Analog Devices OP297 e Datasheet

Precision Operational Amplifier
OP297
FEATURES Low Offset Voltage: 50 V Max Low Offset Voltage Drift: 0.6 V/C Max Very Low Bias Current: 100 pA Max Very High Open-Loop Gain: 2000 V/mV Min Low Supply Current (Per Amplifier): 625 A Max Operates From 2 V to 20 V Supplies High Common-Mode Rejection: 120 dB Min Pin Compatible to LT1013, AD706, AD708, OP221,
LM158, and MC1458/1558 with Improved Performance
APPLICATIONS Strain Gage and Bridge Amplifiers High Stability Thermocouple Amplifiers Instrumentation Amplifiers Photo-Current Monitors High Gain Linearity Amplifiers Long-Term Integrators/Filters Sample-and-Hold Amplifiers Peak Detectors Logarithmic Amplifiers Battery-Powered Systems

GENERAL DESCRIPTION

The OP297 is the first dual op amp to pack precision performance into the space-saving, industry-standard, 8-lead SOIC package. Its combination of precision with low power and extremely low input bias current makes the dual OP297 useful in a wide variety of applications.
60
40
20
0
–20
INPUT CURRENT (pA)
–40
+
I
B
I
OS
VS = 15V
= 0V
VCM
I
B

