t o r e d i n Pr e An s
( p r e v i o u s a n s we r ) m e m o r y . Di s p l a y i n g t h e r e s u l t o f a n e w c a l c u l a t i o n wi l l
move current Ans memory contents to PreAns memory and store the new
calculation results in Ans memory. PreAns memory can be used only in
the COMP Mode. PreAns memory contents are cleared whenever the
calculator enters another mode from the COMP Mode.
Using Ans Memory to Perform a Series of Calculations
Example: To divide the result of 3 × 4 by 30 (LineIO)
26
3 4 12
(Continuing)
30
Inputting Ans Memory Contents into an Expression
Example: To perform the calculations shown below:
1 2 3 4 5 6 5 7 9
( Co n t i n u i n g ) 7 8 9
Us i ng Pr e Ans M e m or y
Ex a m pl e : Fo r T
k + 2
= T
+ T k ( Fi b o n a c c i s e q u e n c e ) , d e t e r m i n e t h e
k + 1
s e q u e n c e f r o m T 1 t o T 5 . No t e h o we v e r , t h a t T 1 = 1 a n d T 2 = 1 .
T 1 = 1
1
T 2 = 1
1
( An s = T 2 = 1 , Pr e An s = T 1 = 1 )
T 3 = T 2 + T 1 = 1 + 1
( Pr e An s )
(Ans = T3 = 2, PreAns = T2 = 1)
( An s = T 1 = 1 )
T4 = T3 + T2 = 2 + 1
(Ans = T4 = 3, PreAns = T3 = 2)
27
T5 = T4 + T3 = 3 + 2
Result: The sequence is {1, 1, 2, 3, 5}.
Variables (A, B, C, D, E, F, M, X, Y)
Your calculator has nine preset variables named A, B, C, D, E, F, M, X,
a n d Y .
Y o u c a n a s s i g n v a l u e s t o v a r i a b l e s a n d u s e t h e v a r i a b l e s i n c a l c u l a t i o n s .
Ex a m pl e :
T o a s s i g n t h e r e s u l t o f 3 + 5 t o v a r i a b l e A
3
5 ( ST O) ( A) 8
T o m u l t i p l y t h e c o n t e n t s o f v a r i a b l e A b y 1 0
( Co n t i n u i n g ) ( A) 1 0 8 0
T o r e c a l l t h e c o n t e n t s o f v a r i a b l e A
( Co n t i n u i n g ) ( A) 8
T o c l e a r t h e c o n t e n t s o f v a r i a b l e A
0 ( ST O) ( A) 0
I nde pe nde nt Me m or y ( M)
Y o u c a n a d d c a l c u l a t i o n r e s u l t s t o o r s u b t r a c t r e s u l t s f r o m i n d e p e n d e n t
m e m o r y .
Th e "M " i n d i c a t o r a p p e a r s o n t h e d i s p l a y wh e n t h e r e i s a n y v a l u e o t h e r
t h a n z e r o s t o r e d i n i n d e p e n d e n t m e m o r y .
Ex a m pl e :
T o c l e a r t h e c o n t e n t s o f M
0
To add the result of 10 × 5 to M
( ST O) ( M ) 0
(Continuing) 10 5 50
To subtract the result of 10 + 5 from M
(Continuing) 10
5 (M-) 15
28
To recall the contents of M
(Continuing)
Note
• Variable M is used for independent memory.
(M) 35
Clearing the Contents of All Memories
An s m e m o r y , i n d e p e n d e n t m e m o r y , a n d v a r i a b l e c o n t e n t s a r e r e t a i n e d
e v e n i f y o u p r e s s
c a l c u l a t o r .
Pr e An s m e m o r y c o n t e n t s a r e r e t a i n e d e v e n i f y o u p r e s s a n d t u r n
o f f t h e c a l c u l a t o r wi t h o u t e x i t i n g t h e COM P M o d e .
Pe r f o r m t h e f o l l o wi n g p r o c e d u r e wh e n y o u wa n t t o c l e a r t h e c o n t e n t s o f a l l
m e m o r i e s .
( CL R) ( M e m o r y ) ( Y e s )
, c h a n g e t h e c a l c u l a t i o n m o d e , o r t u r n o f f t h e
29
Function Calculations
Use the
function calculations.
No t e : Us i n g f u n c t i o n s c a n s l o w d o wn a c a l c u l a t i o n , wh i c h m a y d e l a y
d i s p l a y o f t h e r e s u l t . Do n o t p e r f o r m a n y s u b s e q u e n t o p e r a t i o n wh i l e
wa i t i n g f o r t h e c a l c u l a t i o n r e s u l t t o a p p e a r . T o i n t e r r u p t a n o n g o i n g
c a l c u l a t i o n b e f o r e i t s r e s u l t a p p e a r s , p r e s s
key to enter the COMP Mode when you want to perform
(COMP)
.
P i ( π ) , N at u r al L o g ar i t h m B ase e
π i s d i s p l a y e d a s 3 , 1 4 1 5 9 2 6 5 4 , b u t π = 3 , 1 4 1 5 9 2 6 5 3 5 8 9 8 0 i s u s e d f o r
i n t e r n a l c a l c u l a t i o n s .
e i s d i s p l a y e d a s 2 , 7 1 8 2 8 1 8 2 8 , b u t e = 2 , 7 1 8 2 8 1 8 2 8 4 5 9 0 4 i s u s e d f o r
i n t e r n a l c a l c u l a t i o n s .
T r i g o n o m et r i c F u n ct i o n s
Sp e c i f y t h e a n g l e u n i t b e f o r e p e r f o r m i n g c a l c u l a t i o n s .
Ex a m pl e 1 : s i n 3 0 ° = 0 , 5 ( L i n e I O) ( An g l e u n i t : De g )
3 0 0 , 5
Ex a m pl e 2 : s i n - 1 0 , 5 = 3 0 ° ( L i n e I O) ( An g l e u n i t : De g )
( s i n - 1 ) 0 5 3 0
Hyperbolic Functions
Input a function from the menu that appears when you press
The angle unit setting does not affect calculations.
.
Example 1: sinh 1 = 1,175201194
30
(sinh) 1 1,175201194
Example 2: cosh -1 1 = 0
(cosh-1) 1 0
Angle Unit Conversion
°, r, g : These functions specify the angle unit. ° specifies degrees,
r a d i a n s , a n d g g r a d s .
I n p u t a f u n c t i o n f r o m t h e m e n u t h a t a p p e a r s wh e n y o u p e r f o r m t h e
f o l l o wi n g k e y o p e r a t i o n :
Ex a m pl e : π / 2 r a d i a n s = 9 0 ° , 5 0 g r a d s = 4 5 ° ( An g l e u n i t : De g )
( π ) 2 ( DRG ) ( r )
5 0
( DRG ) .
( DRG ) ( g ) 4 5
r
E xp o n en t i al F u n ct i o n s
No t e t h a t t h e i n p u t m e t h o d i s d i f f e r e n t d e p e n d i n g u p o n wh e t h e r y o u a r e
u s i n g Na t u r a l Di s p l a y o r L i n e a r Di s p l a y .
Ex a m pl e : T o c a l c u l a t e e 5 × 2 t o t h r e e s i g n i f i c a n t d i g i t s ( Sc i 3 )
( SETUP) ( Sc i )
9 0
( M t h I O- M a t h O) ( ) 5 2 2 , 9 7 × 1 0
( L i n e I O)
( ) 5 2 2 , 9 7 × 1 0
L o g ar i t h m i c F u n ct i o n s
Us e t h e
Ba s e 1 0 i s t h e d e f a u l t s e t t i n g i f y o u d o n o t i n p u t a n y t h i n g f o r a .
Th e
selected. In this case, you must input a value for the base.
Example 1: log 10 1000 = log 1000 = 3
Example 2: log 2 16 = 4
k e y t o i n p u t l o g a b a s l o g ( a ; b ) .
k e y a l s o c a n b e u s e d f o r i n p u t , b u t o n l y wh i l e Na t u r a l Di s p l a y i s
1000 3
2
2
31
2 (;) 16 4
(MthIO-MathO, MthIO-LineO)
Example 3: log 2(43) = 6 (MthIO-MathO, MthIO-LineO)
2 (x 3)
Example 4: log 2(4)3 = 8 (MthIO-MathO, MthIO-LineO)
2 4 (x 3)
Ex a m pl e 5 : T o c a l c u l a t e l n 9 0 ( = l o g e 9 0 ) t o t h r e e s i g n i f i c a n t d i g i t s ( Sc i 3 )
( SETUP) ( Sc i )
2 16 4
9 0
4 , 5 0 × 1 0
P o w er F u n ct i o n s an d P o w er R o o t
F u n ct i o n s
6
8
0
No t e t h a t t h e i n p u t m e t h o d s f o r
d e p e n d i n g u p o n wh e t h e r y o u a r e u s i n g Na t u r a l Di s p l a y o r L i n e a r Di s p l a y .
Ex a m pl e 1 : 1 , 2 × 1 0 3 = 1 2 0 0 ( M t h I O- M a t h O)
Ex a m pl e 2 : ( 1 + 1 )
Ex a m pl e 3 : ( 5 2 ) 3 = 1 5 6 2 5
Ex a m pl e 4 : 5 √ 3 2 = 2
( M t h I O- M a t h O)
2+ 2
= 1 6 ( M t h I O- M a t h O)
1 1 2 2 1 6
5 ( x 3 )
, , , a n d a r e d i f f e r e n t
2 1 0 3 1 2 0 0
1
( ) 5 3 2 2
1 5 6 2 5
(LineIO) 5
Example 5: To calculate √2 × 3 (= 3√2 = 4,242640687...) to three decimal
places (Fix 3)
( ) 32 2
(SETUP) (Fix)
32
(MthIO-MathO) 2 3√2
4,243
(LineIO)
2 3 4,243
Example 6: 3√5 + 3√-27 = -1,290024053
(LineIO)
( ) 5
( ) 27
-1,290024053
1
Ex a m pl e 7 :
N o t e
• Th e fo l l o w i n g fu n c ti o n s c a n n o t b e i n p u t i n c o n s e c u ti v e s e q u e n c e : x 2 , x 3 , , x - 1 . If y o u
i n p u t 2
p re s s th e
• x 2 , x 3 , x - 1 c a n b e u s e d i n c o m p l e x n u m b e r c a l c u l a ti o n s .
= 1 2
1
1
-
3
4
( L i n e I O)
, fo r e x a m p l e , th e fi n a l w i l l b e i g n o re d . T o i n p u t 2
k e y , a n d th e n p re s s (M th IO-M a th O).
3 4 1 2
2
2
, i n p u t 2 ,
I n t eg r at i o n C al cu l at i o n s
Fu n c t i o n f o r p e r f o r m i n g n u m e r i c a l i n t e g r a t i o n u s i n g t h e Ga u s s - Kr o n r o d
m e t h o d .
Na t u r a l Di s p l a y i n p u t s y n t a x i s ∫
i s ∫ ( f ( x ) ; a ; b ; t o l ) .
t o l s p e c i f i e s t o l e r a n c e , wh i c h b e c o m e s 1 × 1 0 - 5 wh e n n o t h i n g i s i n p u t f o r
t o l .
e
Ex a m pl e 1 : ∫
l n ( x ) = 1
1
( M t h I O- M a t h O)
( X) 1 ( e )
(LineIO)
(X) (;) 1 (;)
b
f ( x ) d x , wh i l e L i n e a r Di s p l a y i n p u t s y n t a x
a
(e )
1
1
33
Example 2: ∫(
1
; 1; 5; 1 × 10-7) = 0,8 (LineIO)
2
x
1 (X) (;) 1 (;) 5
(;)
Example 3: ∫
1
π
(sin x + cos x )2 dx = π (tol : Not specified) (MthIO-MathO)
0
7
(Angle unit: Rad)
( X) ( X)
0
( π )
I nt e gr a t i on Ca l c ul a t i on P r e c a ut i ons
• I n t e g r a t i o n c a l c u l a t i o n c a n b e p e r f o r m e d i n t h e COM P M o d e o n l y .
• Th e f o l l o wi n g c a n n o t b e u s e d i n f ( x ) : Po l , Re c , ÷ R. Th e f o l l o wi n g c a n n o t
b e u s e d i n f ( x ) , a , b , o r t o l : ∫ , d / d x , Σ .
• W h e n u s i n g a t r i g o n o m e t r i c f u n c t i o n i n f ( x ) , s p e c i f y Ra d a s t h e a n g l e
u n i t .
• A s m a l l e r t o l v a l u e i n c r e a s e s p r e c i s i o n , b u t i t a l s o i n c r e a s e s c a l c u l a t i o n
- 14
t i m e . W h e n s p e c i f y i n g t o l , u s e v a l u e t h a t i s 1 × 1 0
• I n t e g r a t i o n n o r m a l l y r e q u i r e s c o n s i d e r a b l e t i m e t o p e r f o r m .
• De p e n d i n g o n t h e c o n t e n t o f f ( x ) a n d t h e r e g i o n o f i n t e g r a t i o n ,
c a l c u l a t i o n e r r o r t h a t e x c e e d s t h e t o l e r a n c e m a y b e g e n e r a t e d , c a u s i n g
t h e c a l c u l a t o r t o d i s p l a y a n e r r o r m e s s a g e .
• Th e c o n t e n t o f f ( x ) , p o s i t i v e / n e g a t i v e v a l u e s wi t h i n t h e i n t e g r a t i o n
i n t e r v a l , a n d t h e i n t e r v a l t o b e i n t e g r a t e d c a n c a u s e l a r g e e r r o r i n t h e
r e s u l t i n g i n t e g r a t i o n v a l u e s . ( Ex a m p l e s : W h e n t h e r e a r e p a r t s wi t h
d i s c o n t i n u o u s p o i n t s o r a b r u p t c h a n g e . W h e n t h e i n t e g r a t i o n i n t e r v a l i s
t o o wi d e . ) I n s u c h c a s e s d i v i d i n g t h e i n t e g r a t i o n i n t e r v a l i n t o p a r t s a n d
p e r f o r m i n g t h e c a l c u l a t i o n m a y i m p r o v e c a l c u l a t i o n a c c u r a c y .
o r g r e a t e r .
0,8
π
T i ps f or S uc c e s s f ul I nt e gr a t i on Ca l c ul a t i ons
W he n a pe r i odi c f unc t i on or i nt e gr a t i on i nt e r v a l r e s ul t s i n pos i t i v e
and negative f (x ) function values
Perform separate integrations for each cycle, or for the positive part and
the negative part, and then combine the results.
34
(1) Positive Part
(2) Negative Part
When integration values fluctuate widely due to minute shifts in the
integration interval
Di v i d e t h e i n t e g r a t i o n i n t e r v a l i n t o m u l t i p l e p a r t s ( i n a wa y t h a t b r e a k s
a r e a s o f wi d e f l u c t u a t i o n i n t o s m a l l p a r t s ) , p e r f o r m i n t e g r a t i o n o n e a c h
p a r t , a n d t h e n c o m b i n e t h e r e s u l t s .
D i f f er en t i al C al cu l at i o n s
Fu n c t i o n f o r a p p r o x i m a t i o n o f t h e d e r i v a t i v e b a s e d o n t h e c e n t r a l
d i f f e r e n c e m e t h o d .
d
Na t u r a l Di s p l a y i n p u t s y n t a x i s
( f ( x ) ) |
d x
, wh i l e L i n e a r Di s p l a y i n p u t
x = a
d
s y n t a x i s
( f ( x ) ; a ; t o l ) .
d x
t o l s p e c i f i e s t o l e r a n c e , wh i c h b e c o m e s 1 × 1 0
- 10
wh e n n o t h i n g i s i n p u t f o r
t o l .
