Basler Electric DECS-250N User Manual

Page 1
INSTRUCTION MANUA L
FOR

DECS-250N

Digital Excitation Control System
Publication: 9440500990 Revision: D May-15
Page 2
Page 3
Caution
Note
Note
Be sure that the device is hard-wired to earth groun d with no smaller
with local codes and conventions.

Preface

This instruction manual provides information about the installation and operation of the DECS-250N Digital Excitation Control System. To accomplish this, the following information is provided:
General Information
Human-machine interface
Functional description
Installation
BESTCOMSPlus
Setup
Communication protocols
Maintenance
Specifications
Expansion modules
Conventions Used in this Ma nua l
Important safety and procedural information is emphasized and presented in this manual through warning, caution, and note boxes. Each type is illustrated and defined as follows.
®
software
Warning!
Warning boxes call attention to conditions or actions that may cause personal injury or death.
Caution boxes call attention to operating conditions that may lead to equipment or property damage.
Note boxes emphasize important information pertaining to installation or operation.
than 12 AWG (3.3 mm2) copper wire attached to the case ground terminal. When the device is configured in a system with other devices, a separate lead should be connected from the ground bus to each device.
Current transformer (CT) grounding should be applied in accordance
Page 4
Basler Electric does not assume any responsibility to compliance or noncompliance with national code, local code, For terms of service relating to this product and software, see the Commercial Terms of Products and Services
document available at www.basler.com/terms.
This publication contains confidential information of Basler Electric Company, an Illinois corporation. It is loaned for
and options are subject to modification without notice. Over time, improvements and revisions may be made to this manual.
The English-language version of this manual serves as the only approved manual version.
12570 State Route 143
Highland IL 62249-1074 USA
www.basler.com
info@basler.com
Tel: +1 618.654.2341
Fax: +1 618.654.2351
© 2015 by Basler Electric
All rights reserved
First printing: October 2012
Warning!
READ THIS MANUAL. Read this manual before installing, operating, or maintaining the DECS-250N.
Note all warnings, cautions, and notes in this manual as well as on the product. Keep this manual with the product for reference. Only qualified personnel should install, operate, or service this system. Failure to follow warning and cautionary labels may result in personal injury or property damage. Exercise caution at all times.
or any other applicable code. This manual serves as reference material that must be well understood prior to installation, operation, or maintenance.
confidential use, subject to return on request, and with the mutual understanding that it will not be used in any manner detrimental to the interests of Basler Electric Company and used strictly for the purpose intended.
It is not the intention of this manual to cover all details and variations in equipment, nor does this manual provide data for every possible contingency regarding installation or operation. The availability and design of all features
publication. Before performing any of the following procedures, contact Basler Electric for the latest revision of this
Page 5
9440500990 Rev D iii
This product contains, in part, open source softw are (software licensed in a way that ensures freedom to run, copy, distribute, study, change, and improve the software) and you are granted a license to that software under the
formation is provided above). A fee of no more than our cost of physically performing the source code distribution
Portions of this software are copyright © 2014 The Free Type Project (www.freetype.org). All rights reserved.
terms of either the GNU General Public License or GNU Lesser General Public License. The licenses, at the time of sale of the product, allow you to freely copy, modify, and redistribute that software and no other statement or documentation from us, including our End User License Agreement, places any additional restrictions on what you may do with that software. For at least three (3) years from the date of distribution of this product, a machine-readable copy of the complete corresponding source code for the version of the programs distributed to you will be sent upon request (contact in is charged. The source code is distributed in the hope that it will be useful, but WITHOUT ANY REPRESENTATION or WARRANTY or even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Refer to the source code distribution for additional restrictions regarding warranty and copyrights. For a complete copy of GNU GENERAL PUBLIC LICENSE Version 2, June 1991 or GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 refer to www.gnu.org or contact Basler Electric. You, as a Basler Electric Company customer, agree to abide by the terms and conditions of GNU GENERAL PUBLIC LICENSE Version 2, June 1991 or GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999, and as such hold Basler Electric Company harmless related to any open source software incorporated in this product. Basler Electric Company disclaims any and all liability associated with the open source software an d the user agr ees to defend and indemnify Basler Electric Company, its directors, officers, and employees from and against any and all losses, claims, attorneys' fees, and expenses arising from the use, sharing, or redistribution of the software. Review the software website for the latest version of the software documentation.
Page 6
Page 7

Contents

Introduction ................................................................................................................................................. 1
Features and Functions ............................................................................................................................. 1
Applications ............................................................................................................................................... 2
Package ..................................................................................................................................................... 2
Optional Features and Capabilities ........................................................................................................... 2
Style Number ......................................................................................................................................... 3
Storage ...................................................................................................................................................... 3
Electrolytic Capacitor Considerations .................................................................................................... 3
Controls and Indicators .............................................................................................................................. 5
Front Panel Illustration and Description .................................................................................................... 5
Menu Navigation ........................................................................................................................................ 6
Adjusting Settings ...................................................................................................................................... 7
Display Setup ............................................................................................................................................ 7
LCD ........................................................................................................................................................ 7
Sleep Mode ............................................................................................................................................ 7
Language ............................................................................................................................................... 7
Screen Scrolling ..................................................................................................................................... 8
Power Inputs ................................................................................................................................................ 9
Control Power ............................................................................................................................................ 9
Operating Power ........................................................................................................................................ 9
Power Stage ............................................................................................................................................... 11
Field Transient Protection........................................................................................................................ 11
Inverting Style Excitation System Compatibility ...................................................................................... 11
Voltage and Current Sensing ................................................................................................................... 13
Generator Voltage ................................................................................................................................... 13
Generator Current ................................................................................................................................... 13
Phase Sensing ..................................................................................................................................... 13
Cross-Current Compensation .............................................................................................................. 14
Bus Voltage ............................................................................................................................................. 15
Synchronizer ............................................................................................................................................. 17
Generator Synchronizat ion ...................................................................................................................... 17
Frequency Correction .......................................................................................................................... 17
Voltage Correction ............................................................................................................................... 17
Angle Compensation ........................................................................................................................... 18
Failure of Synchronization ................................................................................................................... 18
Voltage Matching ..................................................................................................................................... 19
Breaker Hardware Configuration ............................................................................................................. 19
Breaker Failure .................................................................................................................................... 19
Generator Breaker ............................................................................................................................... 19
Generator and Bus Condition Detection.................................................................................................. 20
Generator Condition............................................................................................................................. 21
Generator Stability ............................................................................................................................... 21
Bus Condition ....................................................................................................................................... 21
Bus Stability ......................................................................................................................................... 21
Generator Governor Control .................................................................................................................... 23
Regulation .................................................................................................................................................. 25
Regulation Modes .................................................................................................................................... 25
AVR ...................................................................................................................................................... 25
FCR ...................................................................................................................................................... 25
FVR ...................................................................................................................................................... 25
Var ....................................................................................................................................................... 26
Page 8
Power Factor ........................................................................................................................................ 27
Pre-Position Setpoints ............................................................................................................................. 27
Transient Boost ....................................................................................................................................... 28
Operation with Paralleled Generators ..................................................................................................... 29
Reactive Droop Compensation ............................................................................................................ 29
Cross-Current Compensation .............................................................................................................. 29
Network Load Sharing ......................................................................................................................... 29
Line Drop Compensation ..................................................................................................................... 30
Autotracking ............................................................................................................................................. 31
Internal Setpoint Tracking .................................................................................................................... 31
External Setpoint Tracking ................................................................................................................... 32
Setpoint Configure ................................................................................................................................... 32
Auxiliary Control ....................................................................................................................................... 33
Auxiliary Control Input Type .................................................................................................................... 33
Auxiliary Control Input Function .............................................................................................................. 33
PSS Test Input ..................................................................................................................................... 33
Limiter Scaling ..................................................................................................................................... 33
Setpoint Limits ..................................................................................................................................... 33
Auxiliary Control Gains ............................................................................................................................ 33
AVR Mode ............................................................................................................................................ 34
FCR Mode ............................................................................................................................................ 34
FVR Mode ............................................................................................................................................ 34
Var Mode ............................................................................................................................................. 34
Power Factor Mode.............................................................................................................................. 34
Summing Type ........................................................................................................................................ 34
Contact Inputs and Outputs ..................................................................................................................... 37
Contact Inputs ......................................................................................................................................... 37
Start and Stop Inputs ........................................................................................................................... 37
Programmable Inputs .......................................................................................................................... 37
Contact Outputs ....................................................................................................................................... 38
Watchdog Output ................................................................................................................................. 38
Programmable Outputs ........................................................................................................................ 38
Protection................................................................................................................................................... 41
Voltage Protection ................................................................................................................................... 41
Overexcitation (Volts per Hertz) ........................................................................................................... 41
Generator Undervoltage ...................................................................................................................... 43
Generator Overvoltage ........................................................................................................................ 44
Loss of Sensing ................................................................................................................................... 44
Frequency Protection .............................................................................................................................. 45
Overfrequency ..................................................................................................................................... 45
Underfrequency ................................................................................................................................... 45
Power Protection ..................................................................................................................................... 46
Reverse Power .................................................................................................................................... 46
Loss of Excitation ................................................................................................................................. 46
Field Protection ........................................................................................................................................ 48
Field Overvoltage ................................................................................................................................. 48
Field Overcurrent ................................................................................................................................. 48
Exciter Diode Monitor .......................................................................................................................... 50
Power Input Failure .............................................................................................................................. 52
Sync-Check Protection ............................................................................................................................ 53
Generator Frequency Less Than 10 Hertz .............................................................................................. 54
Configurable Protection ........................................................................................................................... 54
Limiters ...................................................................................................................................................... 57
Overexcitation Limiter .............................................................................................................................. 57
Summing Point OEL ............................................................................................................................ 57
Takeover OEL ...................................................................................................................................... 58
Page 9
9440500990 Rev D vii
Underexcitation Limiter ............................................................................................................................ 61
Stator Current Limiter .............................................................................................................................. 63
Low-Level Limiting ............................................................................................................................... 64
High-Level Limiting .............................................................................................................................. 64
Initial Delay .......................................................................................................................................... 64
Var Limiter ............................................................................................................................................... 65
Limiter Scaling ......................................................................................................................................... 65
Underfrequency Limiter ........................................................................................................................... 66
Volts per Hertz ..................................................................................................................................... 67
Metering ..................................................................................................................................................... 69
Metering Explorer .................................................................................................................................... 69
HMI ...................................................................................................................................................... 69
BESTCOMSPlus® ................................................................................................................................ 69
Metered Parameters ................................................................................................................................ 70
Generator ............................................................................................................................................. 70
Power ................................................................................................................................................... 70
Bus ....................................................................................................................................................... 71
Field ..................................................................................................................................................... 72
PSS ...................................................................................................................................................... 72
Synchronization ................................................................................................................................... 73
Auxiliary Control Input .......................................................................................................................... 73
Tracking ............................................................................................................................................... 73
Control Panel ....................................................................................................................................... 74
Metering Summary............................................................................................................................... 75
Status Indication ...................................................................................................................................... 76
System Status ...................................................................................................................................... 76
Inputs ................................................................................................................................................... 77
Outputs ................................................................................................................................................ 78
Network Load Share ............................................................................................................................ 79
Configurable Protection ....................................................................................................................... 79
Alarms .................................................................................................................................................. 80
Real-Time Clock .................................................................................................................................. 83
Auto Export Metering ............................................................................................................................... 84
Event Recorder .......................................................................................................................................... 85
Sequence-of-Events Recording .............................................................................................................. 85
Data Logging ........................................................................................................................................... 85
Setup .................................................................................................................................................... 86
Triggers ................................................................................................................................................ 86
Trending .................................................................................................................................................. 89
Power System Stabilizer ........................................................................................................................... 91
Supervisory Function and Setting Groups............................................................................................... 91
Supervisory Function ........................................................................................................................... 91
Setting Groups ..................................................................................................................................... 91
Theory of Operation ................................................................................................................................. 91
Speed Signal ........................................................................................................................................ 93
Rotor Frequency Calculation ............................................................................................................... 93
Generator Electrical Power Sig na l ....................................................................................................... 93
Derived Mechanical Power Signa l ....................................................................................................... 94
Stabilizing Signal Selection .................................................................................................................. 94
Torsional Filters ................................................................................................................................... 95
Phase Compensation .......................................................................................................................... 95
Washout Filter and Logic Limiter ......................................................................................................... 95
Output Stage ........................................................................................................................................ 96
Terminal Voltage Limiter ...................................................................................................................... 96
Stability Tuning ....................................................................................................................................... 101
AVR Mode ............................................................................................................................................. 101
Page 10
Predefined Stability Settin g s .............................................................................................................. 101
Custom Stability Settings ................................................................................................................... 101
Auto Tuning ........................................................................................................................................ 103
FCR and FVR Modes ............................................................................................................................ 104
FCR Mode Stability Settings .............................................................................................................. 104
FVR Mode Stability Settings .............................................................................................................. 105
Other Modes and Functions .................................................................................................................. 106
Var Mode ........................................................................................................................................... 106
Power Factor Mode............................................................................................................................ 106
Overexcitation Limiter (OEL) ............................................................................................................. 106
Underexcitation Limiter (UEL) ............................................................................................................ 106
Stator Current Limiter (SCL) .............................................................................................................. 106
Var Limiter .......................................................................................................................................... 106
Voltage Matching ............................................................................................................................... 106
Mounting .................................................................................................................................................. 109
Mounting Considerations ....................................................................................................................... 109
Projection Mounting ............................................................................................................................... 109
Behind-the-Panel Mounting ................................................................................................................... 109
Terminals and Connectors ..................................................................................................................... 115
Overview ................................................................................................................................................ 115
Terminal Types ...................................................................................................................................... 119
Typical Connections ............................................................................................................................... 121
BESTCOMSPlus® Software ..................................................................................................................... 125
General Description ............................................................................................................................... 125
Installation ............................................................................................................................................. 126
Install BESTCOMSPlus® .................................................................................................................... 126
Activation of the DECS-250N Plugin for BESTCOMSPlus® .................................................................. 126
Connect a USB Cable ........................................................................................................................ 127
Start BESTCOMSPlus® and Activate DECS-250N Plugin Automatically .......................................... 127
Manual Activation of the DECS-250N Plug in .................................................................................... 129
Establishing Communicat io n ............................................................................................................. 130
Menu Bars ............................................................................................................................................. 130
Upper Menu Bar (BESTCOMSPlus® Shell) ....................................................................................... 130
Lower Menu Bar (DECS-250N Plugin) .............................................................................................. 132
Settings Explorer ................................................................................................................................... 132
Metering Explorer .................................................................................................................................. 132
Settings File Management ..................................................................................................................... 133
Opening a Settings File ..................................................................................................................... 133
Saving a Settings File ........................................................................................................................ 133
Upload Settings and/or Logic to Device ............................................................................................ 133
Download Settings and Logic from Device ........................................................................................ 133
Printing a Settings File ....................................................................................................................... 133
Comparing Settings Files ................................................................................................................... 133
Automatic Metering Export .................................................................................................................... 135
Firmware Updates ................................................................................................................................. 135
Upgrading Firmware in Expansion Modules ...................................................................................... 136
Upgrading Firmware in the DECS-250N............................................................................................ 137
BESTCOMSPlus® Updates .................................................................................................................... 138
BESTlogicPlus ...................................................................................................................................... 139
Introduction ............................................................................................................................................ 139
Overview of BESTlogic™Plus ............................................................................................................... 139
BESTlogic™Plus Composition .......................................................................................................... 140
Logic Schemes ...................................................................................................................................... 154
The Active Logic Scheme .................................................................................................................. 154
Sending and Retrieving Logic Schemes ............................................................................................ 154
Default Logic Schemes ...................................................................................................................... 155
Page 11
Programming BESTlogic Plus.............................................................................................................. 158
Pickup and Dropout Timers ............................................................................................................... 159
Offline Logic Simulator .......................................................................................................................... 160
BESTlogic™Plus File Management ...................................................................................................... 160
Saving a BESTlogicPlus File ............................................................................................................. 161
Opening a BESTlogicPlus File ........................................................................................................... 161
Protecting a BESTlogicPlus File ........................................................................................................ 161
Uploading a BESTlogicPlus File ........................................................................................................ 161
Downloading a BESTlogicPlus File ................................................................................................... 161
Copying and Renaming Preprogrammed Logic Sche mes ................................................................ 161
Printing a BESTlogicPlus File ............................................................................................................ 162
Clearing the On-Screen Logic Diagram ............................................................................................. 162
BESTlogic™Plus Examples .................................................................................................................. 162
Example 1 - GOVR Logic Block Connections ................................................................................... 162
Example 2 - AND Gate Connections ................................................................................................. 162
Communication ....................................................................................................................................... 163
Local Communication ............................................................................................................................ 163
Communication with a Second DECS ................................................................................................... 163
ModbusCommunication ..................................................................................................................... 164
RS-485 Port ....................................................................................................................................... 164
Ethernet Port ...................................................................................................................................... 165
CAN Communication ............................................................................................................................. 166
Connections ....................................................................................................................................... 166
Port Configuration .............................................................................................................................. 166
Remote Module Setup ....................................................................................................................... 166
Ethernet Communication ....................................................................................................................... 167
Ethernet Connection .......................................................................................................................... 167
PROFIBUS Communication .................................................................................................................. 170
Configuration ........................................................................................................................................... 171
Generator, Field, and Bus Ratings ........................................................................................................ 171
Sensing Transformer Ratings and Configuration .................................................................................. 172
Generator PT ..................................................................................................................................... 172
Generator CTs ................................................................................................................................... 172
Bus PT ............................................................................................................................................... 172
Bridge Operating Power Configuration .................................................................................................. 173
Operating Power Input ....................................................................................................................... 173
Modes of Operation ........................................................................................................................... 173
Rated Frequency ............................................................................................................................... 174
Maximum Over-Speed ....................................................................................................................... 174
Startup Functions .................................................................................................................................. 174
Soft Start ............................................................................................................................................ 174
Field Flashing ..................................................................................................................................... 174
Device Information ................................................................................................................................. 175
Firmware and Product Information .................................................................................................... 175
Device Identification ........................................................................................................................... 175
Display Units .......................................................................................................................................... 176
Security .................................................................................................................................................... 179
Password Access .................................................................................................................................. 179
Password Creation and Configuration ............................................................................................... 179
Port Security .......................................................................................................................................... 180
Port Access Configuration ................................................................................................................. 181
Login and Access Controls .................................................................................................................... 181
Access Timeout ................................................................................................................................. 181
Login Failure ...................................................................................................................................... 182
Timekeeping ............................................................................................................................................ 183
Time and Date Format........................................................................................................................... 183
Page 12
Daylight Saving Time Adjustments ........................................................................................................ 183
Network Time Protocol (NTP) ............................................................................................................... 183
NTP Settings ...................................................................................................................................... 183
IRIG ....................................................................................................................................................... 183
Testing ...................................................................................................................................................... 187
Real-Time Metering Analysis ................................................................................................................ 187
Graph Parameters ............................................................................................................................. 188
Frequency Response ............................................................................................................................ 188
Test Mode .......................................................................................................................................... 188
Bode Plotting ...................................................................................................................................... 189
Transfer Function ............................................................................................................................... 189
Frequency Response ......................................................................................................................... 190
Time Response ..................................................................................................................................... 190
Signal Input ........................................................................................................................................ 191
Test Signal Characteristics ................................................................................................................ 191
Step Response Analys is ........................................................................................................................ 192
AVR, FCR, and FVR Tabs ................................................................................................................. 192
Var and PF Tabs ................................................................................................................................ 193
Analysis Options .................................................................................................................................... 193
Layout Tab ......................................................................................................................................... 193
Graph Display Tab ............................................................................................................................. 194
CAN Communication .............................................................................................................................. 195
Introduction ............................................................................................................................................ 195
CAN Parameters ................................................................................................................................... 195
Diagnostic Trouble Codes (DTCs) ..................................................................................................... 197
ModbusCommunication ...................................................................................................................... 199
Introduction ............................................................................................................................................ 199
Message Structure ............................................................................................................................. 199
Modbus Modes of Operation ................................................................................................................. 200
ModbusOver Serial Line ................................................................................................................. 200
Modbus on TCP/IP............................................................................................................................. 201
Error Handling and Exception Responses ......................................................................................... 202
DECS-250N Modbus via Ethernet .................................................................................................. 203
Detailed Message Query and Response for RTU Transmission Mode ................................................ 203
Read Holding Registers ..................................................................................................................... 203
Return Query Data ............................................................................................................................. 203
Restart Communications Option ........................................................................................................ 204
Listen Only Mode ............................................................................................................................... 204
Preset Multiple Registers ................................................................................................................... 204
Preset Single Register ....................................................................................................................... 205
Data Formats ......................................................................................................................................... 206
Floating Point Data Format (Float) .................................................................................................... 206
Long Integer Data Format (Uint32) .................................................................................................... 207
Integer Data Format (Uint16) or Bit-Mapped Variables in Uint16 Format ......................................... 207
Short Integer Data Format/Byte Character Data Format (Uint8) ....................................................... 207
String Data Format (String) ................................................................................................................ 207
CRC Error Check ............................................................................................................................... 208
Secure DECS-250N Login via Modbus ................................................................................................. 208
Modbus Parameters .............................................................................................................................. 208
General .............................................................................................................................................. 208
Security .............................................................................................................................................. 209
Binary Points ...................................................................................................................................... 209
Metering ............................................................................................................................................. 218
Limiters .............................................................................................................................................. 223
Setpoints ............................................................................................................................................ 225
Global Settings ................................................................................................................................... 227
Relay Settings .................................................................................................................................... 228
Page 13
Protection Settings ............................................................................................................................. 230
Gains Settings .................................................................................................................................... 232
Legacy Modbus .................................................................................................................................. 233
PROFIBUS Communication ................................................................................................................... 243
Data Types ............................................................................................................................................ 243
Float/UINT32 ...................................................................................................................................... 243
UINT8 ................................................................................................................................................. 243
Setup ..................................................................................................................................................... 245
PROFIBUS Param eter s......................................................................................................................... 246
Maintenance ............................................................................................................................................ 303
Storage .................................................................................................................................................. 303
Preventive Maintenance ........................................................................................................................ 303
Connections ....................................................................................................................................... 303
Electrolytic Capacitors ....................................................................................................................... 303
Cleaning the Front Panel ....................................................................................................................... 303
Troubleshooting ..................................................................................................................................... 304
DECS-250N Appears Inoperative ...................................................................................................... 304
Display Blank or Frozen ..................................................................................................................... 304
Generator Voltage Does Not Build .................................................................................................... 304
Low Generator Voltage in AVR Mode ................................................................................................ 304
High Generator Voltage in AVR Mode ............................................................................................... 304
Generator Voltage Unstable (Hunting) .............................................................................................. 305
Protection or Limit Annunciation ........................................................................................................ 305
HMI Meter Readings Incorrect ........................................................................................................... 305
No Communication ............................................................................................................................ 305
DECS-250N Reboots Frequently ....................................................................................................... 305
Support .................................................................................................................................................. 305
Specifications .......................................................................................................................................... 307
Operating Power .................................................................................................................................... 307
Voltage Range ................................................................................................................................... 307
Frequency Range (Style Dependent) ................................................................................................ 307
Control Power ........................................................................................................................................ 307
Style LXXXXXX .................................................................................................................................. 307
Style CXXXXXX ................................................................................................................................. 307
Terminals ........................................................................................................................................... 308
Generator and Bus Voltage Sensing ..................................................................................................... 308
Terminals ........................................................................................................................................... 308
50 Hz Sensing Voltage Nominal Input, Range .................................................................................. 308
60 Hz Sensing Voltage Nominal Input, Range .................................................................................. 308
Generator Current Sensing ................................................................................................................... 308
Burden ............................................................................................................................................... 308
Terminals ........................................................................................................................................... 308
Accessory Inputs ................................................................................................................................... 309
Current Input ...................................................................................................................................... 309
Voltage Input ...................................................................................................................................... 309
Contact Inputs ....................................................................................................................................... 309
Terminals ........................................................................................................................................... 309
Communication Ports ............................................................................................................................ 309
Universal Serial Bus (USB) ................................................................................................................ 309
RS-232 ............................................................................................................................................... 309
RS-485 ............................................................................................................................................... 310
Ethernet ............................................................................................................................................. 310
Controller Area Network (CAN) ......................................................................................................... 310
IRIG Time Synchronization Input .......................................................................................................... 310
Contact Outputs ..................................................................................................................................... 310
Field Power Output ................................................................................................................................ 311
Maximum Positive Forcing Voltag e ................................................................................................... 311
Page 14
Maximum Negative Forcing Voltage .................................................................................................. 311
Minimum Field Resistance ................................................................................................................. 311
Regulation ............................................................................................................................................. 311
FCR Operating Mode ......................................................................................................................... 311
FVR Operating Mode ......................................................................................................................... 311
AVR Operating Mode ......................................................................................................................... 311
Var Operating Mode........................................................................................................................... 312
Power Factor Operating Mode ........................................................................................................... 312
Parallel Compensation .......................................................................................................................... 312
Setpoint Range .................................................................................................................................. 312
Generator Protection Functions ............................................................................................................ 312
Overvoltage (59) and Undervoltage (27) ........................................................................................... 312
Loss of Sensing ................................................................................................................................. 312
Overfrequency (81O) and Underfrequency (81U) ............................................................................. 313
Reverse Power (32R) ........................................................................................................................ 313
Loss of Excitation (40Q) .................................................................................................................... 313
Field Protection Functions ..................................................................................................................... 313
Field Overvoltage ............................................................................................................................... 313
Field Overcurrent ............................................................................................................................... 313
Loss of PMG ...................................................................................................................................... 314
Exciter Diode Monitor (EDM) ............................................................................................................. 314
Synchronism Check (25) Protection ...................................................................................................... 314
Voltage Difference ............................................................................................................................. 314
Slip Angle ........................................................................................................................................... 314
Slip Frequency ................................................................................................................................... 314
Startup ................................................................................................................................................... 314
Soft Start Level .................................................................................................................................. 314
Soft Start Time ................................................................................................................................... 314
Field Flash Dropout Level .................................................................................................................. 314
Maximum Field Flash Time ................................................................................................................ 315
Voltage Matching ................................................................................................................................... 315
On-Line Overexcitation Limiting ............................................................................................................ 315
High Current Level ............................................................................................................................. 315
Medium Current Level ....................................................................................................................... 315
Low Current Level .............................................................................................................................. 315
Off-Line Overexcitation Limiting ............................................................................................................ 315
High Current Level ............................................................................................................................. 315
Low Current Level .............................................................................................................................. 315
Sequence of Events Recording (SER)2 ................................................................................................ 315
Data Logging (Oscillography) ................................................................................................................ 316
Environment .......................................................................................................................................... 316
Temperature ...................................................................................................................................... 316
Humidity ............................................................................................................................................. 316
Salt Fog .............................................................................................................................................. 316
Type Tests ............................................................................................................................................. 316
Shock ................................................................................................................................................. 316
Vibration ............................................................................................................................................. 316
Impulse .............................................................................................................................................. 316
Transients .......................................................................................................................................... 316
Static Discharge ................................................................................................................................. 316
Radio Interference ............................................................................................................................. 316
HALT (Highly Accelerated Life Testing) ............................................................................................ 316
Patent .................................................................................................................................................... 317
Physical ................................................................................................................................................. 317
Regulatory Standards ............................................................................................................................ 317
Maritime Recognition ......................................................................................................................... 317
UL Approval ....................................................................................................................................... 317
CSA Certification ................................................................................................................................ 317
Page 15
9440500990 Rev D xiii
CE Compliance .................................................................................................................................. 317
EAC Mark (Eurasian Conformity) ...................................................................................................... 318
Analog Expansion Module ..................................................................................................................... 319
General Information ............................................................................................................................... 319
Features ................................................................................................................................................ 319
Specifications ........................................................................................................................................ 319
Operating Power ................................................................................................................................ 319
Analog Inputs ..................................................................................................................................... 319
RTD Inputs ......................................................................................................................................... 319
Thermocouple Inputs ......................................................................................................................... 319
Analog Outputs .................................................................................................................................. 319
Communication Interface ................................................................................................................... 320
Type Tests ......................................................................................................................................... 320
Environment ....................................................................................................................................... 320
UL Approval ....................................................................................................................................... 320
CSA Certification ................................................................................................................................ 320
CE Compliance .................................................................................................................................. 321
Physical .............................................................................................................................................. 321
Installation ............................................................................................................................................. 321
Mounting ............................................................................................................................................ 321
Connections ....................................................................................................................................... 322
Communications .................................................................................................................................... 328
Functional Description ........................................................................................................................... 328
Analog Inputs ..................................................................................................................................... 328
RTD Inputs ......................................................................................................................................... 329
Thermocouple Inputs ......................................................................................................................... 330
Analog Outputs .................................................................................................................................. 331
Metering ................................................................................................................................................. 332
Analog Inputs ..................................................................................................................................... 332
RTD Inputs ......................................................................................................................................... 333
Thermocouple Inputs ......................................................................................................................... 333
Analog Input Values ........................................................................................................................... 333
Analog Outputs .................................................................................................................................. 335
Maintenance .......................................................................................................................................... 335
Firmware Updates.............................................................................................................................. 335
Contact Expansion Module .................................................................................................................... 337
General Information ............................................................................................................................... 337
Features ................................................................................................................................................ 337
Specifications ........................................................................................................................................ 337
Operating Power ................................................................................................................................ 337
Contact Inputs .................................................................................................................................... 337
Contact Outputs ................................................................................................................................. 337
Communication Interface ................................................................................................................... 337
Type Tests ......................................................................................................................................... 337
Environment ....................................................................................................................................... 338
UL Approval (CEM-2020 and CEM-2020H) ...................................................................................... 338
CSA Certification ................................................................................................................................ 338
CE Compliance .................................................................................................................................. 338
Physical .............................................................................................................................................. 339
Installation ............................................................................................................................................. 339
Mounting ............................................................................................................................................ 339
Connections ....................................................................................................................................... 341
Communications .................................................................................................................................... 346
Functional Description ........................................................................................................................... 346
Contact Inputs .................................................................................................................................... 346
Contact Outputs ................................................................................................................................. 347
Metering ................................................................................................................................................. 348
Page 16
Contact Inputs .................................................................................................................................... 348
Contact Outputs ................................................................................................................................. 348
Maintenance .......................................................................................................................................... 348
Firmware Updates.............................................................................................................................. 348
Revision History ...................................................................................................................................... 349
Page 17
9440500990 Rev C 1

