– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers + Peripheral Control Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-chip 2-cycle Multiplier
• High Endurance Non-volatile Memory segments
– 64K Bytes of In-System Reprogrammable Flash program memory
– 2K Bytes EEPROM
– 4K Bytes Internal SRAM
– Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
– Data retention: 20 years at 85°C/100 years at 25°C
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– Up to 64K Bytes Optional External Memory Space
– Programming Lock for Software Security
– SPI Interface for In-System Programming
• JTAG (IEEE std. 1149.1 Compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
• Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
– Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode, and
Capture Mode
– Real Time Counter with Separate Oscillator
– Two 8-bit PWM Channels
– 6 PWM Channels with Programmable Resolution from 1 to 16 Bits
– 8-channel, 10-bit ADC
8 Single-ended Channels
7 Differential Channels
2 Differential Channels with Programmable Gain (1x, 10x, 200x)
– Byte-oriented Two-wire Serial Interface
– Dual Programmable Serial USARTs
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with On-chip Oscillator
– On-chip Analog Comparator
• Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– External and Internal Interrupt Sources
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby
and Extended Standby
– Software Selectable Clock Frequency
– ATmega103 Compatibility Mode Selected by a Fuse
– Global Pull-up Disable
Note:The bottom pad under the QFN/MLF package should be soldered to ground.
XTAL1
(SCL/INT0) PD0
(SDA/INT1) PD1
(RXD1/INT2) PD2
(T1) PD6
(ICP1) PD4
(TXD1/INT3) PD3
(T2) PD7
(XCK1) PD5
DisclaimerTypical values contained in this data sheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device is characterized.
2
ATmega64(L)
2490NS–AVR–05/08
ATmega64(L)
Overview
The ATmega64 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing
powerful instructions in a single clock cycle, the ATmega64 achieves throughputs approaching 1 MIPS per MHz, allowing
the system designer to optimize power consumption versus processing speed.
Block Diagram
Figure 2. Block Diagram
VCC
GND
AVC C
PORTF DRIVERS
DATAREGISTER
PORTF
DATADIR.
REG. PORTF
DATAREGISTER
PORTA
PA0 - PA7PF0 - PF7
PORTA DRIVERS
DATADIR.
REG. PORTA
DATAREGISTER
PORTC DRIVERS
PORTC
PC0 - PC7
DATADIR.
REG. PORTC
8-BIT DATA BUS
AREF
PEN
JTAG TAP
ON-CHIP DEBUG
BOUNDARY-
SCAN
PROGRAMMING
LOGIC
DATAREGISTER
+
-
ANALOG
COMPARATOR
USART0
PORTE
ADC
PROGRAM
COUNTER
PROGRAM
FLASH
INSTRUCTION
REGISTER
INSTRUCTION
DECODER
CONTROL
LINES
REG. PORTE
PORTE DRIVERS
DATADIR.
STACK
POINTER
SRAM
GENERAL
PURPOSE
REGISTERS
X
Y
Z
ALU
STATUS
REGISTER
DATAREGISTER
PORTB
REG. PORTB
PORTB DRIVERS
INTERNAL
OSCILLATOR
WATCHDOG
MCU CONTROL
REGISTER
COUNTERS
INTERRUPT
EEPROM
DATADIR.
TIMER
TIMER/
UNIT
SPI
CALIB. OSC
OSCILLATOR
OSCILLATOR
TIMING AND
CONTROL
USART1
DATAREGISTER
PORTD
PORTD DRIVERS
2-WIRE SERIAL
INTERFACE
DATADIR.
REG. PORTD
DATAREG.
PORTG
PORTG DRIVERS
DATADIR.
REG. PORTG
XTAL1
XTAL2
RESET
PB0 - PB7PE0 - PE7
PD0 - PD7
PG0 - PG4
The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly
connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction
executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times
faster than conventional CISC microcontrollers.
2490NS–AVR–05/08
3
The ATmega64 provides the following features: 64K bytes of In-System Programmable Flash
with Read-While-Write capabilities, 2K bytes EEPROM, 4K bytes SRAM, 53 general purpose I/O
lines, 32 general purpose working registers, Real Time Counter (RTC), four flexible
Timer/Counters with compare modes and PWM, two USARTs, a byte oriented Two-wire Serial
Interface, an 8-channel, 10-bit ADC with optional differential input stage with programmable
gain, programmable Watchdog Timer with internal Oscillator, an SPI serial port, IEEE std.