Ex a m pl e 1 : T o o b t a i n t h e d e r i v a t i v e a t p o i n t x = π / 2 f o r t h e f u n c t i o n y =
s i n ( x ) ( An g l e u n i t : Ra d )
( M t h I O- M a t h O)
( ) ( X)
( π ) 2
(LineIO)
( ) (X) (;)
(π ) 2
0
0
Example 2:
d
(3 x2 - 5 x + 2; 2; 1 × 10
dx
-12
) = 7 (LineIO)
35
( ) 3 (X) 5 (X)
2 (;)
2
(;) 1 12
Differential Calculation Precautions
• Differential calculation can be performed in the COMP Mode only.
• The following cannot be used in f(x): Pol, Rec, ÷R. The following cannot
b e u s e d i n f ( x ) , a , b , o r t o l : ∫ , d / d x , Σ .
• W h e n u s i n g a t r i g o n o m e t r i c f u n c t i o n i n f ( x ) , s p e c i f y Ra d a s t h e a n g l e
u n i t .
• A s m a l l e r t o l v a l u e i n c r e a s e s p r e c i s i o n , b u t i t a l s o i n c r e a s e s c a l c u l a t i o n
- 14
t i m e . W h e n s p e c i f y i n g t o l , u s e v a l u e t h a t i s 1 × 1 0
• I f c o n v e r g e n c e t o a s o l u t i o n c a n n o t b e f o u n d wh e n t o l i n p u t i s o m i t t e d ,
t h e t o l v a l u e wi l l b e a d j u s t e d a u t o m a t i c a l l y t o d e t e r m i n e t h e s o l u t i o n .
• No n - c o n s e c u t i v e p o i n t s , a b r u p t f l u c t u a t i o n , e x t r e m e l y l a r g e o r s m a l l
p o i n t s , i n f l e c t i o n p o i n t s , a n d t h e i n c l u s i o n o f p o i n t s t h a t c a n n o t b e
d i f f e r e n t i a t e d , o r a d i f f e r e n t i a l p o i n t o r d i f f e r e n t i a l c a l c u l a t i o n r e s u l t t h a t
a p p r o a c h e s z e r o c a n c a u s e p o o r p r e c i s i o n o r e r r o r .
o r g r e a t e r .
7
Σ C al cu l at i o n s
Fu n c t i o n t h a t , f o r a s p e c i f i e d r a n g e o f f ( x ) , d e t e r m i n e s s u m
( f ( x ) ) = f ( a ) + f ( a + 1 ) + f ( a + 2 ) + ⋯ + f ( b ) .
Na t u r a l Di s p l a y i n p u t s y n t a x i s
i s ∑ ( f ( x ) ; a ; b ) .
a a n d b a r e i n t e g e r s t h a t c a n b e s p e c i f i e d wi t h i n t h e r a n g e o f - 1 × 1 0
≦ b < 1 × 1 0 10 .
Ex a m pl e : ( x + 1 ) = 2 0
( M t h I O- M a t h O)
( ) ( X) 1 1 5 2 0
(LineIO)
( f ( x ) ) , wh i l e L i n e a r Di s p l a y i n p u t s y n t a x
10
< a
( ) (X) 1 (;) 1
(;) 5
36
20
Note
• The following cannot be used in f(x): Pol, Rec, ÷R. The following cannot be used in
f(x), a, or b: ∫, d/dx, Σ .
Rectangular-Polar Coordinate
Conversion
Po l c o n v e r t s r e c t a n g u l a r c o o r d i n a t e s t o p o l a r c o o r d i n a t e s , wh i l e Re c
c o n v e r t s p o l a r c o o r d i n a t e s t o r e c t a n g u l a r c o o r d i n a t e s .
( 1 ) Re c t a n g u l a r Co o r d i n a t e s ( Re c )
( 2 ) Po l a r Co o r d i n a t e s ( Po l )
Sp e c i f y t h e a n g l e u n i t b e f o r e p e r f o r m i n g c a l c u l a t i o n s .
Th e c a l c u l a t i o n r e s u l t f o r r a n d θ a n d f o r x a n d y a r e e a c h a s s i g n e d
r e s p e c t i v e l y t o v a r i a b l e s X a n d Y .
Ca l c u l a t i o n r e s u l t θ i s d i s p l a y e d i n t h e r a n g e o f - 1 8 0 ° < θ ≦ 1 8 0 ° .
Ex a m pl e 1 : T o c o n v e r t r e c t a n g u l a r c o o r d i n a t e s ( √
c o o r d i n a t e s ( An g l e u n i t : De g )
( M t h I O- M a t h O)
( Po l ) 2 ( ; ) 2
( L i n e I O)
(Pol) 2 (;) 2
2 ; √ 2 ) t o p o l a r
r = 2 ; θ = 4 5
r = 2
θ = 45
Example 2: To convert polar coordinates (√2; 45°) to rectangular
coordinates (Angle unit: Deg)
(MthIO-MathO)
37
(Rec) 2 (;) 45 X = 1; Y = 1
Ge n e r a t e t h r e e 3 - d i g i t r a n d o m n u m b e r s .
Th e r a n d o m 3 - d i g i t d e c i m a l v a l u e s a r e c o n v e r t e d t o 3 - d i g i t
i n t e g e r v a l u e s b y m u l t i p l y i n g b y 1 0 0 0 .
Factorial Function (!)
Example: (5 + 3)! = 40320
5 3 (x !)
40320
Absolute Value Function (Abs)
No t e t h a t t h e i n p u t m e t h o d i s d i f f e r e n t d e p e n d i n g u p o n wh e t h e r y o u a r e
u s i n g Na t u r a l Di s p l a y o r L i n e a r Di s p l a y .
Ex a m pl e : | 2 - 7 | × 2 = 1 0
( M t h I O- M a t h O)
( Ab s ) 2 7 2 1 0
( L i n e I O)
( Ab s ) 2 7 2 1 0
R an d o m N u m b er ( R an #)
Fu n c t i o n t h a t g e n e r a t e s a p s e u d o r a n d o m n u m b e r i n t h e r a n g e o f 0 , 0 0 0 t o
0 , 9 9 9 .
Th e r e s u l t i s d i s p l a y e d a s a f r a c t i o n wh e n Na t u r a l Di s p l a y i s s e l e c t e d .
Ex a m pl e :
1 0 0 0 ( Ra n # ) 6 3 4
9 2
1 7 5
(Results shown here are for illustrative purposes only. Actual results will
differ.)
Random Integer (RanInt#)
For input of the function of the form RanInt#(a ; b ), which generates a
random integer within the range of a to b .
38
Example: To generate random integers in the range of 1 to 6
(RanInt) 1 (;) 6 2
(Results shown here are for illustrative purposes only. Actual results will
d i f f e r . )
P er m u t at i o n ( n P r ) an d C o m b i n at i o n
( n C r )
Ex a m pl e : T o d e t e r m i n e t h e n u m b e r o f p e r m u t a t i o n s a n d c o m b i n a t i o n s
p o s s i b l e wh e n s e l e c t i n g f o u r p e o p l e f r o m a g r o u p o f 1 0 .
6
1
Pe r m u t a t i o n s : 1 0
Co m b i n a t i o n s : 1 0
( n P r ) 4
( n C r ) 4
5 0 4 0
2 1 0
R o u n d i n g F u n ct i o n ( R n d )
Th e a r g u m e n t o f t h i s f u n c t i o n i s m a d e a d e c i m a l v a l u e a n d t h e n r o u n d e d
i n a c c o r d a n c e wi t h t h e c u r r e n t n u m b e r o f d i s p l a y d i g i t s s e t t i n g ( No r m , Fi x ,
o r Sc i ) .
W i t h No r m 1 o r No r m 2 , t h e a r g u m e n t i s r o u n d e d o f f t o 1 0 d i g i t s .
W i t h Fi x a n d Sc i , t h e a r g u m e n t i s r o u n d e d o f f t o t h e s p e c i f i e d d i g i t .
W h e n Fi x 3 i s t h e d i s p l a y d i g i t s s e t t i n g , f o r e x a m p l e , t h e r e s u l t o f 1 0 ÷ 3 i s
d i s p l a y e d a s 3 , 3 3 3 , wh i l e t h e c a l c u l a t o r m a i n t a i n s a v a l u e o f
3 , 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ( 1 5 d i g i t s ) i n t e r n a l l y f o r c a l c u l a t i o n .
I n t h e c a s e o f Rn d ( 1 0 ÷ 3 ) = 3 , 3 3 3 ( wi t h Fi x 3 ) , b o t h t h e d i s p l a y e d v a l u e
a n d t h e c a l c u l a t o r ’ s i n t e r n a l v a l u e b e c o m e 3 , 3 3 3 .
Be c a u s e o f t h i s a s e r i e s o f c a l c u l a t i o n s wi l l p r o d u c e d i f f e r e n t r e s u l t s
d e p e n d i n g o n wh e t h e r Rn d i s u s e d ( Rn d ( 1 0 ÷ 3 ) × 3 = 9 , 9 9 9 ) o r n o t u s e d
( 1 0 ÷ 3 × 3 = 1 0 , 0 0 0 ) .
Example: To perform the following calculations when Fix 3 is selected for
the number of display digits: 10 ÷ 3 × 3 and Rnd(10 ÷ 3) × 3 (LineIO)
(SETUP) (Fix)
10 3 3 10,000
(Rnd) 10 3 3 9,999
39
Greatest Common Divisor (GCD) and
Least Common Multiple (LCM)
Greatest Common Divisor (GCD)
GCD determines the greatest common divisor of two values.
Example: To determine the greatest common divisor of 28 and 35
( GCD) 2 8 ( ; ) 3 5 7
L east C o m m o n M u lt ip le ( L C M )
L CM d e t e r m i n e s t h e l e a s t c o m m o n m u l t i p l e o f t wo v a l u e s .
Ex a m pl e : T o d e t e r m i n e t h e l e a s t c o m m o n m u l t i p l e o f 9 a n d 1 5
( L CM ) 9 ( ; ) 1 5 4 5
U si n g C A L C
CAL C l e t s y o u s a v e c a l c u l a t i o n e x p r e s s i o n s t h a t c o n t a i n v a r i a b l e s , wh i c h
y o u c a n t h e n r e c a l l a n d e x e c u t e i n t h e COM P M o d e a n d t h e CM PL X
M o d e .
Th e f o l l o wi n g d e s c r i b e s t h e t y p e s o f e x p r e s s i o n s y o u c a n s a v e wi t h CAL C.
• Ex p r e s s i o n s : 2 X + 3 Y ; 2 AX + 3 BX + C; A + B i
• M u l t i - s t a t e m e n t s : X + Y : X( X + Y)
• Eq u a t i o n s wi t h a s i n g l e v a r i a b l e o n t h e l e f t a n d a n e x p r e s s i o n i n c l u d i n g
v a r i a b l e s o n t h e r i g h t : A = B + C; Y = X 2 + X + 3
( Us e
T o s t a r t a CAL C o p e r a t i o n a f t e r i n p u t t i n g a n e x p r e s s i o n , p r e s s t h e
k e y .
Ex a m pl e 1 : T o s t o r e 3 A + B a n d t h e n s u b s t i t u t e t h e f o l l o wi n g v a l u e s t o
p e r f o r m t h e c a l c u l a t i o n : ( A; B) = ( 5 ; 1 0 ) , ( 7 ; 2 0 )
( = ) t o i n p u t t h e e q u a l s s i g n o f t h e e q u a l i t y . )
3
(A) (B)
40
(1) Prompts for input of a value for A
(2) Current value of A
5
1 0
( o r )
7 2 0
T o e x i t CAL C:
Ex a m pl e 2 : T o s t o r e A+ B i a n d t h e n d e t e r m i n e √ 3 + i , 1 + √ 3 i u s i n g p o l a r
c o o r d i n a t e s ( r ∠ θ ) ( An g l e Un i t : De g )
( CM PL X)
( A) ( B) ( i )
( CM PL X) ( r ∠ θ )
3 1 2 ∠ 3 0
( o r ) 1 3 2 ∠ 6 0
T o e x i t CAL C:
N o t e
• D u ri n g th e ti m e fro m w h e n y o u p re s s u n ti l y o u e x i t C A L C b y p re s s i n g , y o u
should use Linear Display input procedures for input.
Using SOLVE
SOLVE uses Newton's method to approximate the solution of equations.
Note that SOLVE can be used in the COMP Mode only.
41
The following describes the types of equations whose solutions can be
obtained using SOLVE.
• Equations that include variable X: X 2 + 2X - 2, Y = X + 5, X = sin(M),
X + 3 = B + C
SOLVE solves for X. An expression like X2 + 2X - 2 is treated as X2 + 2X
- 2 = 0.
• Equations input using the following syntax: {equation}, {solution
variable}
SOLVE solves for Y, for example, when an equation is input as: Y = X +
5 , Y
I m p o rt a n t !
• If a n e q u a ti o n c o n ta i n s i n p u t fu n c ti o n s th a t i n c l u d e a n o p e n p a re n th e s i s (s u c h a s s i n
a n d l o g ), d o n o t o m i t th e c l o s i n g p a re n th e s i s .
• Th e fo l l o w i n g fu n c ti o n s a re n o t a l l o w e d i n s i d e o f a n e q u a ti o n : ∫ , d /d x , Σ , P o l , R e c , ÷ R .
2
Ex a m pl e : T o s o l v e y = a x
+ b f o r x wh e n y = 0 , a = 1 , a n d b = - 2
( Y) ( = )
( A) ( X) ( B)
( SOL VE)
( 1 ) Pr o m p t s f o r i n p u t o f a v a l u e f o r Y
1 2
0
( 2 ) Cu r r e n t v a l u e o f Y
( 3 ) Cu r r e n t v a l u e o f X
Input an initial value for X (Here, input 1):
42
1
Solution Screen
To exit SOLVE:
Note
• During the time from when you press (SOLVE) until you exit SOLVE by
pressing
Important!
• D e p e n d i n g o n w h a t y o u i n p u t fo r th e i n i ti a l v a l u e fo r X (s o l u ti o n v a ri a b l e ), S OL V E m a y
n o t b e a b l e to o b ta i n s o l u ti o n s . If th i s h a p p e n s , try c h a n g i n g th e i n i ti a l v a l u e s o th e y
a re c l o s e r to th e s o l u ti o n .
• S OL V E m a y n o t b e a b l e to d e te rm i n e th e c o rre c t s o l u ti o n , e v e n w h e n o n e e x i s ts .
• S OL V E u s e s N e w to n ' s m e th o d , s o e v e n i f th e re a re m u l ti p l e s o l u ti o n s , o n l y o n e o f
th e m w i l l b e re tu rn e d .
• D u e to l i m i ta ti o n s i n N e w to n ' s m e th o d , s o l u ti o n s te n d to b e d i f fi c u l t to o b ta i n fo r
e q u a ti o n s l i k e th e fo l l o w i n g : y = s i n ( x ), y = e x , y = √ x .
, you should use Linear Display input procedures for input.
S ol ut i on S c r e e n Cont e nt s
So l u t i o n s a r e a l wa y s d i s p l a y e d i n d e c i m a l f o r m .
( 1 ) Eq u a t i o n ( Th e e q u a t i o n y o u i n p u t . )
( 2 ) V a r i a b l e s o l v e d f o r
( 3 ) So l u t i o n
( 4 ) ( L e f t Si d e ) - ( Ri g h t Si d e ) r e s u l t
"( L e f t Si d e ) - ( Ri g h t Si d e ) r e s u l t " s h o ws t h e r e s u l t wh e n t h e r i g h t s i d e o f
t h e e q u a t i o n i s s u b t r a c t e d f r o m t h e l e f t s i d e , a f t e r a s s i g n i n g t h e o b t a i n e d
v a l u e t o t h e v a r i a b l e b e i n g s o l v e d f o r . Th e c l o s e r t h i s r e s u l t i s t o z e r o , t h e
higher the accuracy of the solution.
Continue Screen
SOLVE performs convergence a preset number of times. If it cannot find a
solution, it displays a confirmation screen that shows "Continue: [=]",
asking if you want to continue.
