Analog Devices OP471EY, OP471GS, OP471GP, OP471FY Datasheet

14
13
12
11
10
9
8
1
2
3
4
5
6
7
OUT A
–IN A
+IN A
V+
+IN B
–IN B
OUT B
OUT D
–IN D
+IN D
V–
+IN C
–IN C
OUT C
OP471
High Speed, Low Noise Quad
a
FEATURES Excellent Speed: 8 V/s Typ Low Noise: 11 nV/÷ Unity-Gain Stable High Gain Bandwidth: 6.5 MHz Typ Low Input Offset Voltage: 0.8 mV Max Low Offset Voltage Drift: 4 V/C Max High Gain: 500 V/mV Min Outstanding CMR: 105 dB Min Industry Standard Quad Pinouts
GENERAL DESCRIPTION
The OP471 is a monolithic quad op amp featuring low noise, 11 nV/÷Hz Max @ 1 kHz, excellent speed, 8 V/ms typical, a gain bandwidth of 6.5 MHz, and unity-gain stability.
The OP471 has an input offset voltage under 0.8 mV and an input offset voltage drift below 4 mV/C, guaranteed over the full military temperature range. Open-loop gain of the OP471 is over 500,000 into a 10 kW load ensuring outstanding gain accuracy and linearity. The input bias current is under 25 nA limiting errors due to signal source resistance. The OP471’s CMR of over 105 dB and PSRR of under 5.6 mV/V significantly reduce errors caused by ground noise and power supply fluctuations.
The OP471 offers excellent amplifier matching which is important for applications such as multiple gain blocks, low-noise instru­mentation amplifiers, quad buffers and low-noise active filters.
The OP471 conforms to the industry standard 14-lead DIP pinout. It is pin-compatible with the LM148/LM149, HA4741, RM4156, MC33074, TL084 and TL074 quad op amps and can be used to upgrade systems using these devices.
For applications requiring even lower voltage noise the OP470 with a voltage density of 5 nV/÷Hz Max @ 1 kHz is recommended.
Hz @ 1 kHz Max
Operational Amplifier
PIN CONFIGURATIONS
14-Lead
Hermetic Dip
(Y-Suffix)
OUT A OUT D
–IN A –IN D
+IN A +IN D
+IN B +IN C
–IN B –IN C
OUT B OUT C
NC NC
OUT A
–IN A
+IN A
V+
+IN B
–IN B
OUT B
16-Lead SOIC
(S-Suffix)
1
2
3
4
V+ V–
OP471
5
6
7
8
NC = NO CONNECT
16
15
14
13
12
11
10
9
V+
OP471
14-Lead
Plastic Dip
(P-Suffix)
1
2
3
4
OP471
5
6
7
14
13
12
11
10
9
8
OUT D
–IN D
+IN D
V–
+IN C
–IN C
OUT C
BIAS
IN
+IN
OUT
V–
Figure 1. Simplified Schematic
REV. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002
OP471–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
(@ VS = 15 V, TA = 25C, unless otherwise noted.)
OP471E OP471F OP471G
Parameter Symbol Conditions Min Typ Max Min Typ Max Min Typ Max Unit
Input Offset Voltage V
Input Offset Current I
Input Bias Current I
Input Noise Voltage
Input Noise e
Voltage Density
1
2
OS
OS
B
VCM = 0 V 4 10 7 20 12 30 nA
VCM = 0 V 7 25 15 50 25 60 nA
en p-p 0.1 Hz to 10 Hz 250 500 250 500 250 500 nV p–p
n
fO = 10 Hz 9 16 9 16 9 16 nV/÷Hz fO = 100 Hz 7 12 7 12 7 12 nV/÷Hz
0.25 0.8 0.5 1.5 1.0 1.8 mV
fO = 1 kHz 6.5 11 6.5 11 6.5 11 nV/÷Hz
Input Noise i
n
Current Density f
fO = 10 Hz 1.7 1.7 1.7 pA÷Hz
= 100 Hz 0.7 0.7 0 7 pA÷Hz
O
fO = 1 kHz 0.4 0.4 0.4 pA÷Hz
Large-Signal A
VO
Voltage Gain R
V = ± 10 V
= 10 kW 500 700 300 500 300 500 V/mV
L
RL = 2 kW 350 550 175 275 175 275 V/mV
Input Voltage Range3IVR ± 11 ± 12 ± 11 ± 12 ± 11 ± 12 V
Output Voltage Swing V
O
Common-Mode CMR V
RL ≥ 2 k12 ± 13 ± 12 ± 13 ± 12 ± 13 V
= ± 11 V 105 120 95 115 95 115 dB
CM
Rejection
Power Supply PSRR V
= 4.5 V to 18 V 1 5.6 5.6 17.8 5.6 17.8 mV/V
S
Rejection Ratio
Slew Rate SR 6.5 8 6.5 8 6.5 8 V/ms
Supply Current I
SY
No Load 9.2 11 9.2 11 9.2 11 mA
(All Amplifiers)
Gain Bandwidth GBW Av = 10 6.5 6.5 6.5 MHz
Product
Channel Separation
1
CS VO = 20 V p-p 125 150 125 150 125 150 dB
fO = 10 Hz
Input Capacitance C
Input Resistance R
IN
IN
2.6 2.6 2.6 pF
1.1 1.1 1.1 MW
Differential-Mode
Input Resistance R
INCM
11 11 11 GW
Common-Mode
Settling Time t
S
AV = 1 To 0.1% 4.5 4.5 4.5 ms To 0.01 % 7.5 7.5 7.5 ms
NOTES
1
Guaranteed but not 100% tested.