1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and
programming, and six software selectable power saving modes. The Idle mode stops the CPU
while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all
other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the
device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except
asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby
mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This
allows very fast start-up combined with low power consumption. In Extended Standby mode,
both the main Oscillator and the asynchronous timer continue to run.
The device is manufactured using Atmel’s high-density non-volatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot Program can use any interface to download the
Application Program in the Application Flash memory. Software in the Boot Flash section will
continue to run while the Application Flash section is updated, providing true Read-While-Write
operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the Atmel ATmega64 is a powerful microcontroller that provides a highly-flexible
and cost-effective solution to many embedded control applications.
ATmega103 and
ATmega64
Compatibility
The ATmega64 AVR is supported with a full suite of program and system development tools
including: C compilers, macro assemblers, program debugger/simulators, In-Circuit Emulators,
and evaluation kits.
The ATmega64 is a highly complex microcontroller where the number of I/O locations supersedes the 64 I/O location reserved in the AVR instruction set. To ensure backward compatibility
with the ATmega103, all I/O locations present in ATmega103 have the same location in
ATmega64. Most additional I/O locations are added in an Extended I/O space starting from 0x60
to 0xFF (i.e., in the ATmega103 internal RAM space). These location can be reached by using
LD/LDS/LDD and ST/STS/STD instructions only, not by using IN and OUT instructions. The relocation of the internal RAM space may still be a problem for ATmega103 users. Also, the
increased number of Interrupt Vectors might be a problem if the code uses absolute addresses.
To solve these problems, an ATmega103 compatibility mode can be selected by programming
the fuse M103C. In this mode, none of the functions in the Extended I/O space are in use, so the
internal RAM is located as in ATmega103. Also, the extended Interrupt Vectors are removed.
The ATmega64 is 100% pin compatible with ATmega103, and can replace the ATmega103 on
current printed circuit boards. The application notes “Replacing ATmega103 by ATmega128”
and “Migration between ATmega64 and ATmega128” describes what the user should be aware
of replacing the ATmega103 by an ATmega128 or ATmega64.
4
ATmega64(L)
2490NS–AVR–05/08
ATmega64(L)
ATmega103
Compatibility Mode
By programming the M103C Fuse, the ATmega64 will be compatible with the ATmega103
regards to RAM, I/O pins and Interrupt Vectors as described above. However, some new features in ATmega64 are not available in this compatibility mode, these features are listed below:
•One USART instead of two, asynchronous mode only. Only the eight least significant bits of
the Baud Rate Register is available.
•One 16 bits Timer/Counter with two compare registers instead of two 16 bits Timer/Counters
with three compare registers.
•Two-wire serial interface is not supported.
•Port G serves alternate functions only (not a general I/O port).
•Port F serves as digital input only in addition to analog input to the ADC.
•Boot Loader capabilities is not supported.
•It is not possible to adjust the frequency of the internal calibrated RC Oscillator.
•The External Memory Interface can not release any Address pins for general I/O, neither
configure different wait states to different External Memory Address sections.
•Only EXTRF and PORF exist in the MCUCSR Register.
•No timed sequence is required for Watchdog Timeout change.
•Only low-level external interrupts can be used on four of the eight External Interrupt sources.
•Port C is output only.
•USART has no FIFO buffer, so Data OverRun comes earlier.
•The user must have set unused I/O bits to 0 in ATmega103 programs.
Pin Descriptions
VCCDigital supply voltage.
GNDGround.
Port A (PA7..PA0)Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port A also serves the functions of various special features of the ATmega64 as listed on page
73.
Port B (PB7..PB0)Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the ATmega64 as listed on page
74.
2490NS–AVR–05/08
5
Port C (PC7..PC0)Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port C also serves the functions of special features of the ATmega64 as listed on page 77. In
ATmega103 compatibility mode, Port C is output only, and the port C pins are not tri-stated
when a reset condition becomes active.
Port D (PD7..PD0)Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port D also serves the functions of various special features of the ATmega64 as listed on page
78.
Port E (PE7..PE0)Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port E also serves the functions of various special features of the ATmega64 as listed on page
81.
Port F (PF7..PF0)Port F serves as the analog inputs to the A/D Converter.
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS) and PF4(TCK) will
be activated even if a reset occurs.
The TDO pin is tri-stated unless TAP states that shift out data are entered.
Port F also serves the functions of the JTAG interface.
In ATmega103 compatibility mode, Port F is an input port only.
Port G (PG4..PG0)Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port G output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port G pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port G also serves the functions of various special features.
