ABB ACS800 Firmware Manual

Page 1
ACS800
Firmware Manual ACS800 Standard Control Program 7.x
Page 2
Page 3
ACS800 Standard Control Program 7.x
Firmware Manual
3AFE64527592 REV K
EN
EFFECTIVE: 14.12.2009
Page 4
Page 5

Table of contents

Table of contents
Introduction to the manual
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Safety instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Product and service inquiries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Product training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Providing feedback on ABB Drives manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Start-up and control through the I/O
5
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
How to start-up the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
How to perform the guided start-up (covers all essential settings) . . . . . . . . . . . . . . . . . . . . . . . 15
How to perform the limited start-up (covers only the basic settings) . . . . . . . . . . . . . . . . . . . . . 17
How to control the drive through the I/O interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
How to perform the ID Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
ID Run Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Control panel
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Overview of the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Panel operation mode keys and displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Status row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Drive control with the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
How to start, stop and change direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
How to set speed reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Actual signal display mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
How to select actual signals to the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
How to display the full name of the actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
How to view and reset the fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
How to display and reset an active fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
About the fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Parameter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
How to select a parameter and change the value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
How to adjust a source selection (pointer) parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Function mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
How to enter an assistant, browse and exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
How to upload data from a drive to the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table of contents
Page 6
6
How to download data from the panel to a drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
How to set the contrast of the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Drive selection mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
How to select a drive and change its panel link ID number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Reading and entering packed boolean values on the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Program features
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Start-up Assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
The default order of the tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
List of tasks and the relevant drive parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Contents of the assistant displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Local control vs. external control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Local control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
External control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Block diagram: start, stop, direction source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Block diagram: reference source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Reference types and processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Reference trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Programmable analogue inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Update cycles in the Standard Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Programmable analogue outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Update cycles in the Standard Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Programmable digital inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Update cycles in the Standard Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Programmable relay outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Update cycles in the Standard Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Motor identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Power loss ride-through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Automatic Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table of contents
Page 7
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
DC Magnetising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
DC Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Flux Braking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Flux Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Acceleration and deceleration ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Critical speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Constant speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Speed controller tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Speed control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Torque control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Scalar control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
IR compensation for a scalar controlled drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Hexagonal motor flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Programmable protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
AI<Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Panel Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
External Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Motor Thermal Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Motor temperature thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Use of the motor thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Stall Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Underload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Motor Phase Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Earth Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Communication Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Supervision of optional IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Preprogrammed faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7
Table of contents
Page 8
8
Overcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
DC overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
DC undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Drive temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Enhanced drive temperature monitoring for ACS800, frame sizes R7 and R8 . . . . . . . . . . . . . 65
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Input phase loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Control board temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Overfrequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Internal fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Operation limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Power limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Automatic resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Supervisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Parameter lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Process PID control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Sleep function for the process PID control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Motor temperature measurement through the standard I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Motor temperature measurement through an analogue I/O extension . . . . . . . . . . . . . . . . . . . . . . 73
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Adaptive Programming using the function blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
DriveAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Control of a mechanical brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Operation time scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
State shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Master/Follower use of several drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Settings and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Jogging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Reduced Run function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table of contents
Page 9
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
User load curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Application macros
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Overview of macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Note on external power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Factory macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Hand/Auto macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
PID Control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Connection example, 24 VDC / 4…20 mA two-wire sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Torque Control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Sequential Control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Operation diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
User macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9
Actual signals and parameters
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
01 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
02 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
03 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
04 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
09 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
10 START/STOP/DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
11 REFERENCE SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
12 CONSTANT SPEEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
13 ANALOGUE INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
14 RELAY OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
15 ANALOGUE OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
16 SYST CTRL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
20 LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
21 START/STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
22 ACCEL/DECEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
23 SPEED CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
24 TORQUE CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
25 CRITICAL SPEEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
26 MOTOR CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
27 BRAKE CHOPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table of contents
Page 10
10
30 FAULT FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
31 AUTOMATIC RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
32 SUPERVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
33 INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
34 PROCESS VARIABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
35 MOT TEMP MEAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
40 PID CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
42 BRAKE CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
45 ENERGY OPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
50 ENCODER MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
51 COMM MODULE DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
52 STANDARD MODBUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
60 MASTER/FOLLOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
70 DDCS CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
72 USER LOAD CURVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
83 ADAPT PROG CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
84 ADAPTIVE PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
85 USER CONSTANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
90 D SET REC ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
92 D SET TR ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
95 HARDWARE SPECIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
96 EXTERNAL AO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
98 OPTION MODULES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
99 START-UP DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Fieldbus control
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Redundant fieldbus control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Setting up communication through a fieldbus adapter module . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Setting up communication through the Standard Modbus Link . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Modbus addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Setting up communication through Advant controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Drive control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
The fieldbus control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
The Control Word and the Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Fieldbus reference selection and correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Reference handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Actual Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Block diagram: Control data input from fieldbus when a type Rxxx fieldbus adapter is used . 202 Block diagram: Actual value selection for fieldbus when a type Rxxx fieldbus adapter is used 203 Block diagram: Control data input from fieldbus when a type Nxxx fieldbus adapter is used . 204 Block Diagram: Actual value selection for fieldbus when a type Nxxx fieldbus adapter is used 205
Communication profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
ABB Drives communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
03.01 MAIN CONTROL WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
03.02 MAIN STATUS WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Fieldbus reference scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Table of contents
Page 11
11
Generic Drive communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Drive commands supported by the Generic Drive communication profile . . . . . . . . . . . . . . 212
Fieldbus reference scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
CSA 2.8/3.0 communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
CONTROL WORD for the CSA 2.8/3.0 communication profile . . . . . . . . . . . . . . . . . . . . . . 214
STATUS WORD for the CSA 2.8/3.0 communication profile . . . . . . . . . . . . . . . . . . . . . . . . 214
Diverse status, fault, alarm and limit words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
03.03 AUXILIARY STATUS WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
03.04 LIMIT WORD 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
03.05 FAULT WORD 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
03.06 FAULT WORD 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
03.07 SYSTEM FAULT WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
03.08 ALARM WORD 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
03.09 ALARM WORD 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
03.13 AUXILIARY STATUS WORD 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
03.14 AUXILIARY STATUS WORD 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
03.15 FAULT WORD 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
03.16 ALARM WORD 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
03.17 FAULT WORD 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
03.18 ALARM WORD 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
03.19 INT INIT FAULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
03.30 LIMIT WORD INV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
03.31 ALARM WORD 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
03.32 EXT IO STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
03.33 FAULT WORD 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
04.01 FAULTED INT INFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
04.02 INT SC INFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Fault tracing
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Warning and fault indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
How to reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Warning messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Warning messages generated by the control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Fault messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Analogue Extension Module
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Speed control through the analogue extension module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Basic checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Settings of the analogue extension module and the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Parameter settings: bipolar input in basic speed control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Parameter settings: bipolar input in joystick mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Table of contents
Page 12
12
Additional data: actual signals and parameters
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Fieldbus addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Rxxx adapter modules (such as RPBA-01, RDNA-01, etc.) . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Nxxx adapter modules (such as NPBA-12, NDNA-02, etc.) . . . . . . . . . . . . . . . . . . . . . . . . . . 249
NPBA-12 Profibus Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
NIBA-01 InterBus-S Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
NMBP-01 ModbusPlus® Adapter and NMBA-01 Modbus Adapter . . . . . . . . . . . . . . . . . . . 250
Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Control block diagrams
Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Reference control chain, sheet 1: FACTORY, HAND/AUTO, SEQ CTRL and T CTRL macros
(continued on the next page …) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Reference control chain sheet 1: PID CTRL macro (continued on the next page …) . . . . . . . . . 266
Reference control chain sheet 2: All macros (continued on the next page …) . . . . . . . . . . . . . . 268
Handling of Start, Stop, Run Enable and Start Interlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Handling of Reset and On/Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Index
Table of contents
Page 13

Introduction to the manual

Chapter overview

The chapter includes a description of the contents of the manual. In addition it contains information about the compatibility, safety and intended audience.

Compatibility

The manual is compatible with Standard Control Program version ASXR7360. See parameter 33.01 SOFTWARE VERSION.

Safety instructions

Follow all safety instructions delivered with the drive.
Read the complete safety instructions before you install, commission, or use the drive. The complete safety instructions are given at the beginning of the Hardware Manual.
13

Reader

Contents

Read the software function specific warnings and notes before changing the default settings of the function. For each function, the warnings and notes are given in this manual in the section describing the related user-adjustable parameters.
The reader of the manual is expected to know the standard electrical wiring practices, electronic components, and electrical schematic symbols.
The manual consists of the following chapters:
Start-up and control through the I/O instructs in setting up the application program, and how to start, stop and regulate the speed of the drive.
Control panel gives instructions for using the panel.
Program features contains the feature descriptions and the reference lists of the user settings and diagnostic signals.
Application macros contains a short description of each macro together with a connection diagram.
Actual signals and parameters describes the actual signals and parameters of the drive.
Fieldbus control describes the communication through the serial communication links.
Introduction to the manual
Page 14
14
Fault tracing lists the warning and fault messages with the possible causes and remedies.
Analogue Extension Module, describes the communication between the drive and the analogue I/O extension (optional).
Additional data: actual signals and parameters contains more information on the actual signals and parameters.
Control block diagrams contains block diagrams concerning reference control chains and handling of Start, Stop, Run Enable and Start Interlock.

Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting the type code and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to www.abb.com/drives selecting Sales, Support and Service network.

Product training

For information on ABB product training, navigate to www.abb.com/drives and select Training courses.
and

Providing feedback on ABB Drives manuals

Your comments on our manuals are welcome. Go to www.abb.com/drives and select
Document Library – Manuals feedback form (LV AC drives).
Introduction to the manual
Page 15

Start-up and control through the I/O

Chapter overview

The chapter instructs how to:
do the start-up
start, stop, change the direction of rotation, and adjust the speed of the motor through the I/O interface
perform an Identification Run for the drive.

How to start-up the drive

There are two start-up methods between which the user can select: Run the Start-up Assistant, or perform a limited start-up. The Assistant guides the user through all essential settings to be done. In the limited start-up, the drive gives no guidance: The user goes through the very basic settings by following the instructions given in the manual.
15
If you want to run the Assistant, follow the instructions given in section How to
perform the guided start-up (covers all essential settings) on page 15.
If you want to perform the limited start-up, follow the instructions given in section How to perform the limited start-up (covers only the basic settings) on page 17.

How to perform the guided start-up (covers all essential settings)

Before you start, ensure you have the motor nameplate data on hand.
SAFETY
The start-up may only be carried out by a qualified electrician. The safety instructions must be followed during the start-up procedure. See the
appropriate hardware manual for safety instructions.
Check the installation. See the installation checklist in the appropriate hardware/installation manual.
Check that the starting of the motor does not cause any danger. De-couple the driven machine if:
- there is a risk of damage in case of incorrect direction of rotation, or
- a Standard ID Run needs to be performed during the drive start-up. (ID Run is essential only in applications which require the ultimate in motor control accuracy.)
Start-up and control through the I/O
Page 16
16
POWER-UP
Apply the main power. The control panel first shows the panel identification data …
… then the Identification Display of the drive …
… then the Actual Signal Display …
…after which the display suggests starting the Language Selection.
(If no key is pressed for a few seconds, the display starts to alternate between the Actual Signal Display and the suggestion on selecting the language.)
The drive is now ready for the start-up.
SELECTING THE LANGUAGE
Press the FUNC key.
Scroll to the desired language by the arrow keys ( or ) and press ENTER to accept.
(The drive loads the selected language into use, shifts back to the Actual Signal Display and starts to alternate between the Actual Signal Display and the suggestion on starting the guided motor set-up.)
CDP312 PANEL Vx.xx
.......
ACS800 ID NUMBER 1
1 -> 0.0 rpm O FREQ 0.00 Hz CURRENT 0.00 A POWER 0.00 %
1 -> 0.0 rpm O *** INFORMATION *** Press FUNC to start Language Selection
Language Selection 1/1
LANGUAGE ? [ENGLISH] ENTER:OK ACT:EXIT
1 -> 0.0 rpm O *** INFORMATION *** Press FUNC to start guided Motor Setup
STARTING THE GUIDED MOTOR SET-UP
Press FUNC to start the guided motor set-up.
(The display shows which general command keys to use when stepping through the assistant.)
Press ENTER to step forward. Follow the instructions given on the display.
Motor Setup 1/10 ENTER: Ok/Continue ACT: Exit FUNC: More Info
Motor Setup 2/10 MOTOR NAMEPLATE DATA AVAILABLE? ENTER:Yes FUNC:Info
Start-up and control through the I/O
Page 17

How to perform the limited start-up (covers only the basic settings)

