– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-chip 2-cycle Multiplier
• Nonvolatile Program and Data Memories
– 8K Bytes of In-System Self-programmable Flash
Endurance: 10,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– 512 Bytes EEPROM
Endurance: 100,000 Write/Erase Cycles
– 512 Bytes Internal SRAM
– Up to 64K Bytes Optional External Memory Space
– Programming Lock for Software Security
• Peripheral Features
– One 8-bit Timer/Counter with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
– Three PWM Channels
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
• Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– External and Internal Interrupt Sources
– Three Sleep Modes: Idle, Power-down and Standb y
OverviewThe ATmega8515 is a low-power CMOS 8-bit microcontroller ba sed on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle,
the ATmega8515 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
Block DiagramFigure 2. Block Diagram
CC
PA0 - PA7PC0 - PC7
PORTA DRIVERS/BUFFERS
PE0 - PE2
PORTE
DRIVERS/
BUFFERS
PORTC DRIVERS/BUFFERS
X
Y
Z
ALU
SPI
PORTE
DIGITAL
INTERFACE
PORTC DIGITAL INTERFACE
TIMERS/
COUNTERS
INTERNAL
OSCILLATOR
WATCHDOG
TIMER
MCU CTRL.
& TIMING
INTERRUPT
UNIT
EEPROM
USART
OSCILLATOR
INTERNAL
CALIBRATED
OSCILLATOR
XTAL1
XTAL2
RESET
GND
PORTA DIGITAL INTERFACE
PROGRAM
COUNTER
PROGRAM
FLASH
INSTRUCTION
REGISTER
INSTRUCTION
DECODER
CONTROL
LINES
AVR CPU
PROGRAMMING
LOGIC
STACK
POINTER
SRAM
GENERAL
PURPOSE
REGISTERS
STATUS
REGISTER
2512G–AVR–03/05
+
-
PORTB DIGITAL INTERFACE
PORTB DRIVERS/BUFFERS
COMP.
INTERFACE
PORTD DIGITAL INTERFACE
PORTD DRIVERS/BUFFERS
PD0 - PD7PB0 - PB7
3
ATmega8515(L)
The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code ef ficient while a chieving th roughputs up to
ten times faster than conventional CISC microcontrollers.
The ATmega8515 provides the following features: 8K bytes of In-System Programmable
Flash with Read-While-Write capabilities, 512 bytes EEPROM, 512 bytes SRAM, an
External memory interface, 35 general purpose I/O lines, 32 general purpose working
registers, two flexible Timer/Counters with compare modes, Internal and External interrupts, a Serial Programmable USART, a programmable Watchdog Timer with internal
Oscillator, a SPI serial port, and three software selectable power saving modes. The Idle
mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and Interrupt
system to continue functioning. The Power-down mode saves the Register contents but
freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Standby mode, the crystal/resonator Oscillator is running while the rest of
the device is sleeping. This allows very fast start-up combined with low-power
consumption.
The device is manufactured using Atmel’s high density nonvolatile memory technology.
The On-chip ISP Flash allows the Program memory to be reprogrammed In-System
through an SPI serial interface, by a conventional nonvolatile memory programmer, or
by an On-chip Boot program running on the AVR core. The boot program can use any
interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU
with In-System Self-programmable Flash on a monolithic chip, the Atmel ATmega8515
is a powerful microcontroller that provides a highly flexible and cost effective solution to
many embedded control applications.
The ATmega8515 is supported with a full suite of program and system development
tools including: C Compilers, Macro assemblers, Program debugger/simulators, In-circuit Emulators, and Evaluation kits.
DisclaimerTypical values contained in this datasheet are based on simulations and characteriza-
tion of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.
AT90S4414/8515 and
ATmega8515
Compatibility
A T90S4414/8515 Compatibility
Mode
The ATmega8515 provides all the features of the AT90S4414/8515. In addition, several
new features are added. The ATmega8515 is backward compatible with
AT90S4414/8515 in most cases. However, some incompatibilities between the two
microcontrollers exist. To solve this problem, an AT90S4414/8515 compatibility mode
can be selected by programming the S8515C Fuse. ATmega8515 is 100% pin compatible with AT90S4414/8515, and can replace the AT90S4414/8515 on current printed
circuit boards. However, the location of Fuse bits and the electrical characteristics differs between the two devices.
Programming the S8515C Fuse will change the following functionality:
•The timed sequence for changing the Watchdog Time-out period is disabled. See
“Timed Sequences for Changing the Conf iguration of the Watchdog Timer” on page
52 for details.
•The double buffering of the USART Receive Registers is disabled. See “AVR
USART vs. AVR UART – Compatibility” on page 135 for details.
•PORTE(2:1) will be set as output, and PORTE0 will be set as input.
4
2512G–AVR–03/05
ATmega8515(L)
Pin Descriptions
VCCDigital supply voltage.
GNDGround.
Port A (PA7..PA0)Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port A output buffers have symmetrical drive character istics with both high sink
and source capability. When pins PA0 to PA7 are used as inputs and are externally
pulled low, they will source current if the internal pull-up resistors are activated. The Port
A pins are tri-stated when a reset condition becomes active, even if the clock is not
running.
Port A also serves the functions of various special features of the ATmega85 15 as listed
on page 66.
Port B (PB7..PB0)Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive character istics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port B also serves the functions of various special features of the ATmega85 15 as listed
on page 66.