Introduction

DECS-250N Digital Excitation Control Systems offer precise excitation control and machine protection in a compact package. DECS-250N adaptability to many applications is assured through configurable contact inputs and outputs, flexible communication capabilities, and programmable logic implemented with the provided BESTCOMSPlus

Features and Functions

DECS-250N features and functions include:
Precise excitation control for synchronous generator or synchronous motor applications o Power factor and var metering values will be opposite in motor mode
Five excitation control modes:
o Automatic Voltage Regulation (AVR) o Field Current Regulation (FCR) o Field Voltage Regulation (FVR) o Power Factor Regulation (PF) o Var Regulation (var)
Three pre-position setpoints for each excitation control mode
Internal tracking between operating mode setpoints and external tracking of a second DECS
excitation setpoint
Two PID stability groups with Auto Tune feature
Remote setpoint control input accepts analog voltage or current control signal
Real-time metering
Optional automatic synchronizer
Optional integrated power system stabilizer (PSS)
o Generator or motor control modes, accommodates phase rotation changes between
modes
o Speed and power sensing or speed-only sensing o Two wattmeter or three-wattmeter methods of power measurement
Soft start and voltage buildup control
Five limiting functions:
o Overexcitation: summing point and takeover o Underexcitation o Stator current o Reactive power (var) o Underfrequency
Twenty protection functions:
o Generator undervoltage (27) o Generator overvoltage (59) o Loss of sensing (LOS) o Overfrequency (81O) o Underfrequency (81U) o Reverse power (32R) o Loss of excitation (40Q) o Field overvoltage o Field overcurrent o Loss of PMG o Exciter diode failure o Sync-check (25) o Eight configurable protection elements
IRIG or network time synchronization
Sixteen contact sensing inputs
o Two fixed-funct ion inputs : Start and Sto p o Fourteen programmab le in puts
®
software.
DECS-250N Introduction
Page 18
2 9440500990 Rev C
Twelve contact outputs
o One, fixed-function output: Watchdog (SPDT configuration) o Eleven programmable outputs
Flexible communication
o Serial communication through front-panel USB port o Modbus communication through RS-485 port or Modbus TCP o Ethernet communication through an optional copper or fiber optic port o CAN communication with an ECU (engine control unit), optional AEM-2020 Analog
Expansion Module, or optional CEM-2020 Contact Expansion Module
o Optional PROFIBUS communication protocol
Data logging, sequence of events recording, and trending
Optional CEM-2020 Contact Expansion Module provides:
o Ten contact inputs o Eighteen contact outputs (CEM-2020H) or 24 contact outputs (CEM-2020) o Customizable input and output functions assigned through BESTlogic™Plus
programmable logic
o Communication via CAN protocol
Optional AEM-2020 Analog Expansion Module provides:
o Eight analog inputs o Eight resistive thermocouple device (RTD) inputs o Two thermocouple inputs o Four analog outputs o Customizable input and output functions assigned through BESTlogicPlus programmable
logic
o Communication via CAN protocol

Applications

The DECS-250N is intended for synchronous generator or synchronous motor applications. The DECS­250N controls the machine output through the application of regulated DC excitation power to the exciter field. The level of excitation power is based on the monitored voltage and current, and a regulation setpoint established by the user. The operating mode, generator or motor, is changed on the Operating Mode settings screen. Power factor and var metering values will be opposite in motor mode.
Excitation power is supplied from the DECS-250N by means of a six-SCR, full-wave bridge. It is capable of two-quadrant operation; it can produce negative as well as positive output power. With nominal operating voltage applied, t he DECS-250N is capable of supplying 20 Adc continuously at a nominal voltage of 32, 63, or 125 Vdc.

Package

A single, compact package contains all excitation control and power components. A front panel HMI provides local annunciation and control through a backlit liquid crystal display (LCD),
light-emitting diodes (LEDs), and pushbuttons. Remote annunciation and control is provided through a flexible communication interface which accommodates Ethernet, Modbus, optional PROFIBUS, and the optional Interactive Display Panel (IDP-800).

Optional Features and Capabilities

DECS-250N optional features and capabilities are defined by a combination of letters and numbers that make up the style number. The model number and style number describe options and characteristics in a specific device and appear on a label affixed to the device.
Introduction DECS-250N
Page 19
9440500990 Rev C 3

Style Number

The style number identification chart in Figure 1 defines the electrical characteristics and operational features available in the DECS-250N.
Figure 1. DECS-250N Style Chart

Storage

If a DECS-250N will not be placed in service right away, store it in the original shipping carton in a moisture- and dust-free environment. The temperature of the storage environment must be within the range of –40 to 85°C (–40 to 185°F).

Electrolytic Capacitor Considerations

The DECS-250N contains long-life aluminum electrolytic capacitors. For a DECS-250N kept in storage as a spare, the life of these capacitors can be maximized by energizing the device for 30 minutes once per year. Refer to the energizing procedures provided in Maintenance.
DECS-250N Introduction
Page 20
4 9440500990 Rev C
Introduction DECS-250N
Page 21
9440500990 Rev D 5

Controls and Indicators

All controls and indicators are located on the front panel and consist of pushbuttons, LED indicators, and a liquid-crystal display (LCD).

Front Panel Illustration and Description

DECS-250N controls and indicators are illustrated in Figure 2 and described in Table 1. The locators and descriptions of Table 1 correspond to the locators shown in Figure 2.
Figure 2. Front Panel Controls and Indicators
DECS-250N Controls and Indicators
Page 22
6 9440500990 Rev D
Locator
Description
A
Display. The liquid crystal display (LCD) serves as a local source of information
64 dot pixel, backlit LCD displays white characters on a blue background.
B
Pre-Position Indicator. This red light emitting diode (LED) lights when the active mode setpoint is at any of the three pre-position (predefined) settings.
C
Limit Indicators. Two red LEDs indicate when the active mode setpoint reaches the minimum or maximum value.
D
Scrolling Pushbuttons. These four buttons are used to scroll up, down, left, and right
scrolling pushbuttons change the value of the variable.
E
Reset Pushbutton. This button cancels editing sessions, resets alarm annunciations and latched alarm relays, and can be used for quick access to the metering screen.
F
Communication Port. This type B USB jack connects the DECS-250N with a PC
Caution
G
Edit Pushbutton. Pressing this button starts an editing session and enables changes to pressed to save the settings changes.
H
Null Balance Indicator. This green LED lights when the setpoint of the inactive mode.
I
PSS Active Indicator. This red LED lights when the integrated power system stabilizer disturbance.
J
Internal Tracking Indicator. This red LED lights when any inactive mode (AVR, FCR, “bumpless” transfer when changing active modes.
Table 1. Front Panel Control and Indicators Descriptions
provided by the DECS-250N. The LCD displays operating setpoints, loop gains, metering, protection functions, system parameters, and general settings. The 128 by
through the menus displayed on the LCD (locator A). During an editing session, the left and right scrolling pushbuttons select the variable to be changed and the up and down
operating BESTCOMSPlus® for local communication. BESTCOMSPlus is supplied with the DECS-250N.
In accordance with the guidelines defined in USB standards, the USB port on this device is not isolated. To prevent damage to a connected PC or laptop, the DECS-250N must be properly tied to ground.
DECS-250N settings. At the conclusion of the editing session, the Edit pushbutton is
operating modes (AVR, FCR, FVR, var, and PF) match the setpoint of the active
is enabled and can generate a stabilizing signal in response to a power system
FVR, Var, or Power Factor) is tracking the setpoint of the active mode to achieve a

Menu Navigation

The DECS-250N provides local access to DECS-250N settings and metering values through a menu structure displayed on the front panel LCD. An overview of the menu structure is illustrated in Figure 3. Movement through the menu structure is achieved by pressing the four scrolling pu s hbuttons.
Controls and Indicators DECS-250N
Page 23
9440500990 Rev D 7
Figure 3. Menu Structure Overview

Adjusting Settings

A setting adjustment is made at the front panel by performing the following steps.
1. Navigate to the screen listing the setting to be changed.
2. Press the Edit button and enter the appropriate username and password to gain the needed level
of security access. (Information about implementing and using username and password protection is provided in the Security chapter of this manual.)
3. Highlight the desired setting and press the Edit button to view the setting editing screen. This
screen lists the setting range or the permissible setting selection.
4. Use the scrolling pushbuttons to select the setting digits/selections and adjust/change the setting.
5. Press the Edit button to save the change.

Display Setup

BESTCOMSPlus Navigation Path: Settings Explorer, General Settings, Front Panel HMI HMI Navigation Path: Settings, General Settings, Front Panel HMI
Front panel display appearance and behavior can be customized to meet user preferences and site conditions. These BESTCOMSPlus settin gs are illustr a ted in Figure 4.
LCD
LCD setup includes a contrast adjustmentA to suit the viewing angle used or compensate for environmental conditions. The ability to reverse the display colors conditions and user preferences.
B
is provided to accommodate lighting

Sleep Mode

Sleep modeC reduces the demand on control power by turning off the LCD backlight when no pushbutton activity is seen for the duration of the LCD Backlight Timeout setting
D
.