Before you start, ensure you have the motor nameplate data at your hand.
SAFETY
The start-up may only be carried out by a qualified electrician. The safety instructions must be followed during the start-up procedure. See the
appropriate hardware manual for safety instructions.
Check the installation. See the installation checklist in the appropriate hardware/installation manual.
Check that the starting of the motor does not cause any danger. De-couple the driven machine if:
- there is a risk of damage in case of incorrect direction of rotation, or
- a Standard ID Run needs to be performed during the drive start-up. (ID Run is essential only in applications which require the ultimate in motor control accuracy.)
POWER-UP
17
Apply the main power. The control panel first shows the panel identification data …
… then the Identification Display of the drive …
… then the Actual Signal Display …
…after which the display suggests starting the Language Selection.
(If no key is pressed for a few seconds, the display starts to alternate between the Actual Signal Display and the suggestion on starting the Language Selection.)
Press ACT to remove the suggestion on starting the language selection.
The drive is now ready for the limited start-up.
MANUAL START-UP DATA ENTERING (parameter group 99)
Select the language. The general parameter setting procedure is described below.
The general parameter setting procedure:
- Press PAR to select the Parameter Mode of the panel.
- Press the double-arrow keys ( or ) to scroll the parameter groups.
- Press the arrow keys ( or ) to scroll parameters within a group.
- Activate the setting of a new value by ENTER.
- Change the value by the arrow keys ( or ), fast change by the double­arrow keys ( or ).
- Press ENTER to accept the new value (brackets disappear).
CDP312 PANEL Vx.xx
.......
ACS800 ID NUMBER 1
1 -> 0.0 rpm O
REQ 0.00 Hz
F CURRENT 0.00 A POWER 0.00 %
1 -> 0.0 rpm O *** INFORMATION *** Press FUNC to start Language Selection
1 -> 0.0 rpm O FREQ 0.00 Hz CURRENT 0.00 A POWER 0.00 %
1 -> 0.0 rpm O 99 START-UP DATA 01 LANGUAGE ENGLISH
1 -> 0.0 rpm O 99 START-UP DATA 01 LANGUAGE [ENGLISH]
Start-up and control through the I/O
Page 18
18
M2AA 200 MLA 4
1475
1475 1470 1470
1475 1770
32.5 56 34 59 54 59
0.83
0.83
0.83
0.83
0.83
0.83
3GAA 202 001 - ADA
180
IEC 34-1
6210/C36312/C3
Cat. no
35
30
30
30
30
30
50 50 50
50 50
60
690 Y 400 D 660 Y 380 D 415 D 440 D
V
Hz kW
r/min A
cos
IA/IN
t
E/s
Ins.cl. F
IP 55
No
IEC 200 M/L 55
3
motor
ABB Motors
380 V
input
voltage
Select the Application Macro. The general parameter setting procedure is given above.
The default value FACTORY is suitable in most cases.
Select the motor control mode. The general parameter setting procedure is given above.
DTC is suitable in most cases. The SCALAR control mode is recommended
- for multimotor drives when the number of the motors connected to the drive is variable
- when the nominal current of the motor is less than 1/6 of the nominal current of the inverter
- when the inverter is used for test purposes with no motor connected.
Enter the motor data from the motor nameplate:
1 -> 0.0 rpm O 99 START-UP DATA 02 APPLICATION MACRO [ ]
1 -> 0.0 rpm O 99 START-UP DATA 04 MOTOR CTRL MODE [DTC]
Note: Set the motor data to exactly the same value as on the motor nameplate. For example, if the motor nominal speed is 1440 rpm on the nameplate, setting the value of parameter
99.08 MOTOR NOM SPEED to 1500 rpm results in the wrong operation of the drive.
- motor nominal voltage
Allowed range: 1/2 · U each of the nominal voltage ranges: 415 VAC for 400 VAC units, 500 VAC for 500 VAC units and 690 VAC for 600 VAC units.)
- motor nominal current
Allowed range: approx. 1/6 · I
99.04 = SCALAR))
- motor nominal frequency
Range: 8 300 Hz
- motor nominal speed
Range: 118000 rpm
-motor nominal power
Range: 09000 kW
Start-up and control through the I/O
N
2 · U
2hd
of ACS800. (UN refers to the highest voltage in
N
2 · I
of ACS800 (0 … 2 · I
2hd
if parameter
2hd
1 -> 0.0 rpm O 99 START-UP DATA 05 MOTOR NOM VOLTAGE [ ]
1 -> 0.0 rpm O 99 START-UP DATA 06 MOTOR NOM CURRENT [ ]
1 -> 0.0 rpm O 99 START-UP DATA 07 MOTOR NOM FREQ [ ]
1 -> 0.0 rpm O 99 START-UP DATA 08 MOTOR NOM SPEED [ ]
1 -> 0.0 rpm O 99 START-UP DATA 09 MOTOR NOM POWER [ ]
Page 19
19
When the motor data has been entered, two displays (warning and information) start to alternate. Move to next step without pressing any key.
1 -> 0.0 rpm O ACS800 ** WARNING ** ID MAGN REQ
Note: If you select STANDARD ID Run, the brake is opened when the Start command is given from the control panel and the brake remains open until the STANDARD ID Run is completed. If you select ID MAGN, the brake is kept closed during the ID Run sequence.
1 -> 0.0 rpm I *** Information *** Press green button to start ID MAGN
Select the motor identification method. The default value ID MAGN (ID Magnetisation) is suitable for most applications. It is applied
in this basic start-up procedure. If your selection is ID Magnetisation, move to next step without pressing any key.
The ID Run (STANDARD or REDUCED) should be selected if:
- The operation point is near zero speed constantly, and/or
- Operation at torque range above the motor nominal torque within a wide speed range and without any measured speed feedback is required.
If your selection is ID Run, continue by following the separate instructions given a few pages ahead in section How to perform the ID Run on page 22.
IDENTIFICATION MAGNETISATION (with Motor ID Run selection ID MAGN)
Press the LOC/REM key to change to local control (L shown on the first row).
Press to start the Identification Magnetisation. The motor is magnetised at zero speed for 20 to 60 s. Three warnings are displayed:
The first warning is displayed when the magnetisation starts. The second warning is displayed while the magnetisation is on. The third warning is displayed after the magnetisation is completed.
1 L -> 1242.0 rpm I ** WARNING ** MOTOR STARTS
1 L-> 0.0 rpm I ** WARNING ** ID MAGN
1 L-> 0.0 rpm O ** WARNING ** ID DONE
Start-up and control through the I/O
Page 20
20
forward direction
reverse direction
DIRECTION OF ROTATION OF THE MOTOR
Check the direction of rotation of the motor.
- Press ACT to get the status row visible.
- Increase the speed reference from zero to a small value by pressing REF and then the arrow keys ( , , or ).
- Press to start the motor.
- Check that the motor is running in the desired direction.
- Stop the motor by pressing .
To change the direction of rotation of the motor:
- Disconnect the main power from the drive, and wait 5 minutes for the intermediate circuit capacitors to discharge. Measure the voltage between each input terminal (U1, V1 and W1) and earth with a multimeter to ensure that the frequency converter is discharged.
- Exchange the position of two motor cable phase conductors at the motor terminals or at the motor connection box.
- Verify your work by applying the main power and repeating the check as described above.
SPEED LIMITS AND ACCELERATION/DECELERATION TIMES
Set the minimum speed.
1 L->[xxx] rpm I FREQ xxx Hz CURRENT xx A POWER xx %
1 L-> 0.0 rpm O 20 LIMITS 01 MINIMUM SPEED [ ]
Set the maximum speed.
Set the acceleration time 1. Note: Check also acceleration time 2, if two acceleration times will
be used in the application.
Set the deceleration time 1. Note: Set also deceleration time 2, if two deceleration times will be
used in the application.
The drive is now ready for use.
1 L-> 0.0 rpm O 20 LIMITS 02 MAXIMUM SPEED [ ]
1 L-> 0.0 rpm O 22 ACCEL/DECEL 02 ACCELER TIME 1 [ ]
1 L-> 0.0 rpm O 22 ACCEL/DECEL 03 DECELER TIME 1 [ ]
Start-up and control through the I/O
Page 21

How to control the drive through the I/O interface

The table below instructs how to operate the drive through the digital and analogue inputs, when:
the motor start-up is performed, and
the default (factory) parameter settings are valid.
PRELIMINARY SETTINGS
21
Ensure the Factory macro is active.
If you need to change the direction of rotation, change the setting of parameter 10.03 to REQUEST.
Ensure the control connections are wired according to the connection diagram given for the Factory macro.
Ensure the drive is in external control mode. Press the LOC/REM key to change between external and local control.
STARTING AND CONTROLLING THE SPEED OF THE MOTOR
Start by switching digital input DI1 on.
Regulate the speed by adjusting the voltage of analogue input AI1.
CHANGING THE DIRECTION OF ROTATION OF THE MOTOR
Forward direction: Switch digital input DI2 off.
See parameter 99.02.
See chapter Application
macros.
In External control, there is no L visible on the first row of the panel display.
1 -> 0.0 rpm I
REQ 0.00 Hz
F CURRENT 0.00 A POWER 0.00 %
1 -> 500.0 rpm I FREQ 16.66 Hz CURRENT 12.66 A POWER 8.33 %
1 -> 500.0 rpm I FREQ 16.66 Hz CURRENT 12.66 A POWER 8.33 %
Reverse direction: Switch digital input DI2 on.
STOPPING THE MOTOR
Switch off digital input DI1.
1 <- 500.0 rpm I
REQ 16.66 Hz
F CURRENT 12.66 A POWER 8.33 %
1 -> 500.0 rpm O
REQ 0.00 Hz
F CURRENT 0.00 A POWER 0.00 %
Start-up and control through the I/O
Page 22
22
99 START-UP DATA 10 MOTOR ID RUN [STANDARD]
1 L ->1242.0 rpm O
1 L ->1242.0 rpm O ACS800 **WARNING** ID RUN SEL

How to perform the ID Run

The drive performs the ID Magnetisation automatically at the first start. In most applications there is no need to perform a separate ID Run. The ID Run (Standard or Reduced) should be selected if:
The operation point is near zero speed, and/or
Operation at torque range above the motor nominal torque within a wide speed range and without any measured speed feedback is required.
The Reduced ID Run is to be performed instead of the Standard if it is not possible to disengage the driven machine from the motor.
Note: If you select STANDARD ID Run, the brake is opened when the Start command is given from the control panel and the brake remains open until the STANDARD ID Run is completed. If you select ID MAGN, the brake is kept closed during the ID Run sequence.

ID Run Procedure

Note: If parameter values (Group 10 to 98) are changed before the ID Run, check
that the new settings meet the following conditions:
20.01 MINIMUM SPEED <
0 rpm
20.02 MAXIMUM SPEED > 80% of motor rated speed
20.03 MAXIMUM CURRENT >
100% · I
hd
20.04 MAXIMUM TORQUE > 50%
Ensure that the panel is in the local control mode (L displayed on the status row). Press the LOC/REM key to switch between modes.
Change the ID Run selection to STANDARD or REDUCED.
•Press ENTER to verify selection. The following message will be displayed:
Start-up and control through the I/O
Page 23
23
To start the ID Run, press the key. The Start Interlock (digital input DI_IL) and Run Enable signals (parameter 16.01 RUN ENABLE) must be active.
Warning when the ID Run is
started
1 L -> 1242.0 rpm I ACS800 **WARNING** MOTOR STARTS
In general it is recommended not to press any control panel keys during the ID run. However:
The Motor ID Run can be stopped at any time by pressing the control panel stop key ( ).
After the ID Run is started with the start key ( ), it is possible to monitor the actual values by first pressing the ACT key and then a double-arrow key ( ).
Warning during the ID Run Warning after a successfully
completed ID Run
1 L -> 1242.0 rpm I ACS800 **WARNING** ID RUN
1 L -> 1242.0 rpm I ACS800 **WARNING** ID DONE
Start-up and control through the I/O
Page 24
24
Start-up and control through the I/O
Page 25

Control panel

1 L -> 1242.0 rpm I
F
REQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %
ACT PA R FU NC DR IV E
ENTER
LOC RESET REF
REM
I0
1367
5 24
The LCD type display has 4 lines of 20 characters.
The language is selected at start-up (parameter 99.01).
The control panel has four operation modes:
- Actual Signal Display Mode (ACT key)
- Parameter Mode (PAR key)
- Function Mode (FUNC key)
- Drive Selection Mode (DRIVE key)
The use of single arrow keys, double arrow keys and ENTER depend on the operation mode of the panel.
The drive control keys are:
No. Use
1Start
2Stop
3 Activate reference setting
4 Forward direction of rotation
5 Reverse direction of rotation
6 Fault reset
7 Change between Local / Remote (external)
control

Chapter overview

The chapter describes how to use the control panel CDP 312R.
The same control panel is used with all ACS800 series drives, so the instructions given apply to all ACS800 types. The display examples shown are based on the Standard Control Program; displays produced by other application programs may differ slightly.

Overview of the panel

25
Control panel
Page 26
26
Parameter Mode
Function Mode
Drive Selection Mode
Act. signal / Fault history
Enter selection mode Accept new signal
Group selection
Parameter selection
Enter change mode Accept new value
Fast value change
Slow value change
Function start
Drive selection
Enter change mode Accept new value
Actual Signal Display Mode
ENTER
ENTER
ENTER
ENTER
selection
ID number change

Status row

Status row
ACT
PAR
FUNC
DRIVE
1 L -> 1242.0 rpm O F
REQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %
1 L -> 1242.0 rpm O 10 START/STOP/DIR 01 EXT1 STRT/STP/DIR DI1,2
1 L -> 1242.0 rpm O Motor Setup Application Macro Speed Control EXT1
ACS800
ASXR7260 xxxxxx ID NUMBER 1
Act. signal / Fault message scrolling
Actual signal names and values
Parameter group
Parameter
Parameter value
Status row
List of functions
Device type
SW loading package name and ID number
Row selection
Page selection
Drive ID number
Drive control status
L = Local control
R = Remote control
“ “ = External control
Drive status I = Running O = Stopped “ “ = Run disabled
1 L -> 1242.0 rpm I
Direction of rotation
-> = Forward <- = Reverse
Drive reference

Panel operation mode keys and displays

The figure below shows the mode selection keys of the panel, and the basic operations and displays in each mode.
Status row
The figure below describes the status row digits.
Control panel
Page 27

Drive control with the panel

ACT PA R
FUNC
LOC
REM
0
I
The user can control the drive with the panel as follows:
start, stop, and change direction of the motor
give the motor speed reference or torque reference
give a process reference (when the process PID control is active)
reset the fault and warning messages
change between local and external drive control.
The panel can be used for control of the drive control always when the drive is under local control and the status row is visible on the display.

How to start, stop and change direction

Step Action Press Key Display
1. To show the status row. 1 ->1242.0 rpm I
REQ 45.00 Hz
F CURRENT 80.00 A POWER 75.00 %
27
2. To switch to local control.
(only if the drive is not under local control, i.e. there is no L on the first row of the display.)
3. To stop 1 L ->1242.0 rpm O
4. To start 1 L ->1242.0 rpm I
5. To change the direction to reverse. 1 L <-1242.0 rpm I
6. To change the direction to forward. 1 L ->1242.0 rpm I
1 L ->1242.0 rpm I
REQ 45.00 Hz
F CURRENT 80.00 A POWER 75.00 %
REQ 45.00 Hz
F CURRENT 80.00 A POWER 75.00 %
FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %
REQ 45.00 Hz
F CURRENT 80.00 A POWER 75.00 %
FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %
Control panel
Page 28
28
ACT PAR
FUNC
LOC
REM
REF
ENTER

How to set speed reference

Step Action Press Key Display
1. To show the status row. 1 ->1242.0 rpm I
F
REQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %
2. To switch to local control.
(Only if the drive is not under local control, i.e. there is no L on the first row of the display.)
1 L ->1242.0 rpm I
REQ 45.00 Hz
F CURRENT 80.00 A POWER 75.00 %
3. To enter the Reference Setting function. 1 L ->[1242.0 rpm]I
REQ 45.00 Hz
F CURRENT 80.00 A POWER 75.00 %
4. To change the reference.
(slow change)
1 L ->[1325.0 rpm]I F
REQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %
(fast change)
5. To save the reference.
(The value is stored in the permanent memory; it is restored automatically after power switch-off.)
1 L -> 1325.0 rpm I
REQ 45.00 Hz
F CURRENT 80.00 A POWER 75.00 %
Control panel
Page 29

Actual signal display mode

ACT
ENTER
ENTER
ACT
FUNC DRIVE
PAR
In the Actual Signal Display Mode, the user can:
show three actual signals on the display at a time
select the actual signals to display
view the fault history
reset the fault history.
The panel enters the Actual Signal Display Mode when the user presses the ACT key, or if he does not press any key within one minute.

How to select actual signals to the display

Step Action Press key Display
1. To enter the Actual Signal Display Mode. 1 L -> 1242.0 rpm I
F
REQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %
29
2. To select a row (a blinking cursor indicates the selected row).
3. To enter the actual signal selection function. 1 L -> 1242.0 rpm I
4. To select an actual signal.
To change the actual signal group.
5.a To accept the selection and to return to the Actual Signal Display Mode.
5.b To cancel the selection and keep the original selection.
The selected keypad mode is entered.
1 L -> 1242.0 rpm I FREQ 45.00 Hz
URRENT 80.00 A
C POWER 75.00 %
1 ACTUAL SIGNALS 04 CURRENT
80.00 A
1 L -> 1242.0 rpm I 1 ACTUAL SIGNALS 05 TORQUE 70.00 %
1 L -> 1242.0 rpm I FREQ 45.00 Hz
ORQUE 70.00 %
T POWER 75.00 %
1 L -> 1242.0 rpm I FREQ 45.00 Hz C
URRENT 80.00 A
POWER 75.00 %
Control panel
Page 30
30
ACT
ACT
ACT
RESET

How to display the full name of the actual signals

Step Action Press key Display
1. To display the full name of the three actual signals. Hold 1 L -> 1242.0 rpm I
F
REQUENCY CURRENT POWER
2. To return to the Actual Signal Display Mode. Release 1 L -> 1242.0 rpm I
FREQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %

How to view and reset the fault history

Note: The fault history cannot be reset if there are active faults or warnings.
Step Action Press key Display
1. To enter the Actual Signal Display Mode. 1 L -> 1242.0 rpm I
REQ 45.00 Hz
F CURRENT 80.00 A POWER 75.00 %
2. To enter the Fault History Display. 1 L -> 1242.0 rpm I
1 LAST FAULT +OVERCURRENT 6451 H 21 MIN 23 S
3. To select the previous (UP) or the next fault/warning (DOWN).
1 L -> 1242.0 rpm I 2 LAST FAULT +OVERVOLTAGE 1121 H 1 MIN 23 S
To clear the Fault History. 1 L -> 1242.0 rpm I
2 LAST FAULT H MIN S
4. To return to the Actual Signal Display Mode. 1 L -> 1242.0 rpm I
REQ 45.00 Hz
F CURRENT 80.00 A POWER 75.00 %
Control panel
Page 31

How to display and reset an active fault

ACT
RESET
1 L -> 1242.0 rpm I 2 LAST FAULT +DC OVERVOLT (3210) 1121 H 1 MIN 23 S
Event Information on display
Drive detects a fault and generates a fault message
Sequential number of the event and LAST FAULT text.
Name of the fault and a “+” sign in front of the name.
Total power-on time.
User resets the fault message. Sequential number of the event and
LAST FAULT text.
-RESET FAULT text.
Total power-on time.
Drive generates a warning message.
Sequential number of the event and LAST WARNING text.
Name of the warning and a “+” sign in front of the name.
Total power-on time.
Drive deactivates the warning message.
Sequential number of the event and LAST WARNING text.
Name of the warning and a “-” sign in front of the name.
Total power-on time.
Sequential number (1 is the most recent event)
Sign
Power-
on time
Name and
code
A Fault History View
WARNING! If an external source for start command is selected and it is ON, the
drive will start immediately after fault reset. If the cause of the fault has not been removed, the drive will trip again.
Step Action Press Key Display
1. To display an active fault. 1 L -> 1242.0 rpm
ACS800 ** FAULT ** ACS800 TEMP
2. To reset the fault. 1 L -> 1242.0 rpm O
REQ 45.00 Hz
F CURRENT 80.00 A POWER 75.00 %

About the fault history

The fault history restores information on the latest events (faults, warnings and resets) of the drive. The table below shows how the events are stored in the fault history.
31
Control panel
Page 32
32
PAR
ENTER
ENTER
ACT
FUNC DRIVE
PAR

Parameter mode

In the Parameter Mode, the user can:
view the parameter values
change the parameter settings.
The panel enters the Parameter Mode when the user presses the PAR key.