Port C (PC7..PC0)Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetr ica l dr ive cha racte ristics wit h bot h hi gh sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port D (PD7..PD0)Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetr ica l dr ive cha racte ristics wit h bot h hi gh sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the ATmega851 5 as listed
on page 71.
Port E(PE2..PE0)Port E is an 3-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port E output buffers have symmetrical drive character istics with both high sink
and source capability. As inputs, Port E pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port E also serves the functions of various special features of the ATmega85 15 as listed
on page 73.
RESET
XTAL1Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
XTAL2Output from the inverting Oscillator amplifier.
2512G–AVR–03/05
Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table
18 on page 45. Shorter pulses are not guaranteed to generate a reset.
5
ATmega8515(L)
About Code
Examples
This documentation contains simple code examples that briefl y show how to use various
parts of the device. These code examples assume that the part specific header file is
included before compilation. Be aware that not all C Compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please
confirm with the C Compiler documentation for more details.
6
2512G–AVR–03/05
ATmega8515(L)
AVR CPU Core
IntroductionThis section discusses the AVR core architecture in general. The main function of the
CPU core is to ensure correct program execution. The CPU must therefore be able to
access memories, perform calculations, control peripherals, an d handle interrupts.
Architectural OverviewFigure 3. Block Diagram of the AVR Architecture
Data Bus 8-bit
Flash
Program
Memory
Instruction
Register
Instruction
Decoder
Control Lines
Program
Counter
Direct Addressing
Status
and Control
32 x 8
General
Purpose
Registrers
ALU
Indirect Addressing
Data
SRAM
EEPROM
Interrupt
Unit
SPI
Unit
Watchdog
Timer
Analog
Comparator
I/O Module1
I/O Module 2
I/O Module n
2512G–AVR–03/05
I/O Lines
In order to maximize performance and parallelism, the AVR uses a Ha rvar d ar chitectu re
– with separate memories and buses for program and data. Instructions in the Program
memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the Program memory. This concept
enables instructions to be executed in every clock cycle. The Program memory is InSystem re programmable Flash memory.
The fast-access Register File contains 32 x 8-bit general purpose working registers with
a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU)
operation. In a typical ALU operation, two operands are output from the Register File,
the operation is executed, and the result is stored back in the Register File – in one
clock cycle.
7
ATmega8515(L)
Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing – enabling efficient address calculations. One of the these
address pointers can also be used as an address point er fo r look up t ables in F lash Program memory. These added function register s are the 16-bit X-, Y-, and Z-register,
described later in this section.
The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After
an arithmetic operation, the Status Register is updated to reflect information about the
result of the operation.
Program flow is provided by conditional and unconditional jump and call instructions,
able to directly address the whole address space. Most AVR instructions have a single
16-bit word format. Every Program memory address contains a 16- or 32-bit instruction.
Program Flash memory space is divided in two sections, the Boot Program section and
the Application Program section. Both sections have dedicated Lock bits for write and
read/write protection. The SPM instruction th at wr ite s into th e Applica tion Flash me mor y
section must reside in the Boot Program section.
During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the Stack. The Stack is effectively allocated in the general data SRAM, and
consequently the Stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the reset routine (before subroutines
or interrupts are executed). The Stack Pointer SP is read/write accessible in the I/O
space. The data SRAM can easily be accessed through the five different addressing
modes supported in the AVR architecture.
ALU – Arithmetic Logic
Unit
The memory spaces in the AVR architecture are all linear and regular memory maps.
A flexible interrupt module has its Control Registers in the I/O space with an additional
Global Interrupt Enable bit in the Status Register. All interrupts have a separat e interrupt
vector in the Interrupt Vector table. The interrupts have priority in accordance with their
Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority.
The I/O memory space contains 64 addresses for CPU peripheral functions as Control
Registers, SPI, and other I/O functions. The I /O Memory can be accesse d directly, or as
the Data Space locations following those of the Register File, $20 - $5F.
The high-performance AVR ALU operates in di rect connection with all th e 32 general
purpose working registers. Within a single clock cycle, arithme tic operations between
general purpose registers or between a register and an immediate are executed. The
ALU operations are divided into three main categories – arithmet ic, logical, and bi t-f unctions. Some implementations of the architecture also provide a powerful multiplier
supporting both signed/unsigned multiplication and fractional format. See the “Instruction Set” section for a detailed description.
8
2512G–AVR–03/05
ATmega8515(L)
Status RegisterThe Status Register contains information about the result of the most recently executed
arithmetic instruction. This information can be used for altering program flow in order to
perform conditional operations. Note that the Status Register is updated after all ALU
operations, as specified in the Instruction Set Reference. This will in many cases
remove the need for using the dedicated compare instructions, resulting in faster and
more compact code.
The Status Register is not automatically stored when entering an interrupt routine and
restored when returning from an interrupt. This must be handled by software.
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then perfo rmed in separat e Control Registers. If the Globa l
Interrupt Enable Register is cleared, none of the interrupts are enabled independent of
the individual interrupt enable settings. The I-bit is cleared by hardware after an int errupt
has occurred, and is set by the RETI instruction to enable subsequent interrupts. The Ibit can also be set and cleared by the application with the SEI and CLI instructions, as
described in the instruction set reference.
• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) u se the T-bit a s source or
destination for the operated bit. A bit from a register in the Register File can be copied
into T by the BST instruction, and a bit in T can be copied into a bit in a re gister in the
Register File by the BLD instruction.