In ATmega103 compatibility mode, these pins only serves as strobes signals to the external
memory as well as input to the 32 kHz Oscillator, and the pins are initialized to PG0 = 1,
PG1 = 1, and PG2 = 0 asynchronously when a reset condition becomes active, even if the clock
is not running. PG3 and PG4 are Oscillator pins.
6
ATmega64(L)
2490NS–AVR–05/08
ATmega64(L)
RESETReset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 19 on page
52. Shorter pulses are not guaranteed to generate a reset.
XTAL1Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
XTAL2Output from the inverting Oscillator amplifier.
AVCCAVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally con-
nected to V
through a low-pass filter.
AREFAREF is the analog reference pin for the A/D Converter.
PENThis is a programming enable pin for the SPI Serial Programming mode. By holding this pin low
during a Power-on Reset, the device will enter the SPI Serial Programming mode. PEN
function during normal operation.
, even if the ADC is not used. If the ADC is used, it should be connected to V
CC
CC
has no
2490NS–AVR–05/08
7
ResourcesA comprehensive set of development tools, application notes and datasheetsare available for
download on http://www.atmel.com/avr.
Note:1.
Data RetentionReliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.
Notes:1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers 0x00 to 0x1F only.
2490NS–AVR–05/08
11
Instruction Set Summary
MnemonicsOperandsDescriptionOperationFlags#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADDRd, RrAdd two RegistersRd ← Rd + RrZ,C,N,V,H1
ADCRd, RrAdd with Carry two RegistersRd ← Rd + Rr + CZ,C,N,V,H1
ADIWRdl,KAdd Immediate to WordRdh:Rdl ← Rdh:Rdl + KZ,C,N,V,S2
SUBRd, RrSubtract two RegistersRd ← Rd - RrZ,C,N,V,H1
SUBIRd, KSubtract Constant from Register Rd ← Rd - KZ,C,N,V,H1
SBCRd, RrSubtract with Carry two RegistersRd ← Rd - Rr - CZ,C,N,V,H1
SBCIRd, KSubtract with Carry Constant from Reg.Rd ← Rd - K - CZ,C,N,V,H1
SBIWRd l,KSubtract Immediate from WordRdh:Rdl ← Rdh:Rdl - KZ,C,N,V,S2
ANDRd, RrLogical AND RegistersRd ← Rd • RrZ,N ,V1
ANDIRd, KLogical AND Register and ConstantRd ← Rd • KZ,N,V1
ORRd, RrLogical OR RegistersRd ← Rd v RrZ,N,V1
ORIRd, KLogical OR Register and ConstantRd ← Rd v KZ,N,V1
EORRd, RrExclusive OR RegistersRd ← Rd ⊕ RrZ,N,V1
COMRdOne’s ComplementRd ← 0xFF − RdZ,C,N,V1
NEGRdTwo’s ComplementRd ← 0x00 − RdZ,C,N,V,H1
SBRRd,KSet Bit(s) in RegisterRd ← Rd v KZ,N,V1
CBRRd,KClear Bit(s) in RegisterRd ← Rd • (0xFF - K)Z,N,V1
INCRdIncrementRd ← Rd + 1Z,N,V1
DECRdDecrementRd ← Rd − 1 Z,N,V1
TSTRdTest for Zero or MinusRd ← Rd • Rd Z,N,V1
CLRRdClear RegisterRd ← Rd ⊕ RdZ,N,V1
SERRdSet RegisterRd ← 0xFFNone1
MULRd, RrMultiply UnsignedR1:R0 ← Rd x RrZ,C2
MULSRd, RrMultiply SignedR1:R0 ← Rd x RrZ,C2
MULSURd, RrMultiply Signed with Unsi gnedR1:R0 ← Rd x RrZ,C2
FMULRd, RrFractional Multiply UnsignedR1:R0 ¨ (Rd x Rr) << 1Z,C2
FMULSRd, RrFractional Multiply SignedR1:R0 ¨ (Rd x Rr) << 1Z,C2
