Tweco 400MST User Manual

0
400 MST
®
ARCMASTER
INVERTER ARC WELDER
Art # A-07368
Service Manual
Revision No: AB Issue Date: May 22, 2006 Manual No.: 0-4944B
Operating Features:
GMAW FCAW
SMAW
CAG
GTAW
1/3
PHASE
50 60
46
INVERTER
Hz
CC CV
V
DC
230
V
V
208
!
WARNINGS
Read and understand this entire Manual and your employer’s safety practices before installing, operating, or servicing the equipment.
While the information contained in this Manual represents the Manufacturer's best judgement, the Manufacturer assumes no liability for its use.
ArcMaster 400 MST Inverter Arc Welder Service Manual Number 0-4944B for: Part Number 10-3072
Published by: Thermadyne Corporation 82 Benning Street West Lebanon, New Hampshire, USA 03784 (603) 298-5711
www.thermalarc.com
Copyright 2006, 2007, 2008 by Thermadyne Corporation
All rights reserved.
Reproduction of this work, in whole or in part, without written permission of the publisher is prohibited.
The publisher does not assume and hereby disclaims any liability to any party for any loss or damage caused by any error or omission in this Manual, whether such error results from negligence, accident, or any other cause.
Publication Date: May 22, 2006 Revision AB Date: February 7, 2008
Record the following information for Warranty purposes:
Where Purchased: ___________________________________
Purchase Date: ___________________________________
Equipment Serial #: ___________________________________
CONTENTS
1 GENERAL INFORMATION
1 Notes, Cautions and Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1– 1
2 Important Safety Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1– 1
3 Publications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1– 2
4 Note, Attention et Avertissement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 –3
5 Precautions De Securite Importantes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 –3
6 Documents De Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
2 INTRODUCTION AND DESCRIPTION
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2 Functional Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 –1
Transporting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 –2
3
4 Installation Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2– 2
4.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2– 2
4.2 Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2
5 Electrical Input Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2
5.1 Electrical Input Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 –2
5.2 Input Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
6 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2– 4
7 Duty Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
3 OPERATOR CONTROLS
1 400 MST Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 –1
Weld Parameter Descriptions for 400MST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3– 2
2
3 Weld Process selection for the 400MST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 –3
4 Weld Parameter Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 –3
4.1 WELD (V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3
4.2 INDUCTANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3
4.3 HOT START . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3– 4
4.4 WELD (A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
4.5 ARC CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3– 4
4.6 Weld Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5
4.7 Power Source Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5
4 SEQUENCE OF OPERATION
1 Stick Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4– 1
2 LIFT TIG Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4– 1
3 MIG Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4– 1
5 ROUTINE MAINTENANCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
6 BASIC TROUBLE SHOOTING
1 Solving MIG Problems Beyond the Welding Terminals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 –1
1.1 Porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1
1.2 Inconsistent Wire Feed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1
2 MIG Welding Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6– 2
3 TIG Welding Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6– 3
4 Stick Welding Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–4
5 Power Source Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 –6
7 VOLTAGE REDUCTION DEVICE (VRD)
1 VRD Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 –1
2 VRD Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7– 1
3 Switching VRD On/Off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1
8 POWER SOURCE ERROR CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
9 ADVANCED TROUBLESHOOTING
1 System-Level Fault Isolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –1
1.1 Opening the Enclosure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –1
1.2 Verification and Remedy to the Indicated Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –4
1.2. 1 E01 "Over-Temperature at the primary side" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9– 4
1.2. 2 E02 "Over-Temperature at the secondary side" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –5
1.2. 3 E03 "
1.2. 4 E11 "High Input Voltage Failure" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9– 5
1.2. 5 E12 "Low Input Voltage Failure" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –6
1.2. 6 E14 "Low Input Voltage Warning" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –6
1.2. 7 E81 "Abnormal Input Voltage" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9– 6
1.2. 8 E82 "Rated voltage selection circuit abnormality" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9– 6
1.2. 9 E83 "Abnormal mains supply voltage" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9– 6
1.2. 10 E85 "Pre-Charge Error". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –7
1.2. 11 E94 "Thermistor Failure" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –7
1.2. 12 E99 "Initial Power Receiving" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –7
1.3 Verification and Remedy to Failures without Indication Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –8
1.3. 1 "Cooling Fan Failure"
(Fan is not rotating) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–8
1.3. 2 "Wire feeding failure or inconsistent wire delivery" (Wire feeder does not work) . . . . . . . . . . . . . . . . . . . . . . . . . 9– 8
1.3. 3 "No weld output" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–9
1.3. 4 "Operating Panel Failure" (LED's do not light properly or weld settings cannot be establish.) . . . . . . . . . . . . . . 9–10
1.4 Fault Isolation Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9– 10
1.4. 1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10
1.4. 2 Verification of the Power Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–11
1.4. 3 Power Supply Voltage Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –12
1.4. 4 Verification of the Cooling Fan, FAN1, Drive Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –12
1.4. 5 Verification of the primary Diode (D1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–13
1.4. 6 Verification of the secondary Diode (D2-7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9– 14
1.4. 7 Verification of the primary IGBT (Q1-24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–14
1.4. 8 Verification of No-load Voltage (No OCV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9– 15
2 Subsystem Test and Replacement Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9– 17
2.1 Preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–17
2.2 Test and Replacement Parts List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –17
2.3 Service Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –21
2.3. 1 Tools and parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –21
2.3. 2 Notes of disassembly and assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –21
2.4 Replacement Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –22
2.4. 1 PCB1 (WK-5493) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –22
2.4. 2 PCB2 (WK-5597) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –23
2.4. 3 PCB3 (WK-5548), PCB7 (WK-5689) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –24
2.4. 4 PCB4 (WK-4819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –26
2.4. 5 PCB5 (WK-5696) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –26
2.4. 6 PCB6 (WK-5688) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –27
2.4. 7 PCB8 (WK-5479) and PCB9 (WK-5479) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –27
2.4. 8 PCB10 (WK-5479), PCB11 (WK-5479) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –28
2.4. 9 PCB12 (WK-5527) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –28
2.4. 10 PCB13 (WK-5528) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –29
2.4. 11 PCB14 (WK-5594) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –30
2.4. 12 PCB15 (WK-5606) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –31
2.4. 13 PCB16 (WK-4917) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –32
2.4. 14 PCB17 (WK-5699) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –33
2.4. 15 PCB18 (WK-5499) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –33
2.4.16 Inductor (FCH1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9– 34
2.4. 17 Thermistor (TH1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –35
2.4. 18 Thermistor (TH2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –36
2.4.19 Fan (FAN1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9– 36
2.4.20 Switch (S1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –37
2.4. 21 Switch (S2 and S3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –38
Primary Over-Current Failure
" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –5
CONTENTS
2.4. 22 Current Sensor (HCT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9– 39
2.4. 23 Diode (D1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –39
2.4. 24 Diode (D2, D4, D5, and D7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –40
2.4. 25 Current Transformer (CT2 and CT3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9– 41
2.4.26 Reactor (L1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –41
2.4. 27 Molded Case Circuit Breaker (MCB1 and MCB2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –42
2.4. 28 Resistor (R2 and R3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–43
2.4. 29 Transformer (T1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –44
2.4. 30 14-Pin Receptacle (CON1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –47
2.4. 31 19-Pin Receptacle (CON2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 –48
APPENDIX 1 SPARE PARTS LIST
1 Equipment Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10– 1
2 How To Use This Parts List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 –1
APPENDIX 2 CONNECTION WIRING GUIDE
APPENDIX 3 INTERCONNECT DIAGRAM
APPENDIX 4 DIODE TESTING BASIC
ARCMASTER 400 MST
1.0 SAFETY INSTRUCTIONS AND WARNINGS
WARNING
!
PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN AWAY. PACEMAKER WEARERS KEEP AWAY UNTIL CONSULTING YOUR DOCTOR. DO NOT LOSE THESE INSTRUCTIONS. READ OPERATING/INSTRUCTION MANUAL BEFORE INSTALLING, OPERATING OR SERVICING THIS EQUIPMENT.
Welding products and welding processes can cause serious injury or death, or damage to other equipment or property, if the operator does not strictly observe all safety rules and take precautionary actions.
Safe practices have developed from past experience in the use of welding and cutting. These practices must be learned through study and training before using this equipment. Some of these practices apply to equipment connected to power lines; other practices apply to engine driven equipment. Anyone not having extensive training in welding and cutting practices should not attempt to weld.
Safe practices are outlined in the American National Standard Z49.1 entitled: guides to what you should learn before operating this equipment are listed at the end of these safety precautions. HAVE ALL INSTALLATION,
OPERATION, MAINTENANCE, AND REPAIR WORK PERFORMED ONLY BY QUALIFIED PEOPLE.
1.01 Arc Welding Hazards
WARNING
ELECTRIC SHOCK can kill.