PIN CONNECTIONS

OUTA
–INA
+INA
1
2
3
4
8
V+
7
OUTB
BA
6
–INB
5
+INBV–
Precision performance of the OP297 includes very low offset, under 50 µV, and low drift, below 0.6 µV/°C. Open-loop gain exceeds 2000 V/mV, ensuring high linearity in every application.
Errors due to common-mode signals are eliminated by the OP297’s common-mode rejection of over 120 dB, which mini­mizes offset voltage changes experienced in battery-powered systems. Supply current of the OP297 is under 625 µA per amplifier, and the part can operate with supply voltages as low as ±2 V.
The OP297 uses a super-beta input stage with bias current cancellation to maintain picoamp bias currents at all temperatures. This is in contrast to FET input op amps whose bias currents start in the picoamp range at 25°C, but double for every 10°C rise in temperature, to reach the nanoamp range above 85°C. Input bias current of the OP297 is under 100 pA at 25°C and is under 450 pA over the military temperature range.
Combining precision, low power, and low bias current, the OP297 is ideal for a number of applications, including instrumentation amplifiers, log amplifiers, photodiode preamplifiers, and long­term integrators. For a single device, see the OP97; for a quad, see the OP497.
400
1200 UNITS
300
200
NUMBER OF UNITS
100
TA = 25C V
= 15V
S
= 0V
V
CM
–60
–75 –50 125–25 0 25 50 75 100
TEMPERATURE (ⴗC)
Figure 1. Low Bias Current over Temperature
REV. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.
0 –100 –80 60–60 –40 –20 0 20 40
INPUT OFFSET VOLTAGE (␮V)
80 100
Figure 2. Very Low Offset
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © 2003 Analog Devices, Inc. All rights reserved.
OP297–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
(@ VS = 15 V, TA = 25C, unless otherwise noted.)
OP297E OP297F OP297G
Parameter Symbol Conditions Min Typ Max Min Typ Max Min Typ Max Unit
Input Offset Voltage V
OS
25 50 50 100 80 200 µV
Long-Term Input
Voltage Stability 0.1 0.1 0.1 µV/mo
Input Offset Current I Input Bias Current I Input Noise Voltage e Input Noise Voltage Density e
Input Noise Current Density i
OS
B
p-p 0.1 Hz to 10 Hz 0.5 0.5 0.5 µV p-p
n
n
n
VCM = 0 V 20 100 35 150 50 200 pA VCM = 0 V 20 ± 100 35 ± 150 50 ± 200 pA
fO = 10 Hz 20 20 20 nV/Hz
= 1000 Hz 17 17 17 nV/Hz
f
O
fO = 10 Hz 20 20 20 fA/Hz
Input Resistance
Differential Mode R
IN
30 30 30 M
Input Resistance
Common-Mode R
INCM
Large-Signal V
Voltage Gain A
Input Voltage Range* V
VO
CM
Common-Mode Rejection CMRR V Power Supply Rejection PSRR V Output Voltage Swing V
Supply Current per Amplifier I Supply Voltage V
O
SY
S
= ±10 V
O
RL = 2 k 2000 4000 1500 3200 1200 3200 V/mV
= ±13 V 120 140 114 135 114 135 dB
CM
= ±2 V to ±20 V 120 130 114 125 114 125 dB
S
RL = 10 kΩ±13 ± 14 ± 13 ±14 ±13 ±14 V
= 2 kΩ±13 ± 13.7 ± 13 ±13.7 ± 13 ±13.7 V
R
L
No Load 525 625 525 625 525 625 µA Operating Range ±2 ±20 ± 2 ±20 ±2 ±20 V
500 500 500 G
±13 ± 14 ± 13 ±14 ±13 ±14 V
Slew Rate SR 0.05 0.15 0.05 0.15 0.05 0.15 V/µs Gain Bandwidth Product GBWP A Channel Separation CS V
Input Capacitance C
*Guaranteed by CMR test.
Specifications subject to change without notice.
IN
= +1 500 500 500 kHz
V
= 20 V p-p 150 150 150 dB
O
= 10 Hz
f
O
333pF
ELECTRICAL CHARACTERISTICS
(@ VS = 15 V, –40C TA +85C for OP297E/F/G, unless otherwise noted.)
OP297E OP297F OP297G
Parameter Symbol Conditions Min Typ Max Min Typ Max Min Typ Max Unit
Input Offset Voltage V
OS
35 100 80 300 110 400 µV
Average Input Offset
Voltage Drift TCV Input Offset Current I Input Bias Current I Large-Signal Voltage Gain A
Input Voltage Range* V
OS
OS
B
VO
CM
Common-Mode Rejection CMRR V Power Supply Rejection PSRR V
VCM = 0 V 50 450 80 750 80 750 pA VCM = 0 V 50 ±450 80 ± 750 80 ± 750 pA VO = ±10 V,
= 2 k 1200 3200 1000 2500 800 2500 V/mV
R
L
= ±13 114 130 108 130 108 130 dB
CM
= ±2.5 V
S
0.2 0.6 0.5 2.0 0.6 2.0 µV/°C
±13 ± 13.5 ± 13 ±13.5 ± 13 ±13.5 V
to ±20 V 114 0.15 108 0.15 108 0.3 dB
Output Voltage Swing V Supply Current per Amplifier I Supply Voltage V
*Guaranteed by CMR test.
Specifications subject to change without notice.
O
SY
S
RL = 10 kΩ±13 ± 13.4 ± 13 ±13.4 ±13 ± 13.4 V No Load 550 750 550 750 550 750 µA Operating Range ±2.5 ±20 ± 2.5 ±20 ± 2.5 ±20 V
REV. E–2–
OP297

ABSOLUTE MAXIMUM RATINGS

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 V
Input Voltage Differential Input Voltage
2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 V
2
. . . . . . . . . . . . . . . . . . . . . . . . 40 V
1
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . Indefinite
Storage Temperature Range
Z Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C
P, S Packages . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C
Operating Temperature Range
OP297E (Z) . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C
OP297F, OP297G (P, S) . . . . . . . . . . . . . . –40°C to +85°C
Junction Temperature
Z Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C
P, S Packages . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C

