Trane RTAC 120, RTAC 200 User Manual

Air-Cooled Series R
Helical-Rotary Liquid Chiller
Model RTAC 120 to 200 (400 to 760kw - 50 Hz) Built for the Industrial and Commercial Markets
The new Trane Model RTAC Air-Cooled Helical-Rotary Chiller is the result of a search for higher reliability, higher energy efficiency, and lower sound levels for today’s environment.
In an effort to reduce energy consumed by HVAC equipment and to continually produce chilled water, Trane has developed the Model RTAC chiller with higher efficiencies and a more reliable design than any other air cooled chiller available on the market today.
The Model RTAC chiller uses the proven design of the Trane helical-rotary compressor, which embraces all of the design features that have made the Trane helical-rotary compressor liquid chillers such a success since 1987.
Introduction
©American Standard Inc. 2000
RLC-PRC005-E4
Figure 1
What Is New
The RTAC offers the same high reliability coupled with greatly improved energy efficiency, vastly reduced physical footprint, and improved acoustical performance, due to its advanced design, low-speed, direct­drive compressor, and proven Series R™ performance.
The major differences between the Series R, Model RTAC and Model RTAA are:
• Smaller physical footprint
• Lower sound levels
• Higher energy efficiency
• Designed specifically for operating with environmentally-safe HFC-134a.
The Series R Model RTAC helical-rotary chiller is an industrial-grade design, built for both the industrial and commercial markets. It is ideal for schools, hospitals, retailers, office buildings, and industrial applications.
3
RLC-PRC005-E4
Contents
Introduction Features and Benefits
Improved Acoustical Performance Simple Installation Superior Control with Tracer™ Chiller Controls Options
Application Considerations Selection Procedure General Data Performance Data
Performance Adjustment Factors
Controls
Generic Building Automation System Controls Typical Wiring Diagrams Job Site Data
Electrical Data Dimensional Data Mechanical Specifications
2
4
9
12 13 19
36
5 6 7 8
33
45 47 50
36 39 44
Features and Benefits
4
RLC-PRC005-E4
Water Chiller Systems Business Unit
The Series R
Helical-Rotary Compressor
• Unequaled reliability. The next generation Trane helical-rotary compressor is designed, built, and tested to the same demanding and rugged standards as the Trane scroll compressors, the centrifugal compressors, and the previous generation helical-rotary compressors used in both air- and water-cooled chillers for more than 13 years.
• Years of research and testing. The Trane helical-rotary compressor has amassed thousands of hours of testing, much of it at severe operating conditions beyond normal commercial air-conditioning applications.
• Proven track record. The Trane Company is the world’s largest manufacturer of large helical-rotary compressors used for refrigeration. Over 90,000 compressors worldwide have proven that the Trane helical­rotary compressor has a reliability rate of greater than 99.5 percent in the first year of operation—unequalled in the industry.
• Resistance to liquid slugging. The robust design of the Series R compressor can ingest amounts of liquid refrigerant that normally would severely damage reciprocating compressor valves, piston rods, and cylinders.
• Fewer moving parts. The helical-rotary compressor has only two rotating parts: the male rotor and the female rotor. Unlike reciprocating compressors, the Trane helical-rotary compressor has no pistons, connecting rods, suction and discharge valves, or mechanical oil pump. In fact, a typical reciprocating compressor has 15 times as many critical parts as the Series R compressor. Fewer moving parts leads to increased reliability and longer life.
• Direct-drive, low-speed, semi-hermetic compressor for high efficiency and high reliability.
• Field-serviceable compressor for easy maintenance.
• Suction-gas-cooled motor. The motor operates at lower temperatures for longer motor life.
• Five minute start-to-start and two minute stop-to-start anti-recycle timer allows for closer water-loop temperature control.