43
Press to continue or to cancel the SOLVE operation.
Example: To solve y = x 2 - x + 1 for x when y = 3, 7, and 13.
(Y) (=)
(X) (X) 1
(SOLVE)
3
I n p u t a n i n i t i a l v a l u e f o r X ( He r e , i n p u t 1 ) :
1
7
1 3
S ci en t i f i c C o n st an t s
Y o u r c a l c u l a t o r c o m e s wi t h 4 0 b u i l t - i n s c i e n t i f i c c o n s t a n t s t h a t c a n b e u s e d
i n a n y m o d e b e s i d e s BASE- N.
Ea c h s c i e n t i f i c c o n s t a n t i s d i s p l a y e d a s a u n i q u e s y m b o l ( s u c h a s π ) ,
wh i c h c a n b e u s e d i n s i d e o f c a l c u l a t i o n s .
T o i n p u t a s c i e n t i f i c c o n s t a n t i n t o a c a l c u l a t i o n , p r e s s
a n d t h e n i n p u t t h e t wo - d i g i t n u m b e r t h a t c o r r e s p o n d s t o t h e c o n s t a n t y o u
want.
( CONST)
Example 1: To input the scientific constant C 0 (speed of light in a
vacuum), and display its value
44
(CONST)
(C0)
Example 2: To calculate C 0 =
(MthIO-MathO)
ε 0 μ
√
0
1 ( CONST) ( ε 0 )
( CONST) ( μ 0 )
Th e f o l l o wi n g s h o ws t h e t wo - d i g i t n u m b e r s f o r e a c h o f t h e s c i e n t i f i c
c o n s t a n t s .
0 1 : ( m p ) p r o t o n m a s s 0 2 : ( m n ) n e u t r o n m a s s
1
0 3 : ( m e ) e l e c t r o n m a s s
0 4 : ( m μ ) m u o n m a s s
0 5 : ( a 0 ) Bo h r r a d i u s 0 6 : ( h ) Pl a n c k c o n s t a n t
0 7 : ( μ N) n u c l e a r m a g n e t o n 0 8 : ( μ B) Bo h r m a g n e t o n
0 9 : (
) Pl a n c k
1 0 : ( α ) f i n e - s t r u c t u r e c o n s t a n t
c o n s t a n t , r a t i o n a l i z e d
1 1 : ( r e ) c l a s s i c a l e l e c t r o n r a d i u s
1 2 : ( λ C ) Co m p t o n wa v e l e n g t h
1 4 : ( λ C p ) p r o t o n Co m p t o n
1 3 : ( γ p ) p r o t o n g y r o m a g n e t i c r a t i o
wa v e l e n g t h
1 5 : ( λ C n ) n e u t r o n Co m p t o n
1 6 : ( R ∞ ) Ry d b e r g c o n s t a n t
wa v e l e n g t h
1 7 : ( u ) a t o m i c m a s s u n i t
1 8 : ( μ p ) p r o t o n m a g n e t i c m o m e n t
19: (μ e) electron magnetic
20: (μ n) neutron magnetic moment
moment
21: (μμ ) muon magnetic moment
22: (F) Faraday constant
23: (e) elementary charge 24: (NA) Avogadro constant
45
25: (k) Boltzmann constant
27: (R) molar gas constant 28: (C0) speed of light in vacuum
29: (C1) first radiation constant 30: (C2) second radiation constant
31: (σ) Stefan-Boltzmann constant 32: (ε0) electric constant
3 3 : ( μ 0 ) m a g n e t i c c o n s t a n t 3 4 : ( Φ 0 ) m a g n e t i c f l u x q u a n t u m
26: (Vm) molar volume of ideal
gas (237,15K; 100kPa)
3 5 : ( g ) s t a n d a r d a c c e l e r a t i o n o f
g r a v i t y
3 7 : ( Z 0 ) c h a r a c t e r i s t i c i m p e d a n c e
o f v a c u u m
3 9 : ( G) Ne wt o n i a n c o n s t a n t o f
g r a v i t a t i o n
• Th e v a l u e s a r e b a s e d o n CODA T A ( 2 0 1 4 ) r e c o m m e n d e d v a l u e s .
3 6 : ( G 0 ) c o n d u c t a n c e q u a n t u m
3 8 : ( t ) Ce l s i u s t e m p e r a t u r e
4 0 : ( a t m ) s t a n d a r d a t m o s p h e r e
M et r i c C o n ver si o n
Th e c a l c u l a t o r ' s b u i l t - i n m e t r i c c o n v e r s i o n c o m m a n d s m a k e i t s i m p l e t o
c o n v e r t v a l u e s f r o m o n e u n i t t o a n o t h e r . Y o u c a n u s e t h e m e t r i c
c o n v e r s i o n c o m m a n d s i n a n y c a l c u l a t i o n m o d e e x c e p t f o r BASE- N a n d
T ABL E.
T o i n p u t a m e t r i c c o n v e r s i o n c o m m a n d i n t o a c a l c u l a t i o n , p r e s s
( CONV) a n d t h e n i n p u t t h e t wo - d i g i t n u m b e r t h a t c o r r e s p o n d s t o t h e
c o m m a n d y o u wa n t .
Ex a m pl e 1 : T o c o n v e r t 5 c m i n t o i n c h e s ( L i n e I O)
5 ( CONV)
(cm in)
Example 2: To convert 100 g into ounces (LineIO)
46
100 (CONV) (g oz)
Example 3: To convert -31°C into Fahrenheit (LineIO)
31 (CONV) (°C °F)
Th e f o l l o wi n g s h o ws t h e t wo - d i g i t n u m b e r s f o r e a c h o f t h e m e t r i c
c o n v e r s i o n c o m m a n d s .
0 1 : i n
0 5 : y d
c m 0 2 : c m i n 0 3 : f t m 0 4 : m f t
m 0 6 : m y d 0 7 : m i l e k m 0 8 : k m m i l e
0 9 : n m i l e
1 3 : g a l ( US)
1 7 : p c
2 1 : o z
2 5 : a t m
2 9 : h p
k m 1 8 : k m p c 1 9 : k m / h m / s 2 0 : m / s k m / h
g 2 2 : g o z 2 3 : l b k g 2 4 : k g l b
Pa 2 6 : Pa a t m 2 7 : m m Hg Pa 2 8 : Pa m m Hg
k W 3 0 : k W h p 3 1 : k g f / c m 2 Pa 3 2 : Pa k g f / c m
3 3 : k g f • m
3 7 : ° F
° C 3 8 : ° C ° F 3 9 : J c a l 4 0 : c a l J
m 1 0 : m n m i l e 1 1 : a c r e m
2
1 2 : m 2 a c r e
ℓ 1 4 : ℓ g a l ( US) 1 5 : g a l ( UK) ℓ 1 6 : ℓ g a l ( UK)
J 3 4 : J k g f • m 3 5 : l b f / i n 2 k Pa 3 6 : k Pa l b f / i n
2
2
Co n v e r s i o n f o r m u l a d a t a i s b a s e d o n t h e "NI ST Sp e c i a l Pu b l i c a t i o n 8 1 1
( 2 0 0 8 ) ".
N o t e
• The J cal command performs conversion for values at a temperature of 15°C.
47
Using Calculation Modes
Complex Number Calculations
(CMPLX)
To perform complex number calculations, first press
e n t e r t h e CM PL X M o d e .
Y o u c a n u s e e i t h e r r e c t a n g u l a r c o o r d i n a t e s ( a + b i ) o r p o l a r c o o r d i n a t e s
( r ∠ θ ) t o i n p u t c o m p l e x n u m b e r s .
Co m p l e x n u m b e r c a l c u l a t i o n r e s u l t s a r e d i s p l a y e d i n a c c o r d a n c e wi t h t h e
c o m p l e x n u m b e r f o r m a t s e t t i n g o n t h e s e t u p m e n u .
Ex a m pl e 1 : ( 2 + 6 i ) ÷ ( 2 i ) = 3 - i ( Co m p l e x n u m b e r f o r m a t : a + b i )
2 6 ( i ) 2 ( i ) 3 - i
Ex a m pl e 2 : 2 ∠ 4 5 = √ 2 + √ 2 i ( M t h I O- M a t h O) ( An g l e u n i t : De g )
( Co m p l e x n u m b e r f o r m a t : a + b i )
(CMPLX) to
2
Ex a m pl e 3 : √ 2 + √ 2 i = 2 ∠ 4 5 ( M t h I O- M a t h O) ( An g l e u n i t : De g )
( Co m p l e x n u m b e r f o r m a t : r ∠ θ )
2 2 ( i )
N o t e
• If y o u a re p l a n n i n g to p e rfo rm i n p u t a n d d i s p l a y o f th e c a l c u l a ti o n re s u l t i n p o l a r
c o o rd i n a te fo rm a t, s p e c i fy th e a n g l e u n i t b e fo re s ta rti n g th e c a l c u l a ti o n .
• The θ value of the calculation result is displayed in the range of -180° < θ ≦ 180°.
• Display of the calculation result while Linear Display is selected will show a and bi (or r
and θ ) on separate lines.
( ∠ ) 4 5
√ 2 + √ 2 i
2 ∠ 4 5
48
CMPLX Mode Calculation Examples
1
Example 1: (1 - i ) -1 =
+bi )
Example 2: (1 + i ) 2 + (1 - i )2 = 0 (MthIO-MathO)
1
+
i (MthIO-MathO) (Complex number format: a
2
2
1 (i )
1
1
+
i
2
2
1 ( i ) 1 ( i )
Ex a m pl e 3 : T o o b t a i n t h e c o n j u g a t e c o m p l e x n u m b e r o f 2 + 3 i
( Co m p l e x n u m b e r f o r m a t : a + b i )
( CM PL X) ( Co n j g ) 2 3 ( i ) 2 - 3 i
Ex a m pl e 4 : T o o b t a i n t h e a b s o l u t e v a l u e a n d a r g u m e n t o f 1 + i ( M t h I O-
M a t h O) ( An g l e u n i t : De g )
Ab s o l u t e V a l u e ( Ab s ) :
( Ab s ) 1 ( i )
Ar g u m e n t ( a r g ) :
( CM PL X) ( a r g ) 1 ( i )
Us i ng a Com m a nd t o S pe c i f y t he Ca l c ul a t i on
Re s ul t For m a t
0
√ 2
4 5
Ei t h e r o f t wo s p e c i a l c o m m a n d s (
o f a c a l c u l a t i o n t o s p e c i f y t h e d i s p l a y f o r m a t o f t h e c a l c u l a t i o n r e s u l t s .
Th e c o m m a n d o v e r r i d e s t h e c a l c u l a t o r ' s c o m p l e x n u m b e r f o r m a t s e t t i n g .
Ex a m pl e : √ 2 + √ 2 i = 2 ∠ 4 5 , 2 ∠ 4 5 = √ 2 + √ 2 i ( M t h I O- M a t h O) ( An g l e u n i t :
De g )
2 2 ( i ) ( CM PL X)
2
( ∠ ) 4 5 ( CM PL X) ( a + b i ) √ 2 + √ 2 i
r ∠ θ o r a + b i ) c a n b e i n p u t a t t h e e n d
( r ∠ θ )
2 ∠ 4 5
Statistical Calculations (STAT)
To start a statistical calculation, perform the key operation
to enter the STAT Mode and then use the screen that appears to select the
type of calculation you want to perform.
(STAT)
49
To select this type of statistical calculation:
(Regression formula shown in parentheses)
Press this key:
Si n g l e - v a r i a b l e ( X)
Pa i r e d - v a r i a b l e ( X; Y) , l i n e a r r e g r e s s i o n
( y = A + B x )
Pa i r e d - v a r i a b l e ( X; Y) , q u a d r a t i c r e g r e s s i o n
( y = A + B x + C x 2 )
Pa i r e d - v a r i a b l e ( X; Y) , l o g a r i t h m i c r e g r e s s i o n
( y = A + Bl n x )
Pa i r e d - v a r i a b l e ( X; Y) , e e x p o n e n t i a l
r e g r e s s i o n
( y = A e B x )
Pa i r e d - v a r i a b l e ( X; Y) , a b e x p o n e n t i a l
r e g r e s s i o n
( y = AB x )
( 1 - V AR)
( A+ BX)
( _ + CX 2 )
( l n X)
( e ∧ X)
( A• B ∧ X)
Pa i r e d - v a r i a b l e ( X; Y) , p o we r r e g r e s s i o n
( A• X ∧ B)
( y = A x B )
Pa i r e d - v a r i a b l e ( X; Y) , i n v e r s e r e g r e s s i o n
( 1 / X)
( y = A + B/ x )
Pr e s s i n g a n y o f t h e a b o v e k e y s (
N o t e
• When you want to change the calculation type after entering the STAT Mode, perform
the key operation
selection screen.
(STAT/DIST) (Type) to display the calculation type
t o ) d i s p l a y s t h e St a t i s t i c s Ed i t o r .
Inputting Data
Use the Statistics Editor to input data. Perform the following key operation
to display the Statistics Editor:
(STAT/DIST) (Data).
50
The Statistics Editor provides 40 rows for data input when there is an X
column only or when there are X and Y columns, 20 rows when there are
X and FREQ columns, or 26 rows when there are X, Y, and FREQ
columns.
Note
• Use the FREQ (frequency) column to input the quantity (frequency) of identical data
items. Display of the FREQ column can be turned on (displayed) or off (not displayed)
using the Stat Format setting on the setup menu.
Ex a m pl e 1 : T o s e l e c t l i n e a r r e g r e s s i o n a n d i n p u t t h e f o l l o wi n g d a t a :
( 1 7 0 ; 6 6 ) , ( 1 7 3 ; 6 8 ) , ( 1 7 9 ; 7 5 )
( ST A T) ( A+ BX)
1 7 0 1 7 3 1 7 9
6 6 6 8 7 5
I m p o rt a n t !
• A l l d a ta c u rre n tl y i n p u t i n th e S ta ti s ti c s E d i to r i s d e l e te d w h e n e v e r y o u e x i t th e S T A T
M o d e , s w i tc h b e tw e e n th e s i n g l e -v a ri a b l e a n d a p a i re d -v a ri a b l e s ta ti s ti c a l c a l c u l a ti o n
ty p e , o r c h a n g e th e S ta t Fo rm a t s e tti n g o n th e s e tu p m e n u .
• Th e fo l l o w i n g o p e ra ti o n s a re n o t s u p p o rte d b y th e S ta ti s ti c s E d i to r:
(M -), (S T O). P o l , R e c , ÷ R , a n d m u l ti -s ta te m e n ts a l s o c a n n o t b e i n p u t w i th
th e S ta ti s ti c s E d i to r .
,
T o c ha nge t he da t a i n a c e l l :
I n t h e St a t i s t i c s Ed i t o r , m o v e t h e c u r s o r t o t h e c e l l t h a t c o n t a i n s t h e d a t a
y o u wa n t t o c h a n g e , i n p u t t h e n e w d a t a , a n d t h e n p r e s s
.
T o de l e t e a l i ne :
In the Statistics Editor, move the cursor to the line that you want to delete
and then press
.
To insert a line:
In the Statistics Editor, move the cursor to the location where you want to
insert the line and then perform the following key operation:
(STAT/DIST) (Edit) (Ins).
51
To delete all Statistics Editor contents:
Si n g l e - v a r i a b l e St a t i s t i c s
Pa i r e d - v a r i a b l e s St a t i s t i c s
In the Statistics Editor, perform the following key operation:
(STAT/DIST) (Edit) (Del-A).
Statistics Calculation Screen
The Statistics Calculation Screen is for performing statistical calculations
with the data you input with the Statistics Editor. Pressing the key
while the Statistics Editor is displayed switches to the Statistics Calculation
Sc r e e n .
Us i ng t he S t a t i s t i c s Me nu
W h i l e t h e St a t i s t i c s Ca l c u l a t i o n Sc r e e n i s o n t h e d i s p l a y , p r e s s
( ST A T/ DI ST) t o d i s p l a y t h e St a t i s t i c s M e n u .