How to select a parameter and change the value

Step Action Press key Display
1. To enter the Parameter Mode. 1 L -> 1242.0 rpm O
10 START/STOP/DIR 01 EXT1 STRT/STP/DIR DI1,2
2. To select a group. 1 L -> 1242.0 rpm O
11 REFERENCE SELECT 01 KEYPAD REF SEL REF1 (rpm)
3. To select a parameter within a group. 1 L -> 1242.0 rpm O
11 REFERENCE SELECT 03 EXT REF1 SELECT AI1
4. To enter the parameter setting function. 1 L -> 1242.0 rpm O
11 REFERENCE SELECT 03 EXT REF1 SELECT [AI1]
5. To change the parameter value.
- (slow change for numbers and text)
- (fast change for numbers only)
6a. To save the new value. 1 L -> 1242.0 rpm O
6b. To cancel the new setting and keep the original value,
press any of the mode selection keys.
The selected mode is entered.
1 L -> 1242.0 rpm O 11 REFERENCE SELECT 03 EXT REF1 SELECT [AI2]
11 REFERENCE SELECT 03 EXT REF1 SELECT AI2
1 L -> 1242.0 rpm O 11 REFERENCE SELECT 03 EXT REF1 SELECT AI1
Control panel
Page 33

How to adjust a source selection (pointer) parameter

PAR
ENTER
ENTER
1 L ->1242.0 rpm O 84 ADAPTIVE PROGRAM 06 INPUT1 [±001.018.00]
Inversion field
Group field
Index field
Bit field
Inversion field inverts the selected parameter value. Plus sign (+): no inversion, minus (-) sign: inversion.
Bit field selects the bit number (relevant only if the parameter value is a packed boolean word).
Index field selects the parameter index.
Group field selects the parameter group.
Most parameters define values that are used directly in the drive application program. Source selection (pointer) parameters are exceptions: They point to the value of another parameter. The parameter setting procedure differs somewhat from that of the other parameters.
Step Action Press Key Display
33
1. See the table above to
- enter the Parameter Mode
- select the correct parameter group and parameter
- enter the parameter setting mode
2. To scroll between the inversion, group, index and bit
3. To adjust the value of a field. 1 L ->1242.0 rpm O
4. To accept the value.
fields.
1)
1)
1 L ->1242.0 rpm O 84 ADAPTIVE PROGRAM 06 INPUT1 [±000.000.00]
1 L ->1242.0 rpm O 84 ADAPTIVE PROGRAM 06 INPUT1 [±000.000
84 ADAPTIVE PROGRAM 06 INPUT1 [±000.018
.00]
.00]
Note: Instead of pointing to another parameter, it is also possible to define a constant by the source selection parameter. Proceed as follows:
- Change the inversion field to C. The appearance of the row changes. The rest of the line is now a constant setting field.
- Give the constant value to the constant setting field.
- Press Enter to accept.
Control panel
Page 34
34
1)
The parameter groups 98, 99 and the results of the motor identification are not included by default. The restriction prevents downloading of unfit motor data. In special cases it is, however, possible to download all. For more information, please contact your local ABB representative.

Function mode

In the Function Mode, the user can:
start a guided procedure for adjusting the drive settings (assistants)
upload the drive parameter values and motor data from the drive to the panel.
download group 1 to 97 parameter values from the panel to the drive.
adjust the contrast of the display.
The panel enters the Function Mode when the user presses the FUNC key.
1)
Control panel
Page 35

How to enter an assistant, browse and exit

FUNC
ENTER
ENTER
ENTER
)(
FUNC, ACT
FUNC
ENTER
RESET
The table below shows the operation of the basic keys which lead the user through an assistant. The Motor Setup task of the Start-up Assistant is used as an example.
The Start-up Assistant is not available in Scalar mode or when the parameter lock is on. (99.04 MOTOR CTRL MODE = SCALAR or 16.02 PARAMETER LOCK = LOCKED or 16.10 ASSIST SEL = OFF)
Step Action Press Key Display
1. To enter the Function Mode. 1 L -> 1242.0 rpm O
otor Setup
M Application Macro Speed Control EXT1
35
2. To select a task or function from the list (a flashing cursor indicates the selection).
Double arrows: To change page to see more assistants/ functions.
3. To enter the task. Motor Setup 1/10
4. To accept and continue. Motor Setup 2/10
5. To accept and continue. Motor Setup 3/10
6. a. To adjust the requested drive parameter. Motor Setup 3/10
b. To ask for information on the requested value.
(To scroll the information displays
and return to the task).
1 L -> 1242.0 rpm O M
otor Setup Application Macro Speed Control EXT 1
ENTER: Ok/Continue ACT: Exit FUNC: More Info
MOTOR NAMEPLATE DATA AVAILABLE? ENTER:Yes FUNC:Info
MOTOR NOM VOLTAGE? [0 V] ENTER:Ok RESET:Back
MOTOR NOM VOLTAGE? [415 V] ENTER:Ok RESET:back
INFO P99.05 Set as given on the motor nameplate.
7. a. To accept a value and step forward. Motor Setup 4/10
MOTOR NOM CURRENT? [0.0 A] ENTER:Ok RESET:Back
b. To cancel the setting and take one step back. Motor Setup 3/10
MOTOR NOM VOLTAGE? [415 V] ENTER:Ok RESET:back
Control panel
Page 36
36
2 x ACT
FUNC
ENTER
LOC
REM
Step Action Press Key Display
8. To cancel and exit.
Note: 1 x ACT returns to the first display of the task.

How to upload data from a drive to the panel

Note:
Upload before downloading.
Ensure the firmware of the destination drive is the same (e.g. standard firmware).
Before removing the panel from a drive, ensure the panel is in remote operating mode (change with the LOC/REM key).
Stop the drive before downloading.
Before upload, repeat the following steps in each drive:
Setup the motors.
Activate the communication to the optional equipment. (See parameter group 98
OPTION MODULES.)
Before upload, do the following in the drive from which the copies are to be taken:
1 L -> 0.0 rpm O FREQ 0.00 Hz CURRENT 0.00 A POWER 0.00 %
Set the parameters in groups 10 to 97 as preferred.
Proceed to the upload sequence (below).
Step Action Press Key Display
1. Enter the Function Mode. 1 L -> 1242.0 rpm O
otor Setup
M Application Macro Speed Control EXT1
2. Enter the page that contains the upload, download and contrast functions.
3. Select the upload function (a flashing cursor indicates the selected function).
4. Enter the upload function. 1 L -> 1242.0 rpm O
5. Switch to external control.
(No L on the first row of the display.)
1 L -> 1242.0 rpm O
PLOAD <=<=
U DOWNLOAD =>=> CONTRAST 4
1 L -> 1242.0 rpm O U
PLOAD <=<= DOWNLOAD =>=> CONTRAST 4
UPLOAD <=<=
1 -> 1242.0 rpm O
PLOAD <=<=
U DOWNLOAD =>=> CONTRAST 4
Control panel
Page 37
Step Action Press Key Display
LOC
REM
FUNC
ENTER
6. Disconnect the panel and reconnect it to the drive into which the data will be downloaded.

How to download data from the panel to a drive

Consider the notes in section How to upload data from a drive to the panel on page
36.
Step Action Press Key Display
1. Connect the panel containing the uploaded data to the drive.
37
2. Ensure the drive is in local control (L shown on the first row of the display). If necessary, press the LOC/REM key to change to local control.
1 L -> 1242.0 rpm I F
REQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %
3. Enter the Function Mode. 1 L -> 1242.0 rpm O
otor Setup
M Application Macro Speed Control EXT1
4. Enter the page that contains the upload, download and contrast functions.
1 L -> 1242.0 rpm O UPLOAD <=<= DOWNLOAD =>=> CONTRAST 4
5. Select the download function (a flashing cursor indicates the selected function).
1 L -> 1242.0 rpm O UPLOAD <=<= DOWNLOAD =>=> CONTRAST 4
6. Start the download. 1 L -> 1242.0 rpm O
DOWNLOAD =>=>
Control panel
Page 38
38
FUNC
ENTER
ENTER
ACT
FUNC
DRIVE
PAR

How to set the contrast of the display

Step Action Press Key Display
1. Enter the Function Mode. 1 L -> 1242.0 rpm O
Motor Setup Application Macro Speed Control EXT1
2. Enter the page that contains the upload, download and contrast functions.
1 L -> 1242.0 rpm O
PLOAD <=<=
U DOWNLOAD =>=> CONTRAST 4
3. Select a function (a flashing cursor indicates the selected function).
1 L -> 1242.0 rpm O UPLOAD <=<= DOWNLOAD =>=>
ONTRAST 4
C
4. Enter the contrast setting function. 1 L -> 1242.0 rpm O
CONTRAST [4]
5. Adjust the contrast. 1 L -> 1242.0 rpm
CONTRAST [6]
6.a Accept the selected value. 1 L -> 1242.0 rpm O
UPLOAD <=<= DOWNLOAD =>=> CONTRAST 6
6.b Cancel the new setting and retain the original value by pressing any of the mode selection keys.
1 L -> 1242.0 rpm I FREQ 45.00 Hz CURRENT 80.00 A
The selected mode is entered.
POWER 75.00 %
Control panel
Page 39

Drive selection mode

DRIVE
1o
o
PAR
FUNC
ACT
In normal use the features available in the Drive Selection Mode are not needed; the features are reserved for applications where several drives are connected to one panel link. (For more information, see the Installation and Start-up Guide for the Panel Bus Connection Interface Module, NBCI, [3AFY58919748 (English)].
In the Drive Selection Mode, the user can:
Select the drive with which the panel communicates through the panel link.
Change the identification number of a drive connected to the panel link.
View the status of the drives connected on the panel link.
The panel enters the Drive Selection Mode when the user presses the DRIVE key.
Each on-line station must have an individual identification number (ID). By default, the ID number of the drive is 1.
Note: The default ID number setting of the drive should not be changed unless the drive is to be connected to the panel link with other drives on-line.
39

How to select a drive and change its panel link ID number

Step Action Press key
1. To enter the Drive Selection Mode. ACS800
ASAAA5000 xxxxxx ID NUMBER 1
2. To select the next drive/view.
The ID number of the station is changed by first pressing ENTER (the brackets round the ID number appear) and then adjusting the value with arrow buttons. The new value is accepted with ENTER. The power of the drive must be switched off to validate its new ID number setting.
The status display of all devices connected to the Panel Link is shown after the last individual station. If all stations do not fit on the display at once, press the double-arrow up to view the rest of them.
3. To connect to the last displayed drive and to enter another mode, press one of the mode selection keys.
The selected mode is entered.
ACS800
ASAAA5000 xxxxxx
ID NUMBER 1
Status Display Symbols:
= Drive stopped, direction
forward
= Drive running, direction reverse F = Drive tripped on a fault
1 L -> 1242.0 rpm I F
REQ 45.00 Hz CURRENT 80.00 A POWER 75.00 %
Display
Control panel
Page 40
40
Boolean 0000 0000 0001 1010
Hex 0 0 1 A
Bit 15 Bit 0

Reading and entering packed boolean values on the display

Some actual values and parameters are packed boolean, i.e. each individual bit has a defined meaning (explained at the corresponding signal or parameter). On the control panel, packed boolean values are read and entered in hexadecimal format.
In this example, bits 1, 3 and 4 of the packed boolean value are ON:
Control panel
Page 41

Program features

Chapter overview

The chapter describes program features. For each feature, there is a list of related user settings, actual signals, and fault and warning messages.

Start-up Assistant

Introduction

The assistant guides the user through the start-up procedure, helping the user to feed the requested data (parameter values) to the drive. The assistant also check that the entered values are valid, i.e. within the allowed range. At the first start, the drive suggests entering the first task of the assistant, Language Select, automatically.
The Start-up Assistant is divided into tasks. The user may activate the tasks either one after the other as the Start-up Assistant suggests, or independently. The user may also adjust the drive parameters in the conventional way without using the assistant at all.
41
See chapter Control panel on how to start the assistant, browse and exit.