Language

Language modules are available for the DECS-250N. Once a language module is implemented it can be enabled via the Language Selection sett ing
E
.
DECS-250N Controls and Indicators
Page 24
8 9440500990 Rev D

Screen Scrolling

The display can be set to automatically scroll through a user-selected listF of metered values. This feature is enabled and disabled with the Enable Scroll setting with the Scroll Time Delay setting
H
.
G
. The rate at which scrolling occurs is configured
Figure 4. Front Panel HMI Settings
A
Contrast Value (%): Adjustable from 0 to 100 in 1% increments.
B
Invert display: Deselect for white characters on a blue background. Select for blue characters on a white
background.
C
Sleep Mode: Enable or disable.
D
LCD Backlight Timeout: Adjustable from 0 to 120 seconds in 1 second increments.
E
Language Selection: Select English, Russian, Spanish, German, or Chinese.
F
Scrollable Metering Settings: Select from main categories of GV Primary, GC Primary, CC Primary, Frequency, Power Primary, PF Primary, Energy Primary, BV Primary, Field Primary, PSS Primary, Synchronization Primary, Aux Input, Tracking, Real Time Clock, Contact Inputs, Contact Outputs, or Device ID. Follow this selection by the desired parameters within each category.
G
Enable Scroll: Enable or disable.
H
Scroll Time Delay (s): Adjustable from 1 to 600 seconds in 1 second increments.
Controls and Indicators DECS-250N
Page 25
9440500990 Rev D 9
Desired Nominal
Excitation Power Voltage
Applied Operating
Power Voltage Range
63 Vdc
100 to 139 Vac
125 Vdc
190 to 277 Vac
250 Vdc
380 to 528 Vac, 50/60 Hz (style xx3xxxx)
DECS-250N
Style Number

Operating Power

Frequency Range
xx1xxxx
50/60 Hz
xx2xxxx
61 to 420 Hz
xx3xxxx
50/60 Hz (480 Vac input, 250 Vdc output)

Power Inputs

Power is applied to two separate inputs: control power and operating power. The control power input supplies power to an internal power supply that provides power for logic, protection, and control functions. The power stage uses the operating power input as the source for the converted excitation power that it applies to the field.

Control Power

Two inputs supply the DECS-250N with control power. One input accepts dc control power and the other input accepts ac control power. The level of acceptable control power voltage is determined by the style number. One of two levels is possible. Style Lxxxxxx indicates a nominal voltage of 24 or 48 Vdc and accepts a voltage range of 16 to 60 Vdc. Style Cxxxxxx indicates a nominal voltage of 120 Vac/125 Vdc and accepts a voltage range of 90 to 150 Vdc and 82 to 132 Vac (50/60 Hz). One input (either dc or ac) is sufficient for operation but two inputs provide redundancy (for style Cxxxxxx only). When both control power inputs are used, an isolation trans former is required for the ac input. DC control power is applied at terminals BATT+ and BATT–. AC control power is applied at terminals L and N.
Operating Power
Operating power is applied at terminals A, B, and C. To achieve the desired level of excitation, the appropriate operating power input voltage must be applied. Table 2 lists the acceptable operating power voltage ranges for the DECS-250N. The operating power frequency range for the DECS-250N is listed in Table 3.
Table 2. DECS-250N Operating Power Specifications
Table 3. DECS-250N Operating Power Frequency Specifications
DECS-250N Power Inputs
Page 26
10 9440500990 Rev D
Power Inputs DECS-250N
Page 27
9440500990 Rev D 11

Power Stage

The DECS-250N supplies regulated dc excitation power to the field of a brushless exciter. Excitation power is supplied at terminals F+ and F–.
DECS-250N power stage operating power accepts single- or thr ee-phase ac power from a transformer or PMG. Power stage operating power is applied at terminals A, B, and C. The GND terminal serves as a ground connection.
The DECS-250N power stage employs a six-SCR, full-wave bridge that converts the ac operating power input into dc excitation power. It is capable of two-quadrant operation; it can produce negative as well as positive output power as long as positive current is flowing in the machine field (in excess of the minimum holding current required for the SCRs). The DECS-250N power stage is capable of supplying 20 Adc continuously at nominal voltages of 63, 125, or 250 Vdc.
Nominal DECS-250N operating power levels include 480 Vac for a 250 Vdc continuous exciter field requirement (style XX3XXXX), 240 Vac for a 125 Vdc requirement, or 120 Vac for a 63 Vdc requirement. The frequency range of the operating power voltage is determined by the DECS-250N style number. Style XX1XXXX indicates an operating power frequency of 50 to 60 hertz, style XX2XXXX indicates a frequency of 61 to 420 hertz, and style XX3XXXX limits the frequency to 50 or 60 hertz (for an operating voltage of 480 Vac).

Field Transient Protec t ion

Fault conditions such as generator overloading or loss of synchronism can induce transients into the field circuit. If this energy is not dissipated, it has the poten t ial to dam age the pow er stage SCRs. The DECS-250N has two modes of field transient protection.
Most voltage transients are less than 150 microseconds in duration and are limited to a safe level by internal DECS-250N components.
During major system faults, an SCR crowbar circuit protects the DECS-250N power stage. When field overvoltage is detected, the power stage SCR firing pulses are blocked, the crowbar circuit is energized, and a crowbar annunciation is made. During a normal shutdown, the same actions are taken but no crowbar annunciation is made.

Inverting Style Excitation System Compatibility

The DECS-250N power stage can be configured for operation in the negative direction to supply the control windings of an inverting style excitation system.
DECS-250N Power Stage
Page 28
12 9440500990 Rev D
Power Stage DECS-250N
Page 29
9440500990 Rev D 13
Note

Voltage and Current Sensing

The DECS-250N senses generator voltage, generator current, and bus voltage through dedicated, isolated inputs.

Generator Voltage

Three-phase generator sensing voltage is applied to DECS-250N terminals E1, E2, and E3. This sensing voltage is typically applied through a user-supplied voltage transformer, but may be applied directly. These terminals accept three-phase, three-wire connections at terminals E1 (A), E2 (B), and E3 (C) or single-phase connections at E1 (A) and E3 (C).
The generator voltage sensing input accepts a maximum voltage of 600 Vac and has a burden of less than 1 VA.
The transformer primary and secondary winding voltages are entered in settings that the DECS-250N uses to interpret the applied sensing voltage and calculate system parameters. The phase rotation of the generator sensing voltage can be configured as ABC or ACB. Information about configuring the DECS-250N for the generator sensing voltage is provided in the Configuration chapter of this manual.
Typical generator voltage sensing connections are illustrated in Figure 5.
Figure 5. Typical Generator Voltage Sensing Connections

Generator Current

Generator current sensing inputs consist of three phase-sensing inputs and a sensing input for cross­current compensation.
Current transformer (CT) grounding should be applied in accordance with local codes and conventions.

Phase Sensing

Three-phase generator sensing current is applied to DECS-250N terminals CTA+ and CTA–, CTB+ and CTB–, and CTC+ and CTC– through user-supplied current transformers (CTs). Single-phas e gen erat or sensing current is applied to DECS-250N terminals CTB+ and CTB–. The DECS-250N is compatible with CTs having 5 Aac or 1 Aac nominal secondary ratings. The DECS-250N uses this secondary rating, along with the CT nominal primary ratings to interpret the sensed current and calculate system parameters.
DECS-250N Voltage and Current Sensing
Page 30
14 9440500990 Rev D
Information about configuring the DECS-250N the generator sensing voltage is provided in the Configuration chapter of this manual. Typical generator phase-current sensing connections are shown in Figure 6.
Figure 6. Typical Generator Current Sensing Connections

Cross-Current Compensation

Cross-current compensation (reactive differential) mode allows two or more paralleled generators to share a common load. As shown in Figure 7, each generator is controlled by a DECS-250N using the DECS-250N cross-current compensation input (terminals CCCT+ and CCCT–) and a dedicated, external current transformer (CT) to sense generator current. The resistors shown in Figure 7 are used to set the burden and may be adjusted to suit the application. Ensure that the power rating of the resistors is adequate for the application.
Figure 7. Connections for Cross-Current Compensation
Voltage and Current Sensing DECS-250N
Page 31
9440500990 Rev D 15
Note
If a machine is taken offline, then the secondary winding of that machine’s cross-current compensation CT must be shorted. Otherwise, the cross-current compensation scheme will not function.

Bus Voltage

Bus voltage monitoring enables bus failure detection, generator and bus voltage matching, and synchronization of the generator with the utility/bus. These features are discussed in the Synchronizer chapter of this manual. Three-phase bus sensing voltage is applied to DECS-250N terminals B1, B2, and B3. This sensing voltage is typically applied through a user-supplied voltage transformer, but may be applied directly. These terminals accept three-phase, three-wire connections at terminals B1 (A), B2 (B), and B3 (C) or single-phase connections at B3 (C) and B1 (A).
The bus voltage sensing input accepts a maximum voltage of 600 Vac and has a burden of less than 1 VA.
The transformer primary and secondary winding voltages are entered in settings that the DECS-250N uses to interpret the applied sensing voltage. Information about configuring the DECS-250N for the bus sensing voltage is provided in the Configuration chapter of this manual.
Typical bus voltage sensing connections are illustrated in Figure 8.
Figure 8. Typical Bus Voltage Sensing Connections
DECS-250N Voltage and Current Sensing
Page 32
16 9440500990 Rev D
Voltage and Current Sensing DECS-250N
Page 33
9440500990 Rev D 17
Slip Error = Max (-)
Slip Error =
Max (+)
Slip Error = 0
P0064-49

Synchronizer

DECS-250N controllers with a style number of xxxxAxx are equipped with an automatic synchronizer that acts to align the voltage, phase angle, and frequency of the generator with the bus. The synchronizer function includes compensation settings for the generator breaker and bias control settings for the generator governor. Related synchronizer features include voltage matching and bus condition detection.

Generator Synchroniza t ion

BESTCOMSPlus Navigation Path: Settings Explorer, Synchronizer/Voltage Matching, Synchronizer HMI Navigation Path: Settings, Sync/Voltage Matching, Synchronizer
A
Two modes of generator synchronization are available: phase lock loop and anticipatory the DECS-250N matches the voltage, phase angle, and frequency of the generator with the bus and then connects the generator to the bus by closing the generator breaker. Anticipatory mode has the added capability of compensating for the breaker closing time. (Breaker closing time is the delay between the issuance of a breaker close command and closure of the breaker contacts.) The DECS-250N compensates for the breaker closure time by monitoring the frequency difference between the generator and bus and calculating the advance phase angle required to close the breaker at a zero-degree phase angle.
. In either mode,

Frequency Correction

Generator frequency correction is defined by the slip frequency and further refined by the breaker closing angle. The slip frequency setting (frequency) from the bus frequency. The Min Slip Control Limit setting are used to calculate the slip frequency error and to provide continuous slip frequency control while in phase lock synchronization. If the slip frequency magnitude is above the Max Slip Control Limit, the error is set equal to the Max Error in the opposite polarity. If the slip frequency magnitude is below the Min Slip Control Limit, the error is set equal to the Max Error in the opposite polarity. Whe n it is betw een the two limits, the error is zero (0). Slip frequency error is shown in Figure 9.
To minimize the impact on the bus during synchronization, the generator frequency can be forced to exceed the bus frequency the generator frequency higher than the bus frequency before closing the breaker. The breaker closing angle setting breaker closure to be considered, the slip angle must remain within this setting for the duration of the sync activation delay
F
defines the maximum allowable phase angle difference between the generator and bus. For
G
.
B
establishes the maximum allowable deviation of the generator speed
E
at the moment of breaker closure. If this is the case, the DECS-250N will drive
C
and Max Slip Control Limit settingD
Figure 9. Slip Frequency Error

Voltage Correction

Voltage correction is initiated when the generator voltage is outside the defined voltage window. The voltage window setting generator voltage surrounding the bus voltage where breaker closure will be considered. Enabling the Vgen>Vbus setting prior to synchronizing. A generator to bus PT matching level up or step-down transformers in the system. The DECS-250N adjusts the sensed generator voltage by
H
is expressed as a percentage of the bus voltage and determines the band of
I
causes the DECS-250N to drive the generator voltage higher than the bus voltage
J
setting is provided to compensate for step-
DECS-250N Synchronizer
Page 34
18 9440500990 Rev D
𝐺−(𝐵+ 𝐴)= 𝑆𝑙𝑖𝑝 𝐴𝑛𝑔𝑙𝑒
this percentage. This setting also appears on the Voltage Matching screen, below. When the value is changed, it is reflected in both places.

Angle Compensation

An angle compensationK setting is provided to offset phase shift caused by transformers in the system. The angle compensation value is added only to the bus angle. For example, it is given that the generator and bus are synchronized but the DECS-250N metered slip angle reads –30°. Equation 1, below, illustrates the DECS-250N slip angle calcul ati on. This means that the gen er ator a ngl e is laggin g behi nd the bus angle by 30° due to transformer phase shift. To compensate for this phase shift, the angle compensation setting should contain a value of 330°. This value is added to the metered bus angle resulting in an adjusted slip angle of zero degrees. Only the metered bus angle is affected by the angle compensation setting, the metered generator angle is not biased by the DECS-250N.
Equation 1. DECS-250N Metered Slip Angle
Where: G = metered generator angle B = metered bus angle A = angle compensation value

Failure of Synchronization

Generator synchronization is aborted if generator synchronization fails to occur within a timeframeL established by the user.
BESTCOMSPlus
A
Sync Type: Select Anticipatory or Phase Lock Loop.
B
Slip Frequency: Adjustable from 0.1 to 0.5 Hz in 0.05 Hz increments.
C
Min Slip Control Limit: Adjustable from 0.1 to 2.0 Hz in 0.1 Hz increments .
D
Max Slip Control Limit: Adjustable from 0.1 to 2.0 Hz in 0.1 Hz increments.
E
Fgen>Fbus: Select Enable or Disable.
F
Breaker Closing Angle: Adjustable from 3 to 20° in 0.5° increments.
G
Sync Activation Delay: Adjustable from 0.1 to 0.8 s in 0.1 s increments.
H
Voltage Window: Adjustable from 2 to 15% in 0.5% increments.
I
Vgen>Vbus: Select Enable or Disable.
J
Gen to Bus PT Match Level: Adjustable from 0 to 700% in 0.1% increm ents .
®
generator synchronization settings are illustrated in Figure 10.
Figure 10. Generator Synchronizer Settings
Synchronizer DECS-250N
Page 35
9440500990 Rev D 19
K
Angle Compensation (°): Adjustable from 0.0 to 359.9° in 0.1° increments.
L
Sync Fail Activation Delay: Adjustable from 0.1 to 600 s in 0.1 s increments.

Voltage Matching

A
When enabled setpoint to match the sensed bus voltage. Voltage matching is based on two parameters: band and matching level.
The voltage matching band matching to occur.
The generator to bus PT matching level generator sensed voltage will be adjusted.
Voltage matching settings are illustrated in Figure 11.
, voltage matching is active in AVR control mode and automatically adjusts the AVR mode
B
defines the window in which the generator voltage must be for voltage
C
defines the percentage of the sensed bus voltage to which the
Figure 11. Voltage Matching Settings
A
Voltage Matching: Select Enabled to enable function.
B
Band: Adjustable from 0 to 20% in 0.1% increm ents .
C
Gen to Bus PT Match Level: Adjustable from 0 to 700% in 0.1% increm ents.

Breaker Hardware Configuration

BESTCOMSPlus Navigation Path: Settings Explorer, Synchronizer/Voltage Matching, Breaker Hardware
HMI Navigation Path: Settings, Sync/Voltage Matching, Breaker Hardware
The DECS-250N can control and monitor a generator breaker. Breaker hardware settings are illustrated in Figure 12.

Breaker Failure

When a close command is issued to the breaker, the DECS-250N monitors the breaker status and annunciates a breaker failure if the breaker does not close within the time defined by the breaker close wait delay

Generator Breaker

The DECS-250N must be configuredB with the generator breaker characteristics before the breaker can be controlled by the DECS-250N. Breakers controlled by pulse or continuous control inputs supported. During anticipatory-mode synchronization, if the generator breaker is serving to tie the generator to the bus, the uses the breaker closing time breaker. For a pulse-controlled generator breaker, the breaker open
A
. Typically, the wait delay is set to be longer than the actual breaker closing time.
D
to calculate the optimum time to close the
E
and closeF pulse times are used by
C
are
DECS-250N Synchronizer
Page 36
20 9440500990 Rev D
Caution
the DECS-250N when issuing open and close commands to the breaker. When setting the pulse times, the open and close times should be set at or longer than the breaker closing time setting.
G
If desired, breaker closure is possible during a dead bus condition
Use caution when connecting a “dead” generator to a “dead” bus. Undesired system damage can occur if the bus becomes energized while a “dead” generator is connected to it.
and/or dead generator conditionH.
Figure 12. Breaker Hardware Configuration Settings
A
Breaker Close Wait Time: Adjustable from 0.1 to 600 s in 0.1 s increments.
B
Gen Breaker: Select Configured or NOT Configured.
C
Contact Type: Select Pulse or Continuous.
D
Breaker Closing Time: Adjustable from 0 to 800 ms in 5 ms increments.
E
Open Pulse Time: Adjustable from 0.01 to 5 s in 0.01 s increments. Setting is available only when Contact Type is Pulse.
F
Close Pulse Time: Adjustable from 0.01 to 5 s in 0.01 s increments. Setting is available only when Contact Type is Pulse.
G
Dead Bus Close: Select Disabled or Enabled.
H
Dead Gen Close Enable: Select Disabled or Enabled.

Generator and Bus Condition De t e ction

BESTCOMSPlus Navigation Path: Settings Explorer, Synchronizer/Voltage Matching, Bus Condition Detection
HMI Navigation Path: Settings, Sync/Voltage Matching, Bus Condition Detection
The DECS-250N monitors the voltage and frequency of the generator and bus for determining when a breaker closure is appropriate. Generator and bus condition detection settings are illustrated in Figure 13.
Synchronizer DECS-250N
Page 37
9440500990 Rev D 21

Generator Condition

A dead generator is recognized by the DECS-250N when the generator voltage decreases below the dead generator threshold
A failed generator is recognized when the generator voltage or frequency does not meet the established generator stability criteria for the duration of the failed generator activation delay
A
for the duration of the dead generator activation delayB.
C
. Generator stability
parameters are described in Generator Stability.

Generator Stability

Before initiating a breaker closure (tying the generator to a stable or dead bus), the generator voltage must be stable. Several settings are used to determine generator stability. These settings include pickup and dropout levels for overvoltage generator stability is further controlled by a generator stability activation delay
D
, undervoltageE, overfrequencyF, and under-frequencyG. Recognition of
H
. Breaker closure is not considered if the voltage conditions are not within the stability pickup and dropout settings for the duration of the stability activation delay.

Bus Condition

A dead bus is recognized by the DECS-250N when the bus voltage decreases below the dead bus threshold
A failed bus is recognized when the bus voltage or frequency does not meet the established stability criteria for the duration of the failed bus activation delay Stability.
I
for the duration of the dead bus activation delayJ.
K
. Bus stability parameters are described in Bus

Bus Stability

Before initiating a breaker closure (tying the generator to a live bus), the bus voltage must be stable. Several settings are used to determine bus stability. These settings include pickup and dropout levels for overvoltage controlled by a bus stability activation delay
L
, undervoltageM, overfrequencyN, and underfrequencyO. Recognition of bus stability is further
P
. Breaker closure is not considered if the voltage conditions
are not within the stability pickup and dropout settings for the duration of the stability activation delay.
DECS-250N Synchronizer
Page 38
22 9440500990 Rev D
Figure 13. Generator and Bus Condition Detection Settings
A
Dead Gen Threshold: Adjustable from 0 to 600,000 Vac in 1 Vac increments.
B
Dead Gen Activation Delay: Adjustable from 0.1 to 600 s in 0.1 s increments.
C
Gen Failed Activation Delay : Adjustable from 0.1 to 600 s in 0.1 s increments.
D
Generator Stability Overvoltage Pickup and Dropout: Adjustable from 10 to 600,000 Vac in 1 Vac
increments.
E
Generator Stability Undervoltage Pickup and Dropout: Adjustable from 10 to 600,000 Vac in 1 Vac
increments.
F
Generator Stability Overfrequency Pickup and Dropout: Adjustable from 46 to 64 Hz in 0.05 Hz
increments.
G
Generator Stability Underfrequency Pickup and Dropout: Adjustable from 46 to 64 Hz in 0.05 Hz
increments.
H
Generator Stability Activation Delay: Adjustable from 0.1 to 600 s in 0.1 s increments.
Synchronizer DECS-250N
Page 39
9440500990 Rev D 23
I
Dead Bus Threshold: Adjustable from 0 to 600,000 Vac in 1 Vac increments.
J
Dead Bus Activation Delay: Adjustable from 0.1 to 600 s in 0.1 s increments.
K
Bus Failed Activation Delay : Adjustable from 0.1 to 600 s in 0.1 s increments.
L
Bus Stability Overvoltage Pickup and D ropo ut : Adjustable from 10 to 600,000 Vac in 1 Vac increments.
M
Bus Stability Undervoltage Pickup and Dropout: Adjustable from 10 to 600,000 Vac in 1 Vac increments.
N
Bus Stability Overfrequency Pickup and Dropout: Adjustable from 46 to 64 Hz in 0.05 Hz increments.
O
Bus Stability Underfrequency Pickup and Dropout: Adjustable from 46 to 64 Hz in 0.05 Hz increments.
P
Bus Stable Activation Delay : Adjustable from 0.1 to 600 s in 0.1 s increments.