Improved Acoustical Performance
5
RLC-PRC005-E4
The sound levels of the Series R Model RTAA have been steadily improved since its introduction. With the advent of the Model RTAC, sound levels are reduced significantly by addressing two major sources: the compressor and the refrigerant piping. First, the compressor has been specifically designed to minimize sound generation. Second, the refrigerant components and piping have been optimized to reduce sound propagation throughout the system. The result: sound levels achieved on the Model RTAC represent the lowest sound levels ever on Trane air-cooled helical­rotary compressor water chillers.
Superior Efficiency Levels: The Bar Has Been Raised
The standard-efficiency Trane Model RTAC has COP levels up to 2.90 kW/kW [9.9 EER] (including fans), while the premium-efficiency, or high-efficiency, units leap to COP levels of 3.08 kW/kW [10.51 EER] (including fans).
The modern technology of the RTAC with the efficient direct-drive compressor, the flooded evaporator, the unique design to separate liquid and vapor, the electronic expansion valve, and the revolutionary Tracer
Chiller Controls, has permitted Trane to achieve these efficiency levels, unmatched in the industry.
Precise Rotor Tip Clearances
Higher energy efficiency in a helical­rotary compressor is obtained by reducing the rotor tip clearances. This next-generation compressor is no exception. With today’s advanced manufacturing technology, clearances can be controlled to even tighter tolerances. This reduces the leakage between high- and low-pressure cavities during compression, allowing for more efficient compressor operation.
Capacity Control and Load Matching
The combination patented unloading system on Trane helical-rotary compressors uses the variable
unloading valve for the majority of the unloading function. This allows the compressor to modulate infinitely, to exactly match building load and to maintain chilled-water supply temperatures within ± 0.3°C [±0.5°F] of the set point. Reciprocating and helical­rotary chillers that rely on stepped capacity control must run at a capacity equal to or greater than the load, and typically can only maintain water temperature to around ± 1°C [±2°F]. Much of this excess capacity is lost because overcooling goes toward removing building latent heat, causing the building to be dried beyond normal comfort requirements. When the load becomes very low, the compressor also uses a step unloader valve, which is a single unloading step to achieve the minimum unloading point of the compressor. The result of this design is optimized part-load performance far superior to single reciprocating compressors and step-only helical­rotary compressors.
Figure 2  Cutaway of a compressor
Simple Installation
6
RLC-PRC005-E4
Compact Physical Size
The Trane Model RTAC chiller averages a 20 percent reduction in physical footprint, while the greatest change is actually 40 percent smaller when compared against the previous design. This improvement makes the RTAC the smallest air-cooled chiller in the industry and a prime candidate for installations that have space constraints. All physical sizes were changed without sacrificing the side clearances needed to supply fresh airflow without coil starvation—the tightest operational clearances in the industry.
Close Spacing Installation
The air-cooled Series R
chiller has the tightest recommended side clearance in the industry, 1.2 meters, but that is not all. In situations where equipment must be installed with less clearance than recommended, which frequently occurs in retrofit applications, restricted airflow is common. Conventional chillers may not work at all. However, the air-cooled Series R chiller with the Adaptive Control
microprocessor will make as much chilled water as possible given the actual installed conditions, stay on-line during any unforeseen abnormal conditions, and optimize its performance. Consult your Trane sales engineer for more details.
Factory Testing Means Trouble-Free Start-up
All air-cooled Series R chillers are given a complete functional test at the factory. This computer-based test program completely checks the sensors, wiring, electrical components, microprocessor function, communication capability, expansion valve performance, and fans. In addition, each compressor is run­tested to verify capacity and efficiency. Where applicable, each unit is factory preset to the customer’s design conditions. An example would be the leaving-liquid temperature set point. The result of this test program is that the chiller arrives at the job site fully tested and ready for operation.
Factory-Installed and Tested Controls and Options Speed Installation
All Series R chiller options, including main power-supply disconnect, low ambient control, ambient temperature sensor, low ambient lockout, communication interface and ice­making controls are factory installed and tested. Some manufacturers send accessories in pieces to be field installed. With Trane, the customer saves on installation expense and has assurance that ALL chiller controls and options have been tested and will function as expected.