Th e c o n t e n t t o t h e St a t i s t i c s M e n u d e p e n d s o n wh e t h e r t h e c u r r e n t l y
s e l e c t e d s t a t i s t i c a l o p e r a t i o n t y p e u s e s a s i n g l e v a r i a b l e o r p a i r e d
v a r i a b l e s .
St a t i s t i c s M e nu I t e m s
Com m on I t e m s
Se l e c t t hi s m e nu
i t e m :
(Type) Display the calculation type selection screen
(Data) Display the Statistics Editor
(Sum)
W he n y ou wa nt t o obt a i n t hi s :
Display the Sum sub-menu of commands for
calculating sums
52
(Var)
Display the Var sub-menu of commands for
calculating the mean, standard deviation, etc.
Display the Distr sub-menu of commands for
Single-variable:
(Distr)
normal distribution calculations
• For more information, see "Performing
Normal Distribution Calculations".
Display the Reg sub-menu of commands for
r e g r e s s i o n c a l c u l a t i o n s
Pa i r e d - v a r i a b l e :
( Re g )
• Fo r d e t a i l s s e e "Co m m a n d s wh e n L i n e a r
Re g r e s s i o n Ca l c u l a t i o n ( A+ BX) I s Se l e c t e d "
a n d "Co m m a n d s wh e n Qu a d r a t i c Re g r e s s i o n
Ca l c u l a t i o n ( _ + CX 2 ) I s Se l e c t e d ".
Di s p l a y t h e M i n M a x s u b - m e n u o f c o m m a n d s
( M i n M a x )
f o r o b t a i n i n g m a x i m u m a n d m i n i m u m v a l u e s
Si ngl e - v a r i a bl e ( 1 - V AR) St a t i s t i c a l Ca l c ul a t i on Com m a nds
Sum Sub- m e nu (
( ST A T/ DI ST) ( Sum ) )
Se l e c t t hi s m e nu
W he n y ou wa nt t o obt a i n t hi s :
i t e m :
( ∑ x 2 )
( ∑ x )
V a r Sub- m e nu (
Su m o f s q u a r e s o f t h e s a m p l e d a t a
Su m o f t h e s a m p l e d a t a
( ST A T/ DI ST) ( V a r ) )
Se l e c t t hi s m e nu
W he n y ou wa nt t o obt a i n t hi s :
i t e m :
( n )
Nu m b e r o f s a m p l e s
( x ) M e a n o f t h e s a m p l e d a t a
(σx) Population standard deviation
(sx) Sample standard deviation
53
Distr Sub-menu ( (STAT/DIST) (Distr))
(P()
This menu can be used to calculate the
(Q()
probability of standard normal distribution.
(R()
• For details see "Performing Normal
Distribution Calculations".
( t )
M i nM a x Sub- m e nu (
( ST A T/ DI ST) ( M i nM a x ) )
Se l e c t t hi s m e nu
W he n y ou wa nt t o obt a i n t hi s :
i t e m :
( m i n X) M i n i m u m v a l u e
( m a x X) M a x i m u m v a l u e
( Q1 ) Fi r s t q u a r t i l e
( m e d ) M e d i a n
( Q3 ) Th i r d q u a r t i l e
Com m a nds whe n Li ne a r Re gr e s s i on Ca l c ul a t i on ( A+ BX) I s Se l e c t e d
Sum Sub- m e nu ( ( ST A T/ DI ST) ( Sum ) )
Se l e c t t hi s m e nu
W he n y ou wa nt t o obt a i n t hi s :
i t e m :
( ∑ x 2 )
( ∑ x )
( ∑ y 2 )
( ∑ y )
(∑xy )
(∑x 3)
(∑x 2y)
Su m o f s q u a r e s o f t h e X- d a t a
Su m o f t h e X- d a t a
Su m o f s q u a r e s o f t h e Y - d a t a
Su m o f t h e Y - d a t a
Sum of products of the X-data and Y-data
Sum of cubes of the X-data
Sum of (X-data squares × Y-data)
54
(∑x 4)
Sum of biquadrate of the X-data
Var Sub-menu (
(STAT/DIST) (Var))
Select this menu
When you want to obtain this:
item:
(n )
Number of samples
( x ) M e a n o f t h e X- d a t a
( σ x ) Po p u l a t i o n s t a n d a r d d e v i a t i o n o f t h e X- d a t a
( s x ) Sa m p l e s t a n d a r d d e v i a t i o n o f t h e X- d a t a
( y ) M e a n o f t h e Y - d a t a
( σ y ) Po p u l a t i o n s t a n d a r d d e v i a t i o n o f t h e Y - d a t a
( s y ) Sa m p l e s t a n d a r d d e v i a t i o n o f t h e Y - d a t a
Re g Sub- m e nu (
( ST A T/ DI ST) ( Re g) )
Se l e c t t hi s m e nu
W he n y ou wa nt t o obt a i n t hi s :
i t e m :
( A) Re g r e s s i o n c o e f f i c i e n t c o n s t a n t t e r m A
( B) Re g r e s s i o n c o e f f i c i e n t B
( r ) Co r r e l a t i o n c o e f f i c i e n t r
( x ˆ )
( y ˆ )
M i nM a x Sub- m e nu (
Es t i m a t e d v a l u e o f X
Es t i m a t e d v a l u e o f Y
( ST A T/ DI ST) ( M i nM a x ) )
Select this menu
When you want to obtain this:
item:
(minX) Minimum value of the X-data
(maxX) Maximum value of the X-data
55
(minY) Minimum value of the Y-data
(maxY) Maximum value of the Y-data
Commands when Quadratic Regression Calculation (_+CX2) Is
Selected
Reg Sub-menu ( (STAT/DIST) (Reg))
Se l e c t t hi s m e nu
W he n y ou wa nt t o obt a i n t hi s :
i t e m :
( A) Re g r e s s i o n c o e f f i c i e n t c o n s t a n t t e r m A
L i n e a r c o e f f i c i e n t B o f t h e r e g r e s s i o n
( B)
c o e f f i c i e n t s
Qu a d r a t i c c o e f f i c i e n t C o f t h e r e g r e s s i o n
( C)
c o e f f i c i e n t s
( x ˆ 1 ) Es t i m a t e d v a l u e o f x
( x ˆ 2 ) Es t i m a t e d v a l u e o f x
1
2
( y ˆ ) Es t i m a t e d v a l u e o f y
N o t e
• x ˆ , x ˆ 1 , x ˆ 2 a n d y ˆ a re n o t v a ri a b l e s . Th e y a re c o m m a n d s o f th e ty p e th a t ta k e a n
a rg u m e n t i m m e d i a te l y b e fo re th e m . S e e "C a l c u l a ti n g E s ti m a te d V a l u e s " fo r m o re
i n fo rm a ti o n .
Ex a m pl e 2 : T o i n p u t t h e s i n g l e - v a r i a b l e d a t a x = { 1 , 2 , 2 , 3 , 3 , 3 , 4 , 4 ,
5 } , u s i n g t h e FREQ c o l u m n t o s p e c i f y t h e n u m b e r o f r e p e a t s f o r e a c h
i t e m s ( { x n ; f r e q n } = { 1 ; 1 , 2 ; 2 , 3 ; 3 , 4 ; 2 , 5 ; 1 } ) , a n d c a l c u l a t e t h e m e a n a n d
p o p u l a t i o n s t a n d a r d d e v i a t i o n .
( SETUP) ( ST A T) ( ON)
(STAT) (1-VAR)
1
2 3 4 5
1 2 3 2
(STAT/DIST) (Var) (x ) 3
(STAT/DIST) (Var) (σx)
1,154700538
56
Results:
Mean: 3, Population Standard Deviation: 1,154700538
L i n e a r Re g r e s s i o n Co r r e l a t i o n Co e f f i c i e n t : 0 , 9 2 3
L o g a r i t h m i c Re g r e s s i o n Co r r e l a t i o n Co e f f i c i e n t : 0 , 9 9 8
L o g a r i t h m i c Re g r e s s i o n Fo r m u l a : y = - 3 8 5 7 , 9 8 4 + 2 3 5 7 , 5 3 2 l n x
Example 3: To calculate the linear regression and logarithmic regression
correlation coefficients for the following paired-variable data and determine
the regression formula for the strongest correlation: (x ; y ) = (20; 3150),
(110; 7310), (200; 8800), (290; 9310). Specify Fix 3 (three decimal places)
for results.
(SETUP) (STAT) (OFF)
(SETUP) (Fix)
( ST A T) ( A+ BX)
2 0
1 1 0 2 0 0 2 9 0
3 1 5 0 7 3 1 0 8 8 0 0 9 3 1 0
( ST A T/ DI ST) ( Re g ) ( r )
( ST A T/ DI ST) ( T y p e ) ( l n X)
( ST A T/ DI ST) ( Re g ) ( r )
0 , 9 2 3
0 , 9 9 8
( ST A T/ DI ST) ( Re g ) ( A) - 3 8 5 7 , 9 8 4
( ST A T/ DI ST) ( Re g ) ( B) 2 3 5 7 , 5 3 2
Re s ul t s :
Ca l c ul a t i ng E s t i m a t e d V a l ue s
Ba s e d o n t h e r e g r e s s i o n f o r m u l a o b t a i n e d b y p a i r e d - v a r i a b l e s t a t i s t i c a l
c a l c u l a t i o n , t h e e s t i m a t e d v a l u e o f y c a n b e c a l c u l a t e d f o r a g i v e n x - v a l u e .
Th e c o r r e s p o n d i n g x - v a l u e ( t wo v a l u e s , x 1 a n d x 2 , i n t h e c a s e o f q u a d r a t i c
r e g r e s s i o n ) a l s o c a n b e c a l c u l a t e d f o r a v a l u e o f y i n t h e r e g r e s s i o n
f o r m u l a .
Ex a m pl e 4 : T o d e t e r m i n e t h e e s t i m a t e v a l u e f o r x wh e n y = - 1 3 0 i n t h e
r e g r e s s i o n f o r m u l a p r o d u c e d b y l o g a r i t h m i c r e g r e s s i o n o f t h e d a t a i n
Ex a m p l e 3 . Sp e c i f y Fi x 3 f o r t h e r e s u l t . ( Pe r f o r m t h e f o l l o wi n g o p e r a t i o n
a f t e r c o m p l e t i n g t h e o p e r a t i o n s i n Ex a m p l e 3 . )
1 3 0 ( ST A T/ DI ST) ( Re g ) ( x ˆ )
Important!
• Regression coefficient, correlation coefficient, and estimated value calculations can
take considerable time when there are a large number of data items.
57
4,861
Performing Normal Distribution Calculations
No r m a l i z e d v a r i a t e ( t ) : - 0 , 7 6 2
P( t ) : 0 , 2 2 3
While single-variable statistical calculation is selected, you can perform
normal distribution calculation using the functions shown below from the
menu that appears when you perform the following key operation:
(STAT/DIST) (Distr).
P, Q, R: These functions take the argument t and determine a probability
of standard normal distribution as illustrated below.
t : Th i s f u n c t i o n i s p r e c e d e d b y t h e a r g u m e n t X, a n d d e t e r m i n e s t h e
n o r m a l i z e d v a r i a t e X
Ex a m pl e 5 : Fo r t h e s i n g l e v a r i a b l e d a t a { x n ; f r e q n } = { 0 ; 1 , 1 ; 2 , 2 ; 1 , 3 ; 2 , 4 ; 2 ,
5 ; 2 , 6 ; 3 , 7 ; 4 , 9 ; 2 , 1 0 ; 1 } , t o d e t e r m i n e t h e n o r m a l i z e d v a r i a t e (
3 , a n d P( t ) a t t h a t p o i n t u p t o t h r e e d e c i m a l p l a c e s ( Fi x 3 ) .
t =
X - x
.
σ x
t ) wh e n x =
( SETUP) ( ST A T) ( ON)
( SETUP) ( Fi x )
( ST A T) ( 1 - V AR)
0
1 2 3 4 5 6 7 9 1 0
1 2 1 2 2 2 3 4 2 1
3 ( ST A T/ DI ST) ( Di s t r ) ( t )
( ST A T/ DI ST) ( Di s t r ) ( P( )
Re s ul t s :
Base-n Calculations (BASE-N)
Press
perform calculations using decimal, hexadecimal, binary, and/or octal
values.
(BASE-N) to enter the BASE-N Mode when you want to
58
The initial default number mode when you enter the BASE-N Mode is
decimal, which means input and calculation results use the decimal
number format.
Pr e s s o n e o f t h e f o l l o wi n g k e y s t o s wi t c h n u m b e r m o d e s :
d e c i m a l ,
( HEX) f o r h e x a d e c i m a l , ( BI N) f o r b i n a r y , o r ( OCT) f o r
( DEC) f o r
o c t a l .
Ex a m pl e 1 : T o e n t e r t h e BASE- N M o d e , s wi t c h t o t h e b i n a r y m o d e , a n d
c a l c u l a t e 1 1 2 + 1
2
( BASE- N)
( BI N)
1 1 1
Ex a m pl e 2 : Co n t i n u i n g f r o m a b o v e , s wi t c h t o t h e h e x a d e c i m a l m o d e a n d
c a l c u l a t e 1 F 16 + 1
16
( HEX) 1 ( F) 1
Ex a m pl e 3 : Co n t i n u i n g f r o m a b o v e , s wi t c h t o t h e o c t a l m o d e a n d
c a l c u l a t e 7 8 + 1
8
( OCT) 7 1
N o t e
• Use the following keys to input the letters A through F for hexadecimal values:
(A), (B), (C), (D), (E), (F).
• In the BASE-N Mode, input of fractional (decimal) values and exponents is not
supported. If a calculation result has a fractional part, it is cut off.
• The input and output ranges is 16 bits for binary values, and 32 bits for other types of •
values. The following shows details about input and output ranges.
59
Base-n Mode
0000000000000000 ≦ x ≦ 0111111111111111
1000000000000000 ≦ x ≦ 1111111111111111
00000000000 ≦ x ≦ 17777777777
20000000000 ≦ x ≦ 37777777777
Binary
Octal
Input/Output Ranges
Decimal
H e x a d e c i m a l
-2147483648 ≦ x ≦ 2147483647
S pe c i f y i ng t he Num be r Mode of a P a r t i c ul a r I nput
V a l ue
Y o u c a n i n p u t a s p e c i a l c o m m a n d i m m e d i a t e l y f o l l o wi n g a v a l u e t o s p e c i f y
t h e n u m b e r m o d e o f t h a t v a l u e . Th e s p e c i a l c o m m a n d s a r e : d ( d e c i m a l ) , h
( h e x a d e c i m a l ) , b ( b i n a r y ) , a n d o ( o c t a l ) .
Ex a m pl e : T o c a l c u l a t e 1 0 10 + 1 0 16 + 1 0 2 + 1 0 8 a n d d i s p l a y t h e r e s u l t a s a
d e c i m a l v a l u e
( DEC) ( BASE) ( d ) 1 0
( BASE) ( h ) 1 0
( BASE) ( b ) 1 0
( BASE) ( o ) 1 0 3 6
Conv e r t i ng a Ca l c ul a t i on Re s ul t t o a not he r T y pe of
V a l ue
Y o u c a n u s e a n y o n e o f t h e f o l l o wi n g k e y o p e r a t i o n s t o c o n v e r t t h e
c u r r e n t l y d i s p l a y e d c a l c u l a t i o n r e s u l t t o a n o t h e r t y p e o f v a l u e :
( d e c i m a l ) , ( HEX) ( h e x a d e c i m a l ) , ( BI N) ( b i n a r y ) , ( OCT) ( o c t a l ) .