FMULSURd, RrFractional Multip ly Signed with UnsignedR1:R0 ¨ (Rd x Rr) << 1Z,C2
BRANCH INSTRUCTIONS
RJMPkRelative JumpPC ← PC + k + 1None2
IJMPIndirect Jump to (Z)PC ← Z None2
JMPkDirect JumpPC ← kNone3
RCALLkRelative Subrou tine Call PC ← PC + k + 1None3
ICALLIndirect Call to (Z)PC ← ZNone3
CALLkDirect Subroutine Call PC ← kNone4
RETSubroutine ReturnPC ← STACKNone4
RETIInterrupt ReturnPC ← STACKI4
CPSERd,RrCompare, Skip if Equalif (Rd = Rr) PC ← PC + 2 or 3None1/2/3
CPRd,RrCompareRd − RrZ, N,V,C,H1
CPCRd,RrCo mpare with CarryRd − Rr − CZ, N,V,C,H1
CPIRd,KCompare Register with ImmediateRd − KZ, N,V,C,H1
SBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=0) PC ← PC + 2 or 3 None1/2/3
SBRSRr, bSkip if Bit in Register is Setif (Rr(b)=1) PC ← PC + 2 or 3None1/2/3
SBICP, bSkip if Bit in I/O Register Clearedif (P(b)=0) PC ← PC + 2 or 3 None1/2/3
SBISP, bSkip if Bit in I/O Register is Setif (P(b)=1) PC ← PC + 2 or 3None1/2/3
BRBSs, kBranch if Status Flag Setif (SREG(s) = 1) then PC←PC+k + 1None1/2
BRBCs, kBranch if Status Flag Clearedif (SREG(s) = 0) then PC←PC+k + 1None1/2
BREQ kBranch if Equal if (Z = 1) then PC ← PC + k + 1None1/2
BRNE kBranch if Not Equalif (Z = 0) then PC ← PC + k + 1None1/2
BRCS kBranch if Carry Setif (C = 1) then PC ← PC + k + 1None1/2
BRCC kBranch if Carry Clearedif (C = 0) the n PC ← PC + k + 1None1/2
BRSH kBranch if Same or Higher if (C = 0) then PC ← PC + k + 1None1/2
BRLO kBranch if Lowerif (C = 1) then PC ← PC + k + 1None1/2
BRMI kBranch if Minusif (N = 1) then PC ← PC + k + 1None1/2
BRPL kBranch if Plus if (N = 0) then PC ← PC + k + 1None1/2
BRGE kBranch if Greater or Equal, Signedif (N ⊕ V= 0) then PC ← PC + k + 1None1/2
BRLT kBranch if Less Than Zero, Signedif (N ⊕ V= 1) then PC ← PC + k + 1None1/2
BRHS kBranch if Half Carry Flag Setif (H = 1) then PC ← PC + k + 1None1/2
BRHC kBranch if Half Carry Flag Clearedif (H = 0) then PC ← PC + k + 1None1/2
BRTS kBranch if T Flag Setif (T = 1) then PC ← PC + k + 1None1/2
BRTC kBranch if T Flag Clearedif (T = 0) then PC ← PC + k + 1None1/2
BRVS kBranch if Overflow Flag is Setif (V = 1) then PC ← PC + k + 1None1/2
BRVC kBranch if Overflow Flag is Clearedif (V = 0) then PC ← PC + k + 1None1/2
12
ATmega64(L)
2490NS–AVR–05/08
ATmega64(L)
Instruction Set Summary (Continued)
BRIE kBranch if Interrupt Enabledif ( I = 1) then PC ← PC + k + 1None1/2
BRID kBranch if Interrupt Disabledif ( I = 0) then PC ← PC + k + 1None1/2
DATA TRANSFER INSTRUCTIONS
MOVRd, RrMove Between RegistersRd ← RrNone1
MOVWRd, RrCopy Register Word
LDIRd, KLoad ImmediateRd ← KNone1
LDRd, XLoad IndirectRd ← (X)None2
LDRd, X+Load Indirect and Post-Inc.Rd ← (X), X ← X + 1None2
LDRd, - XLoad Indirect and Pre-Dec.X ← X - 1, Rd ← (X)None2
LDRd, YLoad IndirectRd ← (Y)None2
LDRd, Y+Load Indirect and Post-Inc.Rd ← (Y), Y ← Y + 1None2
LDRd, - YLoad Indirect and Pre-Dec.Y ← Y - 1, Rd ← (Y)None2
LDDRd,Y+qLoad Indirect with DisplacementRd ← (Y + q)None2
LDRd, ZLoad Indirect Rd ← (Z)None2
LDRd, Z+Load Indirect and Post-Inc.Rd ← (Z), Z ← Z+1None2