Superior Control with Tracer™Chiller Controls
7
RLC-PRC005-E4
The End of Nuisance
Trip-Outs and Unnecessary Service Calls?
The Adaptive Control
microprocessor system enhances the air-cooled Series R chiller by providing the very latest chiller control technology. With the Adaptive Control microprocessor, unnecessary service calls and unhappy tenants are avoided. The unit does not nuisance-trip or unnecessarily shut down. Only when the Tracer chiller controls have exhausted all possible corrective actions, and the unit is still violating an operating limit, will the chiller shut down. Controls on other equipment typically shut down the chiller, usually just when it is needed the most.
For Example:
A typical five-year-old chiller with dirty coils might trip out on high-pressure cutout on a 38°C [100°F] day in August. A hot day is just when comfort cooling is needed the most. In contrast, the air­cooled Series R chiller with an Adaptive Control microprocessor will stage fans on, modulate the electronic expansion valve, and modulate the slide valve as it approaches a high-pressure cutout, thereby keeping the chiller on line when you need it the most.
System Options: Ice Storage
Trane air-cooled chillers are well-suited for ice production. The unique ability to operate at decreased ambient temperature while producing ice results in approximately the same amount of work for the compressor. An air-cooled machine typically switches to ice production at night. Two things happen under this assumption. First, the leaving brine temperature from the evaporator
4. Freeze ice storage
5. Freeze ice storage when comfort cooling is required
6. Off
Tracer optimization software controls operation of the required equipment and accessories to easily move from one mode of operation to another. For example: even with ice-storage systems, there are numerous hours when ice is neither produced nor consumed, but saved. In this mode, the chiller is the sole source of cooling. For example, to cool the building after all ice is produced but before high electrical-demand charges take effect, Tracer sets the air­cooled chiller leaving-fluid set point to its most efficient setting and starts the chiller, chiller pump, and load pump.
When electrical demand is high, the ice pump is started and the chiller is either demand limited or shut down completely. Tracer controls have the intelligence to optimally balance the contribution of the ice and the chiller in meeting the cooling load.
The capacity of the chiller plant is extended by operating the chiller and ice in tandem. Tracer rations the ice, augmenting chiller capacity while reducing cooling costs. When ice is produced, Tracer will lower the air­cooled chiller leaving-fluid set point and start the chiller, ice and chiller pumps, and other accessories. Any incidental loads that persists while producing ice can be addressed by starting the load pump and drawing spent cooling fluid from the ice storage tanks.
For specific information on ice storage applications, contact your local Trane sales office.
is lowered to around -5.5 to -5°C [22 to 24°F]. Second, the ambient temperature has typically dropped about 8.3 to 11°C [15 to 20°F] from the peak daytime ambient. This effectively places a lift on the compressors that is similar to daytime running conditions. The chiller can operate in lower ambient at night and successfully produce ice to supplement the next day’s cooling demands.
The Model RTAC produces ice by supplying ice storage tanks with a constant supply of glycol solution. Air­cooled chillers selected for these lower leaving-fluid temperatures are also selected for efficient production of chilled fluid at nominal comfort-cooling conditions. The ability of Trane chillers to serve “double duty” in ice production and comfort cooling greatly reduces the capital cost of ice-storage systems.
When cooling is required, ice-chilled glycol is pumped from the ice storage tanks directly to the cooling coils. No expensive heat exchanger is required. The glycol loop is a sealed system, eliminating expensive annual chemical treatment costs. The air-cooled chiller is also available for comfort-cooling duty at nominal cooling conditions and efficiencies. The modular concept of glycol ice-storage systems, and the proven simplicity of Trane Tracer
controls, allow the successful blend of reliability and energy-saving performance in any ice-storage application.
The ice-storage system is operated in six different modes, each optimized for the utility cost at a particular time of day.
1. Provide comfort cooling with chiller
2. Provide comfort cooling with ice
3. Provide comfort cooling with ice and chiller
Figure 3 — Ice storage demand cost savings
MN 6 A.M. NOON 6 P.M. MN
ICE
CHILLER
LOAD
Premium Efficiency and Performance Option
This option provides oversized heat exchangers with two purposes. One, it allows the unit to be more energy efficient. Two, the unit will have enhanced operation in high-ambient conditions.