• Bit 5 – H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is
useful in BCD arithmetic. See the “Instruction Set Description” for detailed information.
• Bit 4 – S: Sign Bit, S = N
⊕ V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V. See the “Instruction Set Description” for detailed information.
• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See
the “Instruction Set Description” for detailed information.
• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See
the “Instruction Set Description” for detailed information.
• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed informa tion.
• Bit 0 – C: Carry Flag
2512G–AVR–03/05
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for detailed information.
9
ATmega8515(L)
General Purpose
Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to
achieve the required performance and flexibility, the following input/output schemes are
supported by the Register File:
•One 8-bit output operand and one 8-bit result input
•Two 8-bit output operands and one 8-bit result input
•Two 8-bit output operands and one 16-bit re su lt inpu t
•One 16-bit output operand and one 16-bit result input
Figure 4 shows the structure of the 32 general purpose working registers in the CPU.
Figure 4. AVR CPU General Purpose Working Registers
70Addr.
R0 $00
R1$01
R2$02
…
R13$0D
GeneralR14$0E
PurposeR15$0F
WorkingR16$10
RegistersR17$11
…
R26$1AX-register Low Byte
R27$1BX-register High Byte
R28$1CY-register Low Byte
R29$1DY-register High Byte
R30$1EZ-register Low Byte
R31$1FZ-register High Byte
Most of the instructions operating on th e Registe r File have direct access to all registe rs,
and most of them are single cycle instructions.
As shown in Figure 4, each register is also assigned a Data memory address, mapping
them directly into the first 32 locations of t he user Dat a Space. Althou gh not b eing physically implemented as SRAM locations, this memory organization provides great
flexibility in access of the registers, as the X-, Y-, and Z-pointer Registers can be set to
index any register in the file.
10
2512G–AVR–03/05
ATmega8515(L)
The X-register, Y-register, and
Z-register
The registers R26..R31 have some added functions to their general purpose usage.
These registers are 16-bit address pointers for indirect addressing of the Data Space.
The three indirect address registers X, Y, and Z are defined as described in Figure 5.
Figure 5. The X-, Y-, and Z-registers
15XHXL0
X-register7070
R27 ($1B)R26 ($1A)
15YHYL0
Y-register7070
R29 ($1D)R28 ($1C)
15ZHZL0
Z-register7070
R31 ($1F)R30 ($1E)
In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and automatic decrement (see the Instruction Set
reference for details).
Stack PointerThe Stack is mainly used for storing temporary data, for storing local variables and for
storing return addresses after interrupts and subroutine calls. The Stack Pointer Register always points to the top of the Stack. Note that the Stack is implemen ted as growing
from higher memory locations to lower memory locations. This implies that a Stack
PUSH command decreases the Stack Pointer.
The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. This Stack space in the data SRAM must be define d by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above $60. The Stack Pointer is decremented by one when
data is pushed onto the Stack with the PUSH instruction, and it is decremented by two
when the return address is pushed onto the Stack with subroutine call or interrupt. The
Stack Pointer is incremented by one when data is popped from the Stack with the POP
instruction, and it is incremented by two when ad dress is popped from the Stack wit h
return from subroutine RET or return from interrupt RETI.
The AVR Stack Pointer is implemented as two 8-bit registers in the I/O sp ace. The n umber of bits actually used is implementation dependent. Note th at the data space in some
implementations of the AVR architecture is so small that only SPL is needed. In this
case, the SPH Register will not be present.
Bit151413121110 9 8
SP15SP14SP13SP12SP11SP10SP9SP8SPH
SP7SP6SP5SP4SP3SP2SP1SP0SPL
76543210
Read/WriteR/WR/WR/WR/WR/WR/WR/WR/W
R/WR/WR/WR/WR/WR/WR/WR/W
Initial Value00000000
00000000
2512G–AVR–03/05
11
ATmega8515(L)
Instruction Execution
2
R
Timing
This section describes the general access timing conce pts for in structio n execution . The
AVR CPU is driven by the CPU clock clk
, directly generated from the selected clock
CPU
source for the chip. No internal clock division is used.
Figure 6 shows the parallel instruction fetches and inst ruction execu tions enabled by the
Harvard architecture and the fast-access Re gister File concept . This is th e basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks, and functions per power-unit.
Figure 6. The Parallel Instruction Fetches and Instruction Executions
T1T2T3T4
clk
CPU
1st Instruction Fetch
1st Instruction Execute
2nd Instruction Fetch
nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch
Figure 7 shows the internal timing concept for the Register File. In a single clock cycle
an ALU operation using two register operands is execu ted, and the result is stored back
to the destination register.
Reset and Interrupt
Handling
Figure 7. Single Cycle ALU Operation
T1T2T3T4
clk
CPU
Total Execution Time
egister Operands Fetch
ALU Operation Execute
Result Write Back
The AVR provides several different interrupt sources. These in terr upt s and the sepa ra te
Reset Vector each have a separate program vector in the Program memory space. All
interrupts are assigned individual enable bits which must be written logic one together
with the Global Interrupt Enable b it in the Statu s Register in o rder to enab le the interr upt.
Depending on the Program Counter value, interrupts may be automatically disabled
when Boot Lock bits BLB02 or BLB12 are programm ed. This feat ure impr oves softw are
security. See the section “Memory Programming” on page 177 for details.