LDRd, -ZLoad Indirect and Pre-Dec.Z ← Z - 1, Rd ← (Z)None2
LDDRd, Z+qLoad Indirect with DisplacementRd ← (Z + q)None2
LDSRd, kLoad Direct from SRAMRd ← (k)None2
STX, RrStore Indirect(X) ← RrNone2
STX+, RrStore Indirect and Post-Inc.(X) ← Rr, X ← X + 1None2
ST- X, RrStore Indirect and Pre-Dec.X ← X - 1, (X) ← RrNone2
STY, RrStore Indirect(Y) ← RrNone2
STY+, RrStore Indirect and Post-Inc.(Y) ← Rr, Y ← Y + 1None2
ST- Y, RrStore Indirect and Pre-Dec.Y ← Y - 1, (Y) ← RrNone2
STDY+q,RrStore Indirect with Displacement(Y + q) ← RrNone2
STZ, RrStore Indirect(Z) ← RrNone2
STZ+, RrStore Indirect and Post-Inc.(Z) ← Rr, Z ← Z + 1None2
ST-Z, RrStore Indirect and Pre-Dec.Z ← Z - 1, (Z) ← RrNone2
STDZ+q,RrStore Indirect with Displacement(Z + q) ← RrNone2
STSk, RrStore Direct to SRAM(k) ← RrNone2
LPMLoad Program MemoryR0 ← (Z)None3
LPMRd, ZLoad Program MemoryRd ← (Z)None3
LPMRd, Z+Load Program Memory and Post-IncRd ← (Z), Z ← Z+1None3
SPMStore Program Memory(Z) ← R1 :R0NoneINRd, PIn PortRd ← PNone1
OUTP, RrOut PortP ← RrNone1
PUSHRrPush Register on StackSTACK ← RrNone2
POPRdPop Register from StackRd ← STACKNone2
BIT AND BIT-TEST INSTRUCTIONS
SBIP,bSet Bit in I/O RegisterI/O(P,b) ← 1None2
CBIP,bClear Bit in I/O RegisterI/O(P,b) ← 0None2
LSLRdLogical Shift LeftRd(n+1) ← Rd(n), Rd(0) ← 0Z,C,N,V1
LSRRdLogical Shift RightRd(n) ← Rd(n+1), Rd(7) ← 0Z,C,N,V1
ROLRdRotate Left Through CarryRd(0)←C,Rd(n+1)← Rd(n),C←Rd(7)Z,C,N,V1
RORRdRotate Right Through CarryRd(7)←C,Rd(n)← Rd(n+1),C←Rd(0)Z,C,N,V1
ASRRdArithmetic Shift RightRd(n) ← Rd(n+1), n=0..6Z,C,N,V1
SWAPRdSwap NibblesRd(3.. 0)←Rd(7..4),Rd(7..4)←Rd(3..0)None1
BSETsFlag SetSREG(s) ← 1SREG(s)1
BCLRsFlag ClearSREG(s) ← 0 SREG(s)1
BSTRr, bBit Store from Register to TT ← Rr(b)T1
BLDRd, bBit load from T to RegisterRd(b) ← TNone1
SECSet CarryC ← 1C1
CLCClear CarryC ← 0 C1
SENSet Negative FlagN ← 1N1
CLNClear Negative FlagN ← 0 N1
SEZSet Zero FlagZ ← 1Z1
CLZClear Zero FlagZ ← 0 Z1
SEIGlobal Interrupt EnableI ← 1I1
CLIGlobal Interrupt DisableI ← 0 I1
SESSet Signed Test FlagS ← 1S1
CLSClear Signed Test FlagS ← 0 S1
SEVSet Twos Complement Overflow.V ← 1V1
CLVClear Twos Complement OverflowV ← 0 V1
SETSet T in SREGT ← 1T1
CLTClear T in SREGT ← 0 T1
SEHSet Half Carry Flag in SREGH ← 1H1
Rd+1:Rd ← Rr+1:Rr
None1
2490NS–AVR–05/08
13
Instruction Set Summary (Continued)
CLHClear Half Carry Flag in SREGH ← 0 H1
MCU CONTROL INSTRUCTIONS
NOPNo OperationNone1
SLEEPSleep(see specific descr. for Sleep function)None1
WDRWatchdog Reset(see specific descr. for WDR/timer)None1
BREAKBreakFor On-chip Debug OnlyNoneN/A
14
ATmega64(L)
2490NS–AVR–05/08
ATmega64(L)
Ordering Information
Speed (MHz)Power SupplyOrdering Code
82.7 - 5.5
164.5 - 5.5
Note:1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.
64M164-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
2490NS–AVR–05/08
15
Packaging Information
64A
PIN 1
B
PIN 1 IDENTIFIER
e
E1E
D1
D
C
0°~7°
L
Notes:
1.This package conforms to JEDEC reference MS-026, Variation AEB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10 mm maximum.