Low-Temperature Brine
The hardware and software on the unit are factory set to handle low­temperature brine applications, typically below 5°C [41°F].
Ice Making
The unit controls are factory set to handle ice making for thermal storage applications.
Tracer Summit™ Communication Interface
Permits bi-directional communication to the Trane Integrated Comfort™ system.
Remote Input Options
Permits remote chilled-liquid set point, remote current-limit set point, or both, by accepting a 4-20 mA or 2-10 VDC analog signal.
Remote Output Options
Permits alarm relay outputs, ice-making outputs, or both.
Chilled-Water Reset
This option provides the control logic and field-installed sensors to reset leaving-chilled-water temperature. The set point can be reset based on either ambient temperature or return evaporator-water temperature.
Night Noise Setback
At night, on contact closure all the fans run at low speed, bringing the overall sound level further down.
SCR (Short-Circuit Rating)
Offers a measure of safety for what the starter-panel enclosure is able to withstand in the event of an explosion caused by a short circuit; protection up to 35,000 amps is available on most voltages.
Neoprene Isolators
Isolators provide isolation between the chiller and the structure to help eliminate vibration transmission. Neoprene isolators are more effective and recommended over spring isolators.
Victaulic Connection Kit
Provides a kit that includes a set of two pipe stubs and Victaulic couplings.
Low Noise Version
The unit is equipped with low-speed fans and a compressor sound­attenuating enclosure. All the sound-emitting parts, like refrigerant lines and panels subject to vibration, are acoustically treated with sound­absorbent material.
Evaporator Freeze Protection
Factory-installed and -wired trace heaters on the water boxes and on the intermediate tube plate, with an ambient thermostat and protected by a circuit breaker.
Ground Fault Detection
Sensing ground current for improved chiller protection.
Protection Grilles
Protection grilles cover the complete condensing coils and the service areas beneath the coils.
Coil Protection
A coated wire mesh that covers the condenser coils only.
Access Protection
A coated wire mesh that covers the access area underneath the condenser coils.
Service Valves
Provides a service valve on the suction and discharge lines of each circuit to facilitate compressor servicing.
High-Ambient Option
The high-ambient option consists of special control logic to permit high­ambient (up to 52°C [125°F]) operation. This option offers the best performance when coupled with the premium efficiency and performance option.
Low-Ambient Option
The low-ambient option consists of special control logic and fans to permit low-ambient (down to -23°C [-9°F]) operation.
Low-Ambient Lockout
A factory-installed ambient sensor and control logic will prevent starting below the recommended ambient temperature.
Power Disconnect Switch
A disconnect switch with a through-the­door handle, plus compressor protection fuses, is provided to disconnect main power.
Options
8
RLC-PRC005-E4
Application Considerations
9
RLC-PRC005-E4
Certain application constraints should be considered when sizing, selecting, and installing Trane air-cooled Series R chillers. Unit and system reliability is often dependent on properly and completely complying with these considerations. When the application varies from the guidelines presented, it should be reviewed with your local Trane sales engineer.
Unit Sizing
Unit capacities are listed in the performance data section. Intentionally oversizing a unit to ensure adequate capacity is not recommended. Erratic system operation and excessive compressor cycling are often a direct result of an oversized chiller. In addition, an oversized unit is usually more expensive to purchase, install, and operate. If oversizing is desired, consider using two units.
Water Treatment
Dirt, scale, products of corrosion, and other foreign material will adversely affect heat transfer between the water and system components. Foreign matter in the chilled-water system can also increase pressure drop and, consequently, reduce water flow. Proper water treatment must be determined locally, depending on the type of system
51°C [125°F], and selecting the low­ambient option will increase the operational capability of the water chiller to ambient temperatures as low as 18°C [0°F]. For operation outside of these ranges, contact the local Trane sales office.