Generator Governor Contr ol

BESTCOMSPlus Navigation Path: Settings Explorer, Synchronizer/Voltage Matching, Governor Bias Control Settings
HMI Navigation Path: Settings, Sync/Voltage Matching, Governor Bias Control Settings
During synchronization, the DECS-250N adjusts the generator voltage and frequency by issuing speed correction signals to the speed governor. Correction signals are issued in the form of DECS-250N output contact closures. These correction signals may be either continuous or proportional correction is selected, the correction pulses are of varying widths
B
and intervalsC. Initially, long pulses are issued when the frequency difference between the generator and bus is large. As the correction pulses take effect and the frequency difference becomes smaller, the correction pulse widths are proportionally decreased.
A
. When proportional
Governor bias control settings are illustrated in Figure 14.
Figure 14. Generator Governor Control Settings
A
Bias Control Contact Type: Select Continuous Pulse or Proportional Pulse.
B
Correction Pulse Width: Adjustable from 0 to 99.9 s in 0.1 s increments.
C
Correction Pulse Interval: Adjustable from 0 to 99.9 s in 0.1 s increments.
DECS-250N Synchronizer
Page 40
24 9440500990 Rev D
Synchronizer DECS-250N
Page 41
9440500990 Rev D 25

Regulation

The DECS-250N precisely regulates the level of supplied excitation power in each of the five available regulation modes. Stable regulation is enhanced by the automatic tracking of the active-mode setpoint by the inactive regulation modes. Pre-position setpoints within each regulation mode enable the DECS-250N to be configured for multiple system and application needs.
BESTCOMSPlus Navigation Path: Settings Explorer, Oper ati ng Set tings , AVR/FCR/FVR and VAR/PF HMI Navigation Path: Settings, Operating Settings, A VR/FCR/FVR and VAR/PF

Regulation Modes

The DECS-250N provides five regulation modes: Automatic Voltage Regulation (AVR), Field Current Regulation (FCR), Field Voltage Regulation (FVR), var, and Power Factor (PF).
AVR
When operating in AVR (Automatic Voltage Regulation) mode, the DECS-250N regulates the excitation level in order to maintain the generator terminal voltage setpoint
A
despite changes in load and operating
conditions. AVR setpoint (or operating point) adjustment is made through:
Application of contacts at DECS-250N contact inputs configured for raising and lowering the
active setpoint
Application of an analog control signal at the DECS-250N Auxiliary Control input.
The BESTCOMSPlus
®
Control Panel screen (available in the BESTCOMSPlus Metering Explorer)
A raise or lower command transmitted through the DECS-250N Modbus port
The range of adjustment is defined by MinimumB and MaximumC settings that are expressed as a percentage of the rated generator voltage. The length of time required to adjust the AVR setpoint from one limit to the other is controlled by a Traverse Rate setting
D
. These settings are illustrated in Figure 15.
FCR
When operating in FCR (Field Current Regulation) mode, the DECS-250N regulates the level of current it supplies to the field based on the FCR setpoint field rated data and other associated settings. FCR setpoint adjustment is made through:
Application of contacts at DECS-250N contact inputs configured for raising and lowering the
active setpoint
Application of an analog control signal at the Auxiliary Control input
The BESTCOMSPlus Control Panel screen (available in the BESTCOMSPlus Metering Explorer)
A raise or lower command transmitted through the DECS-250N Modbus port
The range of adjustment is defined by Minimum percentage of the rated field current. The length of time required to adjust the FCR setpoint from one limit to the other is controlled by a Traverse Rate setting
E
. The setting range of the FCR setpoint depends on the
F
and MaximumG settings that are expressed as a
H
. These settings are illustrated in Figure 15.
FVR
FVR (Field Voltage Regulation) mode enables generator modeling and validation testing in accordance with WECC testing requirements. FVR mode can also be used to smooth the transfer from the active DECS-250N to a secondary DECS.
When operating in FVR mode, the DECS-250N regulates the level of field voltage it supplies to the field based on the FVR setpoint
I
. The setting range of the FVR setpoint depends on the field rated data and
other associated settings. FVR setpoint adjustment is made through:
Application of contacts at DECS-250N contact inputs configured for raising and lowering the
active setpoint
Application of an analog control signal at the DECS-250N Auxiliary Control input
DECS-250N Regulation
Page 42
26 9440500990 Rev D
The BESTCOMSPlus Control Panel screen (available in the BESTCOMSPlus Metering Explorer)
A raise or lower command transmitted through the DECS-250N Modbus port
J
The range of adjustment is defined by Minimum percentage of the rated field voltage. The length of time required to adjust the FVR setpoint from one limit to the other is controlled by a Traverse Rate
Figure 15. AVR, FCR, and FVR Regulation Settings
A
AVR Setpoint: Range of adjustment is based on the rated generator voltage and limited by the AVR Min
(B) and Max (C) settings.
B
Min (% of rated): Adjustable from 70 to 120% in 0.1% increments.
C
Max (% of rated): Adjustable from 71 to 120% in 0.1% increments.
D
Traverse Rate (s): Adjustable from 10 to 200 seconds in 1 second increments.
E
FCR Setpoint: Range of adjustment is based on the rated field current and limited by the FCR Min (F)
and Max (G) settings.
F
Min (% of rated): Adjustable from 0 to 120% in 0.1% increments.
G
Max (% of rated): Adjusta b le fro m 0 to 120% in 0.1% inc r ements .
H
Traverse Rate (s): Adjustable from 10 to 200 seconds in 1 second increments.
I
FVR Setpoint: Range of adjustment is based on the rated field voltage and limited by the FCR Min (J)
and Max (K) settings.
J
Min (% of rated): Adjustable from 0 to 150% in 0.1% increments.
K
Max (% of rated): Adjustable from 0 to 1 50% in 0.1% i ncr ements .
L
Traverse Rate: Adjustable from 10 to 200 seconds in 1 second increment s.
and MaximumK settings that are expressed as a
L
setting. These settings are illustrated in Figure 15.
Var
When operating in var mode, the DECS-250N regulates the reactive power (var) output of the generator based on the var setpoint other associated settings. Var setpoint adjustment is made through:
Application of contacts at DECS-250N contact inputs configured for raising and lowering the
active setpoint
Application of an analog control signal at the Auxiliary Control input
The BESTCOMSPlus Control Panel screen (available in the BESTCOMSPlus Metering Explorer)
A raise or lower command transmitted through the DECS-250N Modbus port
The range of adjustment is defined by Minimum percentage of the generator rated kVA output. The length of time required to adjust the Var setpoint from one limit to the other is controlled by a Traverse Rate setting defines the upper and lower boundaries of voltage correction when operating in var or power factor regulation modes. Var mode setti ngs are illustr at ed in Figure 16.
A
. The setting range of the var setpoint depends on the generator ratings and
B
and MaximumC settings that are expressed as a
D
. A Fine Voltage Adjustment Band settingE
Regulation DECS-250N
Page 43
9440500990 Rev D 27

Power Factor

When operating in Power Factor (PF) mode, the DECS-250N controls the var output of the generator to maintain the Power Factor setpoint setpoint is determined by the PF – Leading adjust the PF setpoint from one limit to the other is controlled by a Traverse Rate setting Adjustment Band setting
E
defines the upper and lower boundaries of voltage correction when the
DECS-250N is operating in Var or Power Factor regulation modes. PF Active Power Leve l
F
as the kW load on the generator varies. The setting range of the PF
G
and PF – LaggingH settings. The length of time required to
I
. A Fine Voltage
J
establishes the level of generator output power (kW) where the DECS-250N switches to/from Droop Compensation/Power Factor mode. If the level of power decreases below the setting, the DECS-250N switches from Power Factor mode to Droop Compensation mode. Conversely, as the level of power increases above the setting, the DECS-250N switches from Droop Compensation mode to Power Factor mode. A setting of 0 to 30% may be entered in 0.1% increments.
Power Factor mode settings are illustrated in Figure 16.
Figure 16. Var and Power Factor Regulation Settings
A
Setpoint: Range of adjustment is based on the generator ratings and limited by the Var Minimum (B) and
Var Maximum (C) settings.
B
Min (% of rated): Ad justable from –100 to 100% in 0.1% increments.
C
Max (% of rated): Adjusta b le fro m 0 to 100% in 0.1% inc r ements .
D
Traverse Rate (s): Adjustable from 10 to 200 seconds in 1 second increments.
E
Fine Voltage Adjustment Band: Adjustable from 0 to 30% in 0.01% increments.
F
PF Setpoint: Range of adjustment is determined by the PF Leading (G) and Lagging (H) settings.
G
PF – Leading: Adjustable f r om –1 to –0.5 in 0.005 increments.
H
PF – Lagging: Adjustable from 0.5 to 1 in 0.005 increments.
I
Traverse Rate (s): Adjustable from 10 to 200 seconds in 1 second increments.
J
PF Active Power Level: Adjust ab le from 0 to 30% in 0.1% incre ments .

Pre-Position Setpoints

Each regulation mode has three pre-position setpoints which allow the DECS-250N to be configured for multiple system and application needs. Each pre-position setpoint can be assigned to a programmable contact input. When the appropriate contact input is closed, the setpoint is driven to the corresponding pre-position value. Each pre-position funct ion has two s ettings: Setpoint and Mode. The setting range of each pre-position setpoint setting determines whether or not the DECS-250N will respond to further setpoint change commands while the pre-position command is being asserted. If the pre-position mode is Release, setpoint change commands are accepted to raise and lower the setpoint whi le the pre-position command is being asserted. Additionally, if the inactive pre-position mode is Release and internal tracking is enabled, the pre-position value will respond to the tracking function. If the pre-position mode is Maintain, further setpoint change commands are ignored while the appropriate contact input is closed. Additionally, if the inactive pre-position mode is Maintain and internal tracking is enabled, the inactive mode will maintain the
A
is identical to that of the corresponding control mode setpoint. The ModeB
DECS-250N Regulation
Page 44
28 9440500990 Rev D
inactive setpoint at the pre-position value and override the tracking function. A portion of the pre-position setpoints for var and PF modes are illustrated in Figure 17. (Pre-Position Setpoints for AVR, FCR, and FVR modes are similar and not shown here.)
Figure 17. Pre-Position Setpoints
A
Setpoint: Range of adjustment is based on the generator ratings and limited by the Var Minimum and
Var Maximum settings.
B
Mode: Select Release or Maintain

Transient Boost

The transient excitation boosting function improves response to successive faults by providing increased excitation support. When a simultaneous line current increase and line voltage decrease occurs, the DECS-250N compensates by elevating the voltage setpoint above the nominal setpoint. When the line voltage recovers, the voltage setpoint is restored to the nominal value.
A
Fault detection is controlled by a voltage threshold setting. Fault voltage threshold is expressed as a percentage of the AVR setpoint and fault current threshold is expressed as a percentage of the rated field current. The duration setting determines how long a fault condition is tolerated before the setpoint is adjusted.
Setpoint adjustment is controlled by a voltage setpoint boosting level a clearing voltage delay
F
. The setpoint boosting level is expressed as a percentage above the AVR setpoint. Transient boost is disabled once the line voltage recovers above the clearing voltage threshold. The clearing voltage threshold is expressed as a percentage below the AVR setpoint. The clearing voltage delay determines how long the line voltage must exceed the clearing voltage threshold before setpoint adjustment is terminated.
setting, a current thresholdB setting, and a durationC
D
, a clearing voltage thresholdE, and
Figure 18. Transient Boost Settings
A
Fault Voltage Threshold (%): Adjustable fr om 0.0 to 100. 0% , in 0.1% incr eme nt s .
B
Fault Current Threshold (%): Adjustable fr om 0.0 to 400. 0% , in 0.1% incr eme nt s .
C
Minimum Fault Duration (ms): Adjustab le from 0 to 1, 000 ms , in 1 ms increments.
D
Voltage Setpoint Boosting Level (%): Adjustable from 0.0 to 100.0%, in 0.1% increments.
E
Clearing Voltage Threshold (%): Adjustable from 0.0 to 50.0%, in 0.1% increments.
F
Clearing Voltage Delay (ms): Adjustable from 0 to 1,000 ms, in increments of 1 ms.
Regulation DECS-250N
Page 45
9440500990 Rev D 29
Note

Operation with Parall ele d G e ner a t ors

BESTCOMSPlus Navigation Path: Settings Explorer, O perat ing Set tin gs , Parallel/LineDrop Compensation
HMI Navigation Path: Settings, Operating Settings, Pa ralle l/L in eDr op Com pens at i on
The DECS-250N can be used to control the excitation level of two or more generators operating in parallel so that the generators share the reactive load. The DECS-250N can employ either droop compensation or cross-current compensation (reactive differential) schemes for reactive load sharing. A separate load sharing function enables each machine to share the load proportionally without incurring a voltage and frequency droop.
Paralleled generator settings are illustrated in Figure 19 and described in the following paragraphs.

Reactive Droop Compensation

Droop compensation serves as a method of controlling reactive current when the generator is connected in parallel with another energy source. Droop compensation utilizes the B-phase CT in single-phase applications. When droop compensation is enabled measured generator reactive power. The reactive droop compensation setting percentage of the generator rated terminal voltage.
A
, the generator voltage is adjusted in proportion to the
B
is expressed as a
For droop compensation to operate, th e PAR ALLEL _E N_LM lo gic block must be set true in BESTlogic™Plus programmable logic.

Cross-Current Compensation

Cross-current compensation (reactive differential) mode serves as a method of connecting multiple generators in parallel to share reactive load. When reactive load is shared properly, no current is fed into the DECS-250N cross-current compensation input (which is connected to the B-phase transformer). Improper sharing of reactive load causes a differential current to be fed into the cross-current compensation input. When c ros s -current compensation is enabled respond with the proper level of regulation. The response of the DECS-250N is controlled by the cross­current compensation gain sett ing
D
which is expressed as a percentage of the system nominal CT setting.
C
, this input causes the DECS-250N to
Application information about cross-current compensation is available in the Voltage and Current chapter of this manual.

Network Load Sharing

In a multiple-generator application, the load sharing function ensures equal generator reactive-power sharing. It operates in a similar manner to cross-current compensation but without the external hardware requirements and distance limitations. Instead of sharing load based on the CT ratio, load is shared on a per-unit basis calculated from the generator rated data. Sharing of load information between DECS-250N controllers is accomplished through the Ethernet port of each DECS-250N communicating over a peer-to­peer network dedicated for the load sharing function. Each DECS-250N measures the reactive current of its associated generator and broadcasts its measurement to all other DECS-250N controllers on the network. Each DECS-250N compares its level of reactive current to the sum of all measured currents and adjusts its excitation level accordingly.
Network load sharing implements a fading droop function based on the droop setting, washout filter gain, and washout filter time constant. During transients, load sharing will droop according to the droop percentage and washout filter gain settings. The droop characteristic will fade with a time constant according to the washout filter time constant.
A Load Share ID setting identifies the DECS-250N as a load sharing unit in the network. Checking a Load Sharing Unit number box allows any DECS-250N load shar ing units on the network with that Load Share
DECS-250N Regulation
Page 46
30 9440500990 Rev D
ID number to share load with the currently connected DECS-250N. It is not necessary for the Load Share ID to be unique for each unit. This allows for load sharing units to be grouped.
E
Load sharing settings consist of an Enable checkbox Washout Filter Gain
I
and Load Share IDJ settings.
and DroopF, GainG, Washout Filter Time ConstantH,

Line Drop Compensation

When enabledK, line drop compensation can be used to maintain voltage at a load located at a distance from the generator. The DECS-250N achieves this by measuring the line current and calculating the voltage for a specific point on the line. Line drop compensation is applied to both the real and reactive portion of the generator line current. It is expressed as a percentage of the generator terminal voltage
L
.
Equation 2
is used to calculate the Line Drop Value.
=
󰇡


󰇣×


× cos 󰇡
󰇢󰇤󰇢+ 󰇡× 

Equation 2. Line Drop Value
LD V
= Line drop value (per unit)
Value
= Average voltage, metered value (per unit)
avg
LD = Line Drop % / 100 I
= Average Current, metered value (per unit)
avg
I
= Angle of phase B current (no compensation)
bang
The LD
is the per-unit value seen down the line from the synchronous machine. Equation 3 is used to
Value
determine the voltage needed to adjust for line drop.
,
=
Equation 3. Voltage Needed to Adjust for Line Drop
,


Equation 4 is used to obtain primary units.
Equation 4. Obtain Primary Units

=
,
×

The new line drop adjusted setpoint is calculated using Equation 5.

× sin 󰇡

󰇢󰇢
 
=

+

Equation 5. Line Drop Adjusted Setpoint
Refer to Figure 19 for an illustration of the Line drop compensation settings.
Regulation DECS-250N
Page 47
9440500990 Rev D 31
Figure 19. Paralleled Generators and Line Drop Compensation Settings
A
Droop Compensation Enable: Place a check in the checkbox to enable droop compensation.
B
Reactive Droop Compensation: Adjustable from 0 to +30% in 0.1% increments.
C
Cross-Current Compensation Enable: Place a check in the checkbox to enable cross-current
compensation.
D
Cross-Current Compensation Gain: Adjus tab le from –30 to +30% in 0.1% increments.
E
Load Share Enable: Place a check in the checkbox to enable load sharing.
F
Load Share Droop: Adjustable from 0 to 30% in 0.1% increments.
G
Load Share Gain: Adjus ta ble fr om 0 to 1,000 in incr e ments o f 0.01.
H
Load Share Washout Filter Time Constant: Adjustable from 0 to 1 in increments of 0.01.
I
Load Share Washout Filter Gain: Adjustable from 0 to 1,000 in increments of 0.01.
J
Load Share ID: Adjustable from 1 to 16 in increments of 1.
K
Line Drop Compensation Enable: Place a check in the checkbox to enable line drop compensation.
L
Line Drop Compensation: Adjustable from 0 to 30% in increments of 0.1%.

Autotracking

BESTCOMSPlus Navigation Path: Settings Explorer, Oper ati ng Set tings , Autotracking HMI Navigation Path: Settings, Operating Settings, Au totr ack ing.
Internal regulation mode setpoint tracking and external setpoint tracking are standard features on the DECS-250N. Autotracking settings are illustrated in Figure 20.

Internal Setpoint Tracking

In applications using a single DECS-250N, internal tracking can be enabledA so that the inactive regulation modes track the active regulation mode.
DECS-250N Regulation
Page 48
32 9440500990 Rev D
Note
The following examples demonstrate the advantages of internal tracking:
If the excitation system is operating online with internal tracking enabled, a loss of sensing condition
could trigger a transfer to FCR mode. Autotracking minimizes the impact that a loss of sensing condition has on the exciter’s ability to maintain the proper excitation level.
While performing routine testing of the DECS-250N in backup mode, the internal tracking feature
allows a transfer to an inactive mode that will result in no disturbance to the system.
B
Two parameters control the behavior of internal tracking. A delay setting between large system disturbance and the start of setpoint tracking. A traverse rate setting
determines the time delay
C
configures the length of time for the inactive mode setpoints to traverse the full setting range of the active mode setpoint.

External Setpoint Tracking

For critical applications, a second DECS-250N can provide backup excitation control. The DECS-250N allows for excitation redundancy by providing external tracking and transfer provisions between DECS-250N controllers. The secondary DECS-250N can be configured to track the primary DECS-250N setpoint. Proper redundant excitation system design allows for removal of the failed system.
Periodic testing of the backup system must be performed to ensure that it is operational and can be placed in service without warning.
Like internal tracking, external setpoint tracking uses enable/disableD, delayE, and traverse rateF settings.
Figure 20. Autotracking Settings
A
Internal Tracking Enabled: Place a check in the checkbox to enable internal tracking.
B
Internal Tracking Delay: Adjustable from 0 to 8 seconds in 0.1 second increments.
C
Internal Tracking Traverse Rate: Adjustable from 1 to 80 seconds in 0.1 second increments.
D
External Tracking Enabled: Place a check in the checkbox to enable external tracking.
E
External Tracking Delay: Adjustable from 0 to 8 seconds in 0.1 second increments.
F
External Tracking Traverse Rate: Adjustable from 1 to 80 seconds in 0.1 second increments.