2
Sample tested.
3
Guaranteed by CMR test.
–2–
REV. A
OP471
WARNING!
ESD SENSITIVE DEVICE
(Vs = ±15 V, –25C £ TA £ 85C for OP471E/F, –40C £ TA £ 85 for OP471G,
ELECTRICAL CHARACTERISTICS
Parameter Symbol Conditions Min Typ Max Min Typ Max Min Typ Max Unit
Input Offset Voltage V
Average Input TCV
Offset Voltage Drift
Input Offset Current los VCM = 0 V 5 20 8 40 20 50 nA
Input Bias Current I
Large-Signal V
Voltage Gain Avo R
Input Voltage Range* IVR ± 11 ± 12 ± 11 ± 12 ± 11 ± 12 V
Output Voltage Swing V
Common-Mode CMR V
Rejection
Power Supply PSRR V
Rejection Ratio
Supply Current
(All Amplifiers) I
*Guaranteed by CMR test.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 18 V
Differential Input Voltage Differential Input Current
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage
Output Short-Circuit Duration . . . . . . . . . . . . . . . Continuous
Storage Temperature Range
P, Y-Package . . . . . . . . . . . . . . . . . . . . . . –65C to +150∞C
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300∞C
Junction Temperature (T Operating Temperature Range
OP471E, OP471F . . . . . . . . . . . . . . . . . . . –25C to +85∞C
OP471G . . . . . . . . . . . . . . . . . . . . . . . . . . . –40C to +85∞C
NOTES
1
Absolute Maximum Ratings apply to packaged parts, unless otherwise noted.
2
The OP471’s inputs are protected by back-to-back diodes. Current limiting
resistors are not used in order to achieve low noise performance. If differential voltage exceeds ± 1.0 V, the input current should be limited to ± 25 mA.
OS
OS
B
VCM = 0 V 13 50 2570 4075 nA
= ± 10 V
O
= 10 kW 375 600 200 400 200 400 V/mV
L
RL = 2 kW 250 400 125 200 125 200
O
SY
2
. . . . . . . . . . . . . . . . . . . . . . ± 1.0 V
2
. . . . . . . . . . . . . . . . . . . . ± 25 mW
) . . . . . . . . . . . . . –65C to +150C
i
RL ≥ 2 k12 ± 13 ± 12 ± 13 ± 12 ± 13 V
CM
= ± 4.5 V to ± 18 V 3.2 10 18 31.6 18 31.6 mV/V
S
No Load 9.3 11 9.3 11 9.3 11 mA
1
unless otherwise noted.)
OP471E OP471F OP471G
0.3 1.1 0.6 2.0 1.2 2.5 mV 14 27 4 mV/∞C
= ± 11 V 100 115 90 110 90 110 dB
Package Type JA*
JC
Unit
14-Lead Hermetic DIP(Y) 94 10 ∞C/W
14-Lead Plastic DIP(P) 76 33 ∞C/W
16-Lead SOIC (S) 88 23 ∞C/W
*
is specified for worst-case mounting conditions, i.e., JA is specified for device
JA
in socket for TO, CERDIP, PDIP packages; JA is specified for device soldered to printed circuit board for SO packages.

ORDERING GUIDE

TA = 25C Package Options Operating V
MAX Temperature
OS
(mV) 14-Lead CERDIP Plastic Range
800 OP471EY IND 1,500 OP471FY* IND 1,800 OP471GP XIND 1,800 OP471GS XIND
*Not for new design. Obsolete April 2002.