Ex a m pl e : T o c a l c u l a t e 1 5 10 × 3 7 10 i n t h e d e c i m a l m o d e , a n d t h e n c o n v e r t
t h e r e s u l t t o h e x a d e c i m a l , b i n a r y , a n d o c t a l
(DEC) 15 37 555
(HEX) 0000022B
(BIN) 0000001000101011
(OCT) 00000001053
60
( DEC)
Logical and Negation Operations
Your calculator provides you with logical operators (and, or, xor, xnor) and
functions (Not, Neg) for logical and negation operations on binary values.
Use the menu that appears when you press
logical operators and functions.
Pr e s s t hi s k e y : W he n y ou wa nt t o i nput t hi s :
(BASE) to input these
( a n d )
( o r )
( x o r )
( x n o r )
( No t )
( Ne g )
L o g i c a l o p e r a t o r "a n d " ( l o g i c a l p r o d u c t ) ,
wh i c h r e t u r n s t h e r e s u l t o f a b i t wi s e AND
L o g i c a l o p e r a t o r "o r " ( l o g i c a l s u m ) , wh i c h
r e t u r n s t h e r e s u l t o f a b i t wi s e OR
L o g i c a l o p e r a t o r "x o r " ( e x c l u s i v e l o g i c a l
s u m ) , wh i c h r e t u r n s t h e r e s u l t o f a b i t wi s e
XOR
L o g i c a l o p e r a t o r "x n o r " ( e x c l u s i v e
n e g a t i v e l o g i c a l s u m ) , wh i c h r e t u r n s t h e
r e s u l t o f a b i t wi s e XNOR
"No t ( " f u n c t i o n , wh i c h r e t u r n s t h e r e s u l t o f
a b i t wi s e c o m p l e m e n t
"Ne g ( " f u n c t i o n , wh i c h r e t u r n s t h e r e s u l t o f
a t wo ' s c o m p l e m e n t
Al l o f t h e f o l l o wi n g e x a m p l e s a r e p e r f o r m e d i n t h e b i n a r y m o d e (
Ex a m pl e 1 : T o d e t e r m i n e t h e l o g i c a l AND o f 1 0 1 0 2 a n d 1 1 0 0 2 ( 1 0 1 0 2 a n d
1 1 0 0 2 )
1 0 1 0 ( BASE) ( a n d ) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
Ex a m pl e 2 : T o d e t e r m i n e t h e l o g i c a l OR o f 1 0 1 1 2 a n d 1 1 0 1 0 2 ( 1 0 1 1 2 o r
110102)
1011 (BASE) (or) 11010 0000000000011011
Example 3: To determine the logical XOR of 1010 2 and 11002 (10102 xor
11002)
1010 (BASE) (xor) 1100 0000000000000110
61
( BI N) ) .
Example 4: To determine the logical XNOR of 1111 2 and 1012 (11112 xnor
1012)
1111 (BASE) (xnor) 101 1111111111110101
Example 5: To determine the bitwise complement of 1010
(Not(10102))
2
(BASE) (Not) 1010 1111111111110101
Example 6: To negate (take the two's complement) of 101101 2
( Ne g ( 1 0 1 1 0 1 2 ) )
( BASE) ( Ne g ) 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1
N o t e
• In th e c a s e o f a n e g a ti v e b i n a ry , o c ta l o r h e x a d e c i m a l v a l u e , th e c a l c u l a to r c o n v e rts
th e v a l u e to b i n a ry , ta k e s th e tw o ' s c o m p l e m e n t, a n d th e n c o n v e rts b a c k to th e o ri g i n a l
n u m b e r b a s e . Fo r d e c i m a l (b a s e -1 0 ) v a l u e s , th e c a l c u l a to r m e re l y a d d s a m i n u s s i g n .
E q u at i o n C al cu l at i o n s ( E Q N )
Y o u c a n u s e t h e f o l l o wi n g p r o c e d u r e i n t h e EQN M o d e t o s o l v e
s i m u l t a n e o u s l i n e a r e q u a t i o n s wi t h t wo o r t h r e e u n k n o wn s , q u a d r a t i c
e q u a t i o n s , a n d c u b i c e q u a t i o n s .
1 . Pr e s s
( EQN) t o e n t e r t h e EQN M o d e .
2 . On t h e m e n u t h a t a p p e a r s , s e l e c t a n e q u a t i o n t y p e .
T o s e l e c t t hi s
Pr e s s t hi s k e y :
c a l c ul a t i on t y pe :
Simultaneous linear
equations with two
(anX + bnY = cn)
unknowns
Simultaneous linear
equations with three
(anX + bnY + cnZ = dn)
unknowns
62
Quadratic equation (aX2 + bX + c = 0)
Cubic equation
(aX3 + bX2 + cX + d = 0)
3. Use the Coefficient Editor that appears to input coefficient values.
• To solve 2x 2 + x - 3 = 0, for example, press
in step 2, and then
input the following for the coefficients (a = 2, b = 1, c = -3): 2
3 .
• To change a coefficient value you already have input, move the cursor
t o t h e a p p r o p r i a t e c e l l , i n p u t t h e n e w v a l u e , a n d t h e n p r e s s .
• Pr e s s i n g
I m p o rt a n t !
• Th e fo l l o w i n g o p e ra ti o n s a re n o t s u p p o rte d b y th e C o e f fi c i e n t E d i to r: ,
(M -), (S T O). P o l , R e c , ÷ R , a n d m u l ti -s ta te m e n ts a l s o c a n n o t b e
i n p u t w i th th e C o e f fi c i e n t E d i to r .
4 . Af t e r a l l t h e v a l u e s a r e t h e wa y y o u wa n t , p r e s s
wi l l c l e a r a l l o f t h e c o e f f i c i e n t s t o z e r o .
.
• Th i s wi l l d i s p l a y a s o l u t i o n . Ea c h p r e s s o f wi l l d i s p l a y a n o t h e r
s o l u t i o n . Pr e s s i n g wh i l e t h e f i n a l s o l u t i o n i s d i s p l a y e d wi l l r e t u r n t o
t h e Co e f f i c i e n t Ed i t o r .
• Y o u c a n s c r o l l b e t we e n t h e s o l u t i o n s u s i n g t h e a n d k e y s .
• T o r e t u r n t o t h e Co e f f i c i e n t Ed i t o r wh i l e a n y s o l u t i o n i s d i s p l a y e d ,
p r e s s
.
1
N o t e
• E v e n i f N a tu ra l D i s p l a y i s s e l e c te d , th e s o l u ti o n s o f s i m u l ta n e o u s l i n e a r e q u a ti o n s a re
n o t d i s p l a y e d u s i n g a n y fo rm th a t i n c l u d e s √
• V a l u e s c a n n o t b e c o n v e rte d to e n g i n e e ri n g n o ta ti o n o n th e s o l u ti o n s c re e n .
• A m e s s a g e a p p e a rs to l e t y o u k n o w w h e n th e re i s n o s o l u ti o n o r w h e n th e re a re
i n fi n i te s o l u ti o n s . P re s s i n g
o r w i l l re tu rn to th e C o e f fi c i e n t E d i to r .
.
Cha ngi ng t he Cur r e nt E qua t i on T y pe S e t t i ng
Pr e s s
appears. Changing the equation type causes the values of all Coefficient
Editor coefficients to change to zero.
( EQN) a n d t h e n s e l e c t a n e q u a t i o n t y p e f r o m t h e m e n u t h a t
EQN Mode Calculation Examples
Example 1: x + 2y = 3, 2x + 3y = 4
63
(EQN) (anX + bnY = cn)
1
2 3
2 3 4
Example 2: x - y + z = 2, x + y - z = 0, -x + y + z = 4
( EQN) ( a n X + b n Y + c n Z = d n )
1
1 1 2
1 1 1 0
1 1 1 4
(X=) -1
(Y=) 2
( X= ) 1
( Y= ) 2
( Z= ) 3
Ex a m pl e 3 : 2 x 2 - 3 x - 6 = 0 ( M t h I O- M a t h O)
( EQN) ( a X 2 + b X + c = 0 )
2
3 6
( X 1 = )
( X 2 = )
3 + √ 5 7
3 - √ 5 7
( X- V a l u e M i n i m u m = ) *
( Y - V a l u e M i n i m u m = ) *
* Th e l o c a l m i n i m u m v a l u e i s d i s p l a y e d wh e n a > 0 . Th e l o c a l m a x i m u m
v a l u e i s d i s p l a y e d wh e n a < 0 .
Ex a m pl e 4 : x 2 - 2 √ 2 x + 2 = 0 ( M t h I O- M a t h O)
4
4
3
4
5 7
-
8
( EQN) ( a X 2 + b X + c = 0 )
1
2 2 2 (X=) √2
Example 5: x 3 - 2x 2 - x + 2 = 0
(EQN) (aX3 + bX2 + cX + d = 0)
1 2 1 2
(X1=) -1
(X2=) 2
64
(X3=) 1
Matrix Calculations (MATRIX)
Use the MATRIX Mode to perform calculations involving matrices of up to
3 rows by 3 columns. To perform a matrix calculation, you first assign data
to special matrix variables (MatA, MatB, MatC), and then use the variables
in the calculation as shown in the example below.
Ex a m pl e 1 : T o a s s i g n t o M a t A a n d t o M a t B, a n d t h e n
p e r f o r m t h e f o l l o wi n g c a l c u l a t i o n s :
+ ( M a t A+ M a t B)
1 . Pr e s s
2 . Pr e s s ( M a t A) ( 2 × 2 ) .
• Th i s wi l l d i s p l a y t h e M a t r i x Ed i t o r f o r i n p u t o f t h e e l e m e n t s o f t h e 2 × 2
m a t r i x y o u s p e c i f i e d f o r M a t A.
( M A TRI X) t o e n t e r t h e M A TRI X M o d e .
× ( M a t A× M a t B) ,
( 1 ) "A" s t a n d s f o r "M a t A".
3 . I n p u t t h e e l e m e n t s o f M a t A: 2
4 . Pe r f o r m t h e f o l l o wi n g k e y o p e r a t i o n :
( M A TRI X) ( Da t a ) ( M a t B) ( 2 × 2 ) .
• This will display the Matrix Editor for input of the elements of the 2 × 2
matrix you specified for MatB.
5. Input the elements of MatB: 2
6. Press to advance to the calculation screen, and perform the first
calculation (MatA×MatB):
(MATRIX) (MatA) (MATRIX) (MatB) .
• This will display the MatAns screen with the calculation results.
1 1 1 .
1 1 2 .
65
(2) "Ans" stands for "MatAns".
Note: "MatAns" stands for "Matrix Answer Memory". See "Matrix Answer
Memory" for more information.
7. Perform the next calculation (MatA+MatB):
( M A TRI X) ( M a t A) ( M A TRI X) ( M a t B) .
Ma t r i x Ans w e r Me m or y
W h e n e v e r t h e r e s u l t o f a c a l c u l a t i o n e x e c u t e d i n t h e M A TRI X M o d e i s a
m a t r i x , t h e M a t An s s c r e e n wi l l a p p e a r wi t h t h e r e s u l t . Th e r e s u l t a l s o wi l l
b e a s s i g n e d t o a v a r i a b l e n a m e d "M a t An s ".
Th e M a t An s v a r i a b l e c a n b e u s e d i n c a l c u l a t i o n s a s d e s c r i b e d b e l o w .
• T o i n s e r t t h e M a t An s v a r i a b l e i n t o a c a l c u l a t i o n , p e r f o r m t h e f o l l o wi n g
k e y o p e r a t i o n : ( M A TRI X) ( M a t An s ) .
• Pr e s s i n g a n y o n e o f t h e f o l l o wi n g k e y s wh i l e t h e M a t An s s c r e e n i s
d i s p l a y e d wi l l s wi t c h a u t o m a t i c a l l y t o t h e c a l c u l a t i o n s c r e e n : , ,
, , , , ( x 3 ) . Th e c a l c u l a t i o n s c r e e n wi l l s h o w t h e
M a t An s v a r i a b l e f o l l o we d b y t h e o p e r a t o r o r f u n c t i o n f o r t h e k e y y o u
p r e s s e d .
As s i gni ng a nd E di t i ng Ma t r i x V a r i a bl e Da t a
I m p o rt a n t !
• Th e fo l l o w i n g o p e ra ti o n s a re n o t s u p p o rte d b y th e M a tri x E d i to r: , (M -),
(S T O). P o l , R e c , ÷ R , a n d m u l ti -s ta te m e n ts a l s o c a n n o t b e i n p u t w i th th e
M a tri x E d i to r .
To assign new data to a matrix variable:
1. Press
appears, select the matrix variable to which you want to assign data.
2. On the next menu that appears, select dimension (m ×n ).
3. Use the Matrix Editor that appears to input the elements of the matrix.
(MATRIX) (Dim), and then, on the menu that
66
Example 2: To assign to MatC
(MATRIX)
(Dim) (MatC) (2×3)
1
0 1 0 1 1
To edit the elements of a matrix variable:
1. Press (MATRIX) (Data), and then, on the menu that
a p p e a r s , s e l e c t t h e m a t r i x v a r i a b l e y o u wa n t t o e d i t .
2 . Us e t h e M a t r i x Ed i t o r t h a t a p p e a r s t o e d i t t h e e l e m e n t s o f t h e m a t r i x .
• M o v e t h e c u r s o r t o t h e c e l l t h a t c o n t a i n s t h e e l e m e n t y o u wa n t t o
c h a n g e , i n p u t t h e n e w v a l u e , a n d t h e n p r e s s
T o c opy m a t r i x v a r i a bl e ( or M a t Ans ) c ont e nt s :
1 . Us e t h e M a t r i x Ed i t o r t o d i s p l a y t h e m a t r i x y o u wa n t t o c o p y .
• I f y o u wa n t t o c o p y M a t A, f o r e x a m p l e , p e r f o r m t h e f o l l o wi n g k e y
o p e r a t i o n :
• I f y o u wa n t t o c o p y M a t An s c o n t e n t s , p e r f o r m t h e f o l l o wi n g t o d i s p l a y
t h e M a t An s s c r e e n :
2 . Pr e s s ( ST O) , a n d t h e n p e r f o r m o n e o f t h e f o l l o wi n g k e y
o p e r a t i o n s t o s p e c i f y t h e c o p y d e s t i n a t i o n : ( M a t A) , ( M a t B) , o r
( M a t C) .
• Th i s wi l l d i s p l a y t h e M a t r i x Ed i t o r wi t h t h e c o n t e n t s o f t h e c o p y
d e s t i n a t i o n .
( M A TRI X) ( Da t a ) ( M a t A) .
( M A TRI X) ( M a t An s ) .
.
Ma t r i x Ca l c ul a t i on E x a m pl e s
Th e f o l l o wi n g e x a m p l e s u s e M a t A =
Ex a m p l e 1 , a n d M a t C =
Ex a m pl e 3 : 3 × M a t A ( M a t r i x Sc a l a r M u l t i p l i c a t i o n ) .
3 ( M A TRI X) ( M a t A)
Example 4: Obtain the determinant of MatA (det(MatA)).
(MATRIX) (MatA)
Example 5: Obtain the transposition of MatC (Trn(MatC)).
f r o m Ex a m p l e 2 .
(MATRIX) (det)
a n d M a t B = f r o m
1
67
(MATRIX) (Trn)
(MATRIX) (MatC)
Example 6: Obtain the inverse matrix of MatA (MatA -1).
Note: You cannot use for this input. Use the key to input
(MATRIX) (MatA)
Example 7: Obtain the absolute value of each element of MatB
( Ab s ( M a t B) ) .
( Ab s ) ( M A TRI X) ( M a t B)
Ex a m pl e 8 : De t e r m i n e t h e s q u a r e a n d c u b e o f M a t A ( M a t A 2 , M a t A 3 ) .
Not e : Y o u c a n n o t u s e f o r t h i s i n p u t . Us e t o s p e c i f y s q u a r i n g , a n d
( x 3 ) t o s p e c i f y c u b i n g .
( M A TRI X) ( M a t A)
"-1 "
.