The default order of the tasks

Depending on the selection made in the Application task (parameter 99.02), the Start-up Assistant decide which consequent tasks it suggests. The default tasks are shown in the table below.
Application Selection
FACTORY, SEQ CTRL
HAND/AUTO Language Select, Motor Set-up, Application, Option Modules, Speed Control EXT2, Start/Stop
T CTRL Language Select, Motor Set-up, Application, Option Modules, Torque Control, Start/Stop Control,
PID CTRL Language Select, Motor Set-up, Application, Option Modules, PID Control, Start/Stop Control, Speed
Default Tasks
Language Select, Motor Set-up, Application, Option Modules, Speed Control EXT1, Start/Stop Control, Protections, Output Signals
Control, Speed Control 1, Protections, Output Signals
Speed Control EXT1, Protections, Output Signals
Control EXT1, Protections, Output Signals
Program features
Page 42
42

List of tasks and the relevant drive parameters

Name Description Set parameters
Language Select Selecting the language 99.01
Motor Set-up Setting the motor data
Performing the motor identification. (If the speed limits are not in the allowed range: Setting the limits).
Application Selecting the application macro 99.02, parameters associated to
Option Modules Activating the option modules Group 98, 35, 52
Speed Control EXT1
Speed Control EXT2
Tor q ue Cont r ol Selecting the source for the torque reference 11.06
PID Control Selecting the source for the process reference 11.06
Start/Stop Control Selecting the source for start and stop signals of the two external
Protections Setting the torque and current limits 20.03, 20.04
Output Signals Selecting the signals indicated through the relay outputs RO1,
Selecting the source for the speed reference 11.03
(If AI1 is used: Setting analogue input AI1 limits, scale, inversion)
Setting the reference limits 11.04, 11.05
Setting the speed (frequency) limits 20.02, 20.01, (20.08, 20.07)
Setting acceleration and deceleration times 22.02, 22.03
(Setting up the brake chopper if activated by parameter 27.01) (Group 27, 20.05, 14.01)
(If 99.02 is not SEQ CTRL: Setting constant speeds) (Group 12)
Setting the source for the speed reference 11.06
(If AI1 is used: Setting analogue input AI1 limits, scale, inversion)
Setting the reference limits 11.08, 11.07
(If AI1 is used: Setting analogue input AI1 limits, scale, inversion)
Setting the reference limits 11.08, 11.07
Setting the torque ramp up and ramp down times 24.01, 24.02
(If AI1 is used: Setting analogue input AI1 limits, scale, inversion)
Setting the reference limits 11.08, 11.07
Setting the speed (reference) limits 20.02, 20.01 (20.08, 20.07)
Setting the source and limits for the process actual value 40.07, 40.09, 40.10
control locations, EXT1 and EXT2
Selecting between EXT1 and EXT2 11.02
Defining the direction control 10.03
Defining the start and stop modes 21.01, 21.02, 21.03
Selecting the use of Run Enable signal 16.01, 21.07
Setting the ramp time for the Run Enable function 22.07
RO2, RO3 and optional RO’s (if installed)
Selecting the signals indicated through the analogue output AO1, AO2 and optional AO’s (if installed). Setting the minimum, maximum, scaling and inversion.
99.05, 99.06, 99.09, 99.07, 99.08,
99.04
99.10 (20.8, 20.07)
the macro
(13.01, 13.02, 13.03, 13.04,
13.05, 30.01)
(13.01, 13.02, 13.03, 13.04,
13.05, 30.01)
(13.01, 13.02, 13.03, 13.04,
13.05, 30.01)
(13.01, 13.02, 13.03, 13.04,
13.05, 30.01)
10.01, 10.02
Group 14
15.01, 15.02, 15.03, 15.04, 15.05, (Group 96)
Program features
Page 43

Contents of the assistant displays

Main Display Information Display
1 2 3 4
Motor Setup 3/10 MOTOR NOM VOLTAGE? [0 V] ENTER:Ok RESET:Back
INFO P99.05 Set as given on the motor nameplate.
1 Name of the assistant, step
number / total number of steps
Text INFO, index of parameter to be set
2 Request/question Help text …
3 Feed-in field … help text continued
4 Commands: accept value and
step forward or cancel and step backwards
double arrow symbol (indicates that the text continues)
Slot 1
CH0 (DDCS)
Fieldbus
ACS800
RDCO
module
Control panel
DriveWindow
External controlLocal control
Standard I/O
Slot 1 or Slot 2
RTAC/RDIO/RAIO
adapter
module
CH3
(DDCS)
Fieldbus adapter Nxxx
or
Advant controller (e.g. AC 80, AC 800M)
CH1 (DDCS)
RTAC/RDIO/RAIO
AIMA-01 I/O adapter module
module
There are two types of displays in the Start-up Assistant: The main displays and the information displays. The main displays prompt the user to feed in information or answer a question. The assistant steps through the main displays. The information displays contain help texts for the main displays. The figure below shows a typical example of both and explanations of the contents.
43

Local control vs. external control

The drive can receive start, stop and direction commands and reference values from the control panel or through digital and analogue inputs. An optional fieldbus adapter enables control over an open fieldbus link. A PC equipped with DriveWindow can also control the drive.
Program features
Page 44
44
1 L ->1242 rpm I
External Control through the Input/ Output terminals, or through the fieldbus interfaces
1 R ->1242 rpm I 1 ->1242 rpm I
External Control by control panel

Local control

The control commands are given from the control panel keypad when the drive is in local control. L indicates local control on the panel display.
The control panel always overrides the external control signal sources when used in local mode.

External control

When the drive is in external control, the commands are given through the standard I/O terminals (digital and analogue inputs), optional I/O extension modules and/or the fieldbus interface. In addition, it is also possible to set the control panel as the source for the external control.
External control is indicated by a blank on the panel display or with an R in those special cases when the panel is defined as a source for external control.
The user can connect the control signals to two external control locations, EXT1 or EXT2. Depending on the user selection, either one is active at a time. This function operates on a 12 ms time level.

Settings

Panel key Additional information
LOC/REM Selection between local and external control
Parameter
11. 02 Selection between EXT1 and EXT2
10.01 Start, stop, direction source for EXT1
11. 03 Reference source for EXT1
10.02 Start, stop, direction source for EXT2
11. 06 Reference source for EXT2
Group 98 OPTION
MODULES
Activation of the optional I/O and serial communication

Diagnostics

Actual signals Additional information
01.11, 01.12 EXT1 reference, EXT2 reference
03.02 EXT1/EXT2 selection bit in a packed boolean word
Program features
Page 45

Block diagram: start, stop, direction source for EXT1

DI1 / Std IO
Fb. selection
See chapter
Fieldbus control.
Fieldbus adapter slot 1
KEYPAD
EXT1
DI6 / Std IO
DI1 / DIO ext 1 DI2 / DIO ext 1
DI1 / DIO ext 2 DI2 / DIO ext 2
I/O Extensions
See group 98
OPTION MODULES.
DI7 to DI9
COMM. CW
DI1
DI6
Control panel
Start/stop/
DI1 / Std IO = Digital input DI1 on the standard I/O terminal block
DI1 / DIO ext 1 = Digital input DI1 on the digital I/O extension module 1
direction
10.01
Select
CH0 / RDCO board Standard Modbus® Link
EXT1
AI1 / Std IO
AI1 / AIO ext AI2 / AIO ext
11.0 3
Select
DI1 / DIO ext 3 DI2 / DIO ext 3
KEYPAD
COMM. REF
Control panel
I/O Extensions
See parameter group 98 OPTION
MODULES.
AI2 / Std IO AI3 / Std IO DI3 / Std IO DI4 / Std IO
AI1, AI2, AI3, DI3, DI4
Fb. selection
See chapter
Fieldbus control.
AI5, AI6
DI11, DI12
REF1 (rpm)
Reference
AI1 / Std IO = Analogue input AI1 on the standard I/O terminal block
AI1 / AIO ext = Analogue input AI1 on the analogue I/O extension module
Fieldbus adapter slot 1 CH0 / RDCO board Standard Modbus Link
The figure below shows the parameters that select the interface for start, stop, and direction for external control location EXT1.
45

Block diagram: reference source for EXT1

The figure below shows the parameters that select the interface for the speed reference of external control location EXT1.
Program features
Page 46
46

Reference types and processing

The drive can accept a variety of references in addition to the conventional analogue input signal and control panel signals.
The drive reference can be given with two digital inputs: One digital input increases the speed, the other decreases it.
The drive accepts a bipolar analogue speed reference. This feature allows both the speed and direction to be controlled with a single analogue input. The minimum signal is full speed reversed and the maximum signal is full speed forward.
The drive can form a reference out of two analogue input signals by using mathematical functions: Addition, subtraction, multiplication, minimum selection, and maximum selection.
The drive can form a reference out of an analogue input signal and a signal received through a serial communication interface by using mathematical functions: addition and multiplication.
It is possible to scale the external reference so that the signal minimum and maximum values correspond to a speed other than the minimum and maximum speed limits.

Settings

Parameter Additional information
Group 11 REFERENCE
SELECT
Group 20 LIMITS Operating limits
Group 22 ACCEL/DECEL Speed reference acceleration and deceleration ramps
Group 24 TORQUE CTRL Torque reference ramp times
Group 32 SUPERVISION Reference supervision
External reference source, type and scaling

Diagnostics

Actual signal Additional information
01.11, 01.12 Values of external references
Group 02 ACTUAL SIGNALS The reference values in different stages of the reference processing
chain.
Parameter
Group 14 RELAY OUTPUTS Active reference / reference loss through a relay output
Group 15 ANALOGUE
OUTPUTS
Reference value
Program features
Page 47

Reference trimming

40.14
Select
%ref
1
Mul.
Mul.
Add
%ref= The drive reference before trimming %ref’ = The drive reference after trimming max. speed= Par. 20.02 (or 20.01 if the absolute value is greater) max. freq = Par. 20.08 (or 20.07 if the absolute value is greater) max. torq = Par. 20.14 (or 20.13 if the absolute value is greater)
%ref
%ref’
DIRECT (3)
PROPOR. (2)
OFF (1)
max.speed
Switch
max.freq
99.04 (DTC)
40.17
PID
tref k ti td i dFiltT errVInv rInt oh1 ol1
Actual Values
40.05
40.07 AI1 AI2 AI3 AI5 AI6
IMOT
40.19
Filter
40.15
Select
AI1 AI2
...
40.16
40.01
40.02
40.03
40.04
40.05
40.13
PIDmax
PIDmin
. . .
40.18
Select
max.torque
In reference trimming, the external %-reference (External reference REF2) is corrected depending on the measured value of a secondary application variable. The block diagram below illustrates the function.
47

Settings

Parameter Additional information
40.1440.18 Trimming function settings
40.0140.13, 40.19 PID control block settings
Group 20 LIMITS Drive operation limits
Program features
Page 48
48
Drive rollers (pull)
Tension measurement
Speed controlled conveyor line
PID
Add
Tension measurement
Speed reference
Tension setpoint
Trimmed speed reference
Simplified block diagram

Example

The drive runs a conveyor line. It is speed-controlled but the line tension also needs to be taken into account: If the measured tension exceeds the tension setpoint, the speed will be slightly decreased, and vice versa.
To accomplish the desired speed correction, the user:
activates the trimming function and connects the tension setpoint and the measured tension to it
tunes the trimming to a suitable level.
Program features
Page 49

Programmable analogue inputs

The drive has three programmable analogue inputs: one voltage input (0/2 to 10 V or
-10 to 10 V) and two current inputs (0/4 to 20 mA). Two extra inputs are available if an optional analogue I/O extension module is used. Each input can be inverted and filtered, and the maximum and minimum values can be adjusted.

Update cycles in the Standard Control Program

Input Cycle
AI / standard 6 ms
AI / extension 6 ms (100 ms
1)
Update cycle in the motor temperature measurement function. See group 35 MOT TEMP MEAS.

Settings

Parameter Additional information
Group 11 REFERENCE
SELECT
Group 13 ANALOGUE
INPUTS
30.01 Supervision of AI loss
Group 40 PID
CONTROL
35.01 AI in a motor temperature measurement
40.15 AI in a drive reference trimming
42.07 AI in a mechanical brake control function
98.06 Activation of optional analogue inputs
98.13 Optional AI signal type definition (bipolar or unipolar)
98.14 Optional AI signal type definition (bipolar or unipolar)
AI as a reference source
Processing of the standard inputs
AI as a PID process control reference or actual values
49
1)
)

Diagnostics

Actual value Additional information
01.18, 01.19, 01.20 Values of standard inputs
01.38, 01.39 Value of optional inputs
Group 09 ACTUAL
SIGNALS
Scaled analogue input values (integer values for function block programming)
Program features
Page 50
50

Programmable analogue outputs

Two programmable current outputs (0/4 to 20 mA) are available as standard, and two outputs can be added by using an optional analogue I/O extension module. Analogue output signals can be inverted and filtered.
The analogue output signals can be proportional to motor speed, process speed (scaled motor speed), output frequency, output current, motor torque, motor power, etc.
It is possible to write a value to an analogue output through a serial communication link.

Update cycles in the Standard Control Program

Output Cycle
AO / standard 24 ms
AO / extension 24 ms (1000 ms
1)
Update cycle in the motor temperature measurement function. See group 35 MOT TEMP MEAS.

Settings

1)
)
Parameter Additional information
Group 15 ANALOGUE
OUTPUTS
30.20 Operation of an externally controlled AO in a communication break
30.22 Supervision of the use of optional AO
Group 35 MOT TEMP
MEAS
Group 96 EXTERNAL AOOptional AO value selection and processing
Group 98 OPTION
MODULES
AO value selection and processing (standard outputs)
AO in motor temperature measurement
Activation of optional I/O

Diagnostics

Actual value Additional information
01.22, 01.23 Values of the standard outputs
01.28, 01.29 Values of the optional outputs
Warning
IO CONFIG (FF8B) Improper use of optional I/O
Program features
Page 51

Programmable digital inputs

The drive has six programmable digital inputs as a standard. Six extra inputs are available if optional digital I/O extension modules are used.

Update cycles in the Standard Control Program

Input Cycle
DI / standard 6 ms
DI / extension 12 ms

Settings

Parameter Additional information
Group 10 START/STOP/
DIR
Group 11 REFERENCE
SELECT
Group 12 CONSTANT
SPEEDS
Group 16 SYST CTRL
INPUTS
22.01 DI as acceleration and deceleration ramp selection signal
30.03 DI as external fault source
30.05 DI in motor overtemperature supervision function
30.22 Supervision of optional I/O use
40.20 DI as sleep function activation signal (in PID process control)
42.02 DI as mechanical brake acknowledgement signal
98.0396.05 Activation of the optional digital I/O extension modules
98.0998.11 Naming of the optional digital inputs in the application program
51
DI as start, stop, direction
DI in reference selection, or reference source
DI in constant speed selection
DI as external Run Enable, fault reset or user macro change signal

Diagnostics

Actual value Additional information
01.17 Values of the standard digital inputs
01.40 Values of the optional digital inputs
Warning
IO CONFIG (FF8B) Improper use of optional I/O
Fault
I/O COMM ERR (7000) Communication loss to I/O
Program features
Page 52
52

Programmable relay outputs

As standard there are three programmable relay outputs. Six outputs can be added by using the optional digital I/O extension modules. By means of a parameter setting it is possible to choose which information to indicate through the relay output: ready, running, fault, warning, motor stall, etc.
It is possible to write a value to a relay output through a serial communication link.

Update cycles in the Standard Control Program

Output Cycle
RO / standard 100 ms
RO / extension 100 ms

Settings

Parameter Additional information
Group 14 RELAY
OUTPUTS
30.20 Operation of an externally controlled relay output on a communication break
Group 42 BRAKE
CONTROL
Group 98 OPTION
MODULES
RO value selections and operation times
RO in a mechanical brake control
Activation of optional relay outputs

Diagnostics

Actual value Additional information
01.21 Standard relay output states
01.41 Optional relays output states
Program features
Page 53

Actual signals

Several actual signals are available:
Drive output frequency, current, voltage and power
Motor speed and torque
Supply voltage and intermediate circuit DC voltage
Active control location (Local, EXT1 or EXT2)
Reference values
Drive temperature
Operating time counter (h), kWh counter
Digital I/O and Analogue I/O status
PID controller actual values (if the PID Control macro is selected)
Three signals can be shown simultaneously on the control panel display. It is also possible to read the values through the serial communication link or through the analogue outputs.
53

Settings

Parameter Additional information
Group 15 ANALOGUE
OUTPUTS
Group 92 D SET TR
ADDR

Diagnostics

Actual value Additional information
Group 01 ACTUAL
SIGNALS09 ACTUAL SIGNALS

Motor identification

The performance of Direct Torque Control is based on an accurate motor model determined during the motor start-up.
A motor Identification Magnetisation is automatically done the first time the start command is given. During this first start-up, the motor is magnetised at zero speed for several seconds to allow the motor model to be created. This identification method is suitable for most applications.
Selection of an actual signal to an analogue output
Selection of an actual signal to a data set (serial communication)
Lists of actual signals
In demanding applications a separate Identification Run can be performed.

Settings

Parameter 99.10.
Program features
Page 54
54
130
260
390
520
1.6 4.8 8 11.2 14.4
t(s)
U
DC
f
out
T
M
UDC= Intermediate circuit voltage of the drive, f
out
= output frequency of the drive,
TM = Motor torque
Loss of supply voltage at nominal load (f
out
= 40 Hz). The intermediate circuit DC voltage drops to the minimum limit. The controller keeps the voltage steady as long as the supply voltage is switched off. The drive runs the motor in generator mode. The motor speed falls but the drive is operational as long as the motor has enough kinetic energy.
U
in
20
40
60
80
40
80
120
160
T
M
(Nm)
f
out
(Hz)
U
DC
(V d.c.)

Power loss ride-through

If the incoming supply voltage is cut off, the drive will continue to operate by utilising the kinetic energy of the rotating motor. The drive will be fully operational as long as the motor rotates and generates energy to the drive. The drive can continue the operation after the break if the main contactor remained closed.
Note: Cabinet assembled units equipped with main contactor option have a “hold circuit” that keeps the contactor control circuit closed during a short supply break. The allowed duration of the break is adjustable. The factory setting is five seconds.