A1
A2A
COMMON DIMENSIONS
(Unit of Measure = mm)
MIN
SYMBOL
A – – 1.20
A1 0.05 – 0.15
A2 0.95 1.00 1.05
D 15.75 16.00 16.25
D1 13.90 14.00 14.10 Note 2
E 15.75 16.00 16.25
E1 13.90 14.00 14.10 Note 2
B 0.30 – 0.45
C 0.09 – 0.20
L 0.45 – 0.75
e 0.80 TYP
NOM
MAX
NOTE
16
2325 Orchard Parkway
R
San Jose, CA 95131
ATmega64(L)
TITLE
64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
10/5/2001
DRAWING NO.
64A
REV.
B
2490NS–AVR–05/08
64M1
D
Marked Pin# 1 ID
ATmega64(L)
E
SEATING PLANE
C
TOP VIEW
A1
A
K
L
D2
E2
K
b
e
BOTTOM VIEW
1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.
Note:
2. Dimension and tolerance conform to ASMEY14.5M-1994.
Pin #1 Corner
1
2
3
Option A
Option B
Option C
Pin #1
Triangle
Pin #1
Chamfer
(C 0.30)
Pin #1
Notch
(0.20 R)
SIDE VIEW
SYMBOL
A 0.80 0.90 1.00
A1 – 0.02 0.05
b 0.180.250.30
D
D2 5.205.405.60
E
E2 5.205.405.60
e 0.50 BSC
L0.35 0.40 0.45
K1.251.401.55
0.08
C
COMMON DIMENSIONS
(Unit of Measure = mm)
MIN
8.909.009.10
8.909.009.10
NOM
MAX
NOTE
2490NS–AVR–05/08
2325 Orchard Parkway
R
San Jose, CA 95131
TITLE
64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm,
5.40 mm Exposed Pad, Micro Lead Frame Package (MLF)
DRAWING NO.
64M1
5/25/06
REV.
G
17
ErrataThe revision letter in this section refers to the revision of the ATmega64 device.
ATmega64, rev. A
to C
• First Analog Comparator conversion may be delayed
• Interrupts may be lost when writing the timer registers in the asynchronous timer
• Stabilizing time needed when changing XDIV Register
• Stabilizing time needed when changing OSCCAL Register
• IDCODE masks data from TDI input
• Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request
1.First Analog Comparator conversion may be delayed
If the device is powered by a slow rising V
, the first Analog Comparator conversion will
CC
take longer than expected on some devices.
Problem Fix/Workaround
When the device has been powered or reset, disable then enable theAnalog Comparator
before the first conversion.
2.Interrupts may be lost when writing the timer registers in the asynchronous timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/Workaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF
before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2
3.Stabilizing time needed when changing XDIV Register
After increasing the source clock frequency more than 2% with settings in the XDIV register,
the device may execute some of the subsequent instructions incorrectly.
Problem Fix / Workaround
The NOP instruction will always be executed correctly also right after a frequency change.
Thus, the next 8 instructions after the change should be NOP instructions. To ensure this,
follow this procedure:
1.Clear the I bit in the SREG Register.
2.Set the new pre-scaling factor in XDIV register.
3.Execute 8 NOP instructions
4.Set the I bit in SREG
This will ensure that all subsequent instructions will execute correctly.
Assembly Code Example:
CLI ; clear global interrupt enable
OUT XDIV, temp ; set new prescale value
NOP ; no operation
NOP ; no operation
NOP ; no operation
NOP ; no operation
NOP ; no operation
NOP ; no operation
NOP ; no operation
NOP ; no operation
SEI ; clear global interrupt enable
18
ATmega64(L)
2490NS–AVR–05/08
ATmega64(L)
4.Stabilizing time needed when changing OSCCAL Register
After increasing the source clock frequency more than 2% with settings in the OSCCAL register, the device may execute some of the subsequent instructions incorrectly.
Problem Fix / Workaround
The behavior follows errata number 3., and the same Fix / Workaround is applicable on this
errata.
5.IDCODE masks data from TDI input
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are
replaced by all-ones during Update-DR.
Problem Fix / Workaround
–If ATmega64 is the only device in the scan chain, the problem is not visible.
–Select the Device ID Register of the ATmega64 by issuing the IDCODE instruction or
by entering the Test-Logic-Reset state of the TAP controller to read out the contents
of its Device ID Register and possibly data from succeeding devices of the scan
chain. Issue the BYPASS instruction to the ATmega64 while reading the Device ID
Registers of preceding devices of the boundary scan chain.