The lowest addresses in the Program memory space are by default defined as the
Reset and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on
page 53. The list also determines the priorit y leve ls of th e diff erent in terr upts. Th e lowe r
the address the higher is the priority level. RESET has the highest priority, and next is
INT0 – the External Interrupt Reque st 0 . The I nterru pt Ve ctors can be mo ved t o the sta rt
of the Boot Flash section by setting the IVSEL bit in the General Interrupt Control Register (GICR). Refer to “Interrupts” on page 53 for more information. The Reset Vector can
12
2512G–AVR–03/05
ATmega8515(L)
also be moved to the start of the Boot Flash section by programming the BOOTRST
Fuse, see “Boot Loader Support – Read-While-Write Self-Programming” on page 164.
When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts
are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is
automatically set when a Return from Interrupt instruction – RETI – is executed.
There are basically two types of interrupts. The first type is triggered by an event that
sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the
actual Interrupt Vector in order to execute the interrupt handling routine, and hardware
clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a
logic one to the flag bit position(s) to be cleared. If an in terrupt con dition occurs while the
corresponding Interrupt Enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or
more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the corresponding interrupt flag(s) will be set and remembered until the Global Interrupt Enable
bit is set, and will then be executed by order of priority.
The second type of interrupts will trigger as long as the interrupt condition is present.
These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered.
When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending inte rrupt is served.
Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when returning from an interrupt routine. This must be handled by
software.
When using the CLI instruction to disable interrupts, the interrupts will be immediately
disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can be used to
avoid interrupts during the timed EEPROM write sequence..
Assembly Code Example
in r16, SREG; store SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMWE; start EEPROM write
sbi EECR, EEWE
out SREG, r16; restore SREG value (I-bit)
C Code Example
char cSREG;
cSREG = SREG; /* store SREG value */
/* disable interrupts during timed sequence */
_CLI();
EECR |= (1<<EEMWE); /* start EEPROM write */
EECR |= (1<<EEWE);
SREG = cSREG; /* restore SREG value (I-bit) */
2512G–AVR–03/05
13
ATmega8515(L)
When using the SEI instruction to enable interrupts, the instruction following SEI will be
executed before any pending interrupts, as shown in this example.
Assembly Code Example
sei; set global interrupt enable
sleep; enter sleep, waiting for interrupt
; note: will enter sleep before any pending
; interrupt(s)
C Code Example
_SEI(); /* set global interrupt enable */
_SLEEP(); /*enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */
Interrupt Response TimeThe interrupt execution response for all the enabled AVR interrupts is four clock cycles
minimum. After four clock cycles the Program Vector address for the actual interrupt
handling routine is executed. During this four clock cycle period, the Program Count er is
pushed onto the Stack. The Vector is normally a jump to the int errupt routine, and this
jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle
instruction, this instruction is completed before the interrupt is served. If an inter rupt
occurs when the MCU is in sleep mode, the interrupt execution response time is
increased by four clock cycles. This increase comes in addition to the start-up time from
the selected sleep mode.
A return from an interrupt handling routine takes four clock cycles. During these four
clock cycles, the Program Counter (two bytes) is popped b ack fr om th e Stack, th e Stack
Pointer is incremented by two, and the I-bit in SREG is set.
14
2512G–AVR–03/05
ATmega8515(L)
AVR ATmega8515
Memories
In-System
Reprogrammable Flash
Program memory
This section describes the different memories in the ATmega8515. The AVR architecture has two main memory spaces, the Data Memory and the Program memory space.
In addition, the ATmega8515 features an EEPROM Memory for data storage. All three
memory spaces are linear and regular.
The ATmega8515 contains 8K bytes On-chip In-System Reprogrammable Flash memory for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is
organized as 4K x 16. For software security, the Flash Program memory space is
divided into two sections, Boot Program section and Application Program section.
The Flash memory has an endurance of at least 10,000 write/erase cycles. The
ATmega8515 Program Counter (PC) is 12 bits wide, thus addressing the 4K Program
memory locations. The operation of Boot Program section and associated Boot Lock
bits for software protection are described in detail in “Boot Loader Support – ReadWhile-Write Self-Programming” on page 164. “Memory Progra mming” on page 17 7 contains a detailed description on Flash data serial downloading using the SPI pins.
Constant tables can be allocated within the entire Program memory address space, see
the LPM – Load Program memory instruction description.
Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Timing” on page 12.
Figure 8. Program memory Map
Application Flash Section
Boot Flash Section
$000
$FFF
2512G–AVR–03/05
15
ATmega8515(L)
SRAM Data MemoryFigure 9 shows how the ATmega8515 SRAM Memory is organized.
The lower 608 Data Memory locations address the Register File, the I/O Memory, and
the internal data SRAM. The first 96 locations address the Register File and I/O Memory, and the next 512 locations address the internal data SRAM.
An optional external data SRAM can be used with the ATmega8515. This SRAM will
occupy an area in the remaining address locations in the 64K address space. This area
starts at the address following the internal SRAM. The Register File, I/O, Extended I/O
and Internal SRAM occupies the lowest 608 bytes in normal mode, so when us ing 64KB
(65536 bytes) of External Memory, 64928 Bytes of External Memory are available. See
“External Memory Interface” on page 24 for details on how to take advantage of the
external memory map.