Touching live electrical parts can cause fatal shocks or severe burns. The electrode and work circuit is electrically live whenever the output is on. The input power circuit and machine internal circuits are also live when power is on. In semiautomatic or automatic wire welding, the wire, wire reel, drive roll housing, and all metal parts touching the welding wire are electrically live. Incorrectly installed or improperly grounded equipment is a hazard.
SAFETY IN WELDING AND CUTTING. This publication and other
7. Use fully insulated electrode holders. Never dip holder in water to cool it or lay it down on the ground or the work surface. Do not touch holders connected to two welding machines at the same time or touch other people with the holder or electrode.
8. Do not use worn, damaged, undersized, or poorly spliced cables.
9. Do not wrap cables around your body.
10. Ground the workpiece to a good electrical (earth) ground.
11. Do not touch electrode while in contact with the work (ground) circuit.
12. Use only well-maintained equipment. Repair or replace damaged parts at once.
13. In confined spaces or damp locations, do not use a welder with AC output unless it is equipped with a voltage reducer. Use equipment with DC output.
14. Wear a safety harness to prevent falling if working above floor level.
1. Do not touch live electrical parts.
2. Wear dry, hole-free insulating gloves and body protection.
3. Insulate yourself from work and ground using dry insulating mats or covers.
4. Disconnect input power or stop engine before installing or servicing this equipment. Lock input power disconnect switch open, or remove line fuses so power cannot be turned on accidentally.
5. Properly install and ground this equipment according to its Owner’s Manual and national, state, and local codes.
6. Turn off all equipment when not in use. Disconnect power to equipment if it will be left unattended or out of service.
15. Keep all panels and covers securely in place.
WARNING
ARC RAYS can burn eyes and skin; NOISE can damage hearing. Arc rays from the welding process produce intense heat and strong ultraviolet rays that can burn eyes and skin. Noise from some processes can damage hearing.
1. Wear a welding helmet fitted with a proper shade of filter (see ANSI Z49.1 listed in Safety Standards) to protect your face and eyes when welding or watching.
2. Wear approved safety glasses. Side shields recommended.
1
ARCMASTER 400 MST
3. Use protective screens or barriers to protect others from flash and glare; warn others not to watch the arc.
4. Wear protective clothing made from durable, flame-resistant material (wool and leather) and foot protection.
5. Use approved ear plugs or ear muffs if noise level is high.
WARNING
WARNING
WELDING can cause fire or explosion.
Sparks and spatter fly off from the welding arc. The flying sparks and hot metal, weld spatter, hot workpiece, and hot equipment can cause fires and burns. Accidental contact of electrode or welding wire to metal objects can cause sparks, overheating, or fire.
FUMES AND GASES can be hazardous to your health.
Welding produces fumes and gases. Breathing these fumes and gases can be hazardous to your health.
1. Keep your head out of the fumes. Do not breath the fumes.
2. If inside, ventilate the area and/or use exhaust at the arc to remove welding fumes and gases.
3. If ventilation is poor, use an approved air-supplied respirator.
4. Read the Material Safety Data Sheets (MSDSs) and the manufacturer’s instruction for metals, consumables, coatings, and cleaners.
5. Work in a confined space only if it is well ventilated, or while wearing an air-supplied respirator. Shielding gases used for welding can displace air causing injury or death. Be sure the breathing air is safe.
6. Do not weld in locations near degreasing, cleaning, or spraying operations. The heat and rays of the arc can react with vapors to form highly toxic and irritating gases.
7. Do not weld on coated metals, such as galvanized, lead, or cadmium plated steel, unless the coating is removed from the weld area, the area is well ventilated, and if necessary, while wearing an air-supplied respirator. The coatings and any metals containing these elements can give off toxic fumes if welded.
1. Protect yourself and others from flying sparks and hot metal.
2. Do not weld where flying sparks can strike flammable material.
3. Remove all flammables within 35 ft (10.7 m) of the welding arc. If this is not possible, tightly cover them with approved covers.
4. Be alert that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas.
5. Watch for fire, and keep a fire extinguisher nearby.
6. Be aware that welding on a ceiling, floor, bulkhead, or partition can cause fire on the hidden side.
7. Do not weld on closed containers such as tanks or drums.
8. Connect work cable to the work as close to the welding area as practical to prevent welding current from traveling long, possibly unknown paths and causing electric shock and fire hazards.
9. Do not use welder to thaw frozen pipes.
10. Remove stick electrode from holder or cut off welding wire at contact tip when not in use.
Eye protection filter shade selector for welding or cutting
(goggles or helmet), from AWS A6.2-73.
Welding or cutting Electrode Size Filter Welding or cutting Electrode Size Filter
Torch soldering 2 Gas metal-arc
Torch brazing 3 or 4 Non-ferrous base metal All 11
Oxygen C utting Ferrous base metal All 12
Light Under 1 in., 25 mm 3 or 4 Gas tungsten arc welding All 12
Medium 1 to 6 in., 25-150 mm 4 or 5 (TIG) All 12
Heavy Over 6 in., 150 mm 5 or 6 Atomic hydrogen welding All 12
Gas welding Carbon arc welding All 12
Light Under 1/8 in., 3 mm 4 or 5 Plasma arc welding
Medium 1/8 to 1/2 in., 3-12 mm 5 or 6 Carbon arc air gouging
Heavy Over 1/2 in., 12 mm 6 or 8 Light 12
Shielded metal-arc Under 5/32 in., 4 mm 10 Heavy 14
5/32 to 1/4 in., 12 Plasma arc cutting
Over 1/4 in., 6.4 mm 14 Light Under 300 Amp 9
Medium 300 to 400 Amp 12
Heavy Over 400 Amp 14
2
WARNING
ARCMASTER 400 MST
2. If used in a closed area, vent engine exhaust outside and away from any building air intakes.
FLYING SPARKS AND HOT METAL can cause injury.
Chipping and grinding cause flying metal. As welds cool, they can throw off slag.
1. Wear approved face shield or safety goggles. Side shields recommended.
2. Wear proper body protection to protect skin.
WARNING
CYLINDERS can explode if damaged.
Shielding gas cylinders contain gas under high pressure. If damaged, a cylinder can explode. Since gas cylinders are normally part of the welding process, be sure to treat them carefully.
1. Protect compressed gas cylinders from excessive heat, mechanical shocks, and arcs.
2. Install and secure cylinders in an upright position by chaining them to a stationary support or equipment cylinder rack to prevent falling or tipping.
3. Keep cylinders away from any welding or other electrical circuits.
4. Never allow a welding electrode to touch any cylinder.
5. Use only correct shielding gas cylinders, regulators, hoses, and fittings designed for the specific application; maintain them and associated parts in good condition.
6. Turn face away from valve outlet when opening cylinder valve.
7. Keep protective cap in place over valve except when cylinder is in use or connected for use.
8. Read and follow instructions on compressed gas cylinders, associated equipment, and CGA publication P-1 listed in Safety Standards.
WARNING
ENGINE FUEL can cause fire or explosion.
Engine fuel is highly flammable.
1. Stop engine before checking or adding fuel.
2. Do not add fuel while smoking or if unit is near any sparks or open flames.
3. Allow engine to cool before fueling. If possible, check and add fuel to cold engine before beginning job.
4. Do not overfill tank — allow room for fuel to expand.
5. Do not spill fuel. If fuel is spilled, clean up before starting engine.
WARNING
MOVING PARTS can cause injury.
Moving parts, such as fans, rotors, and belts can cut fingers and hands and catch loose clothing.
1. Keep all doors, panels, covers, and guards closed and securely in place.
2. Stop engine before installing or connecting unit.
3. Have only qualified people remove guards or covers for maintenance and troubleshooting as necessary.
4. To prevent accidental starting during servicing, disconnect negative (-) battery cable from battery.
5. Keep hands, hair, loose clothing, and tools away from moving parts.
6. Reinstall panels or guards and close doors when servicing is finished and before starting engine.
WARNING
!
Engines can be dangerous.
WARNING
ENGINE EXHAUST GASES can kill.
Engines produce harmful exhaust gases.
1. Use equipment outside in open, well-ventilated areas.
WARNING
SPARKS can cause BATTERY GASES TO EXPLODE; BATTERY ACID can burn eyes and skin.
Batteries contain acid and generate explosive gases.
1. Always wear a face shield when working on a battery.
2. Stop engine before disconnecting or connecting battery cables.
3. Do not allow tools to cause sparks when working on a battery.
4. Do not use welder to charge batteries or jump start vehicles.
5. Observe correct polarity (+ and –) on batteries.
3
ARCMASTER 400 MST
1.02 Principal Safety Standards
WARNING
STEAM AND PRESSURIZED HOT COOLANT can burn face, eyes, and skin.
The coolant in the radiator can be very hot and under pressure.
1. Do not remove radiator cap when engine is hot. Allow engine to cool.
2. Wear gloves and put a rag over cap area when removing cap.
3. Allow pressure to escape before completely removing cap.
WARNING
!
This product, when used for welding or cutting, produces fumes or gases which contain chemicals know to the State of California to cause birth defects and, in some cases, cancer. (California Health & Safety code Sec.