Automatic Start

Since the drive can detect the state of the motor within a few milliseconds, the starting is immediate under all conditions. There is no restart delay. E.g. the starting of turbining pumps or windmilling fans is easy.

Settings

Parameter 21.01.
Program features
Page 55

DC Magnetising

DC hold

t
Motor
DC Hold
speed
DC hold speed
t
Speed
Reference
Speed

Flux Braking

No Flux Braking
t (s)
Motor
Flux Braking
No Flux Braking
f (Hz)
T
Br
T
N
20
40
60
(%)
T
N
= 100 Nm
T
Br
= Braking Torque
Speed
50 HZ / 60 Hz
When DC Magnetising is activated, the drive automatically magnetises the motor before starting. This feature guarantees the highest possible breakaway torque, up to 200% of motor nominal torque. By adjusting the premagnetising time, it is possible to synchronise the motor start and e.g. a mechanical brake release. The Automatic Start feature and DC Magnetising cannot be activated at the same time.

Settings

Parameters 21.01 and 21.02.
DC Hold
By activating the motor DC Hold feature it is possible to lock the rotor at zero speed. When both the reference and the motor speed fall below the preset DC hold speed, the drive stops the motor and starts to inject DC into the motor. When the reference speed again exceeds the DC hold speed, the normal drive operation resumes.
55

Settings

Flux Braking
Parameters 21.04, 21.05, and 21.06.
The drive can provide greater deceleration by raising the level of magnetisation in the motor. By increasing the motor flux, the energy generated by the motor during braking can be converted to motor thermal energy. This feature is useful in motor power ranges below 15 kW.
Program features
Page 56
56
120
80
40
0
5 1020304050
1
2
3
4
5
120
80
40
0
5 1020304050
1
2
3
4 5
f (Hz)
Braking Torque (%)
f (Hz)
Flux Braking
No Flux Braking
1
2
3
4
5
2.2 kW 15 kW 37 kW 75 kW 250 kW
Rated Motor Power
The drive monitors the motor status continuously, also during the Flux Braking. Therefore, Flux Braking can be used both for stopping the motor and for changing the speed. The other benefits of Flux Braking are:
The braking starts immediately after a stop command is given. The function does not need to wait for the flux reduction before it can start the braking.
The cooling of the motor is efficient. The stator current of the motor increases during the Flux Braking, not the rotor current. The stator cools much more efficiently than the rotor.

Settings

Parameter 26.02.

Flux Optimisation

Flux Optimisation reduces the total energy consumption and motor noise level when the drive operates below the nominal load. The total efficiency (motor and the drive) can be improved by 1% to 10%, depending on the load torque and speed.

Settings

Parameter 26.01.
Program features
Page 57

Acceleration and deceleration ramps

Linear
t (s)
Motor
2
speed
S-curve
Two user-selectable acceleration and deceleration ramps are available. It is possible to adjust the acceleration/deceleration times and the ramp shape. Switching between the two ramps can be controlled via a digital input.
The available ramp shape alternatives are Linear and S-curve.
Linear: Suitable for drives requiring steady or slow acceleration/deceleration.
S-curve: Ideal for conveyors carrying fragile loads, or other applications where a smooth transition is required when changing the speed.

Settings

Parameter group 22 ACCEL/DECEL.

Critical speeds

57
A Critical Speeds function is available for applications where it is necessary to avoid certain motor speeds or speed bands because of e.g. mechanical resonance problems.

Settings

Parameter group 25 CRITICAL SPEEDS.

Constant speeds

It is possible to predefine 15 constant speeds. Constant speeds are selected with digital inputs. Constant speed activation overrides the external speed reference.
This function operates on a 6 ms time level.

Settings

Parameter group 12 CONSTANT SPEEDS.
Program features
Page 58
58
A: Undercompensated B: Normally tuned (autotuning) C: Normally tuned (manually). Better dynamic performance than with B D: Overcompensated speed controller
%
t
n
C
B
D
n
N
A
Derivative
Proportional, integral
Derivative acceleration compensation
To rq u e reference
Speed reference
Actual speed
Error value
-
+
+
+
+

Speed controller tuning

During the motor identification, the speed controller is automatically tuned. It is, however, possible to manually adjust the controller gain, integration time and derivation time, or let the drive perform a separate speed controller Autotune Run. In Autotune Run, the speed controller is tuned based on the load and inertia of the motor and the machine. The figure below shows speed responses at a speed reference step (typically, 1 to 20%).
Program features
The figure below is a simplified block diagram of the speed controller. The controller output is the reference for the torque controller.

Settings

Parameter group 23 SPEED CTRL and 20 LIMITS.

Diagnostics

Actual signal 01.02.
Page 59

Speed control performance figures

100
t (s)
T
T
N
(%)
T
load
n
act-nref
n
N
0.1 - 0.4 %sec
TN = rated motor torque nN = rated motor speed n
act
= actual speed
n
ref
= speed reference
*Dynamic speed error depends on speed controller tuning.
Speed Control No Pulse
Encoder
With Pulse
Encoder
Static speed error, % of n
N
+ 0.1 to 0.5%
(10% of nominal slip)
+ 0.01%
Dynamic speed error
0.4 %sec.* 0.1 %sec.*
*When operated around zero frequency, the error may be greater.
Torque Control No Pulse
Encoder
With Pulse Encoder
Linearity error +
4%* + 3%
Repeatability error
+
3%* + 1%
Torque rise time 1 to 5 ms 1 to 5 ms
100
t(s)
T
T
N
< 5 ms
90
10
(%)
T
ref
T
act
TN = rated motor torque T
ref
= torque reference
T
act
= actual torque
The table below shows typical performance figures for speed control when Direct Torque Control is used.

Torque control performance figures

59
The drive can perform precise torque control without any speed feedback from the motor shaft. The table below shows typical performance figures for torque control, when Direct Torque Control is used.
Program features
Page 60
60
f (Hz)
Motor Voltage
No compensation
IR Compensation

Scalar control

It is possible to select Scalar Control as the motor control method instead of Direct Torque Control (DTC). In the Scalar Control mode, the drive is controlled with a frequency reference. The outstanding performance of the default motor control method, Direct Torque Control, is not achieved in Scalar Control.
It is recommended to activate the Scalar Control mode in the following special applications:
In multimotor drives: 1) if the load is not equally shared between the motors, 2) if
If the nominal current of the motor is less than 1/6 of the nominal output current of
If the drive is used without a motor connected (e.g. for test purposes)
The drive runs a medium voltage motor via a step-up transformer.
In the Scalar Control mode, some standard features are not available.

Settings

the motors are of different sizes, or 3) if the motors are going to be changed after the motor identification
the drive
Parameter 99.04.

IR compensation for a scalar controlled drive

IR Compensation is active only when the motor control mode is Scalar (see section Scalar control on page 60). When IR Compensation is activated, the drive gives an extra voltage boost to the motor at low speeds. IR Compensation is useful in applications that require high breakaway torque. In Direct Torque Control, no IR Compensation is possible/needed.

Settings

Parameter 26.03.
Program features
Page 61

Hexagonal motor flux

Typically the drive controls the motor flux in such a way that the rotating flux vector follows a circular pattern. This is ideal in most applications. When operated above the field weakening point (FWP, typically 50 or 60 Hz), it is, however, not possible to reach 100% of the output voltage. The peak load capacity of the drive is lower than with the full voltage.
If hexagonal flux control is selected, the motor flux is controlled along a circular pattern below the field weakening point, and along a hexagonal pattern in the field weakening range. The applied pattern is changed gradually as the frequency increases from 100% to 120% of the FWP. Using the hexagonal flux pattern, the maximum output voltage can be reached; The peak load capacity is higher than with the circular flux pattern but the continuous load capacity is lower in the frequency range of FWP to 1.6

Settings

Parameter 26.05.
· FWP, due to increased losses.

Programmable protection functions

61

AI<Min

AI<Min function defines the drive operation if an analogue input signal falls below the preset minimum limit.
Settings
Parameter 30.01.

Panel Loss

Panel Loss function defines the operation of the drive if the control panel selected as control location for the drive stops communicating.
Settings
Parameter 30.02.

External Fault

External Faults can be supervised by defining one digital input as a source for an external fault indication signal.
Settings
Parameter 30.03.
Program features
Page 62
62
Motor
100%
Temp.
63%
Motor thermal time
t
t
100%
50
100
150
Zero speed load
Motor load curve
Break point
Motor
Speed
Load
Current
(%)
Rise

Motor Thermal Protection

The motor can be protected against overheating by activating the Motor Thermal Protection function and by selecting one of the motor thermal protection modes available.
The Motor Thermal Protection modes are based either on a motor temperature thermal model or on an overtemperature indication from a motor thermistor.
Motor temperature thermal model
The drive calculates the temperature of the motor on the basis of the following assumptions:
1) The motor is at the estimated temperature (value of 01.37 MOTOR TEMP EST
saved at power switch off) when power is applied to the drive. When power is applied for the first time, the motor is at the ambient temperature (30°C).
2) Motor temperature is calculated using either the user-adjustable or automatically
calculated motor thermal time and motor load curve (see the figures below). The load curve should be adjusted in case the ambient temperature exceeds 30°C.
Use of the motor thermistor
Settings
Program features
It is possible to detect motor overtemperature by connecting a motor thermistor (PTC) between the +24 VDC voltage supply offered by the drive and digital input DI6. In normal motor operation temperature, the thermistor resistance should be less than 1.5 kohm (current 5 mA). The drive stops the motor and gives a fault indication if the thermistor resistance exceeds 4 kohm regulations for protecting against contact.
. The installation must meet the
Parameters 30.04 to 30.09.
Note: It is also possible to use the motor temperature measurement function. See sections Motor temperature measurement through the standard I/O on page 71 and
Motor temperature measurement through an analogue I/O extension on page 73.
Page 63

Stall Protection

The drive protects the motor in a stall situation. It is possible to adjust the supervision limits (torque, frequency, time) and choose how the drive reacts to a motor stall condition (warning indication / fault indication & stop the drive / no reaction).
The torque and current limits, which define the stall limit, must be set according to the maximum load of the used application. Note: Stall limit is restricted by internal current limit 03.04 TORQ_INV_CUR_LIM.
When the application reaches the stall limit and the output frequency of the drive is below the stall frequency: Fault is activated after the stall time delay.
Settings
Parameters 30.10 to 30.12.
Parameters 20.03, 20.13 and 20.14 (Define the stall limit.)

Underload Protection

Loss of motor load may indicate a process malfunction. The drive provides an underload function to protect the machinery and process in such a serious fault condition. Supervision limits - underload curve and underload time - can be chosen as well as the action taken by the drive upon the underload condition (warning indication / fault indication & stop the drive / no reaction).
63
Settings
Parameters 30.13 to 30.15.

Motor Phase Loss

The Phase Loss function monitors the status of the motor cable connection. The function is useful especially during the motor start: the drive detects if any of the motor phases is not connected and refuses to start. The Phase Loss function also supervises the motor connection status during normal operation.
Settings
Parameter 30.16.
Program features
Page 64
64

Earth Fault Protection

The earth fault protection detects earth faults in the motor or motor cable. The protection is based on sum current measurement.
An earth fault in the supply cable does not activate the protection.
In an earthed (grounded) supply, the protection activates in 200 microseconds.
In an unearthed (ungrounded) supply, the supply capacitance should be 1 microfarad or more.
The capacitive currents caused by shielded motor cables up to 300 metres do not activate the protection.
Earth fault protection is deactivated when the drive is stopped.
Note: With parallel connected inverter modules, the earth fault indication is CUR UNBAL xx. See chapter Fault tracing.
Settings
Parameter 30.17.

Communication Fault

The Communication Fault function supervises the communication between the drive and an external control device (e.g. a fieldbus adapter module).
Settings
Parameters 30.18 to 30.21.

Supervision of optional IO

The function supervises the use of the optional analogue and digital inputs and outputs in the application program, and warns if the communication to the input/ output is not operational.
Settings
Parameter 30.22.

Preprogrammed faults

Overcurrent

The overcurrent trip limit for the drive is 1.65 to 2.17 · I type.

DC overvoltage

depending on the drive
max
Program features
The DC overvoltage trip limit is 1.3 × 1.35 × U value of the supply voltage range. For 400 V units, U
U
is 500 V. For 690 V units, U
1max
is 690 V. The actual voltage in the
1max
1max
, where U
is 415 V. For 500 V units,
1max
is the maximum
1max
intermediate circuit corresponding to the supply voltage trip level is 728 V DC for 400 V units, 877 V DC for 500 V units, and 1210 V DC for 690 V units.
Page 65

DC undervoltage

65
The DC undervoltage trip limit is 0.6 × 1.35 × U value of the supply voltage range. For 400 V and 500 V units, U 690 V units, U
is 525 V. The actual voltage in the intermediate circuit
1min
1min
, where U
is the minimum
1min
is 380 V. For
1min
corresponding to the supply voltage trip level is 307 V DC for 400 V and 500 V units, and 425 V DC for 690 V units.

Drive temperature

The drive supervises the inverter module temperature. There are two supervision limits: warning limit and fault trip limit.

Enhanced drive temperature monitoring for ACS800, frame sizes R7 and R8

Traditionally, drive temperature monitoring is based on the power semiconductor (IGBT) temperature measurement which is compared with a fixed maximum IGBT temperature limit. However, certain abnormal conditions such as cooling fan failure, insufficient cooling air flow or excessive ambient temperature might cause overheating inside the converter module, which the traditional temperature monitoring alone does not detect. The Enhanced drive temperature monitoring improves the protection in these situations.
The function monitors the converter module temperature by checking cyclically that the measured IGBT temperature is not excessive considering the load current, ambient temperature, and other factors that affect the temperature rise inside the converter module. The calculation uses an experimentally defined equation that simulates the normal temperature changes in the module depending on the load. Drive generates a warning when the temperature exceeds the limit, and trips when temperature exceeds the limit by 5°C.
Note: The monitoring is available for ACS800-02, -04 and -07, frame sizes R7 and R8 with Standard Control Program version ASXR7360 (and later versions). For ACS800-U2, -U4 and -U7, frame sizes R7 and R8, the monitoring is available with Standard Control Program version ASXR730U (and later versions).
Types to which the enhanced drive temperature monitoring is available:
ACS800-XX -0080-2
-0100-2
-0120-2
-0140-2/3/7
-0170-2/3/5/7
-0210-2/3/5/7
-0230-2
-0260-2/3/5/7
-0270-5
-0300-2/5
-0320-3/5/7
-0400-3/5/7
Program features
Page 66
66
-0440-3/5/7
-0490-3/5/7
-0550-5/7
-0610-5/7
Settings
Parameter Additional information
95.10 TEMP INV AMBIENT Ambient temperature
Diagnostics
Warning/Fault Additional information
INV OVERTEMP Excessive converter module temperature

Short circuit

There are separate protection circuits for supervising the motor cable and the inverter short circuits. If a short circuit occurs, the drive will not start and a fault indication is given.

Input phase loss

Input phase loss protection circuits supervise the supply cable connection status by detecting intermediate circuit ripple. If a phase is lost, the ripple increases. The drive is stopped and a fault indication is given if the ripple exceeds 13%.

Control board temperature

The drive supervises the control board temperature. A fault indication CTRL B TEMP is given, if the temperature exceeds 88°C.

Overfrequency

If the drive output frequency exceeds the preset level, the drive is stopped and a fault indication is given. The preset level is 50 Hz over the operating range absolute maximum speed limit (Direct Torque Control mode active) or frequency limit (Scalar Control active).

Internal fault

If the drive detects an internal fault, the drive is stopped and a fault indication is given.

Operation limits

ACS800 has adjustable limits for speed, current (maximum), torque (maximum) and DC voltage.

Settings

Program features
Parameter group 20 LIMITS.
Page 67

Power limit

Power limitation is used to protect the input bridge and the DC intermediate circuit. If the maximum allowed power is exceeded, the drive torque is automatically limited. Maximum overload and continuous power limits depend on the drive hardware. For specific values refer to the appropriate hardware manual.