When the addresses accessing the SRAM memory space exceeds the internal Data
memory locations, the external data SRAM is accessed using the same instructions as
for the internal Data memory access. When the internal data memories are accessed,
the read and write strobe pins (PD7 and PD6) are inactive during the whole access
cycle. External SRAM operation is enabled by setting the SRE bit in the MCUCR
Register.
Accessing external SRAM takes one additional clock cycle per byte compared to access
of the internal SRAM. This means that the commands LD, ST, LDS, STS, LDD, STD,
PUSH, and POP take one additional clock cycle. If the Stack is placed in external
SRAM, interrupts, subroutine calls and returns take three clock cycles extra b ecause the
two-byte Program Counter is pushed and popped, and external memory access does
not take advantage of the intern al pipe -line me mory access. When exte rnal SRAM in terface is used with wait-state, one-byte external access take s two, th ree, or four add itional
clock cycles for one, two, and three wait-states respectively. Interrupts, subroutine calls
and returns will need five, seven, or nine clock cycles more than specified in the instruction set manual for one, two, and three wait-states.
The five different addressing modes for the Data memory cover: Direct, Indirect with
Displacement, Indirect, Indirect with Pre-d ecrement, an d Indirect with Post-incr ement. In
the Register File, registers R26 to R31 feature the indirect addressing pointer registers.
The direct addressing reaches the entire data space.
The Indirect with Displacement mode reaches 63 address locations from the base
address given by the Y- or Z-register.
When using register indirect addressing modes with automatic pre-decrement and post-
increment, the address registers X, Y, and Z are decremented or incremented.
The 32 general purpose working registers, 64 I/O Registers, and the 512 bytes of inter-
nal data SRAM in the ATmega8515 are all accessible through all these addressing
modes. The Register File is described in “General Purpose Register File” on page 10.
16
2512G–AVR–03/05
Figure 9. Data Memory Map
A
ATmega8515(L)
Data Memory
32 Registers
64 I/O Registers
Internal SRAM
(512 x 8)
External SRAM
(0 - 64K x 8)
$0000 - $001F
$0020 - $005F
$0060
$025F
$0260
$FFFF
Data Memory Access TimesThis section describes the general access timing concepts for internal memory access.
The internal data SRAM access is performed in two clk
cycles as described in Figure
CPU
10.
Figure 10. On-chip Data SRAM Access Cycles
T1T2T3
clk
CPU
ddress
Compute Address
Address Valid
Data
WR
Write
Data
RD
Memory Access Instruction
Next Instruction
Read
2512G–AVR–03/05
17
ATmega8515(L)
EEPROM Data MemoryThe ATmega8515 contains 512 bytes of data EEPROM memory. It is organized as a
separate data space, in which single bytes can be read and written. The EEPROM has
an endurance of at least 100,000 write/erase cycles. The access between the EEPROM
and the CPU is described in the following, specifying the EEPROM Address Registers,
the EEPROM Data Register, and the EEPROM Control Register.
“Memory Programming” on page 177 contains a detailed description on EEPROM Programming in SPI or Parallel Programming mode.
EEPROM Read/Write AccessThe EEPROM Access Registers are accessible in the I/O space.
The write access time for the EEPROM is given in Table 1. A self-timing function, however, lets the user software detect when the next byte can be written. If the user code
contains instructions that write the EEPROM, some precautions must be taken. In
heavily filtered power supplies, V
causes the device for some period of time to run at a voltage lower than specified as
minimum for the clock frequency used. See “Preventing EEPROM Corruption” on page
23. for details on how to avoid problems in these situations.
In order to prevent unintentional EEPROM writes, a specif ic write proced ure must be fol-
lowed. Refer to the description of the EEPROM Control Register for details on this.
When the EEPROM is read, the CPU is halted for four clock cycles before the next
instruction is executed. When the EEPROM is written, the CPU is halted for two clock
cycles before the next instruction is executed .
is likely to rise or fall slowly on Power-up/down. This
CC
The EEPROM Address
Register – EEARH and EEARL
Bit151413121110 9 8
–––––––EEAR8EEARH
EEAR7EEAR6EEAR5EEAR4EEAR3EEAR2EEAR1EEAR0EEARL
76543210
Read/WriteRRRRRRRR/W
R/WR/WR/WR/WR/WR/WR/WR /W
Initial Value0000000X
XXXXXXXX
• Bits 15..9 – Res: Reserved Bits
These bits are reserved bits in the ATmega8515 and will always read as zero.
• Bits 8..0 – EEAR8..0: EEPROM Address
The EEPROM Address Registers – EEARH and EEARL – specify the EEPROM
address in the 512 bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 511. The initial value of EEAR is undefined. A proper value must be
written before the EEPROM may be accessed.
For the EEPROM write operation, the EEDR Register contains the data to be written to
the EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.
Bit76543210
––––EERIEEEMWEEEWEEEREEECR
Read/WriteRRRRR/WR/WR/WR/W
Initial Value000000X0
• Bits 7..4 – Res: Reserved Bits
These bits are reserved bits in the ATmega8515 and will always read as zero.
• Bit 3 – EERIE: EEPROM Ready Interrupt Enable
Writing EERIE to one enables the EEPROM Ready Interrupt if the I-bit in SREG is set.
Writing EERIE to zero disables the interrupt. The EEPROM Rea dy inte rr upt gen er ates a
constant interrupt when EEWE is cleared.