25249.5 et seq.)
NOTE
Considerations About Welding And The Effects of Low Frequency Electric and Magnetic Fields
Safety in Welding and Cutting, ANSI Standard Z49.1, from American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33126.
Safety and Health Standards, OSHA 29 CFR 1910, from Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.
Recommended Safe Practices for the Preparation for Welding and Cutting of Containers That Have Held Hazardous Substances, Ameri­can Welding Society Standard AWS F4.1, from American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33126.
National Electrical Code, NFPA Standard 70, from National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.
Safe Handling of Compressed Gases in Cylinders, CGA Pamphlet P­1, from Compressed Gas Association, 1235 Jefferson Davis Highway, Suite 501, Arlington, VA 22202.
Code for Safety in Welding and Cutting, CSA Standard W117.2, from Canadian Standards Association, Standards Sales, 178 Rexdale Boulevard, Rexdale, Ontario, Canada M9W 1R3.
Safe Practices for Occupation and Educational Eye and Face Protec­tion, ANSI Standard Z87.1, from American National Standards Insti­tute, 1430 Broadway, New York, NY 10018.
Cutting and Welding Processes, NFPA Standard 51B, from National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.
The following is a quotation from the General Conclusions Section of the U.S. Congress, Office of Technology Assessment, Biological Effects of Power Frequency Electric & Magnetic Fields - Background Paper, OTA-BP-E-63 (Washington, DC: U.S. Government Printing Office, May
1989): “...there is now a very large volume of scientific findings based on experiments at the cellular level and from studies with animals and people which clearly establish that low frequency magnetic fields interact with, and produce changes in, biological systems. While most of this work is of very high quality, the results are complex. Current scientific understanding does not yet allow us to interpret the evidence in a single coherent framework. Even more frustrating, it does not yet allow us to draw definite conclusions about questions of possible risk or to offer clear science-based advice on strategies to minimize or avoid potential risks.”
To reduce magnetic fields in the workplace, use the following procedures:
1. Keep cables close together by twisting or taping them.
2. Arrange cables to one side and away from the operator.
3. Do not coil or drape cable around the body.
4. Keep welding power source and cables as far away from body as practical.
ABOUT PACEMAKERS:
The above procedures are among those also normally recommended for pacemaker wearers. Consult your doctor for complete information.
4
ARCMASTER 400 MST
1.03 Precautions de Securite en Soudage à l’Arc
MISE EN GARDE
!
LE SOUDAGE A L’ARC EST DANGEREUX
PROTEGEZ-VOUS, AINSI QUE LES AUTRES, CONTRE LES BLESSURES GRAVES POSSIBLES OU LA MORT. NE LAISSEZ PAS LES ENFANTS S’APPROCHER, NI LES PORTEURS DE STIMULATEUR CARDIAQUE (A MOINS QU’ILS N’AIENT CONSULTE UN MEDECIN). CONSERVEZ CES INSTRUCTIONS. LISEZ LE MANUEL D’OPERATION OU LES INSTRUCTIONS AVANT D’INSTALLER, UTILISER OU ENTRETENIR CET EQUIPEMENT.
Les produits et procédés de soudage peuvent sauser des blessures graves ou la mort, de même que des dommages au reste du matériel et à la propriété, si l’utilisateur n’adhère pas strictement à toutes les règles de sécurité et ne prend pas les précautions nécessaires.
En soudage et coupage, des pratiques sécuritaires se sont développées suite à l’expérience passée. Ces pratiques doivent être apprises par étude ou entraînement avant d’utiliser l’equipement. Toute personne n’ayant pas suivi un entraînement intensif en soudage et coupage ne devrait pas tenter de souder. Certaines pratiques concernent les équipements raccordés aux lignes d’alimentation alors que d’autres s’adressent aux groupes électrogènes.
La norme Z49.1 de l’American National Standard, intitulée “SAFETY IN WELDING AND CUTTING” présente les pratiques sécuritaires à suivre. Ce document ainsi que d’autres guides que vous devriez connaître avant d’utiliser cet équipement sont présentés à la fin de ces instructions de sécurité.
SEULES DES PERSONNES QUALIFIEES DOIVENT FAIRE DES TRAVAUX D’INSTALLATION, DE REPARATION, D’ENTRETIEN ET D’ESSAI.
1.04 Dangers Relatifs au Soudage à l’Arc
AVERTISSEMENT
L’ELECTROCUTION PEUT ETRE MORTELLE.
Une décharge électrique peut tuer ou brûler gravement. L’électrode et le circuit de soudage sont sous tension dès la mise en circuit. Le circuit d’alimentation et les circuits internes de l’équipement sont aussi sous ten­sion dès la mise en marche. En soudage automatique ou semi-automatique avec fil, ce dernier, le rouleau ou la bobine de fil, le logement des galets d’entrainement et toutes les pièces métalliques en contact avec le fil de soudage sont sous tension. Un équipement inadéquatement installé ou inadéquatement mis à la terre est dangereux.
1. Ne touchez pas à des pièces sous tension.
2. Portez des gants et des vêtements isolants, secs et non troués.
6. Arrêtez tout équipement après usage. Coupez l’alimentation de l’équipement s’il est hors d’usage ou inutilisé.
7. N’utilisez que des porte-électrodes bien isolés. Ne jamais plonger les porte-électrodes dans l’eau pour les refroidir. Ne jamais les laisser traîner par terre ou sur les pièces à souder. Ne touchez pas aux porte-électrodes raccordés à deux sources de courant en même temps. Ne jamais toucher quelqu’un d’autre avec l’électrode ou le porte-électrode.
8. N’utilisez pas de câbles électriques usés, endommagés, mal épissés ou de section trop petite.
9. N’enroulez pas de câbles électriques autour de votre corps.
10. N’utilisez qu’une bonne prise de masse pour la mise à la terre de la pièce à souder.
11. Ne touchez pas à l’électrode lorsqu’en contact avec le circuit de soudage (terre).
12. N’utilisez que des équipements en bon état. Réparez ou remplacez aussitôt les pièces endommagées.
13. Dans des espaces confinés ou mouillés, n’utilisez pas de source de courant alternatif, à moins qu’il soit muni d’un réducteur de tension. Utilisez plutôt une source de courant continu.
14. Portez un harnais de sécurité si vous travaillez en hauteur.
15. Fermez solidement tous les panneaux et les capots.
3 Isolez-vous de la pièce à souder et de la mise à la terre au moyen
de tapis isolants ou autres.
4. Déconnectez la prise d’alimentation de l’équipement ou arrêtez le moteur avant de l’installer ou d’en faire l’entretien. Bloquez le commutateur en circuit ouvert ou enlevez les fusibles de l’alimentation afin d’éviter une mise en marche accidentelle.
5. Veuillez à installer cet équipement et à le mettre à la terre selon le manuel d’utilisation et les codes nationaux, provinciaux et locaux applicables.
5
ARCMASTER 400 MST
AVERTISSEMENT
LE RAYONNEMENT DE L’ARC PEUT BRÛLER LES YEUX ET LA PEAU; LE BRUIT PEUT ENDOMMAGER L’OUIE.
L’arc de soudage produit une chaleur et des rayons ultraviolets intenses, susceptibles de brûler les yeux et la peau. Le bruit causé par certains procédés peut endommager l’ouïe.
1. Portez une casque de soudeur avec filtre oculaire de nuance appropriée (consultez la norme ANSI Z49 indiquée ci-après) pour vous protéger le visage et les yeux lorsque vous soudez ou que vous observez l’exécution d’une soudure.
2. Portez des lunettes de sécurité approuvées. Des écrans latéraux sont recommandés.
3. Entourez l’aire de soudage de rideaux ou de cloisons pour protéger les autres des coups d’arc ou de l’éblouissement; avertissez les observateurs de ne pas regarder l’arc.
4. Portez des vêtements en matériaux ignifuges et durables (laine et cuir) et des chaussures de sécurité.
5. Portez un casque antibruit ou des bouchons d’oreille approuvés lorsque le niveau de bruit est élevé.
AVERTISSEMENT
LES VAPEURS ET LES FUMEES SONT DANGEREUSES POUR LA SANTE.
Le soudage dégage des vapeurs et des fumées dangereuses à respirer.
1. Eloignez la tête des fumées pour éviter de les respirer.
2. A l’intérieur, assurez-vous que l’aire de soudage est bien ventilée ou que les fumées et les vapeurs sont aspirées à l’arc.
3. Si la ventilation est inadequate, portez un respirateur à adduction d’air approuvé.
4. Lisez les fiches signalétiques et les consignes du fabricant rela­tives aux métaux, aux produits consummables, aux revêtements et aux produits nettoyants.
5. Ne travaillez dans un espace confiné que s’il est bien ventilé; sinon, portez un respirateur à adduction d’air. Les gaz protecteurs de soudage peuvent déplacer l’oxygène de l’air et ainsi causer des malaises ou la mort. Assurez-vous que l’air est propre à la respi­ration.