( M A TRI X) ( M a t A) ( x 3 )
Ex a m pl e 9 : De t e r m i n e t h e M a t A = r o w e c h e l o n f o r m .
( M A TRI X) ( Re f )
( M A TRI X) ( M a t A)
Ex a m pl e 1 0 : De t e r m i n e t h e M a t A = r e d u c e d r o w e c h e l o n f o r m .
( M A TRI X) ( Rr e f )
( M A TRI X) ( M a t A)
C r eat i n g a N u m er i cal T ab l e f r o m T w o
F u n ct i o n s ( T A B L E )
TABLE generates a numerical table based on one or two functions. You
can use the function f (x ) or the two functions f (x ) and g (x ). See
"Configuring the Calculator Setup" for more information.
Perform the following steps to generate a numerical table.
1. Press
(TABLE) to enter the TABLE Mode.
68
2. Use the X variable to input two functions, one in the format f (x ) and the
other in the format g (x ).
• Be sure to input the X variable (
(X)) when generating a
n u m e r i c a l t a b l e . An y v a r i a b l e o t h e r t h a n X i s h a n d l e d a s a c o n s t a n t .
• I f y o u a r e u s i n g a s i n g l e f u n c t i o n , i n p u t a f u n c t i o n i n t h e f o r m a t f ( x )
o n l y .
• Th e f o l l o wi n g c a n n o t b e u s e d i n t h e f u n c t i o n : Po l , Re c , ∫ , d / d x , Σ .
3 . I n r e s p o n s e t o t h e p r o m p t s t h a t a p p e a r , i n p u t t h e v a l u e s y o u wa n t t o
u s e , p r e s s i n g
a f t e r e a c h o n e .
For t hi s pr om pt : I nput t hi s :
St a r t ? I n p u t t h e l o we r l i m i t o f X ( De f a u l t = 1 ) .
I n p u t t h e u p p e r l i m i t o f X ( De f a u l t =
En d ?
5 ) .
Not e : M a k e s u r e t h a t t h e En d v a l u e i s
a l wa y s g r e a t e r t h a n t h e St a r t v a l u e .
I n p u t t h e i n c r e m e n t s t e p ( De f a u l t = 1 ) .
Not e : Th e St e p s p e c i f i e s b y h o w
m u c h t h e St a r t v a l u e s h o u l d b e
s e q u e n t i a l l y i n c r e m e n t e d a s t h e
n u m e r i c a l t a b l e i s g e n e r a t e d . I f y o u
St e p ?
s p e c i f y St a r t = 1 a n d St e p = 1 , X
s e q u e n t i a l l y wi l l b e a s s i g n e d t h e
v a l u e s 1 , 2 , 3 , 4 , a n d s o o n t o
g e n e r a t e t h e n u m e r i c a l t a b l e u n t i l t h e
En d v a l u e i s r e a c h e d .
• I n p u t t i n g t h e St e p v a l u e a n d p r e s s i n g
g e n e r a t e s a n d d i s p l a y s t h e
numerical table in accordance with the parameters you specified.
• Pressing
while the numerical table screen is displayed will return
to the function input screen in step 2.
69
Example: To generate a numerical table for the functions f (x ) = x 2 +
and g (x ) = x 2 -
1
for the range -1 ≦ x ≦ 1, incremented in steps of
2
0,5 (MthIO-MathO)
(TABLE)
(SETUP) (TABLE) (f (x ),g (x ))
( X) 1 2
・ Pr e s s i n g wi t h o u t i n p u t t i n g a n y t h i n g f o r g ( x ) wi l l g e n e r a t e a
n u m e r i c a l t a b l e b a s e d o n f ( x ) o n l y .
1
2
( X) 1 2
1 1 0 5
N o t e
• Y o u c a n u s e th e n u m e ri c a l ta b l e s c re e n fo r v i e w i n g v a l u e s o n l y . T a b l e c o n te n ts
c a n n o t b e e d i te d .
• Th e n u m e ri c a l ta b l e g e n e ra ti o n o p e ra ti o n c a u s e s th e c o n te n ts o f v a ri a b l e X to b e
c h a n g e d .
• Th e m a x i m u m n u m b e r o f ro w s i n th e g e n e ra te d n u m e ri c a l ta b l e d e p e n d s o n th e
s e tu p m e n u ta b l e s e tti n g . U p to 3 0 ro w s a re s u p p o rte d fo r th e " f ( x )" s e tti n g , w h i l e 2 0
ro w s a re s u p p o rte d fo r th e " f ( x ), g ( x )" s e tti n g .
Important!
• The function you input for numerical table generation is deleted whenever you
display the setup menu in the TABLE Mode and switch between Natural Display
and Linear Display.
70
Vector Calculations (VECTOR)
Use the VECTOR Mode to perform 2-dimensional and 3-dimensional
vector calculations. To perform a vector calculation, you first assign data to
special vector variables (VctA, VctB, VctC), and then use the variables in
the calculation as shown in the example below.
Example 1: To assign (1, 2) to VctA and (3, 4) to VctB, and then perform
t h e f o l l o wi n g c a l c u l a t i o n s : ( 1 , 2 ) + ( 3 , 4 )
1 . Pr e s s
2 . Pr e s s ( Vc t A) ( 2 ) .
• Th i s wi l l d i s p l a y t h e V e c t o r Ed i t o r f o r i n p u t o f t h e 2 - d i m e n s i o n a l v e c t o r
f o r Vc t A.
( VECT OR) t o e n t e r t h e VECT OR M o d e .
( 1 ) "A" s t a n d s f o r "Vc t A".
3 . I n p u t t h e e l e m e n t s o f Vc t A: 1
4 . Pe r f o r m t h e f o l l o wi n g k e y o p e r a t i o n :
( VECT OR) ( Da t a ) ( Vc t B) ( 2 ) .
• Th i s wi l l d i s p l a y t h e V e c t o r Ed i t o r f o r i n p u t o f t h e 2 - d i m e n s i o n a l v e c t o r
f o r Vc t B.
5 . I n p u t t h e e l e m e n t s o f Vc t B: 3
6 . Pr e s s t o a d v a n c e t o t h e c a l c u l a t i o n s c r e e n , a n d p e r f o r m t h e
c a l c u l a t i o n ( Vc t A+ Vc t B) :
( VECT OR) ( Vc t A) ( VECT OR) ( Vc t B) .
• Th i s wi l l d i s p l a y t h e Vc t An s s c r e e n wi t h t h e c a l c u l a t i o n r e s u l t s .
Note: "VctAns" stands for "Vector Answer Memory". See "Vector
Answer Memory" for more information.
2 .
4 .
(2) "Ans" stands for "VctAns".
71
Vector Answer Memory
Whenever the result of a calculation executed in the VECTOR Mode is a
vector, the VctAns screen will appear with the result. The result also will be
assigned to a variable named "VctAns".
The VctAns variable can be used in calculations as described below.
• To insert the VctAns variable into a calculation, perform the following
key operation: (VECTOR) (VctAns).
• Pressing any one of the following keys while the VctAns screen is
d i s p l a y e d wi l l s wi t c h a u t o m a t i c a l l y t o t h e c a l c u l a t i o n s c r e e n :
, ,
, . Th e c a l c u l a t i o n s c r e e n wi l l s h o w t h e Vc t An s v a r i a b l e f o l l o we d
b y t h e o p e r a t o r o r f u n c t i o n f o r t h e k e y y o u p r e s s e d .
As s i gni ng a nd E di t i ng V e c t or V a r i a bl e Da t a
I m p o rt a n t !
• Th e fo l l o w i n g o p e ra ti o n s a re n o t s u p p o rte d b y th e V e c to r E d i to r: , (M -),
(S T O). P o l , R e c , ÷ R , a n d m u l ti -s ta te m e n ts a l s o c a n n o t b e i n p u t w i th th e
V e c to r E d i to r .
T o a s s i gn ne w da t a t o a v e c t or v a r i a bl e :
1 . Pr e s s
( VECT OR) ( Di m ) , a n d t h e n , o n t h e m e n u t h a t a p p e a r s ,
s e l e c t t h e v e c t o r v a r i a b l e t o wh i c h y o u wa n t t o a s s i g n d a t a .
2 . On t h e n e x t m e n u t h a t a p p e a r s , s e l e c t d i m e n s i o n ( m ) .
3 . Us e t h e V e c t o r Ed i t o r t h a t a p p e a r s t o i n p u t t h e e l e m e n t s o f t h e v e c t o r .
Ex a m pl e 2 : T o a s s i g n ( 2 , - 1 , 2 ) t o Vc t C
( VECT OR) ( Di m ) ( Vc t C) ( 3 )
2
1 2
T o e di t t he e l e m e nt s of a v e c t or v a r i a bl e :
1 . Pr e s s ( VECT OR) ( Da t a ) , a n d t h e n , o n t h e m e n u t h a t
a p p e a r s , s e l e c t t h e v e c t o r v a r i a b l e y o u wa n t t o e d i t .
2 . Us e t h e V e c t o r Ed i t o r t h a t a p p e a r s t o e d i t t h e e l e m e n t s o f t h e v e c t o r .
• M o v e t h e c u r s o r t o t h e c e l l t h a t c o n t a i n s t h e e l e m e n t y o u wa n t t o
c h a n g e , i n p u t t h e n e w v a l u e , a n d t h e n p r e s s
.
To copy vector variable (or VctAns) contents:
1. Use the Vector Editor to display the vector you want to copy.
• If you want to copy VctA, for example, perform the following key
operation:
(VECTOR) (Data) (VctA).
• If you want to copy VctAns contents, perform the following to display
the VctAns screen:
(VECTOR) (VctAns) .
72
2. Press (STO), and then perform one of the following key
operations to specify the copy destination: (VctA), (VctB), or
(VctC).
• This will display the Vector Editor with the contents of the copy
destination.
Vector Calculation Examples
The following examples use VctA = (1, 2) and VctB = (3, 4) from Example
1, and VctC = (2, -1, 2) from Example 2.
Ex a m pl e 3 : 3 × Vc t A ( V e c t o r s c a l a r m u l t i p l i c a t i o n ) , 3 × Vc t A - Vc t B
( Ca l c u l a t i o n e x a m p l e u s i n g Vc t An s )
3 ( VECT OR) ( Vc t A)
( VECT OR) ( Vc t B)
Ex a m pl e 4 : Vc t A • Vc t B ( V e c t o r d o t p r o d u c t )
( VECT OR) ( Vc t A)
( VECT OR) ( Do t )
( VECT OR) ( Vc t B)
Ex a m pl e 5 : Vc t A × Vc t B ( V e c t o r c r o s s p r o d u c t )
( VECT OR) ( Vc t A)
( VECT OR) ( Vc t B)
Ex a m pl e 6 : Ob t a i n t h e a b s o l u t e v a l u e s o f Vc t C.
( Ab s )
(VECTOR) (VctC)
Example 7: Determine the angle formed by VctA and VctB to three
decimal places (Fix 3). (Angle unit: Deg)
(cosθ =
(A ∙B )
, which becomes θ = cos
|A ||B |
73
(A ∙B )
-1
|A ||B |
)
(SETUP) (Fix)
(VECTOR) (VctA)
(VECTOR) (Dot)
(VECTOR) (VctB)
(Abs) (VECTOR) (VctA)
(Abs) (VECTOR) (VctB)
(cos-1)
D i st r i b u t i o n C al cu l at i o n s ( D I S T )
Y o u c a n u s e t h e p r o c e d u r e s b e l o w t o p e r f o r m s e v e n d i f f e r e n t t y p e s o f
d i s t r i b u t i o n c a l c u l a t i o n s .
1 . Pr e s s
2 . On t h e m e n u t h a t a p p e a r s , s e l e c t a d i s t r i b u t i o n c a l c u l a t i o n t y p e .
T o s e l e c t t hi s t y pe of c a l c ul a t i on: Pr e s s t hi s k e y :
No r m a l p r o b a b i l i t y d e n s i t y
No r m a l c u m u l a t i v e d i s t r i b u t i o n
I n v e r s e n o r m a l c u m u l a t i v e d i s t r i b u t i o n
Bi n o m i a l p r o b a b i l i t y
( DI ST) t o e n t e r t h e DI ST M o d e .
( No r m a l PD)
( No r m a l CD)
( I n v e r s e No r m a l )
( Bi n o m i a l PD)
Bi n o m i a l c u m u l a t i v e d i s t r i b u t i o n
Poisson probability
Poisson cumulative distribution
3. Input values for the variables.
• With Binomial PD, Binomial CD, Poisson PD, and Poisson CD, you
can input sample data and then perform calculations.
74
( Bi n o m i a l CD)
(Poisson PD)
(Poisson CD)
4. After inputting values for all of the variables, press .
• This displays the calculation results.
• Pressing
the input screen of the first variable.
Note
• To change the distribution calculation type after you enter the DIST Mode, press
(STAT/DIST) (Type) and then select the distribution type you want.
• D i s tri b u ti o n c a l c u l a ti o n a c c u ra c y i s u p to fi v e s i g n i fi c a n t d i g i ts .
or while a calculation result is displayed will return to
V a r i a bl e s t ha t Ac c e pt I nput
Th e f o l l o wi n g a r e d i s t r i b u t i o n c a l c u l a t i o n v a r i a b l e s t h a t a c c e p t i n p u t
v a l u e s .
No r m a l PD . . . . . . . . . . . . . . . . . . . . . . . . . . . x , σ , μ
No r m a l CD . . . . . . . . . . . . . . . . . . . . . . . . . . . L o we r , Up p e r , σ , μ
I n v e r s e No r m a l . . . . . . . . . . . . . . . . . . . . Ar e a , σ , μ ( T a i l s e t t i n g a l wa y s l e f t . )
Bi n o m i a l PD, Bi n o m i a l CD . . . x ( o r L i s t ) , N, p
Po i s s o n PD, Po i s s o n CD . . . . . x ( o r L i s t ) , μ
x : d a t a
σ : s t a n d a r d d e v i a t i o n ( σ < 0 )
μ : m e a n
L o we r : l o we r b o u n d a r y
Up p e r : u p p e r b o u n d a r y
T a i l : p r o b a b i l i t y v a l u e t a i l s p e c i f i c a t i o n
Ar e a : p r o b a b i l i t y v a l u e ( 0 ≦ Ar e a ≦ 1 )
L i s t : s a m p l e d a t a l i s t
N: n u m b e r o f t r i a l s
p : s u c c e s s p r o b a b i l i t y ( 0 ≦ p ≦ 1 )
Li s t S c r e e n ( Bi nom i a l P D, Bi nom i a l CD, P oi s s on
P D, P oi s s on CD)
W i t h Bi n o m i a l PD, Bi n o m i a l CD, Po i s s o n PD, a n d Po i s s o n CD, u s e t h e
L i s t Sc r e e n f o r s a m p l e d a t a i n p u t . Y o u c a n i n p u t u p t o 2 5 d a t a s a m p l e s f o r
each variable. Calculation results are also displayed on the List Screen.
75
(1) Distribution calculation type
(2) Value at current cursor position
(3) X: Sample data
( 4 ) An s : Ca l c u l a t i o n r e s u l t s
T o e di t s a m pl e da t a :
M o v e t h e c u r s o r t o t h e c e l l t h a t c o n t a i n s t h e d a t a y o u wa n t t o e d i t , i n p u t
t h e n e w d a t a , a n d t h e n p r e s s
T o de l e t e da t a :
M o v e t h e c u r s o r t o t h e s a m p l e d a t a y o u wa n t t o d e l e t e a n d t h e n p r e s s
.
T o i ns e r t s a m pl e da t a :
M o v e t h e c u r s o r t o t h e p o s i t i o n wh e r e y o u wa n t t o i n s e r t t h e s a m p l e d a t a ,
p r e s s
d a t a .
T o de l e t e a l l s a m pl e da t a :
( ST A T/ DI ST) ( Ed i t ) ( I n s ) , a n d t h e n i n p u t t h e s a m p l e
.