For military processed devices, please refer to the standard microcircuit drawing (SMD) available at
www.dscc.dla.mil/programs/milspec/default.asp
5962-88565022A - OP471ARCMDA 5962-88565023A - OP471ATCMDA 5962-8856502CA - OP471AYMDA
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP471 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
REV. A
–3–
OP471
k
k
100
40 30
20
10
–Typical Performance Characteristics
10
T
TA = 25C
= 15V
V
S
= 25C
A
8
6
AT 10Hz
AT 1kHz
5mV
100
90
1s
5
4 3
I/F CORNER = 5Hz
VOLTA G E NOISE – nV/ Hz
2
1
1
10 100 1
FREQUENCY – Hz
TPC 1. Voltage Noise Density vs. Frequency
100
TA = 25C
= 15V
V
S
40 30
20
10
5
4 3
I/F CORNER = 5Hz
VOLTA G E NOISE – nV/ Hz
2
1
1
10 100 1
FREQUENCY – Hz
TPC 4. Current Noise Density vs. Frequency
4
VOLTA G E NOISE – nV/ Hz
2
0 5 20
10 15
SUPPLY VOLTAGE – V
TPC 2. Voltage Noise Density vs. Supply Voltage
400
VS = 15V
300
200
100
INPUT OFFSET VOLTAGE – V
0
–75
–50 –25 0 25 50 75 100 125
TEMPERATURE – C
TPC 5. Input Offset Voltage vs. Temperature
10
0%
NOISE VOLTAGE – 100nV/DIV
024 6810
TIME – Seconds
TA = 25C
= 15V
V
S
TPC 3. 0.1 Hz to 10 Hz Noise
20
TA = 25C
18
= 15V
V
S
16
14
12
10
8
6
4
CHANGE IN OFFSET VOLTAGE – V
2
0
1 2345
0
TIME – Minutes
TPC 6. Warm-Up Offset Voltage Drift
20
15
10
5
INPUT BIAS CURRENT – nA
0 –75
–50 –25 0 25 50 75 100 125
TEMPERATURE – C
TPC 7. Input Bias Current vs. Temperature
VS = 15V
= 0V
V
CM
10
VS = 15V
9
= 0V
V
CM
8
7
6
5
4
3
2
INPUT OFFSET CURRENT – nA
1
0
–50 –25 0 25 50 75 100 125
–75
TEMPERATURE – C
TPC 8. Input Offset Current vs. Temperature
10
TA = 25C
= 15V
V
S
9
8
7
6
INPUT BIAS CURRENT – nA
5
–7.5 –2.5 2.5 7.5 12.5
–12.5
COMMON-MODE VOLTAGE – V
TPC 9. Input Bias Current vs. Common-Mode Voltage
–4–
REV. A
OP471
0
130
120
110
100
90
80
70
60
CMR – dB
50
40
30
20
10
10 100 1k 10k 100k 1M
1
FREQUENCY – Hz
TPC 10. CMR vs. Frequency
140 130 120
110 100
90 80
70
60
PSR – dB
50
40
30
20 10
0
10 100 1k 10k 100k 1M 10M 100M
1
+PSR
FREQUENCY – Hz
TPC 13. PSR vs. Frequency
–PSR
TA = 25C
= 15V
V
S
TA = 25C
= 15V
V
S
10
TA = +25C
8
6
4
TOTA L SUPPLY CURRENT – mA
2
0 5 2
TA = +125C
TA = –55C
10 15
SUPPLY VOLTAGE – V
TPC 11. Total Supply Current vs. Supply Voltage
140 130 120
110 100
90 80
70
60
50
40
OPEN-LOOP GAIN – dB
30
20 10
0
10 100 1k 10k 100k 1M 10M 100M
1
FREQUENCY – Hz
TA = 25C
= 15V
V
S
TPC 14. Open-Loop Gain vs. Frequency
10
VS = 15V
9
8
7
6
5
4
TOTA L SUPPLY CURRENT – mA
3
2
–50 –25 0 25 50 75 100 125
–75
TEMPERATURE – C
TPC 12. Total Supply Current vs. Temperature
80
60
40
20
CLOSED-LOOP GAIN – dB
0
–20
1k
10k 100k 1M 10M
FREQUENCY – Hz
TA = 25C V
TPC 15. Closed-Loop Gain vs. Frequency
= 15V
S
25
20
PHASE
15
10
GAIN
5
0
OPEN-LOOP GAIN – dB
–5
–10
1
2345
FREQUENCY – MHz
PHASE MARGIN
TPC 16. Open-Loop Gain, Phase Shift vs. Frequency
TA = 25C
= 15V
V
S
= 57
67 89
80
100
120
140
160
180
200
220
10
2000
PHASE SHIFT – Degrees
1500
1000
OPEN-LOOP GAIN – V/mV
TA = 25C
= 10k
R
L
500
0
5 10 15 20
0
SUPPLY VOLTAGE – V
TPC 17. Open-Loop Gain vs. Supply Voltage
80
GBW
70
60
VS = 15V
50
PHASE MARGIN – Degrees
40
–50 –25 0 25 50 75 100 125 150
–75
TEMPERATURE – C
TPC 18. Gain-Bandwidth Product, Phase Margin vs. Temperature
8
6
4
2
GAIN-BANDWIDTH PRODUCT – MHz
0
REV. A
–5–
Loading...
+ 11 hidden pages