6. Ne soudez pas à proximité d’opérations de dégraissage, de nettoyage ou de pulvérisation. La chaleur et les rayons de l’arc peuvent réagir avec des vapeurs et former des gaz hautement toxiques et irritants.
SELECTION DES NUANCES DE FILTRES OCULAIRS POUR LA PROTECTION
s g
6.2-73)
az avec
Dimension d'électrode ou
Epiasseur de métal ou
Intensité de courant
toutes conditions 12
toutes conditions 12
toutes conditions 12
épais plus de 400 amperès 14
Nuance de
filtre oculaire
DES YEUX EN COUPAGE ET SOUDAGE (selon AWS á
Opération de coupage
ou soudage
Brassage tendre au chalumeau
Brassage fort au chalumeau
Oxycoupage métaux ferreux toutes conditions 12
mince moins de 1 po. (25 mm
moyen de 1 á 6 po. (25 á 150 mm) 4 ou 5
Soudage aux gaz Soudage á l'arc Plasma (PAW) toutes dimensions 12
mince moins de 1/8 po. (3 mm) 4 ou 5
moyen de 1/8 á 1/2 po. (3 á 12 mm) 5 ou 6 mince 12
Soudage á l'arc avec électrode enrobees (SMAW)
Dimension d'électrode ou
Epiasseur de métal ou
Intensité de courant
toutes conditions 2
toutes conditions 3 ou 4 métaux non-ferreux toutes conditions 11
épais plus de 6 po. (150 mm) 5 ou 6
épais plus de 1/2 po. (12 mm) 6 ou 8 épais 14
moins de 5/32 po. (4 mm) 10 Coupage á l'arc Plasma (PAC)
5/32 á 1/4 po. (4 á 6.4 mm) 12 mince moins de 300 amperès 9
plus de 1/4 po. (6.4 mm) 14 moyen de 300 á 400 amperès 12
Nuance de
filtre oculaire
) 3 ou 4
Opération de coupage
ou soudage
Soudage á l'arc sous gaz avec fil plein (GMAW)
Soudage á l'arc sou électrode de tungstène (GTAW)
Soudage á l'hydrogène atomique (AHW) Soudage á l'arc avec électrode de carbone (CAW)
Gougeage Air-Arc avec électrode de carbone
6
7. Ne soudez des tôles galvanisées ou plaquées au plomb ou au cadmium que si les zones à souder ont été grattées à fond, que si l’espace est bien ventilé; si nécessaire portez un respirateur à ad­duction d’air. Car ces revêtements et tout métal qui contient ces éléments peuvent dégager des fumées toxiques au moment du soudage.
AVERTISSEMENT
ARCMASTER 400 MST
AVERTISSEMENT
LES ETINCELLES ET LES PROJECTIONS BRULANTES PEUVENT CAUSER DES BLESSURES.
Le piquage et le meulage produisent des particules métalliques volantes. En refroidissant, la soudure peut projeter du éclats de laitier.
LE SOUDAGE PEUT CAUSER UN INCENDIE OU UNE EXPLOSION
L’arc produit des étincellies et des projections. Les particules volantes, le métal chaud, les projections de soudure et l’équipement surchauffé peuvent causer un incendie et des brûlures. Le contact accidentel de l’électrode ou du fil-électrode avec un objet métallique peut provoquer des étincelles, un échauffement ou un incendie.
1. Protégez-vous, ainsi que les autres, contre les étincelles et du métal chaud.
2. Ne soudez pas dans un endroit où des particules volantes ou des projections peuvent atteindre des matériaux inflammables.
3. Enlevez toutes matières inflammables dans un rayon de 10, 7 mètres autour de l’arc, ou couvrez-les soigneusement avec des bâches approuvées.
4. Méfiez-vous des projections brulantes de soudage susceptibles de pénétrer dans des aires adjacentes par de petites ouvertures ou fissures.
5. Méfiez-vous des incendies et gardez un extincteur à portée de la main.
6. N’oubliez pas qu’une soudure réalisée sur un plafond, un plancher, une cloison ou une paroi peut enflammer l’autre côté.
7. Ne soudez pas un récipient fermé, tel un réservoir ou un baril.
8. Connectez le câble de soudage le plus près possible de la zone de soudage pour empêcher le courant de suivre un long parcours inconnu, et prévenir ainsi les risques d’électrocution et d’incendie.
9. Ne dégelez pas les tuyaux avec un source de courant.
10. Otez l’électrode du porte-électrode ou coupez le fil au tube-con­tact lorsqu’inutilisé après le soudage.
11. Portez des vêtements protecteurs non huileux, tels des gants en cuir, une chemise épaisse, un pantalon revers, des bottines de sécurité et un casque.
1. Portez un écran facial ou des lunettes protectrices approuvées. Des écrans latéraux sont recommandés.
2. Portez des vêtements appropriés pour protéger la peau.
AVERTISSEMENT
LES BOUTEILLES ENDOMMAGEES PEUVENT EXPLOSER
Les bouteilles contiennent des gaz protecteurs sous haute pression. Des bouteilles endommagées peuvent exploser. Comme les bouteilles font normalement partie du procédé de soudage, traitez-les avec soin.
1. Protégez les bouteilles de gaz comprimé contre les sources de chaleur intense, les chocs et les arcs de soudage.
2. Enchainez verticalement les bouteilles à un support ou à un cadre fixe pour les empêcher de tomber ou d’être renversées.
3. Eloignez les bouteilles de tout circuit électrique ou de tout soudage.
4. Empêchez tout contact entre une bouteille et une électrode de soudage.
5. N’utilisez que des bouteilles de gaz protecteur, des détendeurs, des boyauxs et des raccords conçus pour chaque application spécifique; ces équipements et les pièces connexes doivent être maintenus en bon état.
6. Ne placez pas le visage face à l’ouverture du robinet de la bouteille lors de son ouverture.
7. Laissez en place le chapeau de bouteille sauf si en utilisation ou lorsque raccordé pour utilisation.
8. Lisez et respectez les consignes relatives aux bouteilles de gaz comprimé et aux équipements connexes, ainsi que la publication P-1 de la CGA, identifiée dans la liste de documents ci-dessous.
AVERTISSEMENT
LES MOTEURS PEUVENT ETRE DANGEREUX
LES GAZ D’ECHAPPEMENT DES MOTEURS PEUVENT ETRE MORTELS.
Les moteurs produisent des gaz d’échappement nocifs.
7
ARCMASTER 400 MST
1. Utilisez l’équipement à l’extérieur dans des aires ouvertes et bien ventilées.
Les accumulateurs contiennent de l’électrolyte acide et dégagent des vapeurs explosives.
2. Si vous utilisez ces équipements dans un endroit confiné, les fumées d’échappement doivent être envoyées à l’extérieur, loin des prises d’air du bâtiment.
AVERTISSEMENT
LE CARBURANT PEUR CAUSER UN INCENDIE OU UNE EXPLOSION.
Le carburant est hautement inflammable.
1. Arrêtez le moteur avant de vérifier le niveau e carburant ou de faire le plein.
2. Ne faites pas le plein en fumant ou proche d’une source d’étincelles ou d’une flamme nue.
3. Si c’est possible, laissez le moteur refroidir avant de faire le plein de carburant ou d’en vérifier le niveau au début du soudage.
4. Ne faites pas le plein de carburant à ras bord: prévoyez de l’espace pour son expansion.
5. Faites attention de ne pas renverser de carburant. Nettoyez tout carburant renversé avant de faire démarrer le moteur.
AVERTISSEMENT
1. Portez toujours un écran facial en travaillant sur un accumu-lateur.
2. Arrêtez le moteur avant de connecter ou de déconnecter des câbles d’accumulateur.
3. N’utilisez que des outils anti-étincelles pour travailler sur un accumulateur.
4. N’utilisez pas une source de courant de soudage pour charger un accumulateur ou survolter momentanément un véhicule.
5. Utilisez la polarité correcte (+ et –) de l’accumulateur.
AVERTISSEMENT
LA VAPEUR ET LE LIQUIDE DE REFROIDISSEMENT BRULANT SOUS PRESSION PEUVENT BRULER LA PEAU ET LES YEUX.
Le liquide de refroidissement d’un radiateur peut être brûlant et sous pression.
1. N’ôtez pas le bouchon de radiateur tant que le moteur n’est pas refroidi.
2. Mettez des gants et posez un torchon sur le bouchon pour l’ôter.
DES PIECES EN MOUVEMENT PEUVENT CAUSER DES BLESSURES.
Des pièces en mouvement, tels des ventilateurs, des rotors et des courroies peuvent couper doigts et mains, ou accrocher des vêtements amples.
1. Assurez-vous que les portes, les panneaux, les capots et les protecteurs soient bien fermés.
2. Avant d’installer ou de connecter un système, arrêtez le moteur.
3. Seules des personnes qualifiées doivent démonter des protecteurs ou des capots pour faire l’entretien ou le dépannage nécessaire.