Setpoint Configure

When the Auto Save settin g is enabled, the DECS-250N automatically s aves the active setpoint in one­minute intervals. Other wise, the setpoint which was last sent to the DECS-250N is retaine d. Figure 21 illustrates the Setpoint Configure screen.
Figure 21. Setpoint Configure Setting
Regulation DECS-250N
Page 49
9440500990 Rev D 33

=
(

0.004)× 
20.0
0.016
10.0

Auxiliary Control

BESTCOMSPlus Navigation Path: Settings Explorer, Oper ati ng Set tings , Auxiliary Inputs HMI Navigation Path: Settings, Operating Settings, Auxiliary Inputs
The DECS-250N accepts an external analog control signal for auxiliary control of the regulation setpoint. Auxiliary setpoint control is possible in all regulation modes: AVR, PF, Var, FCR, and FVR. The control signal can also be used for limiter scaling or power system stabilizer control. Auxiliary control settings are illustrated in Figure 22.
Auxiliary Control Input TypeA
Either a voltage or current control signal may be used for auxiliary control. Terminals I+ and I– accept a 4 to 20 mAdc signal. Terminals V+ and V– accept a –10 to +10 Vdc signal. An adjacent terminal labeled GND provides the connection for a recommended cable shield. The input type is selected in BESTCOMSPlus
Auxiliary Control Input Funct ionB
The analog control input can be used for auxiliary control of the regulation setpoint, as a power system stabilizer test input, or for limiter scaling.
®
.

PSS Test Input

The auxiliary control input can be used for control of the optional power system stabilizer function during testing and validation. More information is provided in the P ow er Sy stem Sta bi lizer chapter of this manual.

Limiter Scaling

When the auxiliary control input is configured for limiter scaling, the stator current limiter (SCL) and overexcitation limiter (OEL) low-level values can be automatically adjusted. Automatic adjustment of the SCL and OEL is based on six parameters: signal and scale for three points. The signal value for each point represents the accessory input voltage. The scale value defines the limiter low level as a percentage of rated field current for the OEL and rated stator current for the SCL. For accessory input voltages between two of the three defined points, the low-level limiter setting is linearly adjusted between the two scale values. Limiter settings and limiter scaling are discussed in detail in the Limiters chapter of this manual.

Setpoint Limits

Minimum and maximum setpoint limits are observed when the With Limit box is checked.

Auxiliary Control Gains

When a current input type is selected, the input current is converted internally by the DECS-250N into a voltage signal in the range of –10 to +10 Vdc. The DECS-250N uses the following equation when converting the applied current into a voltage.
Equation 6. Input Current to Voltage Signal Conversion
Where: V For setpoint control, V If the auxiliary input is unused, all auxiliary control gains should be set to zero.
is the calculated voltage signal and I
aux
is multiplied by the appropriate regulation mode auxiliary gain setting.
aux
is the applied current in amperes.
aux
DECS-250N Auxiliary Control
Page 50
34 9440500990 Rev D

AVR Mode

In AVR mode, the auxiliary control signal is multiplied by the AVR gain settingC. The result defines the setpoint change as a percentage of the rated generator voltage.
   =
× 0.01 ×   ×  

For example, applying +10 Vdc with an AVR gain of 1.0 raises the AVR setpoint 10% of rated generator voltage. This example also applies to the following modes.

FCR Mode

In FCR mode, the auxiliary control signal is multiplied by the FCR gain settingD. The resulting value relates to a percentage of the rated field current.
  =
× 0.01 ×   ×     


FVR Mode

In FVR mode, the auxiliary control signal is multiplied by the FVR gain settingE. The resulting value relates to a percentage of the rated field voltage.
  =
× 0.01 ×   ×     


Var Mode

In var mode, the auxiliary control signal is multiplied by the Var gain settingF. The resulting value relates to a percentage of the rated apparent power (kVA).
  =
× 0.01 ×   × 1.7321 ×   ×   ( )


Power Factor Mode

In Power Factor mode, the auxiliary control signal is multiplied by the PF gain settingG to define the PF setpoint change.
  =
× 0.01 ×   ( )

Summing TypeH
The auxiliary control signal can be configured to control the inner or outer regulation control loop. Selecting the inner loop limits auxiliary control to AVR, FCR, and FVR modes. Selecting the outer loop limits auxiliary control to PF and Var modes.
Figure 22. Auxiliary Input Settings
Auxiliary Control DECS-250N
Page 51
9440500990 Rev D 35
A
Input Type: Select Voltage or Current.
B
Input Function: Select DECS Input, Limiter Scaling, or PSS Test Input.
C
AVR (Mode) Gain: Adjust a ble from –99 to +99 in 0.01 incr eme nts .
D
FCR (Mode) Gain: Adj us ta ble from –99 to +99 in 0.01 incr eme nts .
E
FVR (Mode) Gain: Adjusta ble fr om –99 to +99 in 0.01 incr eme nts .
F
Var (Mode) Gain: Adjustable from –99 to +99 in 0.01 increments.
G
PF (Mode) Gain: Adjustable from –99 to +99 in 0.01 increments.
H
Summing Type: Select Inner Loop or Outer Loop.
DECS-250N Auxiliary Control
Page 52
36 9440500990 Rev D
Auxiliary Control DECS-250N
Page 53
9440500990 Rev D 37
Note

Contact Inputs and Outputs

Sixteen isolated, contact sensing inputs are available for initiating DECS-250N actions. Twelve sets of output contacts provide annunciation and control.

Contact Inputs

BESTCOMSPlus Navigation Path: Settings Explorer, Programmable Inputs, Contact Inputs HMI Navigation Path: Not available through HMI.
Sixteen contact inputs are provided for initiating DECS-250N actions. Two of the contact inputs are fixed­function inputs: Start and Stop. The remaining 14 contact inputs are programmable. An additional 10 contact inputs are available with the optional Contact Expansion Module (CEM-2020). Contact Basler Electric for ordering information.
All contact inputs are compatible with dry relay/switch contacts or open-collector outputs from a PLC. Each contact input has an isolated interrogation voltage and current of 12 Vdc at 4 mAdc. Appropriate switches/contacts should be selected for operation with this signal level.
The length of wiring connected to each contact input terminal must not exceed 150 feet (45.7 meters). Longer wiring lengths may allow induced electrical noise to interfere with the recognition of contact inputs.

Start and Stop Inputs

The Start and Stop inputs accept a momentary contact closure that enables (Start) and disables (Stop) the DECS-250N. If the DECS-250N receives Start and Stop contact inputs simultaneously, the Stop input takes priority. Start contact input connections are made at terminals START and COM A. Stop contact input connections are made at terminals STOP and COM A.

Programmable Inputs

The 14 programmable inputs can be connected to monitor the status of excitation system contacts and switches. Then, using BESTlogic™Plus programmable logic, these inputs can be used as part of a user­configured logic scheme to control and annunciate a variety of system conditions and contingencies. Information about using the programmable inputs in a logic scheme is provided in the BESTlogicPlus chapter.
A
To make the programmable contact inputs easier to identify, you can assign a custom name to the inputs/functions of your system. Figure 23 shows a portion of the BESTCOMSPlus screen where each of the 14 inputs can be assigned a custom name.
that relates
®
Contact Inputs
DECS-250N Contact Inputs and Outputs
Page 54
38 9440500990 Rev D
Figure 23. Contact Input Label Text
A
Label Text: Enter a string of up to 64 alphanumeric characters.
See the Terminals and Connectors chapter for an illustration of the programmable input terminals.

Contact Outputs

BESTCOMSPlus Navigation Path: Settings Explorer, Programmable Outputs, Contact Outputs HMI Navigation Path: Not available through HMI.
DECS-250N contact outputs consist of a dedicated watchdog output and 11 programmable outputs. An additional 18 contact outputs are available with the optional Contact Expansion Module (CEM-2020H). The optional CEM-2020 provides an additional 24 contact outputs. Contact Basler Electric for ordering information.

Watchdog Output

This SPDT (Form C) output changes state during the following conditions:
Control power is lost
Normal firmware execution ceas es
Transfer Watchdog Trip is asserted in BESTlogicPlus.
Watchdog output connections are made at terminals WTCHD1 (normally open), WTCHD (common), and WTCHD2 (normally closed).

Programmable Outputs

The 11 programmable, normally-open contact outputs can be configured to annunciate DECS-250N status, active alarms, active protection functions, and active limiter functions. Using BESTlogicPlus programmable logic, these outputs can be used as part of a user-configured logic scheme to control and annunciate a variety of system conditions and contingencies. Information about using the programmable outputs in a logic scheme is provided in the BESTlogicPlus chapter.
A
To make the programmable contact outputs easier to identify, you can assign a custom name
that relates to the functions of your system. Figure 24 shows the BESTCOMSPlus Contact Outputs screen where each of the 11 outputs can be assigned a custom name.
Contact Inputs and Outputs DECS-250N
Page 55
9440500990 Rev D 39
Figure 24. Contact Output Label Text
A
Label Text: Enter a string of up to 64 alphanumeric characters.
See the Terminals and Connectors chapter for an illustration of the programmable output terminals. Contact output electrical ratings are listed in the Specifications chapter.
DECS-250N Contact Inputs and Outputs
Page 56
40 9440500990 Rev D
Contact Inputs and Outputs DECS-250N
Page 57
9440500990 Rev D 41
n
NOMINAL
MEASURED
T
T
HzV
HzV
D
T
 
 
−=1
/
/
100××=
FST
E
DT
T
RR

Protection

The DECS-250N offers protection relating to generator voltage, frequency, power, field parameters, rotating exciter diodes, power input failure, and generator-to-bus synchronism. Configurable protection elements supplement this protection with additional, user-defined system parameters that have multiple pickup thresholds per parameter. Most protection functions have two groups of settings labeled Primary and Secondary. Two setting groups enable independent protection coordination which is selectable in BESTlogic™Plus.

Voltage Protection

BESTCOMSPlus Navigation Path: Settings Explorer, Protection, Voltage HMI Navigation Path: Settings, Protection, Voltage Protection
Voltage protection includes overexcitation, generator undervoltage, generator overvoltage, and loss of sensing voltage.

Overexcitation (Volts per Hertz)

Volts per hertz protection is annunciated if the ratio of the per-unit voltage to the per-unit frequency (volts/hertz) exceeds one of the Volts per Hertz Pickup Level
A
settings for a definite amount of timeB. If the Volts per Hertz Pickup level is exceeded, timing will continue until the volts per hertz ratio drops below the dropout ratio (95%). Volts per hertz protection also guards against other potentially damaging system conditions such as a change in system voltage and reduced frequency conditions that can exceed the system’s excitation capability.
Several volts per hertz settings enable the DECS-250N to provide flexible generator and generator step­up transformer overexcitation protection. An inverse square timing characteristic is provided through the Inverse Time Pickup Setpoint approximate the heating characteristic of the generator and generator step-up transformer during overexcitation. A linear reset characteristic is provided through the Reset Dial protection can be enabled and disable d
C
and Time DialD settings. These settings enable the DECS-250N to
E
F
without altering the pickup and time delay settings.
setting. Volts per hertz
Two sets of fixed-time, overexcitation pickup settings are available through the Definite Time Pickup #1, #2 and Definite Time Delay #1, #2 settings.
The following equations represent the trip time and reset time for a constant V/Hz level. Volts per hertz characteristic curves are illustrated in Figure 25 and Figure 26.
Equation 7. Trip Time Equation 8. Reset Time
Where:
= time to trip
T
T
= time to reset
T
R
= time dial trip
D
T
= time dial, reset
D
R
= elapsed time
E
T
n = curve exponent (0.5, 1, 2) FST=full scale trip time (T
/FST =fraction of total travel toward trip that integration had progressed to. (After a trip, this value
E
T
G
)
T
will be equal to 1.)
®
BESTCOMSPlus
overexcitation settings are illustrated in Figure 27.
DECS-250N Protection
Page 58
42 9440500990 Rev D
Figure 25. V/Hz Characteristic – Time Shown on Vertical Axis
Figure 26. V/Hz Characteristic – Time Shown on Horizontal Axis
Protection DECS-250N
Page 59
9440500990 Rev D 43
Figure 27. Overexcitation Protection Settings
A
Definite Time Pickup: Adjustable from 0 or 0.5 to 6.00 in increments of 0.01.
B
Definite Time Delay: Adjustable from 0.05 to 600 seconds in increments of 0.001 seconds.
C
Inverse Time Pickup: Adjustable from 0 or 0.5 to 6.00 in increments of 0.01.
D
Time Dial: Adjustable from 0.0 to 9.9 in increments of 0.1.
E
Reset Dial: Adjustable from 0.0 to 9.9 in increments of 0.1.
F
Mode: Select Enabled or Disabled.
G
Curve Exponent: Select 0.5, 1, or 2
Generator Undervoltage
An undervoltage pickup condition occurs when the sensed generator terminal voltage decreases below the pickup setting pickup threshold for the duration of the time delay setting enabled and disabled elements in BESTlogicPlus can be used in a logic scheme to initiate corrective action in response to the condition. BESTCOMSPlus generator undervoltage settings are illustrated in Figure 28.
A
Generator Undervoltage Pickup (V): Adjustable from 0 to 600,000 Vac in 1 Vac increments.
B
Generator Undervoltage Time Delay (s): Adjustable from 0.1 to 60 seconds in 0.1 second increments.
C
Generator Undervoltage Enable/Disable: Select Enabled or Disabled.
A
. An undervoltage trip condition occurs if the generator voltage remains below the
C
without altering the pickup and time delay settings. Undervoltage pickup and trip
B
. Generator undervoltage protection can be
Figure 28. Generator Undervoltage Protection Settings
DECS-250N Protection
Page 60
44 9440500990 Rev D
Generator Overvoltage
An overvoltage pickup condition occurs when the sensed generator terminal voltage increases above the pickup setting threshold for the duration of the time delay setting disabled
A
. An overvoltage trip condition occurs if the generator voltage remains above the pickup
C
without altering the pickup and time delay settings. Overvoltage pickup and trip elements in
B
. Generator overvoltage protection can be enabled and
BESTlogicPlus can be used in a logic scheme to initiate corrective action in response to the condition. BESTCOMSPlus generator overvoltage settings are illustrated in Figure 29.
Figure 29. Generator Overvoltage Protection Settings
A
Generator Overvoltage Pickup (V): Adjustable from 0 to 600,000 Vac in 1 Vac increments.
B
Generator Overvoltage Time Delay (s): Adjustable from 0.1 to 60 seconds in 0.1 second increments.
C
Generator Overvoltage Enable/Disable: Select Enabled or Disabled.
Loss of Sensing
The generator voltage is monitored for a loss of sensing (LOS) condition. LOS protection settings are illustrated in Figure 30.
In the DECS-250N, a loss of sensing event is calculated using sequence components. A loss of sensing event occurs when the positive sequence voltage drops below the balanced AVR setpoint, or when the negative sequence voltage increases above the unbalanced percentage of the positive sequence voltage. A delay timer
C
is started when the event occurs, delaying
A
setting percentage of the
B
setting
the alarm by a predetermined time
D
A LOS condition can be used to initiate a transfer to manual (FCR) control mode configured in BESTlogicPlus to initiate other actions. Protection can be enabled and disabled
. It also can be
E
without
altering the individual loss of sensing settings. LOS protection is automatically disabled when a short circuit exists. A short circuit is detected when the
measured current is greater than twice the rated current for a single-phase CT connection and when the positive sequence current is greater than twice the rated current for a three-phase CT connection.
Figure 30. Loss of Sensing Protection Settings
Protection DECS-250N
Page 61
9440500990 Rev D 45
A
Voltage Balanced Level: Adjustable from 0 to 100% in 0.1% increments.
B
Voltage Unbalanced Level: Adjustable from 0 to 100% in 0.1% increments.
C
Time Delay: Adjustable from 0 to 30 seconds in 0.1 second increments.
D
Transfer to Manual: Select Disabled or Enabled.
E
Mode: Select Disabled or Enabled.

Frequency Protecti on

BESTCOMSPlus Navigation Path: Settings Explorer, Protection, Frequency HMI Navigation Path: Settings, Protection, Frequency Protection 81
The frequency of the generator terminal voltage is monitored for overfrequency and under-frequency conditions.
Overfrequency
An overfrequency condition occurs when the frequency of the generator voltage exceeds the 81O pickup threshold disabled
A
for the duration of the 81O time delay settingB. Overfrequency protection can be enabled and
C
without altering the pickup and time delay settings. Overfrequency pickup and trip elements in BESTlogicPlus can be used in a logic scheme to initiate corrective action in response to the condition. BESTCOMSPlus overfrequency settings are illustrated in Figure 31.
Figure 31. Overfrequency Protection Settings
A
Overfrequency (81O) Pickup (Hz): Adjustable from 30 to 70 hertz in 0.01 hertz increments.
B
Overfrequency (81O) Time Delay (s): Adjustable from 0.1 to 300 seconds in 0.1 second increments.
C
Overfrequency (81O) Mode: Select Disabled or Over.

Underfrequency

An underfrequency condition occurs when the frequency of the generator voltage decreases below the 81U pickup threshold as a percentage of the rated generator voltage, can be implemented to prevent an underfrequency trip from occurring during startup when the generator voltage is rising toward the nominal level. Underfrequency protection can be enabled and disabled settings. Underfrequency pickup and trip elements in BESTlogicPlus can be used in a logic scheme to initiate corrective action in response to the condition. BESTCOMSPlus underfrequency settings are illustrated in Figure 32.
A
for the duration of the 81U time delay settingB. A voltage inhibit settingC, expressed
D
without altering the pickup, delay, and inhibit
DECS-250N Protection
Page 62
46 9440500990 Rev D
Figure 32. Underfrequency Protection Settings
A
Underfrequency (81U) Pickup (Hz): Adjustable from 30 to 70 hertz in 0.01 hertz increments.
B
Underfrequency (81U) Time Delay (s): Adjustable from 0.1 to 300 seconds in 0.1 second increments.
C
Underfrequency (81U) Voltage Inhibit (%): Adjustable from 50 to 100% in 1% increments.
D
Underfrequency (81U) Mode: Select Disable or Under.

Power Protection

BESTCOMSPlus Navigation Path: Settings Explorer, Protection, Power HMI Navigation Path: Settings, Protection, Power
Generator power levels are monitored to protect against reverse power flow and loss of excitation.

Reverse Power

Reverse power protection guards against reverse power flow that may result from a loss of prime mover torque (and lead to generator motoring). A reverse power condition occurs when the flow of reverse power exceeds the 32R pickup threshold protection can be enabled and disable d power pickup and trip elements in BESTlogicPlus can be used in a logic scheme to initiate corrective action in response to the condition. BESTCOMSPlus reverse power protection settings are illustrated in Figure 33.
Figure 33. Reverse Power Protection Settings
A
Reverse Power (32R) Pickup (%): Adjustable from 0 to 150% in 1% increments.
B
Reverse Power (32R) Time Delay (s): Adjustable from 0 to 300 seconds in 0.1 second increments.
C
Reverse Power (32R) Mode: Select Disabled or Enabled.
A
for the duration of the 32R time delayB. Reverse power
C
without altering the pickup and time delay settings. Reverse

Loss of Excitation

The loss of excitation element operates on excessive var flow into the machine, indicating abnormally low field excitation. This element protects controlled generators as well as motors. A diagram of the 40Q
Protection DECS-250N
Page 63
9440500990 Rev D 47
pickup response is illustrated in Figure 34. BESTCOMSPlus settings are described below and shown in Figure 35.
Generator Protection
During loss of excitation, the generator absorbs reactive power from the power system which can overheat the stator windings. The Loss of Excitation element acts on the principal that if a generator begins to absorb vars outside its steady-state capability curve, it has likely lost its normal excitation supply. The element is always calibrated to the equivalent three-phase power even if the connection is single-phase.
The Loss of Excitation element compares the reactive power to a map of the allowed reactive power as defined by the Pickup setting. The Loss of Excitation element remains in a pickup condition until power flow falls below the dropout ratio of 95% of the actual pickup. A time delay is recommended for tripping. For settings well outside the generator capability curve, adding a 0.5 second time delay helps prevent transient fault conditions. However, recovery from power system swings after a major fault may take several seconds. Therefore, if the unit is to pick up near the steady-state capability curve of the generator, longer time delays are recommended. See Figure 34 for details.
Motor Protection
The DECS-250N compares the real power (kW) flowing into the motor with the reactive power (kvar) being supplied. Operation of synchronous motors drawing reactive power from the system can result in overheating in parts of the rotor that do not normally carry current. The 40Q pickup response is shown in Figure 34.
Figure 34. Generator Capability Curve vs. 40Q Respo nse
Pickup and Trip
A loss of excitation condition exists when the level of absorbed vars exceeds the loss of excitation (40Q) threshold
A
for the duration of the 40Q time delayB. A time delay setting of zero (0) makes the Loss of Excitation element instantaneous with no intentional time delay. If the pickup condition subsides before the time delay expires, the timer and pickup are reset, no corrective action is taken, and the element is rearmed for any other occurrences of loss of excitation.
The 40Q threshold is expressed as a percentage of the rated var flow for the machine. Loss of excitation protection can be enabled and disable d
C
without altering the pickup and time delay settings.
BESTCOMSPlus loss of excitation settings are illustrated in Figure 35.
DECS-250N Protection
Page 64
48 9440500990 Rev D
Figure 35. Loss of Excitation Protection Settings
A
Pickup (% of rated vars): Adjustable from 0 to 150% in 1% increments.
B
Time Delay: Adjustable from 0 to 300 seconds in 0.1 second increments.
C
Mode: Select Disabled or Enabled.