Pr e s s
( ST A T/ DI ST) ( Ed i t ) ( De l - A) .
DI S T Mode Ca l c ul a t i on E x a m pl e s
Ex a m pl e 1 : T o c a l c u l a t e t h e n o r m a l p r o b a b i l i t y d e n s i t y wh e n x = 3 6 , σ = 2 ,
μ = 3 5
( DI ST)
( No r m a l PD)
36
76
2
x = binomial probability of 10 ≒ 0,18594
x = binomial probability of 11 ≒ 0,12678
35
Result: 0,1760326634
• Pr e s s i n g
Ex a m pl e 2 : T o c a l c u l a t e b i n o m i a l p r o b a b i l i t y f o r t h e s a m p l e d a t a { 1 0 ; 1 1 ;
1 2 ; 1 3 ; 1 4 } wh e n N = 1 5 a n d p = 0 , 6
o r r e t u r n s t o t h e x i n p u t s c r e e n .
( DI ST) ( Bi n o m i a l PD)
Di s p l a y t h e L i s t Sc r e e n : ( L i s t )
• T o s p e c i f y d a t a u s i n g p a r a m e t e r f o r m a t , p r e s s ( V a r ) .
1 0
1 1 1 2 1 3 1 4
1 5
0 6
Results:
77
x = binomial probability of 12 ≒ 0,063388
x = binomial probability of 13 ≒ 0,021942
x = binomial probability of 14 ≒ 4,7018 × 10
-3
• Pressing returns to the N input screen. Pressing returns to the
List Screen (input data samples are stored).
Note
• Th e fo l l o w i n g c a n n o t b e u s e d i n th e d i s tri b u ti o n c a l c u l a ti o n s : P o l , R e c , ÷ R , ∫ , d / d x .
• Wh e n d a ta i s s p e c i fi e d u s i n g p a ra m e te r fo rm a t, c a l c u l a ti o n re s u l ts a re s to re d i n A n s
m e m o ry .
• A n e rro r m e s s a g e a p p e a rs i f th e i n p u t v a l u e i s o u ts i d e th e a l l o w a b l e ra n g e . "E R R OR "
w i l l a p p e a r i n th e A n s c o l u m n o f th e L i s t S c re e n w h e n th e v a l u e i n p u t fo r th e
c o rre s p o n d i n g s a m p l e d a ta i s o u ts i d e th e a l l o w a b l e ra n g e .
I n eq u al i t y C al cu l at i o n s ( I N E Q )
Y o u c a n u s e t h e f o l l o wi n g p r o c e d u r e t o s o l v e a q u a d r a t i c i n e q u a l i t y o r
c u b i c i n e q u a l i t y .
1 . Pr e s s
( I NEQ) t o e n t e r t h e I NEQ M o d e .
2 . On t h e m e n u t h a t a p p e a r s , s e l e c t a n i n e q u a l i t y t y p e .
T o s e l e c t t hi s i ne qua l i t y
Pr e s s t hi s k e y :
t y pe :
Qu a d r a t i c i n e q u a l i t y
Cu b i c i n e q u a l i t y
3. On the menu that appears, use keys
( a X 2 + b X + c )
( a X 3 + b X 2 + c X + d )
through to select the
inequality symbol type and orientation.
4. Use the Coefficient Editor that appears to input coefficient values.
• To solve x 2 + 2x - 3 < 0, for example, input the coefficients a = 1, b = 2,
c = -3 by pressing 1
2 3 .
• To change a coefficient value you already have input, move the cursor
to the appropriate cell, input the new value, and then press
78
.
• Pressing will clear all of the coefficients to zero.
Note: The following operations are not supported by the Coefficient
Editor:
statements also cannot be input with the Coefficient Editor.
5. After all the values are the way you want, press .
• This will display the solutions.
• To return to the Coefficient Editor while the solutions are displayed,
press
N o t e
• V a l u e s c a n n o t b e c o n v e rte d to e n g i n e e ri n g n o ta ti o n o n th e s o l u ti o n s c re e n .
, (M-), (STO). Pol, Rec, ÷R, and multi-
.
Cha ngi ng t he I ne qua l i t y T y pe
Pr e s s
t h a t a p p e a r s . Ch a n g i n g t h e i n e q u a l i t y t y p e c a u s e s t h e v a l u e s o f a l l
Co e f f i c i e n t Ed i t o r c o e f f i c i e n t s t o c h a n g e t o z e r o .
( I NEQ) a n d t h e n s e l e c t a n i n e q u a l i t y t y p e f r o m t h e m e n u
I NE Q Mode Ca l c ul a t i on E x a m pl e s
Ex a m pl e 1 : x 2 + 2 x - 3 < 0 ( M t h I O- M a t h O)
( I NEQ) ( a X 2 + b X + c )
( a X 2 + b X + c < 0 )
1 2 3
Example 2: x 2 + 2x - 3 ≧ 0 (MthIO-MathO)
(INEQ) (aX2 + bX + c)
(aX2 + bX + c ≧ 0)
2 3
1
79
Note: Solutions are displayed as shown here
when Linear Display is selected
Example 3: 2x 3 - 3x 2 ≧ 0 (MthIO-MathO)
( I NEQ) ( a X 3 + b X 2 + c X + d )
( a X 3 + b X 2 + c X + d ≧ 0 )
2
Ex a m pl e 4 : 3 x 3 + 3 x 2 - x > 0 ( M t h I O- M a t h O)
( I NEQ) ( a X 3 + b X 2 + c X + d )
( a X 3 + b X 2 + c X + d > 0 )
3
3 1
3
Not e : So l u t i o n s a r e d i s p l a y e d a s s h o wn h e r e
wh e n L i n e a r Di s p l a y i s s e l e c t e d .
S pe c i a l S ol ut i on Di s pl a y
• "All Real Numbers" appears on the solution screen when the solution of
an inequality is all numbers.
Example: x 2 ≧ 0 (MthIO-MathO)
(INEQ) (aX2 + bX + c)
(aX2 + bX + c ≧ 0)
0 0
1
80
• "No-Solution" appears on the solution screen when no solution exists for
an inequality (such as X2 < 0).
Ratio Calculations
The RATIO Mode lets you determine the value of X in the ratio expression
a : b = X : d (or a : b = c : X) when the values of a , b , c and d are known.
The following shows the general procedure for using RATIO.
1 . Pr e s s
2 . On t h e m e n u t h a t a p p e a r s , s e l e c t ( a : b = X: d ) o r ( a : b = c : X) .
3 . On t h e Co e f f i c i e n t Ed i t o r s c r e e n t h a t a p p e a r s , i n p u t u p t o 1 0 d i g i t s f o r
e a c h o f t h e r e q u i r e d v a l u e s ( a , b , c , d ) .
• T o s o l v e 3 : 8 = X : 1 2 f o r X, f o r e x a m p l e , p r e s s
t h e n i n p u t t h e f o l l o wi n g f o r t h e c o e f f i c i e n t s ( a = 3 , b = 8 , d = 1 2 ) : 3 8
1 2 .
( RA TI O) t o e n t e r t h e RA TI O M o d e .
i n s t e p 1 , a n d
• T o c h a n g e a c o e f f i c i e n t v a l u e y o u a l r e a d y h a v e i n p u t , m o v e t h e c u r s o r
t o t h e a p p r o p r i a t e c e l l , i n p u t t h e n e w v a l u e , a n d t h e n p r e s s .
• Pr e s s i n g
Not e : Th e f o l l o wi n g o p e r a t i o n s a r e n o t s u p p o r t e d b y t h e Co e f f i c i e n t
Ed i t o r :
s t a t e m e n t s a l s o c a n n o t b e i n p u t wi t h t h e Co e f f i c i e n t Ed i t o r .
4 . Af t e r a l l t h e v a l u e s a r e t h e wa y y o u wa n t , p r e s s .
• Th i s d i s p l a y s t h e s o l u t i o n ( v a l u e o f X) .
• Pressing again will return to the Coefficient Editor.
wi l l c l e a r a l l o f t h e c o e f f i c i e n t s t o z e r o .
, ( M - ) , ( ST O) . Po l , Re c , ÷ R, a n d m u l t i -
81
Important!
• A Math ERROR will occur if you perform a calculation while 0 is input for a coefficient.
Changing the Ratio Expression Type
Re-enter the RATIO Mode and select the ratio expression type you want
from the menu that appears. Changing the ratio expression type causes
t h e v a l u e s o f a l l Co e f f i c i e n t Ed i t o r c o e f f i c i e n t s t o c h a n g e t o z e r o .
RA TI O Mode Ca l c ul a t i on E x a m pl e
Ex a m pl e 1 : T o c a l c u l a t e X i n t h e r a t i o 1 : 2 = X : 1 0
( RA TI O) ( a : b = X: d )
1
2 1 0
Ex a m pl e 2 : T o c a l c u l a t e X i n t h e r a t i o 1 : 2 = 1 0 : X
( RA TI O) ( a : b = c : X)
1
2 1 0
82
Technical Information
Errors
The calculator will display an error message whenever an error occurs for
any reason during a calculation.
There are two ways to exit an error message display: Pressing
t o d i s p l a y t h e l o c a t i o n o f t h e e r r o r , o r p r e s s i n g t o c l e a r t h e m e s s a g e
a n d c a l c u l a t i o n .
Di s pl a y i ng t he Loc a t i on of a n E r r or
or
W h i l e a n e r r o r m e s s a g e i s d i s p l a y e d , p r e s s
c a l c u l a t i o n s c r e e n . Th e c u r s o r wi l l b e p o s i t i o n e d a t t h e l o c a t i o n wh e r e t h e
e r r o r o c c u r r e d , r e a d y f o r i n p u t . M a k e t h e n e c e s s a r y c o r r e c t i o n s t o t h e
c a l c u l a t i o n a n d e x e c u t e i t a g a i n .
Ex a m pl e : W h e n y o u i n p u t 1 4 ÷ 0 × 2 b y m i s t a k e i n s t e a d o f 1 4 ÷ 1 0 ×
2 ( M t h I O- M a t h O)
1 4
0 2
o r t o r e t u r n t o t h e
( o r )
1
Cl e a r i ng t he E r r or Me s s a ge
W h i l e a n e r r o r m e s s a g e i s d i s p l a y e d , p r e s s
s c r e e n . No t e t h a t t h i s a l s o c l e a r s t h e c a l c u l a t i o n t h a t c o n t a i n e d t h e e r r o r .
t o r e t u r n t o t h e c a l c u l a t i o n
Error Messages
Math ERROR
Cause:
• The intermediate or final result of the calculation you are performing
exceeds the allowable calculation range.
83
• Your input exceeds the allowable input range (particularly when using
functions).
• The calculation you are performing contains an illegal mathematical
operation (such as division by zero).
Action:
• Check the input values, reduce the number of digits, and try again.
• When using independent memory or a variable as the argument of a
function, make sure that the memory or variable value is within the
allowable range for the function.
St ack ER R O R
Ca us e :
• Th e c a l c u l a t i o n y o u a r e p e r f o r m i n g h a s c a u s e d t h e c a p a c i t y o f t h e
n u m e r i c s t a c k o r t h e c o m m a n d s t a c k t o b e e x c e e d e d .
• Th e c a l c u l a t i o n y o u a r e p e r f o r m i n g h a s c a u s e d t h e c a p a c i t y o f t h e
m a t r i x o r v e c t o r s t a c k t o b e e x c e e d e d .
Ac t i on:
• Si m p l i f y t h e c a l c u l a t i o n e x p r e s s i o n s o i t d o e s n o t e x c e e d t h e c a p a c i t y
o f t h e s t a c k .
• T r y s p l i t t i n g t h e c a l c u l a t i o n i n t o t wo o r m o r e p a r t s .
Syn t ax ER R O R
Ca us e :
• Th e r e i s a p r o b l e m wi t h t h e f o r m a t o f t h e c a l c u l a t i o n y o u a r e
p e r f o r m i n g .
Ac t i on:
• M a k e n e c e s s a r y c o r r e c t i o n s .
A rg u m en t ER R O R
Ca us e :
• Th e r e i s a p r o b l e m wi t h t h e a r g u m e n t o f t h e c a l c u l a t i o n y o u a r e
p e r f o r m i n g .
Ac t i on:
• M a k e n e c e s s a r y c o r r e c t i o n s .
Dimension ERROR (MATRIX and VECTOR Modes only)
Cause:
• The matrix or vector you are trying to use in a calculation was input
without specifying its dimension.
84
• You are trying to perform a calculation with matrices or vectors whose
dimensions do not allow that type of calculation.
Action:
• Specify the dimension of the matrix or vector and then perform the
calculation again.
• Check the dimensions specified for the matrices or vectors to see if
they are compatible with the calculation.
Variable ERROR (SOLVE feature only)
Ca us e :
• Y o u d i d n o t s p e c i f y a s o l u t i o n v a r i a b l e , a n d t h e r e i s n o X v a r i a b l e i n
t h e e q u a t i o n y o u i n p u t .
• Th e s o l u t i o n v a r i a b l e t h a t y o u s p e c i f i e d i s n o t i n c l u d e d i n t h e e q u a t i o n
y o u i n p u t .
Ac t i on:
• Th e e q u a t i o n y o u i n p u t m u s t i n c l u d e a n X v a r i a b l e wh e n y o u d o n o t
s p e c i f y t h e s o l u t i o n v a r i a b l e .
• Sp e c i f y a v a r i a b l e t h a t i s i n c l u d e d i n t h e e q u a t i o n y o u i n p u t a s t h e
s o l u t i o n v a r i a b l e .
C an 't So lve Erro r ( SO L VE f eat u re o n ly)
Ca us e :
• Th e c a l c u l a t o r c o u l d n o t o b t a i n a s o l u t i o n .
Ac t i on:
• Ch e c k f o r e r r o r s i n t h e e q u a t i o n t h a t y o u i n p u t .
• I n p u t a v a l u e f o r t h e s o l u t i o n v a r i a b l e t h a t i s c l o s e t o t h e e x p e c t e d
s o l u t i o n a n d t r y a g a i n .
In su f f icien t M EM Erro r
Ca us e :
• An a t t e m p t t o g e n e r a t e a n u m e r i c a l t a b l e i n t h e T ABL E M o d e wh o s e
c o n d i t i o n s c a u s e i t t o e x c e e d t h e m a x i m u m n u m b e r o f a l l o wa b l e r o ws .
Th e m a x i m u m n u m b e r o f r o ws i s 3 0 wh e n " f ( x ) " i s s e l e c t e d f o r t h e
s e t u p m e n u t a b l e s e t t i n g a n d 2 0 wh e n " f ( x ) , g ( x ) " i s s e l e c t e d .
Action:
• Narrow the table calculation range by changing the Start, End, and
Step values, and try again.
85
Time Out Error
Cause:
• The current differential or integration calculation ends without the
ending condition being fulfilled.
Action:
• Try increasing the tol value. Note that this also decreases solution
precision.
B ef o r e A ssu m i n g M al f u n ct i o n o f t h e
C al cu l at o r . . .
Pe r f o r m t h e f o l l o wi n g s t e p s wh e n e v e r a n e r r o r o c c u r s d u r i n g a c a l c u l a t i o n
o r wh e n c a l c u l a t i o n r e s u l t s a r e n o t wh a t y o u e x p e c t e d . I f o n e s t e p d o e s
n o t c o r r e c t t h e p r o b l e m , m o v e o n t o t h e n e x t s t e p .
No t e t h a t y o u s h o u l d m a k e s e p a r a t e c o p i e s o f i m p o r t a n t d a t a b e f o r e
p e r f o r m i n g t h e s e s t e p s .
1 . Ch e c k t h e c a l c u l a t i o n e x p r e s s i o n t o m a k e s u r e t h a t i t d o e s n o t c o n t a i n
a n y e r r o r s .