4. Pour empêcher un démarrage accidentel pendant l’entretien, débranchez le câble d’accumulateur à la borne négative.
5. N’approchez pas les mains ou les cheveux de pièces en mouvement; elles peuvent aussi accrocher des vêtements amples et des outils.
6. Réinstallez les capots ou les protecteurs et fermez les portes après des travaux d’entretien et avant de faire démarrer le moteur.
AVERTISSEMENT
3. Laissez la pression s’échapper avant d’ôter complètement le bouchon.
1.05 Principales Normes De Securite
Safety in Welding and Cutting, norme ANSI Z49.1, American Weld­ing Society, 550 N.W. LeJeune Rd., Miami, FL 33128.
Safety and Health Standards, OSHA 29 CFR 1910, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.
Recommended Safe Practices for the Preparation for Welding and Cutting of Containers That Have Held Hazardous Substances, norme AWS F4.1, American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33128.
National Electrical Code, norme 70 NFPA, National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.
Safe Handling of Compressed Gases in Cylinders, document P-1, Compressed Gas Association, 1235 Jefferson Davis Highway, Suite 501, Arlington, VA 22202.
Code for Safety in Welding and Cutting, norme CSA W117.2 Asso­ciation canadienne de normalisation, Standards Sales, 276 Rexdale Boulevard, Rexdale, Ontario, Canada M9W 1R3.
Safe Practices for Occupation and Educational Eye and Face Protec­tion, norme ANSI Z87.1, American National Standards Institute, 1430 Broadway, New York, NY 10018.
DES ETINCELLES PEUVENT FAIRE EXPLOSER UN ACCUMULATEUR; L’ELECTROLYTE D’UN ACCUMU­LATEUR PEUT BRULER LA PEAU ET LES YEUX.
Cutting and Welding Processes, norme 51B NFPA, National Fire Pro­tection Association, Batterymarch Park, Quincy, MA 02269.
8
SYMBOL LEGEND
SEC
%
Amperage
Voltage
Hertz (frequency)
Seconds
Percent
DC (Direct Current)
AC (Alternating Current)
STICK (Shielded Metal Arc SMAW)
Pulse Current Function
t
t2
Spot Time (GTAW)
Remote Control (Panel/Remote)
Remote Function
Arc Control (SMAW)
Gas Post-Flow
Standard Function
Slope Function
Slope W/Repeat Function
Spot Function
Impulse Starting (High Frequency GTAW)
Touch Start (Lift Start TIG circuit GTAW)
t1
VRD
Gas Pre-Flow
Voltage Reduction Device Circuit
Negative
Positive
Gas Input
Gas Output
2 INTRODUCTION AND DESCRIPTION
1
Description
INTRODUCTION AND DESCRIPTION
The Thermal Arc™ 400MST is a single & three-phase DC arc welding power source with Constant Current (CC) and Constant Voltage (CV) output characteristics. This unit is equipped with a Digital Volt/Amperage, lift arc starter for use with Gas Tungsten Arc Welding (GTAW), Arc Control and Hot Start for Shielded Metal Arc Welding (SMAW), Inductance Control for Gas Metal Arc Welding (GMAW) processes. The power source is totally enclosed in an impact resistant, flame resistant and non-conductive plastic case.
(V)
OCV
18V
160A
400A5A (A)
STICK Process
420A
(V)
OCV
10V
400A25A (A)
OCV
34V
10V
LIFT-TIG Process
Figure 2-1: Model 400MST volt-ampere curve
(V)
5A (A)
MIG Process
400A
480A
NOTE
Volt-Ampere curves show the maximum Voltage and Amperage output capabilities of the welding power source. Curves of other settings will fall between the curves shown.
2
Functional Block Diagrams
Figure 2-2 illustrates the functional block diagram of the 400MST-power supply.
Input
Power
Main Circuit Switch
Filter
Down
Transformers
AC115V,AC24V
(T3)
Over Current Protect
14PIN
Receptacle
(CON1)
19PIN
Receptacle
(CON2)
Input
Diode
Capacitor
DC Power
Primary
Voltage
Sensor
To each control circuit
+/-15VDC +18VDC +24VDC +5VDC
Figure 2- 2: 400MST Model functional block diagram
IGBT
Inverter
The
rmal
Detector
Trouble
Sensing
Circuit
Drive
Circuit
Main
Transformers
(T1)
Thermal
Sensor
Circuit
Primary
Circuit
Sensor
Current
Adjustment
Circuit
Output
Diodes
The
rmal
Detector
Stick Mode
VRD
Sensing
Circuit
Sequence
Control
Reference
Adjustment &
Mode select Switch
Panel Circuit Boa
Output
Inductor
rd
Lift Tig Mode
Output Short
Sensing
Circuit
Fan Control
14PIN-19PIN Select Switch
(S3)
Circuit
Hall Current
Transformer
(HCT1)
Fan
2 – 1
400MST 2 INTRODUCTION AND DESCRIPTION
3
Transporting Methods
These units are equipped with a handle for carrying purposes.
WARNING
ELECTRIC SHOCK can kill. DO NOT TOUCH live electrical parts. Disconnect input power conductors from de-energized supply line before moving the welding power source.
WARNING
FALLING EQUIPMENT can cause serious per­sonal injury and equipment damage.
Lift unit with handle on top of case.
Use handcart or similar device of adequate capac­ity.
If using a fork lift vehicle, place and secure unit on a proper skid before transporting.
4
Installation Recommenda-
4.2 Location
Be sure to locate the welder according to the fol­lowing guidelines:
In areas, free from moisture and dust.Ambient temperature between 0 degrees C to
40 degrees C.
In areas, free from oil, steam and corrosive
gases.
In areas, not subjected to abnormal vibration or
shock.
In areas, not exposed to direct sunlight or rain.Place at a distance of 12" (304.79mm) or more
from walls or similar that could restrict natural airflow for cooling.
WARNING
Thermal Arc advises that this equipment be electri­cally connected by a qualified electrician.
5
Electrical Input Connec­tions
tions
4.1 Environment
The 400MST is designed for use in hazardous environments.
Examples of environments with increased hazard­ous environments are -
a. In locations in which freedom of movement is
restricted, so that the operator is forced to per­form the work in a cramped (kneeling, sitting or lying) position with physical contact with con­ductive parts;
b. In locations which are fully or partially limited
by conductive elements, and in which there is a high risk of unavoidable or accidental contact by the operator, or
c. In wet or damp hot locations where humidity or
perspiration considerably reduces the skin resistance of the human body and the insula­tion properties of accessories.
Environments with hazardous environments do not include places where electrically conductive parts in the near vicinity of the operator, which can cause increased hazard, have been insulated.
WARNING
ELECTRIC SHOCK can kill; SIGNIFICANT DC VOLTAGE is present after removal of input power.
DO NOT TOUCH live electrical parts. SHUT DOWN welding power source, disconnect
input power employing lockout/tagging procedures. Lockout/tagging procedures consist of padlocking line disconnect switch in open position, removing fuses from fuse box, or shutting off and red-tagging circuit breaker or other disconnecting device.
5.1 Electrical Input Requirements
Operate the welding power source from a single or three-phase 50/60 Hz, AC power supply. The input voltage must match one of the electrical input volt­ages shown on the input data label on the unit nameplate. Contact the local electric utility for infor­mation about the type of electrical service avail­able, how proper connections should be made, and inspection required.
The line disconnect switch provides a safe and convenient means to completely remove all electri­cal power from the welding power supply whenever necessary to inspect or service the unit.
2 – 2
400MST 2 INTRODUCTION AND DESCRIPTION
NOTE
These units are equipped with a three-conductor with earth power cable that is connected at the welding power source end for single or three-phase electrical input power.
Do not connect an input (WHITE, BLACK or RED) conductor to the ground terminal.
Do not connect the ground (GREEN) conductor to an input line terminal.
Refer to Figure 2-3 and:
1. Connect end of ground (GREEN) conductor to a suitable ground. Use a grounding method that complies with all applicable electrical codes.
2. Connect ends of line 1 (BLACK) and line 2 (WHITE) and line 3 (RED) input conductors to a de-energized line disconnect switch.
3. Use Table 1 and Table 2 as a guide to select line fuses for the disconnect switch.
NOTE
For Single-Phase operation connect the GREEN, BLACK and WHITE input conductors. Insulate the RED Conductor, it is not used for Single-phase operation.
Input Voltage Fuse Size
208 VAC 100 Amps
230 VAC 75 Amps
460 VAC 50 Amps
Table 2-1: Electrical Input Connections
NOTE
Fuse size is based on not more than 200 percent of the rated input amperage of the welding power source (Based on Article 630, National Electrical Code).
5.2 Input Power
Each unit incorporates an INRUSH circuit and input voltage sensing circuit. When the MAIN SWITCH is turned on, the inrush circuit provides a pre-charg­ing of the input capacitors. At this point, the Bus Voltages are checked and the welder is enabled after the input capacitors have charged to full operating voltage (after approximately 5 seconds).