Field Protection

BESTCOMSPlus Navigation Path: Settings Explorer, Protection, Field HMI Navigation Path: Settings, Protection, Field
Field protection provided by the DECS-250N includes field overvoltage, field overcurrent, an exciter diode monitor, and power input failure.

Field Overvoltage

A field overvoltage condition occurs when the field voltage exceeds the field overvoltage thresholdA for the duration of the field overvoltage time delay without altering the pickup and time delay settings. Field overvoltage pickup and trip elements in BESTlogicPlus can be used in a logic scheme to initiate corrective action in response to the condition. BESTlogicPlus field overvoltage setti ngs are illustr at ed in Figure 36.
Figure 36. Field Overvoltage Protection Settings
A
Field Overvoltage Pickup (V): Adjustable from 0 to 325 Vdc in 1 Vdc increments.
B
Field Overvoltage Time Delay (s): Adjustable from 0.2 to 30 seconds in 0.1 second increments.
C
Field Overvoltage Mode: Select Disabled or Enabled.
B
. Field overvoltage protection can be enabled and disabledC
Field Overcurrent
A field overcurrent condition is annunciated when the field current exceeds the field overcurrent pickup
A
for the duration of the field overcurrent time delay. Depending on the selected timing modeB, the
level time delay can be fixed or related to an inverse function. Definite timing mode uses a fixed time delay inverse timing mode, the time delay is shortened in relation to the level of field current above the pickup level. The time dial
D
setting acts as a linear multiplier for the time to an annunciation. This enables the
C
. In
DECS-250N to approximate the heating characteristic of the generator and generator step-up transformer
Protection DECS-250N
Page 65
9440500990 Rev D 49

=
× 
+ + × 


=
0.36 × 
(


)
1
during overexcitation. The field current must fall below the dropout ratio (95%) for the function to begin timing to reset. The following equations are used to calculate the field overcurrent pickup and reset time delays.
Equation 9. Inverse Field Overcurrent Pickup
Where:
= time to pick up in seconds
t
pickup
A = -95.908 B = -17.165 C = 490.864 D = -191.816 TD = time dial setting <0.1, 20> MOP = multiple of pickup <1.03, 205>
Equation 10. Inverse Field Overcurrent Reset
Where: Time
TD = time dial setting <0.1, 20> MOP
Primary and secondary setting groups provide additional control for two distinct machine operating conditions.
Field overcurrent protection can be enabled and disabled settings. Field overcurrent pickup and trip elements in BESTlogicPlus can be used in a logic scheme to initiate corrective action in response to the condition. BESTCOMSPlus field overcurrent settings are illustrated in Figure 37. In BESTCOMSPlus, a plot of the field overcurrent setting curve is displayed. The plot can display the primary or secondary setting curves.
= maximum time to reset in seconds
reset
= multiple of pickup <1.03, 205>
reset
E
without altering the pickup and time delay
DECS-250N Protection
Page 66
50 9440500990 Rev D
Figure 37. Field Overcurrent Protection Settings
A
Field Overcurrent Pickup (A): Adjustable from 0 to 22 Adc in 0.1 Adc increments.
B
Timing Mode: Select Definite Timing or Inverse Timing
C
Field Overcurrent Time Delay (s): Adjustable from 0 or 5 to 60 seconds in 0.1 second increments.
D
Field Overcurrent Time Dial: Adjustable from 0.1 to 20 in increments of 0.1.
E
Field Overcurrent Mode: Select Disabled or Enabled.
F
Inverse field overcurrent pickup curve.
G
Curve display selections.

Exciter Diode Monitor

The exciter diode monitor (EDM) monitors the condition of a brushless exciter’s power semiconductors by monitoring the exciter field current. The EDM detects both open and shorted rotating diodes in the exciter bridge. EDM settings are ill ustr ated in Figure 38. When implementing the EDM, it is imperative that the user know and specify the number of poles for the exciter armature and the generator rotor. For reliable open diode detection, the exciter to generator pole ratio current should be no less than 1.5 Adc. A pole ratio calculator, available in BESTCOMSPlus, can be used to calculate the pole ratio from the number of exciter armature and generator rotor poles.
A
should be 1.5 or higher and the level of field
Protection DECS-250N
Page 67
9440500990 Rev D 51
Note
If the number of poles for the exciter armature and the generator rotor is unknown, the EDM function will still operate. However, only a shorted diode can be detected. If the number of poles is not known, it is best to disable all exciter open diode protection parameters. In this situation, the generator and exciter pole parameters must be set at zero to prevent false tripping.
An open exciter diode may not be detected if the generator frequency and operating power frequency are the same and the DECS-250N operating power is supplied by a single-phase source. Three-phase operating power is recommended for reliable open diode detection. Open diode detection will also be impaired when a permanent magnet generator (PMG) is supplying DECS-250N operating power and the PMG frequency is the same or lower than the generator frequency.
All of the EDM setup guidelines presented here assume that the exciter diodes are not open or shorted at the time of setup and testing.
The EDM estimates the fundamental harmonic of the exciter field current using discrete Fourier transforms (DFTs). The harmonic, expressed as a percentage of the field current, is then compared to the pickup level for open diode detection exceeds the open diode or shorted diode pickup level, then the appropriate time delay will begin. After the time delay for the open diode
D
or shorted diodeE condition expires and if the percentage of field current continues to exceed the open or shorted diode pickup setting, the condition is annunciated. EDM pickup and trip elements in BESTlogicPlus c an be used in a logic scheme to initiate corrective action in response to an open or shorted diode condition.
B
and shorted diode detectionC. If the percentage of field current
An EDM disable level setting prevents nuisance annunciations due to low excitation current or the generator frequency being out of range. A disable level setting shorted-diode protection when the rated field current drops below the user-defined percentage. EDM protection can be disabled and enable d
G
by the user without altering the individual protection settings.
F
can be used to disable both open- and
Applying EDM Protection
It is especially difficult to detect open diode conditions when the number of generator and exciter poles is unknown. For this reason, the ratio of the number of brushless exciter armature poles to the number of generator rotor poles should be entered to ensure detection of both open and shorted diodes.
Finding the Maximum Field Ripple Current
To set the open diode pickup level and shorted diode pickup level, the maximum ripple current on the field must be known. This can be accomplished by running the generator unloaded and at rated speed. Vary the generator voltage from minimum to maximum while monitoring the EDM ripple level on the HMI display. Record the highest value.
Setting the Pickup Level—Number of Generator Poles Known
Multiply the highest EDM ripple value, obtained in the preceding paragraph, by 2. The result is the open diode pickup level setting. The multiplier can be varied between 1.5 and 5 to increase or decrease the trip margin. However, reducing the multiplier could result in nuisance open diode indications.
Multiply the highest EDM ripple value, obtained in the preceding paragraph by 50. The result is the shorted diode pickup level setting. The multiplier can be varied between 40 and 70 to increase or decrease the trip margin. However, reducing the multiplier could result in nuisance shorted diode indications.
The DECS-250N has fixed EDM inhibit levels to prevent nuisance failed-diode indications while the generator frequency is less than 40 hertz or greater than 70 hertz. EDM operation is also inhibited when the level of field current is below the disable level setting.
DECS-250N Protection
Page 68
52 9440500990 Rev D
Figure 38. Exciter Diode Monitor Protection Settings
A
EDM Pole Ratio: Adjustable from 0 to 10 in 0.01 increments.
B
Open Diode Pickup Level (%): Adjustable from 0 to 100% in 0.1% increments.
C
Shorted Diode Pickup Level (%): Adjustable from 0 to 100% in 0.1% increments.
D
Open Diode Delay (s): Adjustable from 10 to 60 seconds in 0.1 second increments.
E
Shorted Diode Delay (s): Adjustable from 5 to 30 seconds in 0.1 second increments.
F
Disable Level (%): Adjustable from 0 to 100% in 0.1% increments.
G
Mode: Select Disabled or Enabled.
Setting the Pickup Level—Number of Generator Poles Unknown
The DECS-250N can detect shorted diode conditions when the number of generator poles is not known. To provide this protection, disable open diode protection, set the pole ratio at zero, and enable shorted diode protection. Multiply the maximum EDM ripple level, obtained under Finding the Maximum Field Ripple Current, by 30. The multiplier can be varied between 20 and 40 to increase or decrease the pickup margin. However, reducing the multiplier could result in nuisance shorted diode indications.
Testing the EDM Settings
Start the generator from rest and increase the speed and voltage to the rated value. Load the machine to its rating and confirm that no failed diode annunciations occur. All of the EDM setup guidelines presented here assume that the exciter diodes were not opened or shorted at the time of setup and testing.

Power Input Failure

A power input failure condition exists when any one of the following occurs:
1-Phase Operating Power
When operating power decreases below 50 Vac, a power input failure condition exists.
3-Phase Operating Power
All three phases of operating power decrease below 50 Vac
One or more phases of operating power decreases below 10 Vac
A phase-to-phase voltage imbalance greater than 20% exists at the operating power input
The DECS-250N settings must be properly set to match the active operating power configuration. For example, if the DECS-250N settings reflect a 3-phase power configuration but the actual operating power configuration is 1-phase then the DECS-250N will interpret the one phase as an imbalance and set an alarm/trip. For more information on 1- and 3-phase operating power settings see Configuration and Specifications.
Power input failure protection can be used for PMG applicatio ns, shunt-, or PMG-powered systems. This protection is only active in Start mode and after soft start. A time delay setting annunciations to accommodate transient reductions/imbalances in the operating power input voltage. Power input failure protecti on can be enabled and disabled
B
without altering the time delay setting. The
A
delays power input failure
Protection DECS-250N
Page 69
9440500990 Rev D 53
Caution
selected power input configurationC is shown as a read-only value. Power input failure pickup and trip elements in BESTlogicPlus can be used in a logic scheme to initiate corrective action in response to the condition. BESTCOMSPlus power input failure settings are illustrated in Figure 39.
Figure 39. Power Input Failure Protection Settings
A
Time Delay (s): Adjustable from 0 to 10 seconds in 0.1 second increments.
B
Mode: Select Disabled or Enabled.
C
Power Input Configuration: Read-only value

Sync-Check Protection

BESTCOMSPlus Navigation Path: Settings Explorer, Protection, Sync Check (25) HMI Navigation Path: Settings, Protection, Sync Check (25)
Because the DECS-250N sync-check and automatic synchronizer functions share internal circuitry, the sync-check function is not available when the automatic synchronizer style option is selected.
When enabled controlled generator with a bus/utility. During synchronizing, the 25 function compares the voltage
C
, and slip frequencyD differences between the generator and bus. When the generator/bus
angle
A
, the sync-check (25) function supervises the automatic or manual synchronism of the
B
, slip
differences fall within the setting for each parameter, the 25 status virtual output asserts. This virtual output can be configured (in BESTlogicPlus) to assert a DECS-250N contact output. This contact output can, in turn, enable the closure of a breaker tying the generator to the bus.
E
An angle compensation
setting is provided to offset phase shift caused by transformers in the system.
For more details on the angle compensation setting, see the Synchronizer chapter.
F
When the Gen Freq > Bus Freq
setting box is checked, the 25 status virtual output will not assert unless the generator frequency is greater than the bus frequency. Sync-check protection settings are illustrated in Figure 40.
DECS-250N Protection
Page 70
54 9440500990 Rev D
Figure 40. Sync-Check Protection Settings
A
Sync-Check Mode: Se lect Dis ab led or Enab led .
B
Sync-Check Voltage Difference (%): Adjustable from 0 to 50% in 0.1% increments.
C
Sync-Check Slip Angle (Degrees): Adjustable from 1 to 99° in 0.1° increments.
D
Sync-Check Slip Freq (Hz): Adjustable from 0.01 to 0.5 Hz in 0.01 Hz increments.
E
Angle Compensation (°): Adjustable from 0.0 to 359.9° in 0.1° increments.
F
Gen Freq > Bus Freq: Enable (checked) or Disable (unchecked)

Generator Frequency Less Than 10 Hertz

A Generator Below 10 Hz condition is annunciated when the generator frequency decreases below 10 Hz or when residual voltage is low at 50/60 Hz. A Generator Below 10 Hz annunciation is automatically reset when the generator frequency increases above 10 Hz or the residual voltage increases above the threshold.

Configurable Protection

BESTCOMSPlus Navigation Path: Settings Explorer, Protection, Configurable Protection HMI Navigation Path: Settings, Protection, Configurable Protection
The DECS-250N has eight configurable protection elements which can be used to supplement the standard DECS-250N protection. BESTCOMSPlus configurable protection settings are illustrated in Figure 41. To make the protection elements easier to identify, each element can be given a user-assigned
A
. A protection element is configured by selecting the parameterB to be monitored and then
name establishing the operating characteristics for the element. Any one of the following parameters may be selected.
Analog Input 1, 2, 3, 4, 5, 6, 7, 8
Auxiliary Input Current (mA)
Auxiliary Input Voltage
Bus Frequency
Bus Voltage: V
EDM Ripple
Exciter Field Current
Exciter Field Voltage
Gen Current: I
Gen Frequency
Gen Power Factor
Gen Voltage: V
, VBC, or VCA
AB
, IB, IC, or Average
A
, VBC, VCA, or Average
AB
Protection DECS-250N
Page 71
9440500990 Rev D 55
Kilovarhours
Kilowatthours
Negative Sequence Current
Negative Sequence Voltag e
Positive Sequence Current
Positive Sequence Voltage
PSS Output
RTD Input 1, 2, 3, 4, 5, 6, 7, 8
Setpoint Position
Thermocouple 1, 2
Total kVA
Total kvar
Total kW
Tracking Error
If an optional Analog Expansion Module (AEM-2020) is used, any one of the following analog, RTD, and thermocouple inputs may be selected.
Analog Input 1, 2, 3, 4, 5, 6, 7, or 8
RTD Input 1, 2, 3, 4, 5, 6, 7, or 8
Thermocouple 1 or 2
Protection can be always enabled or enabled only when the DECS-250N is enabled and supplying excitation
C
. When protection is enabl ed only in Start mo de, an arm in g time delayD can be used to delay
protection following the start of excitation.
E
A hysteresis function holds the protection function active for a user-defined percentage
above/below the pickup threshold. This prevents repeated pickups and dropouts where the monitored parameter is hovering around the pickup threshold. For example, with a hysteresis setting of 5% on a protection element configured to pick up at 100 Aac of A-phase generator overcurrent, the protection element would pick up when the current rises above 100 Aac and remain picked up until the current decreases below 95 Aac.
Each of the eight configurable protection elements has four individually-adjustable thresholds. Each threshold can be set for pickup when the monitored parameter increases above the pickup setting (Over), pickup when the monitored parameter decreases below the pickup setting (Under), or no pickup (Disabled)
F
. The pickup level for the monitored parameter is defined by a threshold settingG. While the threshold setting range is broad, you must use a value within the setting range limits for the monitored parameter. Using an out-of-limits threshold will prevent the protection element from functioning. An activation delay
H
serves to delay a protective trip after the threshold (pickup) level is exceeded.
DECS-250N Protection
Page 72
56 9440500990 Rev D
Figure 41. Configurable Protection Settings
A
Label Text: Accepts a maximum of 16 alphanumeric characters.
B
Param Selection: Select Gen VAB, Gen VBC, Gen VCA, Gen V Average, Bus Freq, Bus VAB, Bus VBC, Bus VCA, Gen Freq, Gen PF, KWH, kvarh, Gen IA, Gen IB, Gen IC, Gen I Average, KW Total, KVA Total, kvar Total, EDM Ripple, Exciter Field Volta ge, Ex c iter F ield Curren t , Auxiliary Input Voltage, Auxiliary Input Current (mA), Setpoint Position, Tracking Error, Negative Sequence Voltage, Negative Sequence Current, Positive Sequence Voltage, Positive Sequence Current, PSS Output, Analog Input 1, Analog Input 2, Analog Input 3, Analog Input 4, Analog Input 5, Analog Input 6, Analog Input 7, Analog Input 8, RTD Input 1, RTD Input 2, RTD Input 3, RTD Input 4, RTD Input 5, RTD Input 6, RTD Input 7, RTD Input 8, Thermocouple 1, Thermocouple 2, Power Input, or NLS Error Percent.
C
Stop Mode Inhibit: Select Yes or No.
D
Arming Delay: Adjustable from 0 to 300 seconds in 1 second increments.
E
Hysteresis: Adjustable from 0 to 100% of the threshold setting in 0.1% increments.
F
Mode: Select Over, Under, or Disabled.
G
Threshold: Adjustable from –999,999 to +999,999 in 0.01 increments.
H
Activation Delay (s): Adjustable from 0 to 300 seconds in 1 second increments.
Protection DECS-250N
Page 73
9440500990 Rev D 57
FIELD CURRENT
TIME IN SECONDS
High
Current
Time
CONTINUOUS
P0063-09
0-10sec
Low
Current
Level
High
Current
Level

Limiters

DECS-250N limiters ensure that the controlled machine does not exceed its capabilities. Overexcitation, underexcitation, stator current, and re ac tive pow er are limited by the DECS-250N. It also limits the voltage during underfrequency conditions.

Overexcitation Limiter

BESTCOMSPlus Navigation Path: Settings Explorer, Operating Settings, Limiters, OEL HMI Navigation Path: Settings, Operating Settings, Li miters, OEL
Operating in the overexcited region of a generator’s capability curve can cause excessive field current and field winding heating. The overexcitation limiter (OEL) monitors the level of field current supplied by the DECS-250N and limits it to prevent field overheating.
A
The OEL can be enabled limit excitation or issue an alarm. This behav ior is configur e d in BEST logic ™Plus.
Two styles of overexcitation limiting are available in the DECS-250N: summing point or takeover. settings are illustrated in Figure 45, Fi gure 46, and Figure 47.