• Bit 2 – EEMWE: EEPROM Master Write Enable
The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE is set, setting EEWE within four clock cycles will write data to the
EEPROM at the selected address If EEMWE is zero, setting EEWE will have no effect.
When EEMWE has been written to one by software, hardware clears the bit t o zero after
four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.
• Bit 1 – EEWE: EEPROM Write Enable
The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be written to one to write the
value into the EEPROM. The EEMWE bit must be written to one before a logical one is
written to EEWE, otherwise no EEPROM write takes place. The following procedure
should be followed when writing the EEPROM (the order of steps 3 and 4 is not
essential):
1.Wait until EEWE becomes zero.
2.Wait until SPMEN in SPMCR becomes zero.
3.Write new EEPROM address to EEAR (optional).
4.Write new EEPROM data to EEDR (optional).
5.Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
6.Within four clock cycles after setting EEMWE, write a logical one to EEWE.
The EEPROM can not be programmed during a CPU write to the Flash memory. The
software must check that the Flash programming is completed befor e initiating a new
EEPROM write. Step 2 is only relevant if the software contains a Boot Loader allowing
the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2
can be omitted. See “Boot Loader Support – Read-While-Write Self-Programming” on
page 164 for details about boot programming.
2512G–AVR–03/05
19
ATmega8515(L)
Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM access, the EEAR or EEDR Register will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the Global Interrupt Flag cleared during all the steps to avoid these problems.
When the write access time has elapsed, the EEWE bit is cleared by hardware. The
user software can poll this bit and wait for a zero before writing the next byte. When
EEWE has been set, the CPU is halted for two cycles before the next instruction is
executed.
• Bit 0 – EERE: EEPROM Read Enable
The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the
correct address is set up in the EEAR Register, the EERE bit must be written to a logic
one to trigger the EEPROM read. The EEPROM read access takes one instruction, and
the requested data is available immediately. When the EEPROM is read, the CPU is
halted for four cycles before the next instruct ion is executed.
The user should poll the EEWE bit befor e start ing the r ead ope ration. If a write o peration
is in progress, it is neither possible to read the EEPROM, nor to change the EEAR
Register.
The calibrated Oscillator is used to time the EEPROM accesses. Table 1 lists the typical
programming time for EEPROM access from the CPU.
Table 1. EEPROM Programming Time
Number of Calibrated RC
Symbol
EEPROM Write (from CPU)84488.5 ms
Note:1. Uses 1 MHz clock, independent of CKSEL Fuse settings.
Oscillator Cycles
(1)
Typ Programming Time
The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g., by disabling interrupts globally) so that no interrupts will occur during execution of these functions. The
examples also assume that no Flash Boot Loader is present in the software. If such
code is present, the EEPROM write function must also wait for any ongoing SPM command to finish.
20
2512G–AVR–03/05
Assembly Code Example
EEPROM_write:
; Wait for completion of previous write
sbic EECR,EEWE
rjmp EEPROM_write
; Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
; Write data (r16) to data register
out EEDR,r16
; Write logical one to EEMWE
sbi EECR,EEMWE
; Start eeprom write by setting EEWE
sbi EECR,EEWE
ret
C Code Example
ATmega8515(L)
void EEPROM_write(unsigned int uiAddress, unsigned char ucData)
{
/* Wait for completion of previous write */
while(EECR & (1<<EEWE))
;
/* Set up address and data registers */
EEAR = uiAddress;
EEDR = ucData;
/* Write logical one to EEMWE */
EECR |= (1<<EEMWE);
/* Start eeprom write by setting EEWE */
EECR |= (1<<EEWE);
}
2512G–AVR–03/05
21
ATmega8515(L)
The next code examples show assembly and C functio ns for read ing the EEPROM . The
examples assume that interrupts are controlled so that no interrupts will occur during
execution of these functions.
Assembly Code Example
EEPROM_read:
; Wait for completion of previous write
sbic EECR,EEWE
rjmp EEPROM_read
; Set up address (r18:r17) in address register
out EEARH, r18
out EEARL, r17
; Start eeprom read by writing EERE
sbi EECR,EERE
; Read data from data register
in r16,EEDR
ret
C Code Example
unsigned char EEPROM_read(unsigned int uiAddress)
{
/* Wait for completion of previous write */
while(EECR & (1<<EEWE))
;
/* Set up address register */
EEAR = uiAddress;
/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);
/* Return data from data register */
return EEDR;
}
EEPROM Write During Powerdown Sleep Mode
22
When entering Power-down Sleep mode while an EEPROM write operation is active,
the EEPROM write operation will continue, and will complete before the Write Access
time has passed. However, when the write operation is completed, the crystal Oscillator
continues running, and as a consequence, the device does not enter Power-down
entirely. It is therefore recommended to verify that the EEPROM write operation is completed before entering Power-down.
2512G–AVR–03/05
ATmega8515(L)
Preventing EEPROM
Corruption
During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using EEPROM, and the same design solutions should
be applied.
An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage is too low.
EEPROM data corruption can easily be avoided by following this design
recommendation:
Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done by enabling the internal Brown-out Detector (BOD). If the
detection level of the internal BOD does not match the needed detection level, an
external low V
write operation is in progress, the write operation will be completed provided that the
power supply voltage is sufficient.
Reset Protection circuit can be used. If a Reset occurs while a
CC
I/O MemoryThe I/O space definition of the ATmega8515 is shown in “Register Summary” on page
237.