Automatic resets

The drive can automatically reset itself after overcurrent, overvoltage, undervoltage and “analogue input below a minimum” faults. The Automatic Resets must be activated by the user.

Settings

Parameter group 31 AUTOMATIC RESET.

Supervisions

The drive monitors whether certain user selectable variables are within the user­defined limits. The user may set limits for speed, current etc.
67
The supervision functions operate on a 100 ms time level.

Settings

Parameter group 32 SUPERVISION.

Diagnostics

Actual Signals Additional information
03.02 Supervision limit indicating bits in a packed boolean word
03.04 Supervision limit indicating bits in a packed boolean word
03.14 Supervision limit indicating bits in a packed boolean word
Group 14 RELAY
OUTPUTS

Parameter lock

The user can prevent parameter adjustment by activating the parameter lock.

Settings

Parameters 16.02 and 16.03.
Supervision limit indication through a relay output
Program features
Page 68
68
ACT PA R FUNC DRIV E
ENT ER
LOC
REM
RESET
REF
A C S 6 0 0
0 . . . 1 0 b a r 4 . . . 2 0 m A
3
3
2
PID
ref k ti td i dFiltT errVInv rInt oh1 ol1
Actual Values
40.06
40.12 AI1 AI2 AI3 AI5 AI6
IMOT
40.19
Filter
%ref
40.01
40.02
40.03
40.04
40.05
40.13
PIDmax
PIDmin
Switch
Speed reference
Frequency reference
99.04 = 0 (DTC)
Example:
. .
.
PID Control Block Diagram
%ref = external reference EXT REF2 (see parameter 11. 06)
Pressure boost pump
ACS800

Process PID control

There is a built-in PID controller in the drive. The controller can be used to control process variables such as pressure, flow or fluid level.
When the process PID control is activated, a process reference (setpoint) is connected to the drive instead of a speed reference. An actual value (process feedback) is also brought back to the drive. The process PID control adjusts the drive speed in order to keep the measured process quantity (actual value) at the desired level (reference).
The control operates on a 24 ms time level.

Block diagrams

The block diagram below right illustrates the process PID control.
The figure on the left shows an application example: The controller adjusts the speed of a pressure boost pump according to the measured pressure and the set pressure reference.
Program features
Page 69

Settings

1) 1 = Activate sleeping 0 = Deactivate sleeping
40.20
Select
Compare
1<2
Or
<1
40.22
Delay
t
1
2
40.21
Mot.speed
0
DI1
And
&
%refActive
PIDCtrlActive
modulating
Set/Reset
S
R
S/R
Compare
1<2
1
2
40.23
0
INTERNAL
DI1
40.24
Delay
t
Or
<1
StartRq
03.02 (B1)
03.02 (B2)
1)
01.34
INTERNAL
.
. .
40.20
Select
.
. .
Mot.speed: Actual speed of the motor
%refActive: The % reference (EXT REF2) is in use. See parameter 11.02.
PIDCtrlActive: 99.02 is PID CTRL
modulating: The inverter IGBT control is operating
Parameter Purpose
99.02 Process PID control activation
40.01...40.13, 40.19,
The settings of the process PID controller
40.25...40.27
32.13...32.18 The supervision limits for the process reference REF2 and the variables
ACT1 and ACT2

Diagnostics

Actual Signals Purpose
01.12, 01.24, 01.25,
01.26 and 01.34
Group 14 RELAY
OUTPUTS
Group 15 ANALOGUE
OUTPUTS
Group 96 EXTERNAL AOPID process controller values through optional analogue outputs
PID process controller reference, actual values and error value
Supervision limit exceeded indication through a relay output
PID process controller values through standard analogue outputs
69

Sleep function for the process PID control

The sleep function operates on a 100 ms time level.
The block diagram below illustrates the sleep function enable/disable logic. The sleep function can be put into use only when the process PID control is active.
Program features
Page 70
70
Actual Value
Wake-up level
Parameter 42.23
Motor Speed
Sleep level
Par. 40.21
Time
Time
START
STOP
t<t
d
t
d
td = Sleep delay, parameter 40.22
Text on display
SLEEP MODE
t
wd
twd = Wake-up delay, parameter 40.24
Wake-up level
Parameter 42.23
Time
t
wd
Actual Value
No inversion, i.e. par. 40.05 is NO.
Inverted, i.e. par. 40.05 is YES.

Example

The time scheme below visualises the operation of the sleep function.

Settings

Diagnostics

Program features
Sleep function for a PID controlled pressure boost pump: The water consumption falls at night. As a consequence, the PID process controller decreases the motor speed. However, due to natural losses in the pipes and the low efficiency of the centrifugal pump at low speeds, the motor does not stop but keeps rotating. The sleep function detects the slow rotation, and stops the unnecessary pumping after the sleep delay has passed. The drive shifts into sleep mode, still monitoring the pressure. The pumping restarts when the pressure falls under the allowed minimum level and the wake-up delay has passed.
Parameter Additional information
99.02 Process PID control activation
40.05 Inversion
40.20...40.24 Sleep function settings
Warning SLEEP MODE on the panel display.
Page 71

Motor temperature measurement through the standard I/O

Motor
T
RMIO board
AI1+
AI1-
AO1+
AO1-
Motor
T
RMIO board
AI1+
AI1-
AO1+
AO1-
TT
One sensor
Three sensors
The minimum voltage of the capacitor must be 630 VAC.
10 nF
(>
630 VAC)
10 nF
(>
630 VAC)
This section describes the temperature measurement of one motor when the drive control board RMIO is used as the connection interface.
71
WARNING! According to IEC 664, the connection of the motor temperature sensor to the RMIO board, requires double or reinforced insulation between motor live parts and the sensor. Reinforced insulation entails a clearance and creepage distance of 8 mm (400 / 500 VAC equipment). If the assembly does not fulfil the requirement:
The RMIO board terminals must be protected against contact and they may not be connected to other equipment.
Or
The temperature sensor must be isolated from the RMIO board terminals.
See also section Motor Thermal Protection on page 62.
Program features
Page 72
72

Settings

Parameter Additional information
15.01 Analogue output in a motor 1 temperature measurement. Set to M1 TEMP
MEAS.
35.0135.03 Settings of motor 1 temperature measurement
Other
Parameters 13.01 to 13.05 (AI1 processing) and 15.02 to 15.05 (AO1 processing) are not effective.
At the motor end the cable shield should be earthed through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected.

Diagnostics

Actual values Additional information
01.35 Temperature value
Warnings
MOTOR 1 TEMP (4312) Measured motor temperature has exceeded the set alarm limit.
T MEAS ALM (FF91) Motor temperature measurement is out of acceptable range.
Faults
MOTOR 1 TEMP (4312) Measured motor temperature has exceeded the set fault limit.
Program features
Page 73

Motor temperature measurement through an analogue I/O extension

Motor
T
RAIO module
AI1+
AI1-
AO1+
AO1-
SHLD
Motor
T
TT
One sensor
Three sensors
RAIO module
AI1+
AI1-
AO1+
AO1-
SHLD
10 nF
(>
630 VAC)
10 nF
(>
630 VAC)
The minimum voltage of the capacitor must be 630 VAC.
This section describes the motor temperature measurement of one motor when an optional analogue I/O extension module RAIO is used as the connection interface.
73
WARNING! According to IEC 664, the connection of the motor temperature sensor to the RAIO module, requires double or reinforced insulation between motor live parts and the sensor. Reinforced insulation entails a clearance and creepage distance of 8 mm (400 / 500 VAC equipment). If the assembly does not fulfil the requirement:
The RAIO module terminals must be protected against contact and they may not be connected to other equipment.
Or
The temperature sensor must be isolated from the RAIO module terminals.
See also section Motor Thermal Protection on page 62.
Program features
Page 74
74

Settings

Parameter Additional information
35.0135.03 Settings of motor 1 temperature measurement
98.12 Activation of optional analogue I/O for motor temperature measurement
Other
Parameters 13.16 to 13.20 (AI1 processing) and 96.01 to 96.05 (AO1 signal selection and processing) are not effective.
At the motor end the cable shield should be earthed through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected.

Diagnostics

Actual values Additional information
01.35 Temperature value
Warnings
MOTOR 1 TEMP (4312) Measured motor temperature has exceeded the set alarm limit
T MEAS ALM (FF91) Motor temperature measurement is out of acceptable range.
Faults
MOTOR 1 TEMP (4312) Measured motor temperature has exceeded the set fault limit

Adaptive Programming using the function blocks

Conventionally, the user can control the operation of the drive by parameters. Each parameter has a fixed set of choices or a setting range. The parameters make the programming easy, but the choices are limited. The user cannot customise the operation any further. The Adaptive Program makes freer customising possible without the need of a special programming tool or language:
The program is built of standard function blocks included in the drive application program.
The control panel is the programming tool.
The user can document the program by drawing it on block diagram template sheets.
The maximum size of the Adaptive Program is 15 function blocks. The program may consist of several separate functions.
For more information, see the Application Guide for Adaptive Program [3AFE64527274 (English)].

DriveAP

DriveAP is a Windows based tool for Adaptive Programming. With DriveAP it is possible to upload the Adaptive Program from the drive and edit it with PC.
Program features
For more information, see the DriveAP User’s Manual [3AFE64540998 (English)].
Page 75

Control of a mechanical brake

Motor
M
230 VAC
RMIO board
Mechanical brake
Brake control
hardware
Emergency
brake
X25
1 RO1
2 RO1
3 RO1
X22
5 DI5
7 +24 V
Brake control logic is integrated in the drive application program. The brake control hardware and wirings needs to be done by the user.
- Brake on/off control through relay output RO1.
- Brake supervision through digital input DI5 (optional).
- Emergency brake switch in the brake control circuit.
The mechanical brake is used for holding the motor and driven machinery at zero speed when the drive is stopped, or not powered.

Example

The figure below shows a brake control application example.
WARNING! Make sure that the machinery into which the drive with brake control function is integrated fulfils the personnel safety regulations. Note that the frequency converter (a Complete Drive Module or a Basic Drive Module, as defined in IEC 61800-2), is not considered as a safety device mentioned in the European Machinery Directive and related harmonised standards. Thus, the personnel safety of the complete machinery must not be based on a specific frequency converter feature (such as the brake control function), but it has to be implemented as defined in the application specific regulations.
75
Program features
Page 76
76
T
s
Start torque at brake release (Parameter 42.07 and 42.08)
t
md
Motor magnetising delay
t
od
Brake open delay (Parameter 42.03)
n
cs
Brake close speed (Parameter 42.05)
t
cd
Brake close delay (Parameter 42.04)
Start command
Inverter modulating
Motor magnetised
Open brake command
Internal speed reference (actual motor speed)
Torque reference
time
t
od
t
cd
n
cs
T
s
External speed reference
t
md
1
2
3
4
5
6
7

Operation time scheme

The time scheme below illustrates the operation of the brake control function. See also the state machine on the following page.
Program features
Page 77

State shifts

RFG INPUT
TO ZERO
CLOSE BRAKE
BRAKE
ACK FAULT
OPEN
BRAKE
From any state
1/1/1
0/1/1
1/1/1
1/1/0
0/0/1
1)
2)
RELEASE RFG
INPUT
3)
4)
7)
8)
10)
11)
12)
13)
5)
NO
MODULATION
0/0/1
9)
6)
A
A
Stat e (Symbol )
- NN: State name
- X/Y/Z: State outputs/operations X = 1 Open the brake. The relay output set to brake on/off control energises. Y = 1 Forced start. The function keeps the internal Start on until the brake is closed in spite of the
status of the external Start signal.
Z = 1 Ramp in zero. Forces the used speed reference (internal) to zero along a ramp.
NN
X/Y/Z
State change conditions (Symbol )
1) Brake control active 0 -> 1 OR Inverter is modulating = 0
2) Motor magnetised = 1 AND Drive running = 1
3) Brake acknowledgement = 1 AND Brake open delay passed AND Start = 1
4) Start = 0
5) Start = 0
6) Start = 1
7) Actual motor speed < Brake close speed AND Start = 0
8) Start = 1
9) Brake acknowledgement = 0 AND Brake close delay passed = 1 AND Start = 0
Only if parameter 42.02 OFF:
10) Brake acknowledgement = 0 AND Brake open delay passed =1
11) Brake acknowledgement = 0
12) Brake acknowledgement = 0
13) Brake acknowledgement = 1 AND Brake close delay passed = 1
=
RFG = Ramp Function Generator in the speed control loop (reference handling).
(rising edge)
77
Program features
Page 78
78
Supply
33
Solidly coupled motor shafts:
- Speed-controlled Master
- Follower follows the torque reference of the Master
External control signals
Supply
3
n
3
22
Master/ Follower Link
Follower fault supervision
3
22
Master/Follower Link
Follower fault supervision
3
3
External control signals
Supply
3
n
Flexibly coupled motor shafts:
- Speed-controlled Master
- Follower follows the speed reference of the Master
Supply
M/F Application, Overview

Settings

Parameter Additional information
14.01 Relay output for the brake control (set to BRAKE CTRL)
Group 42 BRAKE CONTROL Brake function settings

Diagnostics

Actual value Additional information
03.01 Ramp in zero bit
03.13 The state of bit “brake open/close command”
Warnings
BRAKE ACKN (FF74) Unexpected state of brake acknowledge signal
Faults
BRAKE ACKN (FF74) Unexpected state of brake acknowledge signal

Master/Follower use of several drives

In a Master/Follower application, the system is run by several drives, the motor shafts of which are coupled to each other. The master and follower drives communicate via a fibre optic link. The figures below illustrate two basic application types.
Program features

Settings and diagnostics

Parameter Additional information
Group 60 MASTER/
FOLLOWER
Other
Master/Follower Application Guide [3AFE64590430 (English)] explains the functionality in further detail.
Master/Follower parameters
Page 79

Jogging

Time
Speed
12 345 6 7 89 1011 1213
14
15 16
79
The jogging function is typically used to control a cyclical movement of a machine section. One push button controls the drive through the whole cycle: When it is on, the drive starts, accelerates to a preset speed at a preset rate. When it is off, the drive decelerates to zero speed at a preset rate.
The figure and table below describe the operation of the drive. They also represent how the drive shifts to normal operation (= jogging inactive) when the drive start command is switched on. Jog cmd = State of the jogging input, Start cmd = State of the drive start command.
The function operates on a 100 ms time level.
Phase Jog
cmd
1-2 1 0 Drive accelerates to the jogging speed along the acceleration ramp of the jogging function.
2-3 1 0 Drive runs at the jogging speed.
3-4 0 0 Drive decelerates to zero speed along the deceleration ramp of the jogging function.
4-5 0 0 Drive is stopped.
5-6 1 0 Drive accelerates to the jogging speed along the acceleration ramp of the jogging function.
6-7 1 0 Drive runs at the jogging speed.
7-8 x 1 Normal operation overrides the jogging. Drive accelerates to the speed reference along the
8-9 x 1 Normal operation overrides the jogging. Drive follows the speed reference.
9-10 0 0 Drive decelerates to zero speed along the active deceleration ramp.
10-11 0 0 Drive is stopped.
11-12 x 1 Normal operation overrides the jogging. Drive accelerates to the speed reference along the
12-13 x 1 Normal operation overrides the jogging. Drive follows he speed reference.
13-14 1 0 Drive decelerates to the jogging speed along the deceleration ramp of the jogging function.
14-15 1 0 Drive runs at the jogging speed.
15-16 0 0 Drive decelerates to zero speed along the deceleration ramp of the jogging function.
Start cmd
x = State can be either 1 or 0.
Description
active acceleration ramp.
active acceleration ramp.
Program features
Page 80
80
Note: The jogging is not operational when:
the drive start command is on, or
the drive is in local control (L visible on the first row of the panel display).
Note: The jogging speed overrides the constant speeds.
Note: The ramp shape time is set to zero during the jogging.