ORDERING GUIDE

Model Temperature Range Package Description Package Options
OP297EZ –40°C to +85°C 8-Lead CERDIP Q-8 OP297FP –40°C to +85°C 8-Lead PDIP N-8 OP297FS –40°C to +85°C 8-Lead SOIC R-8 OP297FS-REEL –40°C to +85°C 8-Lead SOIC R-8 OP297FS-REEL7 –40°C to +85°C 8-Lead SOIC R-8 OP297GP –40°C to +85°C 8-Lead PDIP N-8 OP297GS –40°C to +85°C 8-Lead SOIC R-8 OP297GS-REEL –40°C to +85°C 8-Lead SOIC R-8 OP297GS-REEL7 –40°C to +85°C 8-Lead SOIC R-8
Package Types
3
JA
JC
Unit
8-Lead CERDIP (Z) 134 12 °C/W 8-Lead PDIP (P) 96 37 °C/W 8-Lead SOIC (S) 150 41 °C/W
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause perma­nent damage to the device. This is a stress rating only; and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2
For supply voltages less than ± 20 V, the absolute maximum input voltage is equal to the supply voltage.
3
JA is specified for worst case mounting conditions, i.e., JA is specified for device
in socket for CERDIP and PDIP, packages; JA is specified for device soldered to printed circuit board for SOIC package.
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP297 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
1/2 OP297
50k
50
1/2 OP297
CHANNEL SEPARATION = 20 log
V1 20Vp-p @ 10Hz
2k
V
2
V
1
)
V2/10000
)
REV. E
Figure 3. Channel Separation Test Circuit
–3–
OP297
)
(pA)
)
–Typical Performance Characteristics
400
1200 UNITS
300
200
NUMBER OF UNITS
100
0
–100 –80 60–60 –40 –20 0 20 40
INPUT OFFSET VOLTAGE (pA)
TA = 25ⴗC V V
TPC 1. Typical Distribution of Input Offset Voltage
60
40
20
0
–20
INPUT CURRENT (pA)
–40
–60
–75 –50 125–25 0 25 50 75 100
TEMPERATURE (ⴗC)
IB–
IB+
I
OS
TPC 4. Input Bias, Offset Current vs. Temperature
= 15V
S
= 0V
CM
VS = ⴞ15V
= 0V
VCM
80 100
250
1200 UNITS
200
150
100
NUMBER OF UNITS
50
0
–100 –80 60–60 –40 –20 0 20 40
INPUT BIAS CURRENT (pA)
TA = 25ⴗC V
= ⴞ15V
S
V
= 0V
CM
80 100
TPC 2. Typical Distribution of Input Bias Current
60
VS = ⴞ15V
= 0V
V
CM
40
20
0
INPUT CURRENT (pA)
–20
–40
–10 –5 0 5 10 15
–15
COMMON-MODE VOLTAGE (V)
IB–
I
IB+
OS
TPC 5. Input Bias, Offset Current vs. Common-Mode Voltage
400
1200 UNITS
300
200
NUMBER OF UNITS
100
0
–100
–80 60–60 –40 –20 0 20 40 80 100
INPUT OFFSET VOLTAGE
TA = 25ⴗC V
= ⴞ15V
S
= 0V
V
CM
TPC 3. Typical Distribution of Input Offset Current
3
TA = 25ⴗC
V)
V
= ⴞ15V
S
DEVIATION FROM FINAL VALUE (
= 0V
V
CM
2
1
0
012345
TIME AFTER POWER APPLIED (Minutes
TPC 6. Input Offset Voltage Warm-Up Drift
10000
BALANCED OR UNBALANCED VS = 15V
= 0V
V
CM
1000
100
–55C TA +125C
EFFECTIVE OFFSET VOLTAGE (␮V)
TA = +25ⴗC
10
10 10M
SOURCE RESISTANCE (⍀
TPC 7. Effective Offset Voltage vs. Source Resistance
100
BALANCED OR UNBALANCED VS = ⴞ15V
= 0V
V
CM
10
1
0.1
1M100k10k1k100
EFFECTIVE OFFSET VOLTAGE DRIFT (␮V/ⴗC)
SOURCE RESISTANCE (⍀)
10M1M100k10k1k100
100M
TPC 8. Effective TCVOS vs. Source Resistance
35
30 25
20 15 10
5
VS = ⴞ15V
0
OUTPUT SHORTED
–5
TO GROUND
–10 –15
–20
SHORT-CIRCUIT CURRENT (mA)
–25
–30 –35
0412 3
TIME FROM OUTPUT SHORT (Minutes)
TA = –55ⴗC
TA = +25ⴗC
TA = +125ⴗC
TA = +125ⴗC
TA = +25ⴗC
TA = –55ⴗC
TPC 9. Short Circuit Current vs. Time, Temperature
REV. E–4–
Loading...
+ 8 hidden pages