Water Flow Limits
The minimum water flow rates are given in Tables G-1 and G-2. Evaporator flow rates below the tabulated values will result in laminar flow and cause freeze-up problems, scaling, stratification, and poor control. The maximum evaporator water flow rate is also given in the general data section. Flow rates exceeding those listed may result in excessive tube erosion.
Flow Rates Out of Range
Many process cooling jobs require flow rates that cannot be met with the minimum and maximum published values within the Model RTAC evaporator. A simple piping change can alleviate this problem. For example: a plastic injection molding process requires 5.0 Lps [80 gpm] of 10°C [50°F] water and returns that water at 15.6°C [60°F]. The selected chiller can operate at these temperatures, but has a minimum flow rate of 7.6 Lps [120 gpm]. The following system can satisfy the process.
and local water characteristics. Neither salt nor brackish water is recommended for use in Trane air-cooled Series R chillers. Use of either will lead to a shortened chiller life. The Trane Company encourages the employment of a reputable water-treatment specialist, familiar with local water conditions, to assist in this determination and in the establishment of a proper water­treatment program.
Effect of Altitude on Capacity
Air-cooled Series R chiller capacities given in the performance data tables are for use at sea level. At elevations substantially above sea level, the decreased air density will reduce condenser capacity and, therefore, unit capacity and efficiency. The adjustment factors in Table F-1 can be applied directly to the catalog performance data to determine the unit’s adjusted performance.
Ambient Limitations
Trane air-cooled Series R chillers are designed for year-round operation over a range of ambient temperatures. The air-cooled Model RTAC chiller will operate in ambient temperatures of 4 to 46°C [25 to 115°F]. Selecting the high­ambient option will allow the chiller to operate in ambient temperatures of
10°C
7.6 Lps
13.7°C
7.6 Lps
CV pump
7.5 Lps
10°C
2.5 Lps
CV Pump
5 Lps
10°C
5 Lps
15.6°C 5 Lps
Figure 4 — GPM Out of Range
Load
Application Considerations
10
RLC-PRC005-E4
15.6°C
7.6 Lps
21°C
7.6 Lps
CV Pump
15°C
5.4 Lps
35°C
5.4 Lps
35°C
7.6 Lps
29.4°C
7.6 Lps
15.6°C
2.2 Lps
35°C
2.2 Lps
Figure 5 — GPM Out of Range
Leaving-Water Temperature Range
Trane air-cooled Series R chillers have three distinct leaving-water categories: standard, low temperature, and ice making. The standard leaving-solution temperature range is 4.4 to 15.6°C [40 to 60°F]. Low-temperature machines produce leaving-liquid temperatures less than 4.4°C [40°F]. Since liquid supply temperature set points less than
4.4°C [40°F] result in suction temperatures at or below the freezing point of water, a glycol solution is required for all low-temperature machines. Ice-making machines have a leaving-liquid temperature range of -6.7 to 15.6°C [20 to 60°F]. Ice-making controls include dual set point controls and safeties for ice making and standard cooling capabilities. Consult your local Trane sales engineer for applications or selections involving low temperature or ice making machines. The maximum water temperature that can be circulated through an evaporator when the unit is not operating is 42°C [108°F].
Leaving-Water Temperature Out of Range
Similar to the flow rates above, many process cooling jobs require temperature ranges that cannot be met with the minimum and maximum published values for the Model RTAC evaporator. A simple piping change can alleviate this problem. For example: a laboratory load requires 7.6 Lps [120 gpm] of water entering the process at
29.4°C [85°F] and returning at 35°C [95°F]. The accuracy required is higher than the cooling tower can give. The selected chiller has adequate capacity, but has a maximum leaving-chilled­water temperature of 15.6°C [60°F].
In the example shown, both the chiller and process flow rates are equal. This is not necessary. For example, if the chiller had a higher flow rate, there would be more water bypassing and mixing with warm water.