–If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega64 must be the first device in the chain.
6.Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt
request.
Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR register triggers an unexpected EEPROM interrupt request.
Problem Fix / Workaround
Always use OUT or SBI to set EERE in EECR.
2490NS–AVR–05/08
19
Datasheet
Revision
History
Please note that the referring page numbers in this section are referred to this document. The
referring revision in this section are referring to the document revision.
Changes from Rev.
2490M-08/07 to
Rev. 2490N-05/08
Changes from Rev.
2490L-10/06 to
Rev. 2490M-08/07
Changes from Rev.
2490K-04/06 to
Rev. 2490L-10/06
1.Updated “PEN” on page 7.
2.Updated “Ordering Information” on page 376.
1.Updated “Features” on page 1.
2.Added “Data Retention” on page 8.
3.Updated “Errata” on page 18.
4.Updated “Assembly Code Example(1)” on page 177.
5.Updated “Slave Mode” on page 167.
1.Added note to “Timer/Counter Oscillator” on page 45.
2.Updated “Fast PWM Mode” on page 125.
3.Updated Table 52 on page 104, Table 54 on page 105, Table 59 on page 134, Table 61
on page 136, Table 64 on page 158, and Table 66 on page 158.
4.Updated “Errata” on page 18.
Changes from Rev.
2490J-03/05 to
Rev. 2490K-04/06
Changes from Rev.
2490I-10/04 to Rev.
2490J-03/05
20
ATmega64(L)
1.Updated Figure 2 on page 3.
2.Added “Resources” on page 8.
3.Added Addresses in Register Descriptions.
4.Updated “SPI – Serial Peripheral Interface” on page 163.
5.Updated Register- and bit names in “USART” on page 171.
6.Updated note in “Bit Rate Generator Unit” on page 204.
7.Updated Features in “Analog to Digital Converter” on page 230.
1.MLF-package alternative changed to “Quad Flat No-Lead/Micro Lead Frame Package
QFN/MLF”.
2.Updated “Electrical Characteristics” on page 325
3.Updated “Ordering Information” on page 15
2490NS–AVR–05/08
ATmega64(L)
Changes from Rev.
2490H-10/04 to
Rev. 2490I-11/04
Changes from Rev.
2490G-03/04 to
Rev. 2490H-10/04
1.Removed “Preliminary” and TBD’s.
2.Updated Table 8 on page 40, Table 11 on page 42, Table 19 on page 52, Table 132 on
page 327, Table 134 on page 330.
3.Updated features in “Analog to Digital Converter” on page 230.
4.Updated “Electrical Characteristics” on page 325.
1.Removed references to Analog Ground, IC1/IC3 changed to ICP1/ICP3, Input Capture
Trigger changed to Input Capture Pin.
2.Updated “ATmega103 and ATmega64 Compatibility” on page 4.
3.Updated “External Memory Interface” on page 27
4.Updated “XDIV – XTAL Divide Control Register” to “Clock Sources” on page 38.
5.Updated code example in “WDTCR – Watchdog Timer Control Register” on page 57.
6.Added section “Unconnected Pins” on page 70.
7.Updated Table 19 on page 52, Table 20 on page 56, Table 95 on page 236, and
Table 60 on page 135.
Changes from Rev.
2490F-12/03 to
Rev. 2490G-03/04
Changes from Rev.
2490E-09/03 to
Rev. 2490F-12/03
Changes from Rev.
2490D-02/03 to
Rev. 2490E-09/03
8.Updated Figure 116 on page 239.
9.Updated “Version” on page 255.
10. Updated “DC Characteristics” on page 325.
11. Updated “Typical Characteristics” on page 340.
12. Updated features in“Analog to Digital Converter” on page 230 and Table 136 on page
333.
13. Updated “Ordering Information” on page 15.
1.Updated “Errata” on page 18.
1.Updated “Calibrated Internal RC Oscillator” on page 43.
1.Updated note in “XDIV – XTAL Divide Control Register” on page 39.
2.Updated “JTAG Interface and On-chip Debug System” on page 50.
2490NS–AVR–05/08
3.Updated “TAP – Test Access Port” on page 248 regarding JTAGEN.
21
4.Updated description for the JTD bit on page 258.
5.Added a note regarding JTAGEN fuse to Table 118 on page 292.
Changes from Rev.
2490C-09/02 to Rev.
2490D-02/03
6.Updated R
7.Updated “ADC Characteristics” on page 332.
8.Added a proposal for solving problems regarding the JTAG instruction
IDCODE in “Errata” on page 18.