All ATmega8515 I/Os and peripherals are placed in the I/O space. The I/O locations are
accessed by the IN and OUT instructions, transferring data betw een the 32 ge neral pu rpose working registers and the I/O space. I/O Registers within the address range $00 $1F are directly bit-accessible using the SBI and CBI instru ctio ns. In these regist er s, t he
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to
the instruction set section for more details. When using the I/O specific commands IN
and OUT, the I/O addresses $00 - $3F must be used. When addressing I /O Registers as
data space using LD and ST instructions, $20 must be added to these addresses.
For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.
Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI
and SBI instructions will operate on all bits in the I/O Register, writing a one back into
any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers $00 to $1F only.
The I/O and Peripherals Control Registers are explained in later sections.
2512G–AVR–03/05
23
ATmega8515(L)
External Memory
Interface
OverviewWhen the eXternal MEMory (XMEM) is enabled, address space outside the internal
With all the features the External Memory Interface provides, it is well suited to operate
as an interface to memory devices such as external SRAM and Flash, and peripherals
such as LCD-display, A/D, and D/A. The main features are:
•
Four Different Wait State Settings (Including No wait State)
• Independent Wait State Setting for Different External Memory Sector s (Configurable
Sector Size)
• The Number of Bits Dedicated to Address High Byte is Selectable
• Bus Keepers on Data Lines to Minimize Current Consumption (Optional)
SRAM becomes available using the dedicated external memory pins (see Figure 1 on
page 2, Table 26 on page 65, Table 32 on page 69, an d Table 38 on page 73). The
memory configuration is shown in Figure 11.
Figure 11. External Memory with Sector Select
0x0000
Internal Memory
0x25F
0x260
Lower Sector
Using the External Memory
Interface
SRW01
SRW00
External Memory
(0-64K x 8)
The interface consists of:
•AD7:0: Multiplexed low-order address bus and data bus
•A15:8: High-order address bus (c onfigurable number of bits)
•ALE: Address latch enable
•RD
•WR
: Read strobe
: Write strobe
Upper Sector
SRW11
SRW10
0xFFFF
SRL[2..0]
24
2512G–AVR–03/05
ATmega8515(L)
The control bits for the External Memory Interface are located in three registers, the
MCU Control Register – MCUCR, the Extended MCU Control Register – EMCUCR, and
the Special Function IO Register – SFIOR.
When the XMEM interface is enabled, it will override the settings in the data direction
registers corresponding to the ports d edicated to the interface. For details about this port
override, see the alternate functions in section “I/O Ports” on page 58. The XMEM interface will auto-detect whether an access is internal or external. If the access is external,
the XMEM interface will output address, data, and the control signals on the ports
according to Figure 13 (this figure shows the wave forms without wait states). When
ALE goes from high to low, there is a valid address on AD7:0. ALE is low during a data
transfer. When the XMEM interface is enabled, also an internal access will cause activity on address-, data-, and ALE ports, but the RD
internal access. When the External Memory Interface is disabled, the normal pin and
data direction settings are used. Note that when the XMEM interface is disabled, the
address space above the internal SRAM boundary is not mapped into the internal
SRAM. Figure 12 illustrates how to connect an external SRAM to the AVR using an octal
latch (typically “74x573” or equivalent) which is transparent when G is high.
Address Latch RequirementsDue to the high-speed operation of the XRAM interface, the address latch must be
selected with care for system frequencies above 8 MHz @ 4V and 4 MHz @ 2.7V.
When operating at conditions above these f requencies, th e typical old st yle 74HC seri es
latch becomes inadequate. The external memory interface is designed in compliance to
the 74AHC series latch. However, most latches can be used as long they comply with
the main timing parameters. The main parameters for t he address latch are:
•D to Q propagation delay (t
•Data setup time befo re G low (t
•Data (address) hold time after G low (
The external memory interface is designed to guara nty minimum addr ess hold time aft er
G is asserted low of t
202). The D to Q propagation de lay (t
ing the access time requirement of the external component. The data setup time before
G low (t
(dependent on the capacitive load).
) must not exceed address valid to ALE low (t
su
= 5 ns (refer to t
h
)
pd
)
su
th
LAXX_LD/tLLAXX_ST
) must be taken into consideration when calculat-
pd
and WR strobes will not toggle during
)
in Table 98 to Table 105 on page
) minus PCB wiring delay
AVLLC
2512G–AVR–03/05
Figure 12. External SRAM Connected to the AVR
AD7:0
ALE
DQ
G
AVR
A15:8
RD
WR
D[7:0]
A[7:0]
SRAM
A[15:8]
RD
WR
25
ATmega8515(L)
Pull-up and Bus KeeperThe pull-up resistors on the AD7:0 ports may be activated if the corresponding Port
Register is written to one. To reduce power consump tion in sleep mode, it is recommended to disable the pull-ups by writing the Port Register to zero before entering
sleep.
The XMEM interface also provides a bus keeper on the AD7:0 lines. The bus keeper
can be disabled and enabled in software as described in “Special Fun ction IO Regist er –
SFIOR” on page 30. When enabled, the bus keeper will keep the previous value on the
AD7:0 bus while these lines are tri-stated by the XMEM interface.