Supply-Water Temperature Drop
The performance data for the Trane air­cooled Series R chiller is based on a chilled-water temperature drop of 6°C [10.8°F]. Chilled-water temperature drops from 3.3 to 10°C [6 to 18°F] may be used as long as minimum and maximum water temperature, and minimum and maximum flow rates, are not violated. Temperature drops outside this range are beyond the optimum range for control, and may adversely affect the microcomputer’s ability to maintain an acceptable supply-water temperature range. Further, temperature drops of less than 3.3°C [6°F] may result in inadequate refrigerant superheat. Sufficient superheat is always a primary concern in any direct-expansion refrigerant system and is especially important in a package chiller where the evaporator is closely coupled to the compressor. When temperature drops are less than 3.3°C [6°F], an evaporator runaround loop may be required.
Load
CV Pump
Application Considerations
11
RLC-PRC005-E4
Variable Flow in the Evaporator
An attractive chilled-water system option may be a variable primary flow (VPF) system. VPF systems present building owners with several cost­saving benefits that are directly related to the pumps. The most obvious cost savings result from eliminating the secondary distribution pump, which in turn avoids the expense incurred with the associated piping connections (material, labor), electrical service, and variable-frequency drive. Building owners often cite pump-related energy savings as the reason that prompted them to install a VPF system. With the help of a software analysis tool such as System Analyzer
, TRACE™, or DOE-2, you can determine whether the anticipated energy savings justify the use of variable primary flow in a particular application. It may also be easier to apply variable primary flow in an existing chilled-water plant. Unlike the “decoupled” design, the bypass can be positioned at various points in the chilled-water loop and an additional pump is unnecessary. The evaporator in the Model RTAC can withstand up to 50 percent water flow reduction as long as this flow is equal to or above the minimum flow-rate requirements. The microprocessor and capacity control algorithms are designed to take a minimum of 10 percent change in water flow rate per minute.
Short Water Loops
The proper location of the temperature control sensor is in the supply (outlet) water connection or pipe. This location allows the building to act as a buffer and assures a slowly-changing return-water temperature. If there is not a sufficient volume of water in the system to provide an adequate buffer, temperature control can be lost, resulting in erratic system operation and excessive compressor cycling. A short water loop has the same effect as attempting to control using the building return water. Typically, a two-minute water loop is sufficient to prevent a short water loop. Therefore, as a guideline, ensure that the volume of water in the evaporator loop equals or exceeds two times the evaporator flow rate. For a rapidly changing load profile, the amount of volume should be increased. To prevent the effect of a short water loop, the following item should be given careful consideration: a storage tank or larger header pipe to increase the volume of water in the system and, therefore, reduce the rate of change of the return water temperature.
Applications Types
• Comfort cooling
• Industrial process cooling
• Ice or thermal storage
• Low-temperature process cooling.
Ice Storage Provides Reduced Electrical Demand
An ice-storage system uses a standard chiller to make ice at night, when utilities charge less for electricity. The ice supplements, or even replaces, mechanical cooling during the day, when utility rates are at their highest. This reduced need for cooling results in big utility cost savings.
Another advantage of ice storage is standby cooling capacity. If the chiller is unable to operate, one or two days of ice may still be available to provide cooling. In that period of time, the chiller can be repaired before building occupants feel any loss of comfort.
The Trane Model RTAC chiller is uniquely suited to low-temperature applications like ice storage because of the ambient relief experienced at night. This allows the Model RTAC chiller to produce ice efficiently, with less stress on the machine.
Simple and smart control strategies are another advantage the Model RTAC chiller offers for ice-storage applications. Trane Tracer
building management systems can actually anticipate how much ice needs to be made at night, and operate the system accordingly. The controls are integrated right into the chiller. Two wires and preprogrammed software dramatically reduce field installation cost and complex programming.
Selection Procedure
12
RLC-PRC005-E4
The chiller capacity tables cover the most frequently encountered leaving­liquid temperatures. The tables reflect a 6°C [10.8°F] temperature drop through the evaporator. For other temperature drops, apply the appropriate performance data adjustment factors. For chilled brine selections, refer to Figures F-3 and F-4 for ethylene and propylene glycol adjustment factors.