NOTE
Note the available input power. Damage to the welder could occur if 575VAC or higher is applied.
The following 208-230/460V Primary Current rec­ommendations are required to obtain the maximum welding current and duty cycle from this welding equipment:
Minimum
Primary
Model
400MST
Table 2- 2: Primary Current Circuit sizes to achieve max-
Supply
Lead Size
8/4 AWG minimum
(Factory
Fitted)
8/3 AWG minimum
imum current
Primary
Current Circuit Size (Vin/Amps)
208/63 230/57 - ­460/29 - ­208/49 -
3φ
230/44 - ­460/22 - ­208/67 - ­230/61 - ­460/31 - ­208/88 230/79 - ­208/67 -
1φ
230/60 - ­208/97 - ­230/87 - -
Current & Duty Cycle
MIG TIG STICK
400A@
25%
300A@
25%
--
400A@
25%
400A@
--
300A@
25%
300A@
25%
25%
-
-
Figure 2- 3: Electrical input connections
2 – 3
400MST 2 INTRODUCTION AND DESCRIPTION
6
Specifications
Parameter 400MST
Rated Output
Amperes Vol ts Duty Cycle
TIG
200A / 18V@100%
Duty Cycle
Output Current Range
Output Voltage Range
Open Circuit Voltage 65V Dimensions
Width Height Length Weight
Output@Rated Load Three-phase Single-phase
Rated Input Voltage Output Amperes Output Volts Duty Cycle KVA KW
Output@No Load
KVA KW
Input Volts Single Phase
208V 230V
Input Volts Three Phase
208V 230V 460V
STICK
200A / 28V@100%
MIG
200A / 24V@100% TIG STICK
MIG 5-36V
208-230/460V 208-230V
400A 300A
36V 32V
25% 25%
24.0 20.0
18.0 12.0
Amperage Draw
@Rated Load
400
36
25% 400A / 26V@25% 300A / 22V@60%
400A / 36V@25% 300A / 32V@60%
400A / 34V@25% 300A / 29V@60%
5-400A
8.27" (210mm)
16.89" (420mm)
17.72" (450mm)
55.1 lb. 25.0 kg
0.5
0.13
No Load
97 2.4 87 2.2
67 1.4 61 1.3 31 0.7
notice. Such updates or changes do not entitle the buyer of equipment previously sold or shipped to the corresponding changes, updates, improve­ments or replacement of such items.
7
Duty Cycle
The duty cycle of a welding power source is the percentage of a ten (10) minute period that it can be operated at a given output without causing over­heating and damage to the unit. If the welding amperes decrease, the duty cycle increases. If the welding amperes are increased beyond the rated output, the duty cycle will decrease.
WARNING
Exceeding the duty cycle ratings will cause the thermal overload protection circuit to become ener­gized and shut down the output until the unit has cooled to normal operating temperature.
CAUTION
Continually exceeding the duty cycle ratings can cause damage to the welding power source and will void the manufactures warranty.
NOTE
Due to variations that can occur in manufactured products, claimed performance, voltages, ratings, all capacities, measurements, dimensions and weights quoted are approximate only. Achievable capacities and ratings in use and operation will depend upon correct installation, use, applications, maintenance and service.
Thermal Arc continuously strives to produce the best product possible and therefore reserves the right to change, improve or revise the specifica­tions or design of this or any product without prior
2 – 4
3 OPERATOR CONTROLS
1
400MST Controls
OPERATOR CONTROLS
1. Control Knob This control sets the selected weld parameter, rotating it clockwise increases the parameter and is indicated on the digital meter. Pushing the knob in previews the actual welding volt­age while welding.
2. Remote Control Socket The 14 pin Remote Control Socket is used to connect remote current control devices to the welding Power Source. To make connections, align keyway, insert plug, and rotate threaded collar fully clockwise.
Socket
Pin
A 24VAC auxiliary high side.
Input to energize solid state contactor (Contact
B
closure between pin A and pin B).
5k ohm (maximum) connection to 5k ohm
C
remote control potentiometer.
Zero ohm (minimum) connection to 5k ohm
D
remote control potentiometer.
Wiper arm connection to 5k ohm remote control
E
potentiometer.
F Current feedback Ifb = 100Amps/Volt
24/115 VAC circuit common, also connected to
G
chassis.
H Voltage Feedback Vfb = 10 Arc Volts/Volt
I 115 VAC auxiliary high side.
115 VAC input to energize solid state contactor
J
(Contact closure between pin I and pin J).
K Chassis ground.
L Not used.
M Current Detect.
N Current Detect.
Function
Figure 3- 1: 400MST Power Source
3. Positive Terminal Welding current flows from the Power Source via heavy duty Dinse type terminal. It is essen­tial, however, that the male plug is inserted and turned securely to achieve a sound electrical connection.
4. Negative Terminal Welding current flows from the Power Source via heavy duty Dinse type terminal. It is essen­tial, however, that the male plug is inserted and turned securely to achieve a sound electrical connection.
3 – 1
400MST 3 OPERATOR CONTROLS
CAUTION
Loose welding terminal connections can cause overheating and result in the male plug being fused in the bayonet terminal and /or melting of the hous­ing (case).
5. Remote Control Socket The 19 pin Remote Control Socket is used to connect remote current control devices to the welding Power Source. To make connections, align keyway, insert plug, and rotate threaded collar fully clockwise.
Socket
Pin
A Contactor circuit (+15 Volts).
Contactor circuit in, (closure between pin A and
B
Pin B will energize output.).
Scaled output voltage signal: Vfb = 10 Arc Volts/
C
Vol t
D 24 VAC auxiliary power high side.
E 115 VAC auxiliary power high side.
G Chassis ground.
H Remote control maximum.
J Remote control wiper (0 - 10 Volts).
K Remote Control minimum.
J Remote control wiper (0 - 10 Volts).
L Control circuit common.
M Arc Establish = +12 Volts
N Control Circuit common.
P 24 VAC auxiliary power high side.
R 24/115 VAC neutral
SN/C
TN/C
U Scaled output signal: Ifb = 100 Amps/Volt
VN/C
Function
8. Voltage Input Select Switch (Smart Logic Switch) User selectable switch. A manual slide switch selects the proper input voltage range. If this slide switch is not set to the position that matches the input line voltage, the Smart Logic will inhibit the welding power source from turning on and a warning indica­tion will be displayed.
WARNING
Do not alter the position of the Voltage Input Select Switch when the ON/OFF Switch is in the ON posi­tion and the unit is powered up.
9. 14/19 Pin Remote Control Select Switch User selectable switch. Position this switch for the remote control device socket to be utilized. The unselected Remote Control Socket is disabled at this time and cannot be utilized. Do not alter the posi­tion of this switch while one of the Remote Control Sockets is being utilized.
10. 24VAC Remote Device C/B Push to reset. Controls the 24VAC power source for the wire feeders controlled through the Remote Control Sockets.
11. 115VAC Remote Device C/B Push to reset. Controls the 115VAC power source for the wire feeders controlled through the Remote Control Sockets.
2
Weld Parameter Descrip­tions for 400MST
6. ON/OFF Switch This switch connects the Primary supply volt­age to the inverter when in the ON position. This enables the Power Supply.
WARNING
When the welder is connected to the Primary sup­ply voltage, the internal electrical components may be at 720V potential with respect to earth.
7. Input Cable The input cable connects the Primary supply voltage to the equipment.
Figure 3- 2: 400MST Front Panel with Parameter Description
3 – 2
400MST 3 OPERATOR CONTROLS
Parameter Description
This parameter provides a suitable short circuit current in STICK welding to improve electrode sticking
ARC CONTROL
HOT START
DC (A)
DC (V)
Contactor ON/OFF
and arc stability.
This parameter operates in STICK weld mode and is used to improve the start characteristics for stick electrodes. e.g. low hydrogen electrodes. It sets the peak start current on top of the (WELD) current.
Weld Current (Amperage)- when lit parameter knob sets the STICK and TIG WELD current.
Weld Voltage (Volt) - when lit parameter knob sets the MIG voltage.
Contactor operation in Stick Mode.
Selects mode of operation: Panel or Remote.
3
Weld Process selection for the 400MST
Weld Mode
Weld
Parameter
WELD (V)
INDUCT­ANCE
HOT START
WELD (A)
ARC CONTROL
Table 3 -2: Weld Process selection verses Weld Mode
4
STICK MIG
898
898
988
989
988
Weld Parameter Descrip-
LIFT
TIG
Weld voltage MIG Mode.
Inductance control in MIG Mode.
Start current in amps is added to the WELD (A).
WELD (A) current for STICK or LIFT TIG.
Adjusts percentage increase in welding current and is proportional to arc length (arc voltage).