Summing Point OEL

in all regulation modes. OEL behavior in manual mode can be configured to
B
OEL
Summing point overexcitation limiting compensates for field overcurrent conditions while the machine is offline or online. Offline and online OEL behavior is dictated by two separate groups of settings. Primary and secondary setting groups (selectable in configurable logic) provide additional control for two distinct machine operating conditions.
Offline Operation
For offline operation, there are two levels of summing-point overexcitation limiting: low and high. Figure 42 illustrates the relationship of the high-level and low-level OEL thresholds.
Figure 42. Summing Point, Offline, Overexcitation Limiting
The offline, low-level OEL threshold is determined by the low-level settingC. When the excitation level is below the low-level setting, no action is taken by the DECS-250N. The generator is permitted to operate indefinitely with this level of excitation.
D
The offline, high-level OEL threshold is determined by a high level
and high timeE setting. When the excitation level exceeds the high level setting, the DECS-250N acts to limit the excitation to the value of the high-level setting. If this level of excitation persists for the duration of the high time setting, the DECS­250N acts to limit the excitation to the value of the low-level setting.
Online Operation
For online operation, there are three levels of summing-point overexcitation limiti ng: low, med iu m, and high. Figure 43 illustrates the relationship of the low-, medium-, and high-level OEL thresholds.
DECS-250N Limiters
Page 74
58 9440500990 Rev D

=
× 
+ + × 
FIELD CURRENT
TIME IN SECONDS
High
Current
Time
0-10sec
CONTINUOUS
P0063-10
Medium Current
Time
0-120sec
Low
Current
Level
Medium Current
Level
High
Current
Level
Figure 43. Summing Point, Online, Overexcitation Limiting
The online, low-level OEL threshold is determined by the low-level settingF. When the excitation level is below the low-level setting, no action is taken by the DECS-250N. The generator is permitted to operate indefinitely with this level of excitation. When the excitation level exceeds the low-level setting for the duration of the medium time setting, the DECS-250N acts to limit the excitation to the value of the low­level setting.
G
The online, medium-level OEL threshold is determined by a medium level When the excitation level exceeds the medium level setting, the DECS-250N acts to limit the excitation to the value of the medium-level setting. If this level of excitation persists for the duration of the high time setting, the DECS-250N acts to limit the excitation to the value of the medium-level setting.
I
The online, high-level OEL threshold is determined by a high level
and high timeJ setting. When the excitation level exceeds the high level setting, the DECS-250N instantaneously acts to limit the excitation to the value of the medium-level setting.
and medium timeH setting.
OEL Voltage Dependency
K
Online OEL operation can be tailored for fault proximity by enabling
the OEL voltage dependency function. If a fault is close to the generator, the OEL high-level setting is disabled (based upon the rate of change) and switches to the medium-level setting. If a fault is away from the machine, all three (high, medium, and low) settings remain active. In other words, if the rate of terminal voltage reduction exceeds the OEL voltage dependency setting
L
, the high-level setting remains enabled. Otherwise, the high-level
setting is disabled.

Takeover OEL

Takeover overexcitation limiting limits the field current level in relation to an inverse time characteristic similar to that shown in Figure 44. Separate curves may be selected for online and offline operation. If the system enters an overexcitation condition, the field current is limited and forced to follow the selected curve. The inverse time characteristic is defined by Equation 11.
Equation 11. Inverse Pickup Time Characteristic
Where:
= time to pick up in seconds
t
pickup
A = -95.908 B = -17.165 C = 490.864 D = -191.816 TD = time dial setting <0.1, 20> MOP = multiple of pickup <1.03, 205>
Limiters DECS-250N
Page 75
9440500990 Rev D 59


=
 × 
(


)
1
Figure 44. Inverse Time Characteristic for Takeover OEL
Primary and secondary setting groups provide additional control for two distinct machine operating conditions. Each mode of takeover OEL operation (offline and online) has a low-level time dial
Once the field current decreases below the dropout level (95% of pickup), the function is reset based on the selected reset method
O
setting.
P
. The available reset methods are inverse, integrating, and instantaneous.
M
, high-levelN, and
Using the inverse method, the OEL is reset based on time versus multiple of pickup (MOP). The lower the field current level, the less time is required for reset. Inverse reset uses the following curve (Equation 12) to calculate maximum reset time.
Equation 12. Inverse Reset Time Characteristic
Where: Time
RC = reset coefficient setting
= maximum time to reset in seconds
reset
Q
<0.01, 100> TD = time dial setting <0.1, 20> MOP
= multiple of pickup <1.03, 205>
reset
For the integrating reset method, the reset time is equal to the pickup time. In other words, the amount of time spent above the low level threshold is the amount of time required to reset.
Instantaneous reset has no intentional time delay.
®
In BESTCOMSPlus
, a plot of the takeover OEL setting curves is displayed. Settings enable selection of the displayed curves. The plot can display the primary or secondary setting curves, the offline or online settings curves, and the pick up or reset settings curves.
DECS-250N Limiters
Page 76
60 9440500990 Rev D
Figure 45. OEL Configuration Settings
Figure 46. Summing Point OEL Settings
Limiters DECS-250N
Page 77
9440500990 Rev D 61
Figure 47. Takeover OEL Settings
A
OEL Enable: Select checkbox to enable OEL.
B
OEL Mode: Select Summing Point or Takeover.
C
Summing Point OEL Offline Low Level: Adjustable from 0 to 20 Adc. The setting increment is 0.01 Adc.
D
Summing Point OEL Offline High Level: Adjustable from 0 to 40 Adc. The setting increment is 0.01 Adc.
E
Summing Point OEL Offline High Time: Adjustable from 0 to 10 s in 1 s increments.
F
Summing Point OEL Online Low Level: Adjustable from 0 to 20 Adc. The setting increment is 0.01 Adc.
G
Summing Point OEL Online Medium Level: Adjustable from 0 to 30 Adc. The setting increment is 0.01
Adc.
H
Summing Point OEL Online Medium Time: Adjustable from 0 to 120 s in 1 s increments.
I
Summing Point OEL Online High Level: Adjustable from 0 to 40 Adc for the DECS-250. The setting
increment is 0.01 Adc.
J
Summing Point OEL Online High Time: Adjustable from 0 to 10 s in 1 s increments.
K
dv/dt Enable: Check box to enable OEL voltage dependency.
L
dv/dt Level: Adjustable from –10 to 0 in 0.1 increments (per unit).
M
Takeover OEL Low Level: Adjustable from 0 to 15 Adc in increments of 0.01 Adc.
N
Takeover OEL High Level: Adjustable range varies depending on value of Low Level setting.
O
Takeover OEL Time Dial: Adjustable from 0.1 to 20 in increments of 0.1.
P
Reset Method: Select Inverse, Integrating, or Instantaneous.
Q
Reset Coefficient: Adjustable from 0.01 to 100 in incremen ts of 0.01.
F
Takeover OEL curve.
G
Curve display selections/legend.

Underexcitation Limiter

BESTCOMSPlus Navigation Path: Settings Explorer, Oper ati ng Set tings , Limiters, UEL HMI Navigation Path: Settings, Operating Settings, Limiters, UEL
Operating a generator in an underexcited condition can cause the stator end iron to overheat. Extreme underexcitation may lead to a loss of synchronism. The underexcitation limiter (UEL) senses the leading var level of the generator and limits decreases in excitation to limit end-iron heating. When enabled
DECS-250N Limiters
A
, the
Page 78
62 9440500990 Rev D
Note
UEL operates in all regulation modes. UEL behavior in manual mode can be configured to limit excitation or issue an alarm. This behavior is configured in BESTlogicPlus.
For UEL to operate, the PARALLEL_EN_LM logic block must be set true in BESTlogicPlus programmable logic.
UEL settings are illustrated in Figure 48 and Figure 49. Underexcitation limiting is implemented through an internally-generated UEL curve or a user-defined UEL
B
. The internally-generated curve is based on the desired reactive power limit at zero real power with
curve respect to the generator voltage and current rating. The absorbed reactive power axis of the curve on the UEL Custom Curve screen can be tailored
A user-defined curve can have a maximum of five points generator characteristic by specifying the coordinates of the intended leading reactive power (kvar) limit at the appropriate real power (kW) level.
The levels entered for the user-defined curve are defined for operation at the rated generator voltage. The user-defined UEL curve can be automatically adjusted based on generator operating voltage by using the UEL voltage dependency real-power exponent based on the ratio of the generator operating voltage divided by the generator rated voltage raised to the power of the UEL voltage dependency real-power exponent. UEL voltage dependency is further defined by a real power filter time constant
F
that is applied to the l ow-pass filter for the real power output.
C
for your application.
D
. This curve allows the user to match a specific
E
. The user-defined UEL curve is automatically adjusted
Figure 48. UEL Configuration Settings
Limiters DECS-250N
Page 79
9440500990 Rev D 63
Figure 49. UEL Custom Curve Screen
A
UEL Configuration Enable: Check box to enable underexcitation limiter.
B
Curve Selection: Selec t Int er nal or Custo mized.
C
Internal Curve: Enter number to adjust range of y axis.
D
Custom Curve: Insert, enter, and delete curve data points as needed.
E
Real Power Exponent: Enter a value of 1 or 2.
F
Real Power Filter Time Constant: Enter a value from 0 to 20 seconds in 0.1 second increments.

Stator Current Limiter

BESTCOMSPlus Navigation Path: Settings Explorer, Oper ati ng Set tings , Limiters, SCL HMI Navigation Path: Settings, Operating Settings, Li miters , SCL
The stator current limiter (SCL) monitors the level of stator current and limits it to prevent stator overheating. To limit the stator current, the SCL modifies the excitation level according to the direction of var flow into or out of the generator. Excessive stator current with leading power factor calls for increased excitation. Excessive stator current with lagging power factor calls for reduced excitation.
A
The SCL can be enabled announce high stator current but will not act to limit it. Primary and secondary SCR setting groups provide additional control for two distinct machine operating conditions. Stator current limiting is provided at two levels: low and high (see Figure 50). SCL settings are illustrated in Figure 51.
in all regulation modes. When operating in Manual mode, the DECS-250N will
DECS-250N Limiters
Page 80
64 9440500990 Rev D
Figure 50. Stator Current Limiting

Low-Level Limiting

When the stator current exceeds the low-level settingB, the DECS-250N annunciates the elevated level. If this condition persists for the duration of the High SCL Time setting, the DECS-250N acts to limit the current to the low-level SCL Setting. The generator is permitted to operate indefinitely at or below the low­level threshold.

High-Level Limiting

When the stator current exceeds the high-level settingC, the DECS-250N acts to limit the current to the high-level value. If this level of current persists for the duration of the high-level time setting
D
, the DECS-
250N acts to limit the current to the low-level SCL setting.

Initial Delay

In the case of low- or high-level stator current limiting, the limiting function will not respond until an initial time delay
A
Stator Current Limiter Enable: Check box to enable.
B
Low SCL Level: Adjustable from 0 to 66,000 Aac in 0.1 Aac increments.
C
High SCL Level: Adjustable from 0 to 66,000 Aac in 0.1 Aac increments.
D
High SCL Time: Adjustable from 0 to 60 s in 0.1 s increments.
E
Initial Delay: Adjustable from 0 to 10 s in 0.1 s increments.
E
expires.
Figure 51. Stator Current Limiter Settings
Limiters DECS-250N
Page 81
9440500990 Rev D 65

Var Limiter

BESTCOMSPlus Navigation Path: Settings Explorer, Oper ati ng Set tings , Limiters, var HMI Navigation Path: Settings, Operating Settings, Li miter s, VA R
A
The var limiter can be enabled and secondary setting groups provide additional control for two distinct machine operating conditions. The var limiter setpoint A delay setting
B
is expressed as a percentage of the calculated, maximum VA rating for the machine.
C
establishes a time delay between when the var threshold is exceeded and the DECS-
250N acts to limit the var flow. Var limiter settings are illustrated in Figure 52.
A
Var Limiter Enable: Select checkbox to enable var limiter.
B
Var Limiter Setpoint: Adjustable from 0 to 200% in 0.1% increments.
C
Var Limiter Delay: Adjustable from 0 to 300 s in 0.1 s increments .
to limit the level of reactive power exported from the generator. Primary
Figure 52. Var Limiter Settings

Limiter Scaling

BESTCOMSPlus Navigation Path: Settings Explorer, Oper ati ng Set tings , Limiters, Scaling HMI Navigation Path: Settings, Operating Settings, Li miters , Sc aling
Automatic adjustment (scaling) of the overexcitation limiter and stator current limiter is possible through the DECS-250N auxiliary control input. Limiter scaling settings are illustrated in Figure 53. OEL and SCL scaling may be independently enabled and disa ble d on six parameters: signal and scale for three points (levels).
With the scaling input set to Auxiliary Input, the signal value control input. This input can be a 4 to 20 mAdc signal applied to terminals I+ and I– or a –10 to +10 Vdc signal applied to terminals V+ and V–. (The input type is selected in BESTCOMSPlus). See the Auxiliary Control chapter of this manual for details.
With the scaling input set to AEM RTD #, the signal value for each point represents an AEM RTD input in degrees Fahrenheit. See the Anal og Expansion Module chapter of the manual for details.
C
The scale value
for each point defines the limiter low level as a percent of rated field current for the OEL
and rated stator current for the SCL.
A
. Automatic adjustment of the OEL and SCL is based
B
for each point represents the auxiliary
DECS-250N Limiters
Page 82
66 9440500990 Rev D
Figure 53. Limiter Scaling Settings
A
OEL and SCL Scale Enable: Select Auxiliary Input, AEM RTD 1 to AEM RTD 8, or Disabled.
B
Signal: Adjustable from –10 to +10 in 0.01 increments when Auxiliary Input is selected.
Adjustable from –58 to +482 in increments of 1 when any AEM RTD input is selected.
C
Scale: Adjustable from 0 to 200 in increments of 0.1.

Underfrequency Limite r

BESTCOMSPlus Navigation Path: Settings Explorer, Oper ati ng Set tings , Limiters, Underfrequency HMI Navigation Path: Settings, Operating Settings, Limiters, UEL
A
The underfrequency limiter is selectable for underfrequency limiting or volts per hertz limiting limiters protect the generator from damage due to excessive magnetic flux resulting from low frequency and/or overvoltage.
Underfrequency and volts per hertz limiter settings are illustrated in Figure 56.
B
If the generator frequency decreases below the corner frequency
for the selected underfrequency slopeC (Figure 54), the DECS-250N adjusts the voltage setpoint so that the generator voltage follows the underfrequency slope. The adjustment range of the corner frequency and slope settings enables the DECS-250N to precisely match the operating characteristics of the prime mover and the loads being applied to the generator.
. These
Limiters DECS-250N
Page 83
9440500990 Rev D 67
Corner Frequency
GENERATOR VOLTS
GENERATOR FREQUENCY
P0004-34.vsd
12-03-01
0 %
100 %
Nominal
10 Hz
Vo
l
ts
/H
e
r
tz
R
a
ti
o
GENERATOR VOLTS
GENERATOR FREQUENCY
P0004-33.vsd
12-03-01
0 %
110 %
Nominal
0 Hz
100 %
Figure 54. Typical Underfrequency Compensation Curve

Volts per Hertz

The volts per hertz limiter prevents the regulation setpoint from exceeding the volts per hertz ratio defined by the underfrequency slope setting
Figure 55. Typical 1.1 PU Volts per Hertz Limiter Curve
Beside the underfrequency slope setting, volts per hertz limiter operation is determined by the high limiter setting, low limiter setting, and time limiter setting. The high limiter setting threshold for volts per hertz limiting, the low limiter setting per hertz limiting, and the time limiter setting
C
. A typical volts per hertz limiter curve is illustrated in Figure 55.
D
E
F
establishes the time delay for limiting.
establishes the minimum threshold for volts
establishes the maximum
DECS-250N Limiters
Page 84
68 9440500990 Rev D
Figure 56. Underfrequency/Volts per Hertz Limiter Settings
A
Limiter Mode: Select UF Limiter or V/Hz Limiter.
B
Underfrequency Limiter Corner Frequency: Adjustable from 40 to 75 Hz in 0.1 Hz increments.
C
Underfrequency Limiter Slope: Adjustable from 0 to 3 in increments of 0.01.
D
V/Hz High Limiter: Adjustable from 0 to 3 in increments of 0.01.
E
V/Hz Low Limiter: Adjustable from 0 to 3 in increments of 0.01.
F
V/Hz Time Limiter: A djustable from 0 to 10 s in 0.2 s increments.
Limiters DECS-250N
Page 85
9440500990 Rev D 69

Metering

The DECS-250N provides comprehensive metering of internal and system conditions. These capabilities include extensive parameter metering, status indication, reporting, and real-time metering analysis.

Metering Explorer

DECS-250N metering is accessed through the metering explorer menu on the front panel HMI or the BESTCOMSPlus
®
metering explorer.
HMI
On the front panel HMI, the metering explorer is accessed through the Metering branch of the HMI menu.

BESTCOMSPlus®

In BESTCOMSPlus, the metering explorer is located in the upper left portion of the application window. Metering Screen Docking
A docking feature within the metering explorer allows arrangement and docking of multiple metering screens. Clicking and dragging a metering screen tab displays a blue, transparent square, several arrow boxes, and a tab box. These docking elements are illustrated in Figure 57.
Figure 57. Metering Screen Docking Controls
Dragging the blue square to the “up” (locator A), “right” (locator B), or “down” (locator C) arrow box places the selected metering screen across the top, along the side, or at the bottom of the window. Once placed, the screen’s thumbtack icon can be clicked to dock the screen on the corresponding top, right, or lower bar. A docked screen is viewed by hovering the mouse pointer over the docked screen.
Dragging the blue square to one of the four arrow boxes (locator D) places the screen inside the selected window according to the arrow box selected. A metering screen can be placed as a tab inside the selected window by dropping the screen on the tab box at the center of the four arrow boxes.
DECS-250N Metering
Page 86
70 9440500990 Rev D
Dragging the blue square anywhere other than one of the arrow/tab boxes places the selected metering screen as a floating window.

Metered Parameters

DECS-250N meterin g cate gories inclu de gen er ator, p ow er , bus, field, power system stabilizer (PSS), and generator synchronization parameters.