2 . M a k e s u r e t h a t y o u a r e u s i n g t h e c o r r e c t m o d e f o r t h e t y p e o f
c a l c u l a t i o n y o u a r e t r y i n g t o p e r f o r m .
3 . I f t h e a b o v e s t e p s d o n o t c o r r e c t y o u r p r o b l e m , p r e s s t h e
wi l l c a u s e t h e c a l c u l a t o r t o p e r f o r m a r o u t i n e t h a t c h e c k s wh e t h e r
c a l c u l a t i o n f u n c t i o n s a r e o p e r a t i n g c o r r e c t l y . I f t h e c a l c u l a t o r d i s c o v e r s
a n y a b n o r m a l i t y , i t a u t o m a t i c a l l y i n i t i a l i z e s t h e c a l c u l a t i o n m o d e a n d
c l e a r s m e m o r y c o n t e n t s . Fo r d e t a i l s a b o u t i n i t i a l i z e d s e t t i n g s , s e e
"Co n f i g u r i n g t h e Ca l c u l a t o r Se t u p ".
4 . I n i t i a l i z e a l l m o d e s a n d s e t t i n g s b y p e r f o r m i n g t h e f o l l o wi n g
o p e r a t i o n :
( CL R) ( Se t u p ) ( Y e s ) .
k e y . Th i s
R ep l aci n g t h e B at t er y
Th e b a t t e r y n e e d s t o b e r e p l a c e d a f t e r a s p e c i f i c n u m b e r o f y e a r s . Al s o ,
r e p l a c e t h e b a t t e r y i m m e d i a t e l y a f t e r d i s p l a y f i g u r e s b e c o m e d i m .
A low battery is indicated by a dim display, even if contrast is adjusted, or
by failure of figures to appear on the display immediately after you turn on
the calculator. If this happens, replace the battery with a new one.
Important!
• Removing the battery will cause all of the calculator’s memory contents to be deleted.
86
1. Press (OFF) to turn off the calculator.
2. On the back of the calculator, remove the screws and the cover.
3 . Re m o v e t h e b a t t e r y , a n d t h e n l o a d a n e w b a t t e r y wi t h i t s p l u s ( + ) a n d
m i n u s ( - ) e n d s f a c i n g c o r r e c t l y .
4 . Re p l a c e t h e c o v e r .
5 . I n i t i a l i z e t h e c a l c u l a t o r :
• Do n o t s k i p t h e a b o v e s t e p !
( CL R) ( Al l ) ( Y e s ) .
C al cu l at i o n P r i o r i t y S eq u en ce
Th e p r i o r i t y s e q u e n c e o f i n p u t c a l c u l a t i o n s i s e v a l u a t e d i n a c c o r d a n c e wi t h
t h e r u l e s b e l o w .
W h e n t h e p r i o r i t y o f t wo e x p r e s s i o n s i s t h e s a m e , t h e c a l c u l a t i o n i s
p e r f o r m e d f r o m l e f t t o r i g h t .
1 Pa r e n t h e t i c a l e x p r e s s i o n s
2
Fu n c t i o n s t h a t r e q u i r e a n a r g u m e n t t o t h e r i g h t a n d a c l o s i n g
parenthesis ")" following the argument
3
4 Fractions
Functions that come after the input value (x 2, x 3, x -1, x !, °’ ”, °,
r
, g, %,
t ), powers ( ), roots ( )
87
5
Negative sign ((-)), base-n symbols (d, h, b, o)
6
Metric conversion commands (cm
estimated values (xˆ, yˆ, xˆ 1, xˆ 2)
7 Multiplication where the multiplication sign is omitted
Permutation (n Pr ), combination (n Cr ), complex number polar
8
coordinate symbol (∠ )
9 Do t p r o d u c t ( • )
1 0 M u l t i p l i c a t i o n ( × ) , d i v i s i o n ( ÷ ) , r e m a i n d e r c a l c u l a t i o n s ( ÷ R)
1 1 Ad d i t i o n ( + ) , s u b t r a c t i o n ( - )
1 2 a n d ( l o g i c a l o p e r a t o r )
1 3 o r , x o r , x n o r ( l o g i c a l o p e r a t o r s )
in, etc.), STAT Mode
N o t e
• Wh e n s q u a ri n g a n e g a ti v e v a l u e (s u c h a s -2 ), th e v a l u e b e i n g s q u a re d m u s t b e
e n c l o s e d i n p a re n th e s e s (
th e n e g a ti v e s i g n , i n p u tti n g
a p p e n d i n g a n e g a ti v e s i g n to th e re s u l t.
• A l w a y s k e e p th e p ri o ri ty s e q u e n c e i n m i n d , a n d e n c l o s e n e g a ti v e v a l u e s i n
p a re n th e s e s w h e n re q u i re d .
2 ). S i n c e x 2 h a s a h i g h e r p ri o ri ty th a n
2 w o u l d re s u l t i n th e s q u a ri n g o f 2 a n d th e n
C al cu l at i o n R an g es, N u m b er o f
D i g i t s, an d P r eci si o n
Th e c a l c u l a t i o n r a n g e , n u m b e r o f d i g i t s u s e d f o r i n t e r n a l c a l c u l a t i o n , a n d
c a l c u l a t i o n p r e c i s i o n d e p e n d s o n t h e t y p e o f c a l c u l a t i o n y o u a r e
p e r f o r m i n g .
Calculation Range and Precision
Calculation Range ±1 × 10
Number of Digits for
15 digits
Internal Calculation
-99
to ±9,999999999 × 1099 or 0
88
In general, ±1 at the 10th digit for a single
calculation. Precision for exponential display is
Precision
±1 at the least significant digit. Errors are
cumulative in the case of consecutive
calculations.
Function Calculation Input Ranges and Precision
Func t i ons I nput Ra nge
9
10
s i n x
c o s x
t a n x
De g
Ra d
Gr a
De g
Ra d
0 ≦ | x | < 9 × 1 0
0 ≦ | x | < 1 5 7 0 7 9 6 3 2 , 7
0 ≦ | x | < 1 × 1 0
Sa m e a s s i n x , e x c e p t wh e n | x | = ( 2 n - 1 ) ×
9 0 .
Sa m e a s s i n x , e x c e p t wh e n | x | = ( 2 n - 1 ) ×
π / 2 .
Gr a
Sa m e a s s i n x , e x c e p t wh e n | x | = ( 2 n - 1 ) ×
1 0 0 .
s i n - 1 x , c o s - 1 x 0 ≦ | x | ≦ 1
t a n - 1 x 0 ≦ | x | ≦ 9 , 9 9 9 9 9 9 9 9 9 × 1 0
s i n h x , c o s h x 0 ≦ | x | ≦ 2 3 0 , 2 5 8 5 0 9 2
s i n h - 1 x 0 ≦ | x | ≦ 4 , 9 9 9 9 9 9 9 9 9 × 1 0
c o s h - 1 x 1 ≦ x ≦ 4 , 9 9 9 9 9 9 9 9 9 × 1 0
t a n h x 0 ≦ | x | ≦ 9 , 9 9 9 9 9 9 9 9 9 × 1 0
t a n h - 1 x 0 ≦ | x | ≦ 9 , 9 9 9 9 9 9 9 9 9 × 1 0
logx , lnx 0 < x ≦ 9,999999999 × 10
99
99
99
99
99
- 1
10
x
e
x
-9,999999999 × 1099 ≦ x ≦ 99,99999999
-9,999999999 × 1099 ≦ x ≦ 230,2585092
89
√x 0 ≦ x < 1 × 10
100
2
x
-1
x
3
√
x |x | < 1 × 10
|x | < 1 × 10
|x | < 1 × 10
50
100
100
; x ≠ 0
x ! 0 ≦ x ≦ 69 ( x is an integer)
0 ≦ n < 1 × 1 0 10 , 0 ≦ r ≦ n ( n , r a r e i n t e g e r s )
n P r
1 ≦ { n ! / ( n - r ) ! } < 1 × 1 0
100
0 ≦ n < 1 × 1 0 10 , 0 ≦ r ≦ n ( n , r a r e i n t e g e r s )
n C r
1 ≦ n ! / r ! < 1 × 1 0
100
o r 1 ≦ n ! / ( n - r ) ! < 1 × 1 0
| x | , | y | ≦ 9 , 9 9 9 9 9 9 9 9 9 × 1 0
Po l ( x ; y )
x 2 + y 2 ≦ 9 , 9 9 9 9 9 9 9 9 9 × 1 0
√
0 ≦ r ≦ 9 , 9 9 9 9 9 9 9 9 9 × 1 0
Re c ( r ; θ )
θ : Sa m e a s s i n x
100
99
99
99
° ’ ”
←
° ’ ”
x
x
√
a ° b ’ c ” : | a | , b , c < 1 × 1 0
100
; 0 ≦ b , c
Th e d i s p l a y s e c o n d s v a l u e i s s u b j e c t t o a n e r r o r
o f ± 1 a t t h e s e c o n d d e c i m a l p l a c e .
| x | < 1 × 1 0
100
De c i m a l ↔ Se x a g e s i m a l Co n v e r s i o n s
0 ° 0 ’ 0 ” ≦ | x | ≦ 9 9 9 9 9 9 9 ° 5 9 ’ 5 9 ”
x > 0 : - 1 × 1 0
100
< y l o g x < 1 0 0
x = 0 : y > 0
y
x < 0 : y = n ,
m
( m , n a r e i n t e g e r s )
2 n + 1
Ho we v e r : - 1 × 1 0
y > 0 : x ≠ 0 , - 1 × 1 0
100
< y l o g | x | < 1 0 0
100
< 1 / x l o g y < 1 0 0
y = 0 : x > 0
y
y < 0: x = 2 n+1,
2 n + 1
(m ≠ 0; m , n are integers)
m
However: -1 × 10
100
< 1/x log |y | < 100
a b/
Total of integer, numerator, and denominator
c
must be 10 digits or less (including separator
symbol).
90
RanInt#(a ; b ) a < b ; |a |, |b | < 1 × 1010; b - a < 1 × 10
GCD(a ; b ) |a |, |b | < 1 × 1010 (a , b are integers)
LCM(a ; b ) 0 ≦ a , b < 1 × 1010 (a , b are integers)
• Precision is basically the same as that described under "Calculation
Range and Precision", above.
• x y, x√
y, 3√ , x!, nPr, nCr type functions require consecutive internal
c a l c u l a t i o n , wh i c h c a n c a u s e a c c u m u l a t i o n o f e r r o r s t h a t o c c u r wi t h e a c h
c a l c u l a t i o n .
• Er r o r i s c u m u l a t i v e a n d t e n d s t o b e l a r g e i n t h e v i c i n i t y o f a f u n c t i o n ' s
s i n g u l a r p o i n t a n d i n f l e c t i o n p o i n t .
• Th e r a n g e f o r c a l c u l a t i o n r e s u l t s t h a t c a n b e d i s p l a y e d i n π f o r m wh e n
u s i n g Na t u r a l Di s p l a y i s | x | < 1 0 6 . No t e , h o we v e r , t h a t i n t e r n a l c a l c u l a t i o n
e r r o r c a n m a k e i t i m p o s s i b l e t o d i s p l a y s o m e c a l c u l a t i o n r e s u l t s i n π
f o r m . I t a l s o c a n c a u s e c a l c u l a t i o n r e s u l t s t h a t s h o u l d b e i n d e c i m a l f o r m
t o a p p e a r i n π f o r m .
10
S p eci f i cat i o n s
Powe r Re qui r e m e nt s :
Bu i l t - i n s o l a r c e l l ; b u t t o n b a t t e r y L R4 4 ( GP A7 6 ) × 1
Appr ox i m a t e Ba t t e r y Li f e :
3 y e a r s ( b a s e d o n o n e h o u r o f o p e r a t i o n p e r d a y )
Ope r a t i ng T e m pe r a t ur e :
0 ° C t o 4 0 ° C ( 3 2 ° F t o 1 0 4 ° F)
Di m e ns i ons :
1 1 , 1 ( H) × 7 7 ( W ) × 1 6 1 , 5 ( D) m m
3
/ 8 " ( H) × 3 " ( W ) × 6 3 / 8 " ( D)
Appr ox i m a t e W e i ght :
9 5 g ( 3 , 4 o z ) i n c l u d i n g t h e b a t t e r y
Verifying the Authenticity of Your
Calculator
Use the steps below to verify that your calculator is a genuine CASIO
calculator.
91
1. Press .
2. Press .
• This displays the information below.
- Calculator ID number (24-character string)
- QR Code for accessing the Worldwide Education Service
(https://wes.casio.com/calc/)
3. Access the above site.
4. Follow the instructions on the display to verify the authenticity of your
c a l c u l a t o r .
Pr e s s
t o r e t u r n t o t h e m o d e m e n u .
92
Frequently Asked Questions
Frequently Asked Questions
■ How can I perform input and display results the same way I did on
a model that does not have Natural Textbook Format?
→ Perform the following key operation:
"Co n f i g u r i n g t h e Ca l c u l a t o r Se t u p " f o r m o r e i n f o r m a t i o n .
■ How c a n I c ha nge a f r a c t i on f or m r e s ul t t o de c i m a l f or m ?
How c a n I c ha nge a f r a c t i on f or m r e s ul t pr oduc e d by a di v i s i on
ope r a t i on t o de c i m a l f or m ?
→ Se e "T o g g l i n g Ca l c u l a t i o n Re s u l t s " f o r t h e p r o c e d u r e .
■ W ha t i s t he di f f e r e nc e be t we e n Ans m e m or y , Pr e Ans m e m or y ,
i nde pe nde nt m e m or y , a nd v a r i a bl e m e m or y ?
→ Ea c h o f t h e s e t y p e s o f m e m o r y a c t s l i k e "c o n t a i n e r s " f o r t e m p o r a r y
s t o r a g e o f a s i n g l e v a l u e .
Ans M e m or y :
St o r e s t h e r e s u l t o f t h e l a s t c a l c u l a t i o n p e r f o r m e d . Us e t h i s m e m o r y t o
c a r r y t h e r e s u l t o f o n e c a l c u l a t i o n o n t o t h e n e x t .
Pr e Ans M e m or y :
St o r e s t h e r e s u l t o f c a l c u l a t i o n b e f o r e t h e l a s t o n e . Pr e An s m e m o r y c a n
b e u s e d o n l y i n t h e COM P M o d e .
I nde pe nde nt M e m or y :
Us e t h i s m e m o r y t o t o t a l i z e t h e r e s u l t s o f m u l t i p l e c a l c u l a t i o n s .
V a r i a bl e s :
Th i s m e m o r y i s h e l p f u l wh e n y o u n e e d t o u s e s t h e s a m e v a l u e m u l t i p l e
t i m e s i n o n e o r m o r e c a l c u l a t i o n s .
(SETUP) (LineIO). See
■ W ha t i s t he k e y ope r a t i on t o t a k e m e f r om t he ST A T M ode or T ABLE
M ode t o a m ode whe r e I c a n pe r f or m a r i t hm e t i c c a l c ul a t i ons ?
→ Pr e s s
■ How c a n I r e t ur n t he c a l c ul a t or t o i t s i ni t i a l de f a ul t s e t t i ngs ?
→ Pe r f o r m t h e f o l l o wi n g k e y o p e r a t i o n :
■ When I execute a function calculation, why do I get a calculation
result that is completely different from older CASIO calculator
models?
→ With a Natural Textbook Display model, the argument of a function that
uses parentheses must be followed by a closing parenthesis. Failing to
( COM P) .
( CL R) ( Se t u p ) ( Y e s ) .
93
press after the argument to close the parentheses may cause
Example: (sin 30) + 15 (Angle Unit: Deg)
Natural Textbook Display Model:
Failure to press here as shown below will result in calculation of sin
45.
unwanted values or expressions to be included as part of the argument.
Older (S-V.P.A.M.) Model: 30 15 15,5
(LineIO) 30 15 15,5
94
© 2020 CASIO COMPUTER CO., LTD.