Description
Operation
PANEL /REMOTE
This parameter, similar to the ARC CONTROL in STICK mode, allows
INDUCTANCE
SAVE LOAD
SAUVEGARDER CHARGER
Table 3 -1: Weld Parameter Descriptions for 400MST
for the adjustment of the dynamic property of the arc. As the inductance is increased the output voltage may need to be adjusted to achieve the desired weld characteristics.
The SAVE/LOAD buttons are used to save and retrieve a total number of 5 programs into the 400MST memory.
tions
4.1 WELD (V)
This parameter sets the MIG weld arc voltage in MIG mode.
4.2 INDUCTANCE
This parameter sets the INDUCTANCE when MIG welding. It controls the dynamic properties of the arc in dip transfer welding mode. When this param­eter is set to 0%, ie minimum inductance, the arc has a fast response with a resulting crisp arc noise and coarse spatter. When this parameter is set to 100%, ie maximum inductance, the arc has a slow response with a resulting soft arc and fine spatter.
NOTE
As the INDUCTANCE is increased, the WELD (V) may need to be adjusted to achieve the desired weld characteristic.
3 – 3
400MST 3 OPERATOR CONTROLS
4.3 HOT START
This parameter operates in STICK mode and improves the start characteristics for stick elec­trodes. e.g. low hydrogen electrodes. It sets the peak start current on top of the WELD current.
e.g. HOT START current = 150 amps when Weld Current = 100 amps & HOT START = 50A
4.4 WELD (A)
This parameter sets the STICK & Lift TIG weld cur­rent.
4.5 ARC CONTROL
This parameter operates in STICK mode only and is used to adjust percentage increase in welding current and is proportional to arc length (arc volt­age). This control provides an adjustable amount of arc control (or dig). This feature can be particularly beneficial in providing the operator with the ability to compensate for variability in joint fit up in certain situations with particular electrodes, eg cellulose and hydrogen controlled electrodes. In all welding processes, the amount of penetration obtained is dependent on the welding current; ie the greater the penetration, the greater the current.
Arc Force
Position
Minimum
(0)
Medium
(20%)
Maximum
(100%)
Current Increase when Arc Voltage is less than 18V
0A
32A
160A
Effect on Welding Performance
Soft arc, Low spatter, Low penetration
Normal arc, Improved fusion characteristics, Normal penetration
Hard arc, Deep penetration
i) Root runs
During root runs the weld pool forms a "keyhole" shape. If too much weld current is used, the hole blows out and the weld collapses. If too little weld current is used, the hole closes up and penetration is lost. The size of the hole also determines the arc length; ie as the hole gets bigger, the arc gets longer.
If arc force is used, the increase in the arc length causes the weld current to decrease until the hole starts to close up but if the hole closes up to much then the arc length decreases which causes the weld current to increase. Too little or too much arc force makes this process unstable. The operator must adjust the arc force until a happy medium is reached.
ii) Vertical up welding
When welding vertical up with arc force on, the operator can control the amount of current by changing arc length, ie voltage. Weld metal is deposited by "digging" the electrode into the side of the base metal joint and then increasing the arc length with a flicking motion, to allow the weld pool to freeze, before digging the electrode into the other side of the base metal joint.
Without arc force, increasing the arc length does not decrease the weld current sufficiently and the operator has to manually decrease the cur­rent via a remote current control to freeze the weld pool. This welding current reduction also reduces the penetration.
The arc force allows the weld pool to freeze during the "flick" phase without decreasing the amount of weld current available during the "dig" phase thus maximizing penetration.
Table 3- 3: Weld Parameter Descriptions
In general, having the ARC CONTROL set at 100% (maximum) allows greater penetration control to be achieved. With the ARC CONTROL set at 0% (minimum) the Power Source has a constant cur­rent characteristic. In other words, varying the arc length does not significantly effect the welding cur­rent. When the ARC CONTROL set to 100%, it is possible to control the welding current by varying the arc length. This is very useful for controlling penetration on root runs and side wall wash on ver­tical up fillet welds.
3 – 4
400MST 3 OPERATOR CONTROLS
4.6 Weld Parameters
Weld
Parameter
WELD (V) MIG
INDUCT­ANCE
HOT START
WELD (A) TIG or STICK
ARC CONTROL
Parameter
Range
10.0 to
36.0V DC
0 to 100%
0 to 70A 20A 1A
1 to 400A DC
0 to 100%
Factory
Units of
Setting
17.0V 0.1V
10% 1%
10% 1%
Table 3-4: Weld Parameters
Increment
80A 1A
Weld Mode
STICK
898
898
988
989
988
4.7 Power Source Features
Feature Description
New Digital Control
Touch Panel Switches
Front Cont rol Cover
Digital Meter Volt & Ammeter
Intelligent Fan Control
ON/OFF switch
Voltage Reduction Device (VRD)
All welding parameters are adjust-
able.
Touch switches eliminate mechani-
cal damage.
Protects front panel controls.
Displays selected weld parameter
value.
Displays average weld current
when welding.
Displays average weld current for
20 seconds after weld has been completed.
A selected weld parameter value
can be adjusted at any time even while welding.
The intelligent cooling system is
designed to reduce dust and for­eign material build-up, while provid­ing optimum cooling.
Fan speed reduces approximately
30 seconds after machine is turned on.
Fan speed increases when internal
components reach operating temperature.
Mains ON/OFF switch located on
rear panel.
VRD fully complies to IEC 60974-1.VRD light is ON and operational
when in STICK mode.
MIG
LIFT
TIG
Feature Description
Control Knob For the selected weld parameter,
rotating the knob clockwise increases the parameter.
Rotating the knob counter clock-
wise decreases the parameter.
A selected weld parameter value
can be adjusted at any time even while welding.
Pushing the knob in sets the
selected parameter then displays the next parameter.
Self Diagnosis Using Error Codes
Save/Load function
An error code is displayed on the
Digital Meter when a problem occurs with Mains supply voltage or internal component problems.
A total number of 5 programs can
be saved into the 400MST memory.
SAVE the Current Weld Parameters into Memory
Press the SAVE button.Select a memory location by rotat-
ing the control knob, 1 to 5 is dis­played on the meter.
After selecting the desired memory
location (ie. 1 to 5), press the parameter button and the machine give a beep to confirm the weld parameters from the control panel are saved.
LOAD (retrieve) a Program to Control Panel
Press the LOAD button.Select a memory location by rotat-
ing the control knob, 1 to 5 is dis-
played on the meter. After selecting the desired memory location (ie. 1 to 5), press the parameter button and the machine give a beep to confirm the weld parameters are loaded onto the control panel.
3 – 5
400MST 3 OPERATOR CONTROLS
PAGE LEFT INTENTIONALLY BLANK
3 – 6
4 SEQUENCE OF OPERATION
NOTE: Parameter Buttons are used to select the parameters to be set. The LED's show which func­tion is being adjusted on the weld sequence graph. Refer to Symbols Table located in the front of the manual for Symbol descriptions.
7
4
3
5
Figure 4-1: 400MST Front Panel
1. Contactor function - Pressing this button enables Contactor functions.
2. Remote functions - Pressing this button enables remote current functions.
3. Digital LED displays - Welding amperage, Volt­age and parameter values are displayed in this window. Internal warnings such as over tem­perature, low or high input voltage applied are signaled to the operator by a warning sound and error message on the screen.
4. Save/Load Buttons -By using the Save & Load buttons the operator can easily save up to 5 welding parameter programs.
5. Control knob - Allows the operator to adjust the output amperage/voltage within the entire range of the power source, also used to set each parameter value.
6. Process Button - This button selects between STICK, Lift TIG, and MIG modes. MIG modes include MS for mild steel and SS for stainless steel.
7. Parameter Button. - This button select between HOT START, WELD CURRENT, and ARC CONTROL while in STICK and Lift TIG modes and selects between WELD VOLTAGE and INDUCTANCE CONTROL while in MIG mode. This button is also used in conjunction with the Save/Load buttons to save and load welding programs.
SEQUENCE OF OPERATION
1
2
6
s
1
Stick Welding
Connect work lead to negative terminal.Connect electrode lead to positive terminal.Switch machine on.Set weld current. Set Contactor.Connect remote control device if required.
Use the Scroll Buttons to move to the parameter to be set. The LED will show which function is being adjusted on the weld sequence graph. Use the control knob to adjust each parameter.
Set HOT START .Set ARC CONTROL.Set WELD current .
Commence welding.
2
LIFT TIG Welding
Connect work lead to positive terminal.Connect TIG torch to negative terminal.Switch machine on.Set weld current.Connect remote control device if required.
Use the Scroll Buttons to move to the parameter to be set. The LED will show which function is being adjusted on the weld sequence graph. Use the control knob to adjust each parameter.
Commence welding.
3
MIG Welding
Connect work lead to negative terminal.Connect electrode lead to positive terminal.Switch machine on.Set weld voltage. Set Inductance.Connect Wire feeder.Set wire feed speed (IPM).