Generator

BESTCOMSPlus Navigation Path: Metering Explorer, Generator HMI Navigation Path: Metering Explorer, Generator
Metered generator parameters include the voltage (magnitude and angle), current (magnitude and angle), and frequency. Primary- and per-unit values are available. Figure 58 illustrates the generator primary­values metering screen.
Figure 58. Generator Primary-Values Metering

Power

BESTCOMSPlus Navigation Path: Metering Explorer, Power HMI Navigation Path: Metering Explorer, Power
Metered power parameters include true power (kW), apparent power (kVA), reactive power (kvar), and machine power factor. Primary- and per-unit values are available. Accumulated watthours (positive and negative kWh), varhours (positive and negative kvarh), and voltampere hours (kVAh) are also metered. Figure 59 illustrates the power primary-values screen and Figure 60 illustrates the energy screen.
Metering DECS-250N
Page 87
9440500990 Rev D 71
DECS-250 Operating Mode
Generator
Motor
Positive (+)
Leading PF
Lagging PF
Negative (–)
Lagging PF
Leading PF
Figure 59. Power Primary-Values
Figure 60. Energy
When operating in motor mode, values for var and power factor will be opposite in BESTCOMSPlus and on the front-panel HMI. See Table 4.
Table 4. Operating Mode
Sign of Vars
Bus
BESTCOMSPlus Navigation Path: Metering Explorer, Bus HMI Navigation Path: Metering Explorer, Bus
Metered bus parameters include the voltage across phases A and B (Vab), phases B and C (Vbc), phases A and C (Vca), and the average bus voltage. The frequency of the bus voltage is also metered. Primary- and per-unit values are available. Figure 61 illustrates the bus primary-values metering screen.
DECS-250N Metering
Page 88
72 9440500990 Rev D
Figure 61. Bus Primary-Values Metering

Field

BESTCOMSPlus Navigation Path: Metering Explorer, Field HMI Navigation Path: Metering Explorer, DECS Output
Metered field parameters include the field voltage (Vfd), current (Ifd), and exciter diode ripple. The exciter diode ripple is reported by the exciter diode monitor (EDM) and is reported as a percentage of the induced ripple in the exciter field current.
To achieve the desired level of excitation, the appropriate level of operating power input voltage must be applied. This value is displayed as the power input voltage.
The level of excitation power supplied to the field is displayed as a percentage, with 0% being the minimum and 100% being the maximum.
Primary- and per-unit values are available. Figure 62 illustrates the field primary-values metering screen.
Figure 62. Field Primary-Values Metering
PSS
BESTCOMSPlus Navigation Path: Metering Explorer, PSS (Power System Stabilizer) HMI Navigation Path: Metering Explorer, PSS
Values metered by the power system stabilizer function display positive sequence voltage and current, negative sequence voltage and current, terminal frequency deviation, compensated frequency deviation, and the per-unit PSS output level. The PSS function on/off status is also reported. Primary- and per-unit values are available. Figure 63 illustrates the PSS primary-values metering screen.
Metering DECS-250N
Page 89
9440500990 Rev D 73
Figure 63. PSS Primary-Values Metering

Synchronization

BESTCOMSPlus Navigation Path: Metering Explorer, Synchronization HMI Navigation Path: Metering Explorer, Synchronizatio n
Metered generator-to-bus synchronization para meter s inc lu de the slip fr equ ency , s lip ang le, and volt age difference. Primary- and pe r -unit values are available. Figure 64 illustrates the synchronization primary­values metering screen.
Figure 64. Synchronization Primary Values Metering

Auxiliary Control Input

BESTCOMSPlus Navigation Path: Metering Explorer, Aux Input HMI Navigation Path: Metering Explorer, Aux Input
The control signal applied at the DECS-250N auxiliary cont rol inp ut is indicated on the Aux Input metering screen (Figure 65). As configured in BESTCOMSPlus, a dc voltage or dc current signal may be applied.
Figure 65. Auxiliary Control Input Metering

Tracking

BESTCOMSPlus Navigation Path: Metering Explorer, Tracking HMI Navigation Path: Metering Explorer, Tracking
DECS-250N Metering
Page 90
74 9440500990 Rev D
The metered setpoint tracking error between DECS-250N operating modes is displayed on the Tracking metering screen (Figure 66). Status fields are also provided for the on/off status for internal and external setpoint tracking. An additional status field indicates when the setpoint of an inactive operating mode matches the metered value.
Figure 66. Tracking Metering

Control Panel

BESTCOMSPlus Navigation Path: Metering Explorer, Control Panel HMI Navigation Path: Metering Explorer, Control Panel
The Control Panel (Figure 67) provides options for changing operating modes, selecting setpoint pre­positions, fine tuning setpoints, and toggling virtual switches. The setpoints for AVR, FCR, FVR, var, and PF are displayed, as well as Alarm status, PSS status, and Null Balance status.
Figure 67. Control Panel
Start/Stop Mode: Two indicators show the start/stop mode of the DECS-250N. In Stop mode, the Stop
indicator changes from gray to green. In Start mode the Start indicator changes from gray to green. To select the DECS-250N Start status, click the Start button. Click the Stop button to select DECS-250N Stop status.
AVR/Manual Mode: AVR and Manual Mode status is reported by two indicators. When the DECS-250N is operating in AVR mode, the AVR indicator changes from gray to green. When operating in manual mode, the manual indicator changes from gray to green. AVR mode is selected by clicking the AVR button, manual mode is selected by clicking the Manual button.
FCR/FVR Mode: FCR and FVR mode status is reported by two indicators. When the DECS-250N is operating in FCR mode, the FCR indicator changes from gray to green. When operating in FVR mode,
Metering DECS-250N
Page 91
9440500990 Rev D 75
the FVR indicator changes from gray to green. FCR mode is selected by clicking the FCR button. FVR mode is selected by clicking the FVR button.
Var/PF Mode: Three indicators report whether Var mode is active, Power Factor mode is active, or neither mode is active. When Var mode is active the var indicator changes from gray to green. When Power Factor mode is active, the PF indicator changes from gray to green. When neither mode is active, the Off indicator changes from gray to green. Var mode is enabled by clicking the var button. Power Factor mode is enabled by clicking the PF button. Neither mode is enabled by clicking the Off button. Only one mode can be enabled at any time.
Setpoint Pre-position: A control button and indicator is provided for the three setpoint pre-positions. Clicking the Set 1 button adjusts the excitation setpoint to the Pre-position 1 value and changes the Pre­position 1 indicator to green. Pre-positions 2 and 3 are selected by clicking either the Set 2 or Set 3 button.
Setpoints: Five status fields display the active setpoints for AVR mode, FCR mode, FVR mode, var mode, and Power Factor mode. These active setpoints, represented by a yellow font, are not to be confused with metered analog values which are represented by a green font throughout BESTCOMSPlus. For details on operating setpoint settings, see the Regulation chapter.
Setpoint Fine Adjust: Clicking the Raise button increases the active operating setpoint. Clicking the Lower button decreases the active operating setpoint. The raise and lower increment is a function of the
setpoint range of adjustment and the active mode traverse rate. The increments are directly proportional to the adjustment range and inversely proportional to the traverse rate.
Alarm Status: The Alarm Status indicator changes from gray to green when there is an active alarm. PSS Status: The PSS Status indicator changes from gray to green when the PSS is active. Null Balance: The Null Balance indicator changes from gray to green when the setpoint of the inactive
operating modes (AVR, FCR, FVR, var, and PF) match the setpoint of the active mode. Virtual Switches: These buttons control the open or closed status of the six virtual switches. Clicking the
Open button sets the switch to the open position and changes the switch indicator to gray. Clicking the Close button sets the switch to the closed position and changes the switch indicator to red. A dialog will appear asking if you are sure you want to open or close the switch.

Metering Summary

BESTCOMSPlus Navigation Path: Metering Explorer, Summary HMI Navigation Path: Not available via HMI
All of the metering values displayed on the individual, previously-described metering screens are consolidated on the metering summary screen. Primary- and per-unit values are available. Figure 68 illustrates the primary-values metering summary screen. The primary- and per-unit metering summary screens are available only in BESTCOMSPlus.
DECS-250N Metering
Page 92
76 9440500990 Rev D
Figure 68. Metering Summary Screen

Status Indication

Status indication is provided for DECS-250N system functions, inputs, outputs, network load share, configurable protection, alarms, and the real-time clock.

System Status

BESTCOMSPlus Navigation Path: Metering Explorer, Status, System Status HMI Navigation Path: Metering Explorer, Status, System Status
When any of the system functions illustrated in Figure 69 ar e act ive, the corr es p o ndi ng ind icator changes from gray to green. An inactive function is represented by a gray indicator.
Metering DECS-250N
Page 93
9440500990 Rev D 77
Figure 69. System Status Indication Screen

Inputs

BESTCOMSPlus Navigation Path: Metering Explorer, Status, Inputs HMI Navigation Path: Metering Explorer, Status, Inputs
Status annunciation is provided for the DECS-250N and optional Contact Expansion Module (CEM-2020) inputs. Annunciation is also provided for the optional Analog Expansion Module (AEM-2020) inputs .
DECS-250N Contact Inputs
Status indication for the DECS-250N’s 16 contact sensing inputs is provided on the BESTCOMSPlus contact inputs screen illustrated in Figure 70. An indicator changes from gray to red when a closed contact is sensed at the corresponding input.
DECS-250N Metering
Page 94
78 9440500990 Rev D
Figure 70. DECS-250N Contact Inputs Status Indication Screen
CEM-2020 Contact Inputs
The status of the 10 contact sensing inputs of the optional CEM-2020 Contact Expansion Module is provided on the BESTCOMSPlus
®
remote contact inputs screen. See the Co ntac t Ex pansi on Mod ul e
chapter of this manual for a description and illustration of this screen.
AEM-2020 Inputs
Status annunciations for the optional AEM-2020 Analog Expansion Module’s analog, RTD, thermocouple, and analog metering inputs are provided on the BESTCOMSPlus remote analog inputs, remote RTD inputs, remote thermocouple inputs, and remote analog input values screens. These screens are described and illustrated in the Analog Expansion Module chapter of this manual.

Outputs

BESTCOMSPlus Navigation Path: Metering Explorer, Status, Outputs HMI Navigation Path: Metering Explorer, Status, Outputs
Status annunciation is provided for the DECS-250N contact outputs and optional Contact Expansion Module (CEM-2020) contact outputs. Annunciation is also provided for the optional Analog Expansion Module (AEM-2020) analog outputs.
DECS-250 Contact Outputs
Status indication for the DECS-250N’s Watchdog and 11 contact outputs is provided on the BESTCOMSPlus contact outputs scr een illus trat ed in Figure 71. An indicator changes from gray to green when the corresponding output changes state (Watchdog output) or closes (Output 1 through 11).
CEM-2020 Contact Outputs
The status of the 24 contact outputs of the optional CEM-2020 Contact Expansion Module is provided on the BESTCOMSPlus
®
remote contact inputs screen. See the Contact Expansion Module chapter of this
manual for a description and illustration of this screen.
AEM-2020 Analog Outputs
Metering and status indications prov id ed by the option al AE M-2020 Analog Expansion Module are shown on the BESTCOMSPlus remote analog outputs screen. This screen is described and illustrated in the Analog Expansion Module chapter of this manual.
Metering DECS-250N
Page 95
9440500990 Rev D 79
Figure 71. DECS-250 Contact Outputs Status Indication Screen

Network Load Share

The screen shown in Figure 72 reports the error percent, reactive current, NLS average reactive current, and number of generators online. The status indicators change from gray to green when a status is active.
The Error percent is the deviation of the unit’s reactive current from the system average. The NLS Average Reactive Current is the average of the reactive current of every unit in the system. Generators Online is the number of units actively load sharing.
Figure 72. NLS Status Screen

Configurable Protection

BESTCOMSPlus Navigation Path: Metering Explorer, Status, Configurable Protection HMI Navigation Path: Metering Explorer, Status, Configurable Protection
Trip status for the eight configurable, supplemental protection elements is annunciated on the BESTCOMSPlus configurable protection screen (Figure 73). An indicator for each protection element’s four trip thresholds changes from gray to green when the corresponding trip threshold is exceeded.
DECS-250N Metering
Page 96
80 9440500990 Rev D
Figure 73. Configurable Protection Indication Status Screen

Alarms

BESTCOMSPlus Navigation Path: Metering Explorer, Status, Alarms HMI Navigation Path: Alarms automatically displayed when active
System parameters, communication links, protection functions, and remote inputs/outputs are constantly monitored for alarm conditions. Active and previously latched alarms are listed on the front panel display and the Alarms screen of BESTCOMSPlus. At the front panel, an inactive alarm is reset by selecting the alarm and then pressing the Reset pushbutton. A Reset Alarms button on the Alarms screen is clicked to clear all inactive alarms in BESTCOMSPlus. The BESTCOMSPlus Alarms screen is illustrated in Figure
74. All possible DECS-250N alarms are listed below.
Figure 74. DECS-250N Alarm Annunciation and Reset Screen
27P Protection 32 Protection 40Q 59P Protection 81O Protection 81U Protection AEM Communication Failure AEM Input 1 Out of Range AEM Input 1 Threshold 1 Trip AEM Input 1 Threshold 2 Trip AEM Input 1 Threshold 3 Trip AEM Input 1 Threshold 4 Trip AEM Input 2 Out of Range AEM Input 2 Threshold 1 Trip AEM Input 2 Threshold 2 Trip AEM Input 2 Threshold 3 Trip AEM Input 2 Threshold 4 Trip AEM Input 3 Out of Range
AEM Input 3 Threshold 1 Trip AEM Input 3 Threshold 2 Trip AEM Input 3 Threshold 3 Trip AEM Input 3 Threshold 4 Trip AEM Input 4 Out of Range AEM Input 4 Threshold 1 Trip AEM Input 4 Threshold 2 Trip AEM Input 4 Threshold 3 Trip AEM Input 4 Threshold 4 Trip AEM Input 5 Out of Range AEM Input 5 Threshold 1 Trip AEM Input 5 Threshold 2 Trip AEM Input 5 Threshold 3 Trip AEM Input 5 Threshold 4 Trip AEM Input 6 Out of Range AEM Input 6 Threshold 1 Trip AEM Input 6 Threshold 2 Trip AEM Input 6 Threshold 3 Trip
Metering DECS-250N
Page 97
9440500990 Rev D 81
AEM Input 6 Threshold 4 Trip AEM Input 7 Out of Range AEM Input 7 Threshold 1 Trip AEM Input 7 Threshold 2 Trip AEM Input 7 Threshold 3 Trip AEM Input 7 Threshold 4 Trip AEM Input 8 Out of Range AEM Input 8 Threshold 1 Trip AEM Input 8 Threshold 2 Trip AEM Input 8 Threshold 3 Trip AEM Input 8 Threshold 4 Trip AEM Output 1 Out of Range AEM Output 2 Out of Range AEM Output 3 Out of Range AEM Output 4 Out of Range CEM Communications Failure CEM Communications Failure CEM Hardware Mismatch Configurable Protection 1 Threshold 1 Trip Configurable Protection 1 Threshold 2 Trip Configurable Protection 1 Threshold 3 Trip Configurable Protection 1 Threshold 4 Trip Configurable Protection 2 Threshold 1 Trip Configurable Protection 2 Threshold 2 Trip Configurable Protection 2 Threshold 3 Trip Configurable Protection 2 Threshold 4 Trip Configurable Protection 3 Threshold 1 Trip Configurable Protection 3 Threshold 2 Trip Configurable Protection 3 Threshold 3 Trip Configurable Protection 3 Threshold 4 Trip Configurable Protection 4 Threshold 1 Trip Configurable Protection 4 Threshold 2 Trip Configurable Protection 4 Threshold 3 Trip Configurable Protection 4 Threshold 4 Trip Configurable Protection 5 Threshold 1 Trip Configurable Protection 5 Threshold 2 Trip Configurable Protection 5 Threshold 3 Trip Configurable Protection 5 Threshold 4 Trip Configurable Protection 6 Threshold 1 Trip Configurable Protection 6 Threshold 2 Trip Configurable Protection 6 Threshold 2 Trip Configurable Protection 6 Threshold 3 Trip Configurable Protection 6 Threshold 4 Trip Configurable Protection 7 Threshold 1 Trip Configurable Protection 7 Threshold 2 Trip Configurable Protection 7 Threshold 3 Trip Configurable Protection 7 Threshold 4 Trip Configurable Protection 8 Threshold 1 Trip Configurable Protection 8 Threshold 2 Trip Configurable Protection 8 Threshold 3 Trip Configurable Protection 8 Threshold 4 Trip Duplicate AEM Duplicate CEM Ethernet Link Lost Exciter Open Diode Exciter Shorted Diode Failed to Build Up Alarm Field Short Circuit Status
Field Short Circuit Status Firmware Change Generator Below 10Hz IRIG Lost Sync Loss of Sensing No Logic NTP Sync Lost OEL Phase Rotation Mismatch Power Input Failure Programmable Alarm 1 Name Programmable Alarm 10 Name Programmable Alarm 11 Name Programmable Alarm 12 Name Programmable Alarm 13 Name Programmable Alarm 14 Name Programmable Alarm 15 Name Programmable Alarm 16 Name Programmable Alarm 2 Name Programmable Alarm 3 Name Programmable Alarm 4 Name Programmable Alarm 5 Name Programmable Alarm 6 Name Programmable Alarm 7 Name Programmable Alarm 8 Name Programmable Alarm 9 Name Protection Field Over Current Protection Field Over Voltage RTD Input 1 Out of Range RTD Input 1 Threshold 1 Trip RTD Input 1 Threshold 2 Trip RTD Input 1 Threshold 3 Trip RTD Input 1 Threshold 4 Trip RTD Input 2 Out of Range RTD Input 2 Threshold 1 Trip RTD Input 2 Threshold 2 Trip RTD Input 2 Threshold 3 Trip RTD Input 2 Threshold 4 Trip RTD Input 3 Out of Range RTD Input 3 Threshold 1 Trip RTD Input 3 Threshold 2 Trip RTD Input 3 Threshold 3 Trip RTD Input 3 Threshold 4 Trip RTD Input 4 Out of Range RTD Input 4 Threshold 1 Trip RTD Input 4 Threshold 2 Trip RTD Input 4 Threshold 3 Trip RTD Input 4 Threshold 4 Trip RTD Input 5 Out of Range RTD Input 5 Threshold 1 Trip RTD Input 5 Threshold 2 Trip RTD Input 5 Threshold 3 Trip RTD Input 5 Threshold 4 Trip RTD Input 6 Out of Range RTD Input 6 Threshold 1 Trip RTD Input 6 Threshold 2 Trip RTD Input 6 Threshold 3 Trip RTD Input 6 Threshold 4 Trip
DECS-250N Metering
Page 98
82 9440500990 Rev D
RTD Input 7 Out of Range RTD Input 7 Threshold 1 Trip RTD Input 7 Threshold 2 Trip RTD Input 7 Threshold 3 Trip RTD Input 7 Threshold 4 Trip RTD Input 8 Out of Range RTD Input 8 Threshold 1 Trip RTD Input 8 Threshold 2 Trip RTD Input 8 Threshold 3 Trip RTD Input 8 Threshold 4 Trip SCL Thermocouple 1 Threshold 1 Trip
Thermocouple 1 Threshold 2 Trip Thermocouple 1 Threshold 3 Trip Thermocouple 1 Threshold 4 Trip Thermocouple 2 Threshold 1 Trip Thermocouple 2 Threshold 2 Trip Thermocouple 2 Threshold 3 Trip Thermocouple 2 Threshold 4 Trip Transfer Watchdog Alarm UEL Underfrequency VHz Unknown NLS Protocol Version Var Limiter
Alarm Configuration
BESTCOMSPlus Navigation Path: Settings Explorer, Alarm Configuration, Alarms
Alarms are configured using BESTCOMSPlus. Customize the reporting style of each alarm by choosing Disabled, Latching, or Non-Latching. Latching alarms are stored in nonvolatile memory and are retained even when control power to the DECS-250N is lost. Active alarms are shown on the front pan el LCD and in BESTCOMSPlus
until they are cleared. Non-latching alarms are cleared when control power is removed. Disabling an alarm affects only the annunciation of the alarm and not the actual operation of the alarm. This means that the alarm will still trip when trip conditions are met and the occurrence will appear on the sequence of events reports.
The BESTCOMSPlus Alarm Settings screen is illustrated in Figure 75 below.
Figure 75. Alarm Settings Screen
User-Programmable Alarms
BESTCOMSPlus Navigation Path: Settings Explorer, Alarm Configuration, User Programmable Alarms
Sixteen user programmable alarms are available. User alarm labels Programmable Alarms screen (Figure 76). If the trip condition exists for the duration of the Activation
B
, the alarm is tripped. When active, the label of a user programmable alarm is displayed on the
Delay BESTCOMSPlus
®
Alarms screen, on the front panel display, and in the sequence of events reports.
A
are entered on the User
Metering DECS-250N
Page 99
9440500990 Rev D 83
Each alarm provides a logic output that can be connected to a physical output or other logic input using BESTlogicPlus Programmable Logic. Refer to the BESTlogicPlus chapter for more information on setting up alarm logic.
Figure 76. User Programmable Alarms Screen
A
Label Text: Enter a string of alphanumeric characters.
B
Activation Delay: Adjustable from 0 to 300 in 1 second increments.
Retrieving Alarm Information
Alarms are displayed in the sequence of events reports. Alarms are automatically shown on the front panel display when active. To view active alarms using BESTCOMSPlus, use the Metering Explorer to open the Status, Alarms screen. See the Metering chapter for more inf or mat ion .
Resetting Alarms
A BESTlogicPlus expression can be used to reset the alarms. Use the Settings Explorer within BESTCOMSPlus to open the BESTlogicPlus Programmable Logic screen. Select the ALARM_RESET logic block from the list of Elements. Use the drag and drop method to connect a variable or series of variables to the Reset input. When this input is set TRUE, this element resets all active alarms. Refer to the BESTlogicPlus chapter for more informat io n.

Real-Time Clock

BESTCOMSPlus Navigation Path: Metering Explorer, Status, Real Time Clock HMI Navigation Path: Metering Explorer, Status, Real Time Clock
The DECS-250N time and date is displayed and adjusted on the BESTCOMSPlus Real-Time Clock screen (Figure 77). Manual adjustment of the DECS-250N clock is made by clicking the Edit button. This displays a window where the DECS-250N time and date can be adjusted manually or according to the connected PC clock’s date and time.
Advanced clock settings such as time and date format, daylight saving time, network time protocol, and IRIG are described in the Timekeeping chapter of this manual.
DECS-250N Metering
Page 100
84 9440500990 Rev D
Figure 77. Real-Time Clock Screen

Auto Export Metering

Found under the Tools menu, the auto export metering function is an automated method for saving multiple metering data files at specific intervals over a period of time while connected to a DECS-250N. The user specifies the Number of Exports and the Interval between each export. Enter a base filename for the metering data and a folder in which to save. The exports are counted and the count number will be appended to the base filename, making each filename unique. The first export is performed immediately after clicking the Start button. Figure 78 illustrates the Auto Export Metering screen.
Figure 78. Auto Export Metering
Metering DECS-250N
Loading...