TimingExternal memory devices have various timing requirements. To meet these require-
ments, the ATmega8515 XMEM interface provides four differe nt wait stat es as shown in
Table 3. It is important to consider the timing specification of the external memory
device before selecting the wait state. The most important parameters are the access
time for the external memory in conjunction with the set- up requirement of the
ATmega8515. The access time for the external memory is defined to be the time from
receiving the chip select/address until the data of this address actually is driven on the
bus. The access time cannot exceed the tim e from the ALE pulse is asserted low until
data must be stable during a read sequence (t
LLRL
+ t
RLRH
- t
in Table 98 to Table
DVRH
105 on page 202). The different wait states are set up in software. As an additional feature, it is possible to divide the external memory space in two sectors wit h individual wait
state settings. This makes it possible to connect two different memory devices with different timing requirements to the same XMEM interface. For XMEM interface timing
details, please refer to Figure 89 to Figure 92, and Table 98 to Table 105.
Note that the XMEM interface is asynchronous and that the waveforms in the figures
below are related to the internal system clock. The skew between the Internal and External clock (XTAL1) is not guaranteed (it varies betwee n devices, tempe rature, and supply
voltage). Consequently, the XMEM interface is not suited for synchronous operation.
Figure 13. External Data Memor y Cycles without Wait State (SRWn1 = 0 and
SRWn0 = 0)
Writing SRE to one enables the External Memory Interface.The pin functions AD7:0,
A15:8, ALE, WR
, and RD are activated as the alternate pin functions. The SRE bit overrides any pin direction settings in the respective Data Direction Registers. Writing SRE
to zero, disables the External Memory Interface and the normal pin and data direction
settings are used.
• Bit 6 – SRW10: Wait State Select Bit
For a detailed description, see common description for the SRWn bits below (EMCUCR
description).
• Bit 6..4 – SRL2, SRL1, SRL0: Wait State Sector Limit
It is possible to configure different wait states for different external memory addresses.
The External Memory address space can be divided in two sectors that have separate
wait state bits. The SRL2, SRL1, and SRL0 bits select the splitting of these sectors, see
Table 2 and Figure 11. By default, the SRL2, SRL1, and SRL0 bits are set to zero and
the entire External Memory address space is treated as one sector. When the entire
28
2512G–AVR–03/05
ATmega8515(L)
SRAM address space is configured as one sector, the wait states are configured by the
SRW11 and SRW10 bits.
Table 2. Sector Limits with Different Settings of SRL2.. 0
• Bit 1 and Bit 6 MCUCR – SRW11, SRW10: Wait State Select Bits for Upper
Sector
The SRW11 and SRW10 bits control the number of wait states for the upper sector of
the External Memory address space, see Table 3.
• Bit 3..2 – SRW01, SRW00: Wait State Select Bits for Lower Sector
2512G–AVR–03/05
The SRW01 and SRW00 bits control the number of wait states for the lower sector of
the External Memory address space, see Table 3.
Table 3. Wait States
SRWn1SRWn0Wait States
00No wait states.
01Wait one cycle during read/write strobe.
10Wait two cycles during read/write strobe.
11
Note:1. n = 0 or 1 (lower/upper sector).
For further details of the timing and wait states of the External Memory Interface, see
Figure 13 to Figure 16 how the setting of the SRW bits affects the timing.
(1)
Wait two cycles during read/write and wait one cycle before driving out
new address.
Writing XMBK to one enables the Bus Keeper on the AD7:0 lines. Wh en the Bus Keeper
is enabled, AD7:0 will keep the last driven value on the lines even if the XMEM interface
has tri-stated the lines. Writing XMBK to zero disables the Bus Keeper. XMBK is not
qualified with SRE, so even if the XMEM interface is disabled, the Bus Keepers are still
activated as long as XMBK is one.
• Bit 5..3 – XMM2, XMM1, XMM0: External Memory High Mask
When the External Memory is enabled, all Port C pins are used for the high address
byte by default. If the full 64,928 bytes address space is not required to access the
External Memory, some, or all, Port C pins can be released for normal Port Pin function
as described in Table 4. As described in “Using all 64KB Locations of Exte rnal Memory”
on page 32, it is possible to use the XMMn bits to access all 6 4KB locations of the External Memory.
Table 4. Port C Pins Released as Normal Port Pins when the External Memory is
Enabled
XMM2XMM1XMM0# Bits for External Memory AddressReleased Port Pins
Using all Locations of
External Memory Smaller than
64 KB
0008 (Full 64,928 Bytes Space)None
0017PC7
0106PC7 - PC6
0115PC7 - PC5
1004PC7 - PC4
1013PC7 - PC3
1102PC7 - PC2
111No Address High bitsFull Port C
Since the external memory is mapped after the internal memory as shown in Figure 11,
the external memory is not addressed when addressing the first 6 08 bytes of data
space. It may appear that the first 608 bytes of the exte rnal memory are inaccessib le
(external memory addresses 0x0000 to 0x025F). However , when connecting an external memory smaller than 64 KB, for example 32 KB, these locati ons are easily a ccessed
simply by addressing from address 0x8000 to 0x825F. Sin ce the External Memory
Address bit A15 is not connected to the external memory, addresses 0x8000 to 0x825F
will appear as addresses 0x0000 to 0x025F for the external memory. Addressing above
address 0x825F is not recommended, since this will address an external memory location that is already accessed by another (lower) address. To the Application software,
the external 32 KB memory will appear as one linear 32 KB address space from 0x0260
to 0x825F. This is illustrated in Figure 17.
30
2512G–AVR–03/05
Loading...
+ 224 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.