Settings

Parameter Additional information
10.06 Input for the on/off control of the jogging.
12.15 Jogging speed
21.10 Switch off delay for the inverter IGBT control. A delay keeps the inverter
22.04, 22.05 Acceleration and deceleration times used during the jogging.
22.06 Acceleration and deceleration ramp shape time: Set to zero during the

Reduced Run function

modulation live over a short standstill period enabling a smooth restart.
jogging.
Reduced Run function is available for parallel connected inverters. Reduced Run function makes it possible to continue the operation with limited current if an inverter module(s) is out of order. If one of the modules is broken, it must be removed. Parameter change is needed to continue the run with reduced current (95.03 INT CONFIG USER). For instructions on how to remove and reconnect an inverter module, see the appropriate drive hardware manual.

Settings

Parameter Additional information
95.03 INT CONFIG
USER
Number of existing parallel connected inverters

Diagnostics

Actual value Additional information
04.01 INT board fault
Faults
INT CONFIG Number of inverter modules is not equal to original number of inverters.
Program features
Page 81

User load curve

50 Hz
0 Hz
100 Hz
Frequency
T/T
n
Normal motor load capacity
User load curve
Current
I
output
I
user curve
72.20
COOLING TIME
Frequency / Time

Overload

Motor temperature rise can be limited by limiting the drive output current. The user can define a load curve (output current as a function of frequency). The load curve is defined by eight points by parameters 72.02...72.17. If the load curve is exceeded, a fault / warning / current limitation is activated.
Overload
81
Overload supervision can be applied to the user load curve by setting parameters
72.18 LOAD CURRENT LIMIT... 72.20 COOLING TIME according to the overload
values defined by the motor manufacturer.
2
, I
The supervision is based on an integrator
dt. Whenever the drive output current exceeds the user load curve, the integrator is started. When the integrator has reached the overload limit defined by parameters 72.18 and 72.19, the drive reacts as defined by parameter 72.01 OVERLOAD FUNC. The output of the integrator is set to zero if the current stays continuously below the user load curve for the cooling time defined by parameter 72.20 COOLING TIME.
If the overload time 72.19 LOAD THERMAL TIME is set to zero, the drive output current is limited to the user load curve.
Program features
Page 82
82

Settings

Parameter Additional information
Group 72 USER LOAD
CURVE

Diagnostics

Actual value Additional information
02.20 Measured motor current in percent of the user load curve current
Warnings
USER L CURVE Integrated motor current has exceeded load curve.
Faults
USER L CURVE Integrated motor current has exceeded load curve.
User load curve
Program features
Page 83

Application macros

Chapter overview

This chapter describes the intended use, operation and the default control connections of the standard application macros. It also describes how to save a user macro, and how to recall it.

Overview of macros

Application macros are preprogrammed parameter sets. While starting up the drive, the user typically selects one of the macros - the one that is best suited to his needs
- by parameter 99.02, makes the essential changes and saves the result as a user macro.
There are five standard macros and two user macros. The table below contains a summary of the macros and describes suitable applications.
83
Macro Suitable Applications
Factory Ordinary speed control applications where no, one, two or three constant speeds
are used:
- Conveyors
- Speed-controlled pumps and fans
- Test benches with predefined constant speeds
Hand/Auto Speed control applications. Switching between two external control devices is
possible.
PID Control Process control applications e.g. different closed loop control systems such as
pressure control, level control, and flow control. For example:
- pressure boost pumps of municipal water supply systems
- level controlling pumps of water reservoirs
- pressure boost pumps of district heating systems
- material flow control on a conveyor line.
It is also possible to switch between process and speed control.
Torque Control
Sequential Control
User The user can save the customised standard macro i.e. the parameter settings
Torque control applications. Switching between torque and speed control is possible.
Speed control applications in which speed reference, seven constant speeds and two acceleration and deceleration ramps can be used.
including group 99, and the results of the motor identification into the permanent memory, and recall the data at a later time. Two user macros are essential when switching between two different motors is required
Application macros
Page 84
84

Note on external power supply

External +24 V power supply for the RMIO board is recommended if
the application requires a fast start after connecting the input power supply
fieldbus communication is required when the input power supply is disconnected.
The RMIO board can be supplied from an external power source via terminal X23 or X34 or via both X23 and X34. The internal power supply to terminal X34 can be left connected when using terminal X23.
WARNING! If the RMIO board is supplied from an external power source via terminal X34, the loose end of the cable removed from the RMIO board terminal must be secured mechanically to a location where it cannot come into contact with electrical parts. If the screw terminal plug of the cable is removed, the wire ends must be individually insulated.

Parameter settings

In Standard Control Program, set parameter 16.09 CTRL BOARD SUPPLY to EXTERNAL 24V if the RMIO board is powered from an external supply.
Application macros
Page 85

Factory macro

All drive commands and reference settings can be given from the control panel or from an external control location. The active control location is selected with the LOC/REM key of the panel. The drive is speed-controlled.
In external control, the control location is EXT1. The reference signal is connected to analogue input AI1 and Start/Stop and Direction signals are connected to digital inputs DI1 and DI2. By default, the direction is fixed to FORWARD (parameter
10.03). DI2 does not control the direction of rotation unless parameter 10.03 is
changed to REQUEST.
Three constant speeds are selected by digital inputs DI5 and DI6. Two acceleration/ deceleration ramps are preset. The acceleration and deceleration ramps are used according to the state of digital input DI4.
Two analogue signals (speed and current) and three relay output signals (ready, running and inverted fault) are available.
The default signals on the display of the control panel are FREQUENCY, CURRENT and POWER.
85
Application macros
Page 86
86
X20 1 VREF Reference voltage -10 VDC 2GND1kohm <
RL < 10 kohm X21 1 VREF Reference voltage 10 VDC
1kohm <
RL < 10 kohm
2GND 3 AI1+ Speed reference 0(2) … 10 V, R
in
> 200 kohm 4AI1­5 AI2+ By default, not in use. 0(4) … 20 mA, R
in
=
100 ohm
6AI2­7 AI3+ By default, not in use. 0(4) … 20 mA, R
in
=
100 ohm
8AI3­9 AO1+ Motor speed 0(4) … 20 mA 0 … motor nom.
speed, R
L
< 700 ohm
10 AO1­11 AO2+ Output current 0(4) … 20 mA 0 … motor
nom. current, R
L
< 700 ohm
12 AO2­X22 1 DI1 Stop/Start
2)
2 DI2 Forward/reverse
1, 2)
3 DI3 By default, not in use.
2)
4 DI4 Acceleration & deceleration select
3)
5 DI5 Constant speed select
4)
6 DI6 Constant speed select
4)
7 +24 V +24 VDC, max. 100 mA 8+24 V 9 DGND1 Digital ground 10 DGND2 Digital ground 11 DI IL Start interlock (0 = stop)
5)
X23 1 +24 V Auxiliary voltage output and input, non-
isolated, 24 V DC 250 mA
6)
2GND X25 1 RO11 Relay output 1
Ready
2RO12 3RO13 X26 1 RO21 Relay output 2
Running
2RO22 3RO23 X27 1 R031 Relay output 3
Inverted fault
2 R032 3 R033
=
=
A
rpm
Fault
1)
Effective only if parameter 10.03 is
switched to REQUEST by the user.
2)
The US default settings differ as
follows:
3)
0 = ramp times according to par.
22.02 and 22.03. 1 = ramp times
according to par. 22.04 and 22.05.
4)
See parameter group 12
CONSTANT SPEEDS:
5)
See parameter 21.09.
6)
Total maximum current shared between this output and optional modules installed on the board.
DI1 Start (Pulse: 0->1) DI2 Stop (Pulse: 1->0) DI3 Forward/Reverse
DI5 DI6 Operation
0 0 Set speed through AI1 1 0 Speed 1 0 1 Speed 2 1 1 Speed 3

Default control connections

Application macros
The figure below shows the external control connections for the Factory macro. The markings of the standard I/O terminals on the RMIO board are shown.
Page 87

Hand/Auto macro

Start/Stop and Direction commands and reference settings can be given from one of two external control locations, EXT1 (Hand) or EXT2 (Auto). The Start/Stop/Direction commands of EXT1 (Hand) are connected to digital inputs DI1 and DI2, and the reference signal is connected to analogue input AI1. The Start/Stop/Direction commands of EXT2 (Auto) are connected to digital inputs DI5 and DI6, and the reference signal is connected to analogue input AI2. The selection between EXT1 and EXT2 is dependent on the status of digital input DI3. The drive is speed controlled. Speed reference and Start/Stop and Direction commands can be given from the control panel keypad also. One constant speed can be selected through digital input DI4.
Speed reference in Auto Control (EXT2) is given as a percentage of the maximum speed of the drive.
Two analogue and three relay output signals are available on terminal blocks. The default signals on the display of the control panel are FREQUENCY, CURRENT and CTRL LOC.
87
Application macros
Page 88
88
A
rpm
Fault
X20 1 VREF Reference voltage -10 VDC 2GND1kohm <
RL < 10 kohm X21 1 VREF Reference voltage 10 VDC, kohm <
RL <
10 kohm
2GND 3 AI1+ Speed reference (Hand control). 0(2) … 10 V,
R
in
> 200 kohm
4AI1­5 AI2+ Speed reference (Auto control). 0(4) …
20 mA, R
in
= 100 ohm
6AI2­7 AI3+ By default, not in use. 0(4) … 20 mA,
R
in
= 100 ohm.
8AI3­9 AO1+ Motor speed 0(4) … 20 mA 0 … motor nom.
speed, R
L
< 700 ohm
10 AO1­11 AO2+ Output current 0(4) … 20 mA 0 … motor
nom. current, R
L
< 700 ohm
12 AO2­X22 1 DI1 Stop/Start (Hand control) 2 DI2 Forward/Reverse (Hand control) 3 DI3 Hand/Auto control select
1)
4 DI4 Constant speed 4: Par. 12.05 5 DI5 Forward/Reverse (Auto control) 6 DI6 Stop/Start (Auto control) 7 +24 V +24 VDC, max. 100 mA 8 +24 V 9 DGND1 Digital ground 10 DGND2 Digital ground 11 DI IL Start interlock (0 = stop)
2)
X23 1 +24 V Auxiliary voltage output and input, non-
isolated, 24 V DC 250 mA
3)
2GND X25 1 RO11 Relay output 1
Ready
2RO12 3RO13 X26 1 RO21 Relay output 2
Running
2RO22 3RO23 X27 1 R031 Relay output 3
Inverted fault
2R032 3R033
=
=
1)
Selection between two external
control locations, EXT1 and EXT2.
2)
See parameter 21.09.
3)
Total maximum current shared between this output and optional modules installed on the board.

Default control connections

The figure below shows the external control connections for the Hand/Auto macro. The markings of the standard I/O terminals on the RMIO board are shown.
Application macros
Page 89

PID Control macro

X21 / RMIO board 5 AI2+ Process actual value measurement. 0(4) …
20 mA, R
in
= 100 ohm
6AI2­… X23 / RMIO board 1 +24 V Auxiliary voltage output, non-isolated,
24 VDC, 250 mA
2GND
P
I
4…20 mA
The PID Control macro is used for controlling a process variable – such as pressure or flow – by controlling the speed of the driven motor.
Process reference signal is connected to analogue input AI1 and process feedback signal to analogue input AI2.
Alternatively, a direct speed reference can be given to the drive through analogue input AI1. Then the PID controller is bypassed and the drive no longer controls the process variable. Selection between the direct speed control and the process variable control is done with digital input DI3.
Two analogue and three relay output signals are available on terminal blocks. The default signals on the display of the control panel are SPEED, ACTUAL VALUE1 and CONTROL DEVIATION.

Connection example, 24 VDC / 4…20 mA two-wire sensor

89
Note: The sensor is supplied through its current output. Thus the output signal must be 4…20 mA, not 0…20 mA.
Application macros
Page 90
90
A
rpm
PT
X20 1 VREF Reference voltage -10 VDC 2GND1kohm < RL < 10 kohm X21 1 VREF Reference voltage 10 VDC
1 kohm <
RL < 10 kohm
2GND 3 AI1+ Speed ref. (speed cntrl) or process ref.
(process cntrl). 0(2) … 10 V, R
in
> 200 kohm
4AI1­5 AI2+ Process actual value measurement. 0(4) …
20 mA, R
in
= 100 ohm
6AI2­7 AI3+ By default, not in use. 0(4) … 20 mA, R
in
=
100 ohm.
8AI3­9 AO1+ Motor speed 0(4) … 20 mA
0 … motor nom. speed, R
L
< 700 ohm
10 AO1­11 AO2+ Output current 0(4) … 20 mA
0 … motor nom. current, R
L
< 700 ohm
12 AO2­X22 1 DI1 Stop/Start (speed control) 2 DI2 By default, not in use. 3 DI3 Speed / process control select
1)
4 DI4 Constant speed 4: Par. 12.05
2)
5 DI5 Run Enable.
3)
6 DI6 Stop/Start (process control) 7 +24 V +24 VDC, max. 100 mA 8+24 V 9 DGND1 Digital ground 10 DGND2 Digital ground 11 DI IL Start interlock (0 = stop)
4)
X23 1 +24 V Auxiliary voltage output and input, non-
isolated, 24 V DC 250 mA
6)
2GND X25 1 RO11 Relay output 1
Ready
2RO12 3RO13 X26 1 RO21 Relay output 2
Running
2RO22 3RO23 X27 1 R031 Relay output 3
Inverted fault
2 R032 3 R033
=
=
Fault
5)
1)
Selection between two external
control locations, EXT1 and EXT2
2)
In use only when the speed control
is active (DI3 = 0)
3)
Off = Run Enable off. Drive will not start or stops. On = Run Enable on. Normal operation.
4)
See parameter 21.09.
5)
The sensor needs to be powered. See the manufacturer’s instructions. A connection example of a two-wire 24 VDC / 4…20 mA sensor is shown on previous page.
6)
Total maximum current shared between this output and optional modules installed on the board.

Default control connections

The figure below shows the external control connections for the PID Control macro. The markings of the standard I/O terminals on the RMIO board are shown.
Application macros
Page 91

Torque Control macro

Torque Control macro is used in applications in which torque control of the motor is required. Torque reference is given through analogue input AI2 as a current signal. By default, 0 mA corresponds to 0 %, and 20 mA to 100 % of the rated motor torque. The Start/Stop/Direction commands are given through digital inputs DI1 and DI2. The Run Enable signal is connected to DI6.
Through digital input DI3 it is possible to select speed control instead of torque control. It is also possible to change the external control location to local (i.e. to control panel) by pressing the LOC/REM key. The panel controls the speed by default. If torque control with panel is required, the value of parameter 11.01 should be changed to REF2 (%).
Two analogue and three relay output signals are available on terminal blocks. The default signals on the display of the control panel are SPEED, TORQUE and CTRL LOC.
91
Application macros
Page 92
92
X20 1 VREF Reference voltage -10 VDC 2GND1kohm <
RL < 10 kohm X21 1 VREF Reference voltage 10 VDC
1 kohm <
RL < 10 kohm
2GND 3 AI1+ Speed reference. 0(2) … 10 V, R
in
>
200 kohm
4AI1­5 AI2+ Torque reference. 0(4) … 20 mA, R
in
= 100
ohm
6AI2­7 AI3+ By default, not in use. 0(4) … 20 mA, R
in
=
100 ohm
8AI3­9 AO1+ Motor speed 0(4) … 20 mA 0 … motor nom.
speed, R
L
< 700 ohm
10 AO1­11 AO2+ Output current 0(4) … 20 mA 0 … motor
nom. current, R
L
< 700 ohm
12 AO2­X22 1 DI1 Stop/Start 2 DI2 Forward/Reverse 3 DI3 Speed / torque control select
1)
4 DI4 Constant speed 4: Par. 12.05
2)
5 DI5 Acceleration & deceleration select
3)
6 DI6 Run Enable
4)
7 +24 V +24 VDC, max. 100 mA 8 +24 V 9 DGND1 Digital ground 10 DGND2 Digital ground 11 DI IL Start interlock (0 = stop)
5)
X23 1 +24 V Auxiliary voltage output and input, non-
isolated, 24 V DC 250 mA
6)
2GND X25 1 RO11 Relay output 1
Ready
2RO12 3RO13 X26 1 RO21 Relay output 2
Running
2RO22 3RO23 X27 1 R031 Relay output 3
Inverted fault
2R032 3R033
=
=
Fault
1)
Selection between external control
locations EXT1 and EXT2
2)
In use only when the speed control
is active (DI3 = 0)
3)
Off = Ramp times according to par.
22.02 and 22.03. On = Ramp times
according to par. 22.04 and 22.05.
4)
Off = Run Enable off. Drive will not start or stops. On = Run Enable on. Normal operation.
5)
See parameter 21.09.
6)
Total maximum current shared between this output and optional modules installed on the board.
A
rpm

Default control connections

The figure below shows the external control connections for the Torque Control macro. The markings of the standard I/O terminals on the RMIO board are shown.
Application macros
Page 93

Sequential Control macro

Accel1
Accel1
Accel2
Decel2
Speed 3
Speed 2
Speed 1
Spee d
Time
Start/Stop
Accel1/Decel1
Spee d 1
Spee d 2 Accel2/Decel2
Spee d 3
Stop with deceleration ramp
This macro offers seven preset constant speeds which can be activated by digital inputs DI4 to DI6. Two acceleration/deceleration ramps are preset. The acceleration and deceleration ramps are applied according to the state of digital input DI3. The Start/Stop and Direction commands are given through digital inputs DI1 and DI2.
External speed reference can be given through analogue input AI1. The reference is active only when all of the digital inputs DI4 to DI6 are 0 VDC. Giving operational commands and setting reference is possible also from the control panel.
Two analogue and three relay output signals are available on terminal blocks. Default stop mode is ramp. The default signals on the display of the control panel are FREQUENCY, CURRENT and POWER.