1.Added reference to Table 124 on page 296 from both SPI Serial Programming
and Self Programming to inform about the Flash page size.
2.Added Chip Erase as a first step under “Programming the Flash” on page 322
and “Programming the EEPROM” on page 323.
3.Corrected OCn waveforms in Figure 52 on page 126.
4.Various minor Timer1 corrections.
5.Improved the description in “Phase Correct PWM Mode” on page 101 and on
page 153.
6.Various minor TWI corrections.
7.Added note under "Filling the Temporary Buffer (Page Loading)" about writing to the EEPROM during an SPM page load.
values in “DC Characteristics” on page 325.
PU
Changes from Rev.
2490B-09/02 to Rev.
2490C-09/02
Changes from Rev.
2490A-10/01 to Rev.
2490B-09/02
8.Removed ADHSM completely.
9.Added note about masking out unused bits when reading the Program
Counter in “Stack Pointer” on page 14.
10. Added section “EEPROM Write During Power-down Sleep Mode” on page 25.
11. Changed V
12. Added information about conversion time for Differential mode with Auto
Triggering on page 234.
13. Added t
14. Updated “Packaging Information” on page 16.
1.Changed the Endurance on the Flash to 10,000 Write/Erase Cycles.
1.Added 64-pad QFN/MLF Package and updated “Ordering Information” on
page 15.
WD_FUSE
value to 120 in Table 19 on page 52.
HYST
in Table 128 on page 308.
22
ATmega64(L)
2490NS–AVR–05/08
ATmega64(L)
2.Added the section “Using all Locations of External Memory Smaller than 64 KB” on
page 35.
3.Added the section “Default Clock Source” on page 39.
4.Renamed SPMCR to SPMCSR in entire document.
5.Added Some Preliminary Test Limits and Characterization Data
Removed some of the TBD's and corrected data in the following tables and pages:
Table 2 on page 24, Table 7 on page 38, Table 9 on page 41, Table 10 on page 41, Table
12 on page 42, Table 14 on page 43, Table 16 on page 44, Table 19 on page 52, Table 20
on page 56, Table 22 on page 58, “DC Characteristics” on page 325, Table 131 on page
327, Table 134 on page 330, Table 136 on page 333, and Table 137 - Table 144.
6.Removed Alternative Algortihm for Leaving JTAG Programming Mode.
See “Leaving Programming Mode” on page 321.
7.Improved description on how to do a polarity check of the ADC diff results in “ADC
Conversion Result” on page 242.
8.Updated Programming Figures:
Figure 138 on page 294 and Figure 147 on page 306 are updated to also reflect that AVCC
must be connected during Programming mode. Figure 142 on page 301 added to illustrate
how to program the fuses.
9.Added a note regarding usage of the “PROG_PAGELOAD (0x6)” and
“PROG_PAGEREAD (0x7)” instructions on page 313.
10. Updated “TWI – Two-wire Serial Interface” on page 198.
More details regarding use of the TWI Power-down operation and using the TWI as master
with low TWBRR values are added into the data sheet. Added the note at the end of the “Bit
Rate Generator Unit” on page 204. Added the description at the end of “Address Match Unit”
on page 205.
11. Updated Description of OSCCAL Calibration Byte.
In the data sheet, it was not explained how to take advantage of the calibration bytes for 2,
4, and 8 MHz Oscillator selections. This is now added in the following sections:
Improved description of “OSCCAL – Oscillator Calibration Register(1)” on page 43 and “Cal-
ibration Byte” on page 293.
12. When using external clock there are some limitations regards to change of frequency.
This is descried in “External Clock” on page 44 and Table 131 on page 327.
13. Added a sub section regarding OCD-system and power consumption in the section
“Minimizing Power Consumption” on page 49.
14. Corrected typo (WGM-bit setting) for:
–“Fast PWM Mode” on page 99 (Timer/Counter0).
–
“Phase Correct PWM Mode” on page 101 (Timer/Counter0).
–“Fast PWM Mode” on page 152 (Timer/Counter2).
–“Phase Correct PWM Mode” on page 153 (Timer/Counter2).
2490NS–AVR–05/08
23
15. Corrected Table 81 on page 192 (USART).
16. Corrected Table 102 on page 262 (Boundary-Scan)
HeadquartersInternational
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Product Contact
Web Site
www.atmel.com
Literature Requests
www.atmel.com/literature
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-enYvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Technical Support
avr@atmel.com
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Sales Contact
www.atmel.com/contacts
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.