Use the Scroll Buttons to move to the parameter to be set. The LED will show which function is being adjusted on the weld sequence graph. Use the control knob to adjust each parameter.
Commence welding.
4 – 1
5 ROUTINE MAINTENANCE
The only routine maintenance required for the power supply is a thorough cleaning and inspec­tion, with the frequency depending on the usage and the operating environment.
ROUTINE MAINTENANCE
WARNING
Disconnect primary power at the source before opening the enclosure. Wait at least two minutes before opening the enclosure to allow the primary capacitors to discharge.
To clean the unit, open the enclosur 'Opening the Enclosure' section 9.1.1) and use a vacuum cleaner to remove any accumulated dirt and dust. The unit should also be wiped clean, if necessary; with solvents that are recommended for cleaning electrical apparatus.
e (refer to
CAUTION
Do not blow air into the power supply during clean­ing. Blowing air into the unit can cause metal parti­cles to interfere with sensitive electrical components and cause damage to the unit.
5 – 1
6 BASIC TROUBLE SHOOTING
BASIC TROUBLE SHOOTING
WARNING
There are extremely dangerous voltages and power levels present inside this product. Do not attempt to open or repair unless you are an Accredited Thermal Arc Service Agent and you have had training in power measurements and troubleshooting techniques.
If major complex subassemblies are faulty, then the Welding Power Source must be returned to an Accredited Thermal Arc Service Agent for repair.
The basic level of troubleshooting is that which can be performed without special equipment or knowl­edge.
1
Solving MIG Problems Beyond the Welding Termi­nals
The general approach to fix Gas Metal Arc Welding (GMAW) problems is to start at the wire spool then work through to the MIG torch. There are two main areas where problems occur with GMAW:
1.1 Porosity
When there is a gas problem the result is usually porosity within the weld metal. Porosity always stems from some contaminant within the molten weld pool which is in the process of escaping dur­ing solidification of the molten metal.
Contaminants range from no gas around the weld­ing arc to dirt on the work piece surface. Porosity can be reduced by checking the following points:
1. Gas cylinder contents and flow meter. Ensure that the gas cylinder is not empty
and the flow meter is correctly adjusted to 25 cubic feet per hour.
2. Gas leaks.
Check for gas leaks between the regulator/
cylinder connection and in the gas hose to the Wire Fee Wire Feeder.
3. Internal gas hose in the Wire Feeder. Ensure the hose from the solenoid valve to
the MIG torch adapter has not fractured and that it is connected to the MIG torch adapter.
4. Welding in a windy environment. Shield the weld area from the wind or
increase the gas flow.
der. Internal gas hose in the
Welding dirty, oily, painted, oxidized or greasy plate.
5.
Clean contaminates off the plate.
6. Distance between the MIG torch nozzle and the work piece.
Keep the distance between the MIG torch nozzle and the work piece to a minimum.
7. Maintain the MIG torch in good working order.
Ensure that the gas holes are not blocked and gas is exiting out of the torch nozzle. Do not restrict gas flow by allowing spatter to build up inside the MIG torch nozzle. Check that the MIG torch O-rings are not damaged.
WARNING
Disengage the drive roll when testing for gas flow by ear.
1.2 Inconsistent Wire Feed
Checking the following points can reduce wire­feeding problems:
1. Wire spool brake is too tight.
Feed roller driven by motor in the cabinet will slip.
2. Wire spool brake is too loose.
Wire spool can unwind and tangle.
3. Worn or incorrect feed roller size.
Use 'U' groove drive feed roller matched to the aluminium wire size you are welding.
Use 'V' groove drive feed roller matched to the steel wire size you are welding.
Use 'knurled V' groove drive feed roller matched to the flux cored wire size you are welding.
4. Misalignment of inlet/outlet guides.
Wire will rub against the misaligned guides and reduce
5. Liner blocked with wire debris.
Wire debris is produced by the wire passing through the feed roller, if excessive pressure is applied to the pressure roller adjuster.
Wire debris can also be produced by the wire passing through an incorrect feed roller groove shape or size.
wire feedability.
6 – 1
400MST 6 BASIC TROUBLE SHOOTING
Wire debris is fed into the liner where it accumulates thus reducing wire feedability.
6. Incorrect or worn contact tip. The contact tip transfers the weld current to
7. Poor work lead contact to work piece.
the electrode wire. If the hole in the contact tip is to large then arcing may occur inside the contact tip resulting in the electrode wire jamming in the contact tip.
8. Bent liner.
When using soft electrode wire such as alu­minium it may become jammed in the con­tact tip due to expansion of the wire when
2
MIG Welding Problems
Description Possible Cause Remedy
1 Undercut. A Welding arc voltage too high.
B Incorrect torch angle.
C Excessive heat input.
2 Lack of penetration. A Welding current too low.
B Joint preparation too narrow or gap too
tight.
C Shielding gas incorrect.
3 Lack of fusion.
4 Excessive spatter. A Voltage too high.
5 Irregular weld shape. A Incorrect voltage and current settings.
6 Weld cracking. A Weld beads too small.
Voltage too low. Increase WELD (V) control.
B Voltage too low.
Convex, voltage too low. Concave,
voltage too high. B Wire is wandering.
C Incorrect shielding gas.
D Insufficient or excessive heat input.
B Weld penetration narrow and deep.
C Excessive weld stresses.
D Excessive voltage.
E Cooling rate too fast.
heated. A contact tip designed for soft elec­trode wires should be used.
If the work lead has a poor electrical contact to the work piece then the connection point will heat up and result in a reduction of power at the arc.
This will cause friction between the wire and
the liner thus reducing wire feedability.
A Reduce WELD (V) control or increase the
wire feed speed. B Adjust angle. C Increase the torch travel speed and/or
reduce welding current by reducing the
WELD (V) control or reducing the wire
feed speed.
A Increase welding current by increasing
wire feed speed and increasing WELD
(V) control. B Increase joint angle or gap. C Change to a gas which gives higher
penetration.
A Lower the voltage by reducing the WELD
(V) control or increase wirespeed control. B Raise the voltage by increasing the
WELD (V) control or reduce wirespeed
control.
A Adjust voltage and current by adjusting
the WELD (V) control and the wirespeed
control. B Replace contact tip. C Check shielding gas. D Adjust the wirespeed control or the
voltage selection switches.
A Decrease travel speed. B Reduce current and voltage and increase
MIG torch travel speed or select a lower
penetration shielding gas. C Increase weld metal strength or revise
design. D Decrease voltage by reducing the WELD
(V) control. E Slow the cooling rate by preheating part
to be welded or cool slowly.
6 – 2
400MST 6 BASIC TROUBLE SHOOTING
Description Possible Cause Remedy
7 Cold weld puddle. A Faulty rectifier unit.
B Loose welding cable connection.
C Low Primary Voltage.
8 Arc does not have a
crisp sound, that short arc exhibits, when the wirefeed speed and voltage are adjusted correctly.
3
TIG Welding Problems
The MIG torch has been connected to the wrong voltage polarity on the front panel.
A Have an Accredited Thermal Arc Service
Agent to test then replace the faulty
component. B Check all welding cable connections.
C Contact supply authority. Connect the MIG torch to the positive (+)
welding terminal for solid wires and gas shielded flux cored wires. Refer to the electrode wire manufacturer for the correct polarity.
Weld quality is dependent on the selection of the correct consumables, maintenance of equipment and proper welding technique.
Description Possible Cause Remedy
1 Excessive beard build-
up or poor penetration or poor fusion at edges of weld.
2 Weld bead too wide
and flat or undercut at edges of weld or excessive burn through.
3 Weld bead too small or
insufficient penetration or ripples in bead are widely spaced apart.
4 Weld bead too wide or
excessive bead build up or excessive penetration in butt joint.
5 Uneven leg length in
fillet joint.
6Electrode melts when
arc is struck.
7 Dirty weld pool. A Electrode contaminated through contact
8Electrode melts or
oxidizes when an arc is struck.
Welding current is too low. Increase weld current and/or faulty joint
preparation.
Welding current is too high. Decrease weld current.
Travel speed too fast. Reduce travel speed.
Travel speed too slow. Increase travel speed.
Wrong placement of filler rod. Re-position filler rod.
A Electrode is connected to the '+' terminal. A Connect the electrode to the '-' terminal.
A Clean the electrode by grinding off the
with work piece or filler rod material.
B Gas contaminated with air.
A No gas flowing to welding region.
B Torch is clogged with dust.
C Gas hose is cut.
D Gas passage contains impurities.
E Gas regulator turned off.
F Torch valve is turned off.
G The electrode is too small for the welding
current.
contaminates.
B Check gas lines for cuts and loose fitting
or change gas cylinder.
A Check the gas lines for kinks or breaks
and gas cylinder contents. B Clean torch. Replace gas hose. D Disconnect gas hose from torch then
raise gas pressure and blow out
impurities. E Turn on. F Turn on. G Increase electrode diameter or reduce
the welding current.
6 – 3
Loading...
+ 72 hidden pages