Operation diagram

The figure below shows an example of the use of the macro.
93
Application macros
Page 94
94
A
rpm
X20 1 VREF Reference voltage -10 VDC 2GND1kohm <
RL < 10 kohm X21 1 VREF Reference voltage 10 VDC
1kohm <
RL < 10 kohm
2GND 3 AI1+ External speed reference 0(2) … 10 V, R
in
>
200 kohm
4AI1­5 AI2+ By default, not in use. 0(4) … 20 mA, R
in
=
100 ohm
6AI2­7 AI3+ By default, not in use. 0(4) … 20 mA, R
in
=
100 ohm
8AI3­9 AO1+ Motor speed 0(4) … 20 mA 0 … motor nom.
speed, R
L
< 700 ohm
10 AO1­11 AO2+ Output current 0(4) … 20 mA 0 … motor
nom. current, R
L
< 700 ohm
12 AO2­X22 1 DI1 Stop/Start 2 DI2 Forward/Reverse 3 DI3 Acceleration & deceleration selection
1)
4 DI4 Constant speed select
2)
5 DI5 Constant speed select
2)
6 DI6 Constant speed select
2)
7 +24 V +24 VDC, max. 100 mA 8 +24 V 9 DGND1 Digital ground 10 DGND2 Digital ground 11 DI IL Start interlock (0 = stop)
3)
X23 1 +24 V Auxiliary voltage output and input, non-
isolated, 24 V DC 250 mA
4)
2GND X25 1 RO11 Relay output 1
Ready
2RO12 3RO13 X26 1 RO21 Relay output 2
Running
2RO22 3RO23 X27 1 R031 Relay output 3
Inverted fault
2R032 3R033
=
=
Fault
1)
Off = Ramp times according to par.
22.02 and 22.03. On = Ramp times
according to par. 22.04 and 22.05.
2)
See parameter group 12
CONSTANT SPEEDS:
3)
See parameter 21.09.
4)
Total maximum current shared between this output and optional modules installed on the board.
DI4 DI5 DI6 Operation
0 0 0 Set speed through AI1 1 0 0 Speed 1 0 1 0 Speed 2 1 1 0 Speed 3 0 0 1 Speed 4 1 0 1 Speed 5 0 1 1 Speed 6 1 1 1 Speed 7

Default control connections

The figure below shows the external control connections for the Sequential Control macro. The markings of the standard I/O terminals on the RMIO board are shown.
Application macros
Page 95

User macros

95
In addition to the standard application macros, it is possible to create two user macros. The user macro allows the user to save the parameter settings including Group 99, and the results of the motor identification into the permanent memory, and recall the data at a later time. The panel reference is also saved, if the macro is saved and loaded in Local control mode. Remote control location setting is saved into the user macro, but Local control location setting is not.
To create User Macro 1:
Adjust the parameters. Perform the motor identification if not performed yet.
Save the parameter settings and the results of the motor identification by changing parameter 99.02 to USER 1 SAVE (press ENTER). The storing takes 20 s to 1 min.
Note: If user macro save function is executed several times, drive memory fills up and file compression starts. File compression can last up to 10 minutes. Macro saving will be completed after the file compression. (Operation is indicated on the last row of the control panel display by blinking dots).
To recall the user macro:
Change parameter 99.02 to USER 1 LOAD.
•Press ENTER to load.
The user macro can also be switched via digital inputs (see parameter 16.05).
Note: User macro load restores also the motor settings in group 99 START-UP
DATA and the results of the motor identification. Check that the settings correspond
to the motor used.
Example: The user can switch the drive between two motors without having to adjust the motor parameters and to repeat the motor identification every time the motor is changed. The user needs only to adjust the settings and perform the motor identification once for both motors and then to save the data as two user macros. When the motor is changed, only the corresponding User macro needs to be loaded, and the drive is ready to operate.
Application macros
Page 96
96
Application macros
Page 97

Actual signals and parameters

Chapter overview

The chapter describes the actual signals and parameters and gives the fieldbus equivalent values for each signal/parameter. More data is given in chapter Additional
data: actual signals and parameters.

Terms and abbreviations

Term Definition
97
Absolute Maximum Frequency
Absolute Maximum Speed
Actual signal Signal measured or calculated by the drive. Can be monitored by the
FbEq Fieldbus equivalent: The scaling between the value shown on the panel
Parameter A user-adjustable operation instruction of the drive.
Value of 20.08, or 20.07 if the absolute value of the minimum limit is greater than the maximum limit.
Value of parameter 20.02, or 20.01 if the absolute value of the minimum limit is higher than the maximum limit.
user. No user setting possible.
and the integer used in serial communication.
Actual signals and parameters
Page 98
98
No. Name/Value Description FbEq

01 ACTUAL SIGNALS

01.01 PROCESS VARIABLE Process variable based on settings in parameter group 34 PROCESS
01.02 SPEED Calculated motor speed in rpm. Filter time setting by parameter 34.04. -20000 =
01.03 FREQUENCY Calculated drive output frequency. -100 = -1 Hz
01.04 CURRENT Measured motor current. 10 = 1 A
01.05 TORQUE Calculated motor torque. 100 is the motor nominal torque. Filter time
01.06 POWER Motor power. 100 is the nominal power. -1000 =
01.07 DC BUS VOLTAGE V Measured intermediate circuit voltage. 1 = 1 V
01.08 MAINS VOLTAGE Calculated supply voltage. 1 = 1 V
01.09 OUTPUT VOLTAGE Calculated motor voltage. 1 = 1 V
01.10 ACS800 TEMP Calculated IGBT temperature. 10 = 1%
01.11 EXTERNAL REF 1 External reference REF1 in rpm. (Hz if value of parameter 99.04 is
01.12 EXTERNAL REF 2 External reference REF2. Depending on the use, 100% is the motor
01.13 CTRL LOCATION Active control location. (1,2) LOCAL; (3) EXT1; (4) EXT2. See section
01.14 OP HOUR COUNTER Elapsed time counter. Runs when the control board is powered. 1 = 1 h
01.15 KILOWATT HOURS kWh counter. Counts inverter output kWh during operation (motor side -
01.16 APPL BLOCK OUTPUT Application block output signal. E.g. the process PID controller output
01.17 DI6-1 STATUS Status of digital inputs. The first digit reflects the Start Interlock input, and
01.18 AI1 [V] Value of analogue input AI1. 1 = 0.001 V
01.19 AI2 [mA] Value of analogue input AI2. 1 = 0.001 mA
01.20 AI3 [mA] Value of analogue input AI3. 1 = 0.001 mA
01.21 RO3-1 STATUS Status of relay outputs. Example: 001 = RO1 is energised, RO2 and
01.22 AO1 [mA] Value of analogue output AO1. 1 =0.001 mA
Basic signals for monitoring of the drive.
VAR IABLE .
setting by parameter 34.05.
SCALAR.)
maximum speed, motor nominal torque, or maximum process reference.
Local control vs. external control on page 43.
generator side).
when the PID Control macro is active.
is followed by digital inputs from DI6 to DI1. Example: 0000001 = Start Interlock off, DI6 to DI2 off, DI1 on.
RO3 are de-energised.
1 = 1
-100% 20000 = 100% of motor abs. max. speed
100 = 1 Hz
-10000 =
-100% 10000 = 100% of motor nom. torque
-100% 1000 = 100% of motor nom. power
1 = 1 rpm
0 = 0% 10000 = 100% 1)
See descr.
1 = 100 kWh
0 = 0% 10000 = 100%
Actual signals and parameters
Page 99
99
No. Name/Value Description FbEq
01.23 AO2 [mA] Value of analogue output AO2. 1 = 0.001 mA
01.24 ACTUAL VALUE 1 Feedback signal for the process PID controller. Updated only when parameter 99.02 = PD CTRL
01.25 ACTUAL VALUE 2 Feedback signal for the process PID controller. Updated only when parameter 99.02 = PID CTRL.
01.26 CONTROL DEVIATION Deviation of the process PID controller, i.e. the difference between the reference value and the actual value. Updated only when parameter
99.02 = PID CTRL.
01.27 APPLICATION MACRO Active application macro (value of parameter 99.02). See 99.02
01.28 EXT AO1 [mA] Value of output 1 of the analogue I/O extension module (optional). 1 = 0.001 mA
01.29 EXT AO2 [mA] Value of output 2 of the analogue I/O extension module (optional). 1 = 0.001 mA
01.30 PP 1 TEMP Measured heatsink temperature in inverter no. 1. 1 = 1°C
01.31 PP 2 TEMP Measured heatsink temperature in inverter no. 2 (used only in high power units with parallel inverters).
01.32 PP 3 TEMP Measured heatsink temperature in inverter no. 3 (used only in high power units with parallel inverters).
01.33 PP 4 TEMP Measured heatsink temperature in inverter no. 4 (used only in high power units with parallel inverters).
01.34 ACTUAL VALUE Process PID controller actual value. See parameter 40.06.0 = 0%
01.35 MOTOR 1 TEMP Measured temperature of motor 1. See parameter 35.01. 1 = 1°C/ohm
01.36 MOTOR 2 TEMP Measured temperature of motor 2. See parameter 35.04. 1 = 1°C/ohm
01.37 MOTOR TEMP EST Estimated motor temperature. Signal value is saved at power switch off. 1 = 1°C
01.38 AI5 [mA] Value of analogue input AI5 read from AI1 of the analogue I/O extension module (optional). A voltage signal is also displayed in mA (instead of V).
01.39 AI6 [mA] Value of analogue input AI6 read from AI2 of the analogue I/O extension module (optional).
01.40 DI7-12 STATUS Status of digital inputs DI7 to DI12 read from the digital I/O extension modules (optional). E.g. value 000001: DI7 is on, DI8 to DI12 are off.
01.41 EXT RO STATUS Status of the relay outputs on the digital I/O extension modules (optional). E.g. value 0000001: RO1 of module 1 is energised. Other relay outputs are de-energised.
01.42 PROCESS SPEED REL Motor actual speed in percent of the Absolute Maximum Speed. If parameter 99.04 is SCALAR, the value is the relative actual output frequency.
01.43 MOTOR RUN TIME Motor run time counter. The counter runs when the inverter modulates. Can be reset by parameter 34.06.
01.44 FAN ON-TIME Running time of the drive cooling fan.
Note: Resetting of the counter is recommended when the fan is replaced. For more information, contact your local ABB representative.
01.45 CTRL BOARD TEMP Control board temperature. 1 = 1°C
01.46 SAVED KWH Energy saved in kWh compared to direct-on-line motor connection.
See parameter group 45 ENERGY OPT on page 161.
01.47 SAVED GWH Energy saved in GWh compared to direct-on-line motor connection. 1 = 1 GWh
A voltage signal is also displayed in mA (instead of V).
0 = 0% 10000 = 100%
0 = 0% 10000 = 100%
-10000 =
-100% 10000 = 100%
1 = 1°C
1 = 1°C
1 = 1°C
10000 = 100%
1 = 0.001 mA
1 = 0.001 mA
1 = 1
1 = 1
1 = 1
1 = 10 h
1 = 10 h
1 = 100 kWh
Actual signals and parameters
Page 100
100
No. Name/Value Description FbEq
01.48 SAVED AMOUNT Monetary savings compared to direct-on-line motor connection. This value is a multiplication of parameters 01.46 SAVED KWH and 45.02 ENERGY TARIFF1.
See parameter group 45 ENERGY OPT on page 161.
01.49 SAVED AMOUNT M Monetary savings in millions compared to direct-on-line motor connection.
01.50 SAVED CO2 Reduction in CO motor connection. This value is calculated by multiplying saved energy in megawatt-hours by 500 kg/MWh.
See parameter group 45 ENERGY OPT on page 161.
01.51 SAVED CO2 KTON Reduction in CO connection.

02 ACTUAL SIGNALS

02.01 SPEED REF 2 Limited speed reference. 100% corresponds to the Absolute Maximum
02.02 SPEED REF 3 Ramped and shaped speed reference. 100% corresponds to the
02.09 TORQUE REF 2 Speed controller output. 100% corresponds to the motor nominal torque. 0 = 0% 10000
02.10 TORQUE REF 3 Torque reference. 100% corresponds to the motor nominal torque. 10000 = 100%
02.13 TORQ USED REF Torque reference after frequency, voltage and torque limiters. 100%
02.14 FLUX REF Flux reference in percent. 10000 = 100%
02.17 SPEED ESTIMATED Estimated motor speed. 100% corresponds to the Absolute Maximum
02.18 SPEED MEASURED Measured motor actual speed (zero when no encoder is used). 100%
02.19 MOTOR ACCELERATIO Calculated motor acceleration from signal 01.02 MOTOR SPEED. 1=1 rpm/s.
02.20 USER CURRENT Measured motor current in percent of the user load curve current. User

03 ACTUAL SIGNALS

03.01 MAIN CTRL WORD A 16-bit data word. See section 03.01 MAIN CONTROL WORD on page
03.02 MAIN STATUS WORD A 16-bit data word. See section 03.02 MAIN STATUS WORD on page
03.03 AUX STATUS WORD A 16-bit data word. See section 03.03 AUXILIARY STATUS WORD on
03.04 LIMIT WORD 1 A 16-bit data word. See section 03.04 LIMIT WORD 1 on page 216.
03.05 FAULT WORD 1 A 16-bit data word. See section 03.05 FAULT WORD 1 on page 216.
03.06 FAULT WORD 2 A 16-bit data word. See section 03.06 FAULT WORD 2 on page 217.
Speed and torque reference monitoring signals.
Speed of the motor.
Absolute Maximum Speed of the motor.
corresponds to the motor nominal torque.
Speed of the motor.
corresponds to the Absolute Maximum Speed of the motor.
load curve current is defined by parameters 72.02...72.09. See section
User load curve on page 81.
Data words for monitoring of fieldbus communication (each signal is a 16­bit data word).
207.
208.
page 215.
emissions in kilograms compared to direct-on-line
2
emissions in kilotons compared to direct-on-line motor
2
1 = 100 cur
1 = 1 Mcur
1 = 100 kg
1 = 1 kton
0 = 0% 20000 = 100% of motor absolute max. speed
20000 = 100%
= 100% of motor nominal torque
10000 = 100%
20000 = 100%
20000 = 100%
10 = 1%
2)
Actual signals and parameters
Loading...