To select a Trane air-cooled Series R
chiller, the following information is required:
Selection Procedure SI Units
The chiller capacity tables P-1 through P-4 cover the most frequently encountered leaving-water temperatures. The tables reflect a 6°C temperature drop through the evaporator
To select a Trane air-cooled RTAC chiller, the following information is required:
1
Design load in kW of refrigeration
2
Design chilled-water temperature drop
3
Design leaving-chilled-water temperature
4
Design ambient temperature Evaporator flow rates can be
determined by using the following formula:
Lps = kW (capacity) x 0.239 ÷ temperature drop (°C)
To determine the evaporator pressure drop we use the flow rate (Lps) and the evaporator water pressure drop Figure F1.
For selection of chilled brine units, or applications where the altitude is significantly greater than sea level or the temperature drop is different than 6°C, the performance adjustment factors from Table F-1 should be applied at this point.
For example: Corrected Capacity = Capacity
(unadjusted) x Glycol Capacity Adjustment Factor
Corrected Flow Rate = Flow Rate (unadjusted) x Glycol Flow Rate Adjustment Factor
5
The final unit selection is:
• Quantity (1) RTAA 140
• Cooling capacity = 505.9 kW
• Design ambient temperature 35°C
• Entering chilled-water temperatures = 12°C
• Leaving chilled-water temperatures = 7°C
• Chilled-water flow rate = 24.2 Lps
• Evaporator water pressure drop = 53 kPa
• Compressor power input = 159 kW
• Unit COP = 2.9 kW/kW
Contact the local Trane sales engineer for a proper selection at the given operating conditions.
For a selection in English units:
• 1 ton = 3.5168 kW
• Evaporator flow rate in gpm = 24 x tons ÷ delta T (°F)
• Delta T (°F) = delta T (°C) x 1.8
• 1 gpm = 0.06309 Lps
• 1 ft WG = 3 kPa
• EER = COP ÷ 0.293
General Data
13
RLC-PRC005-E4
SI Units
Table G-1 — RTAC Standard
Size 140 155 170 185 200 Compressor
Quantity 2 2 2 2 2
Nominal Size (1) tons 70/70 70/85 85/85 85/100 100/100
Evaporator
Evaporator Model F140 F155 F170 F185 F200
Water Storage L 132.3 141.3 150.7 156 163.5
Minimum Flow Lps 10.8 11.5 12.5 13.6 13.6
Maximum Flow Lps 33.1 38.2 43.1 39.5 48.4
Condenser
Qty of Coils 4 4 4 4 4
Coil Length mm 3962/3962 4572/3962 4572/4572 5486/4572 5486/5486 Coil Height mm 1067 1067 1067 1067 1067
Fin series fins/ft 192 192 192 192 192
Number of Rows 3 3 3 3 3
Condenser Fans
Quantity (1) 4/4 5/4 5/5 6/5 6/6
Diameter mm 762 762 762 762 762
Total Air Flow m3/s 35.82 39.53 43.22 47.55 51.88
Nominal RPM 915 915 915 915 915
Tip Speed m/s 36.48 36.48 36.48 36.48 36.48 Motor kW kW 1.9 1.9 1.9 1.9 1.9
Min Starting/Operating Ambient(2)
Standard Unit °C -4 -4 -4 -4 -4
Low-Ambient Unit °C -23 -23 -23 -23 -23
General Unit
Refrigerant HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a
Number of Independent
Refrigerant Circuits 2 2 2 2 2
% Minimum Load (3) 15 15 15 15 15
Refrigerant Charge (1) kg 65.8/65.8 70.3/65.8 70.3/70.3 99.8/95.3 99.8/99.8
Oil Charge (1) L 7.6/7.6 7.6/7.6 7.6/7.6 9.9/7.6 9.9/9.9
Operating Weight kg 5216 5407 5586 6268 6396
Shipping Weight kg 5107 5265 5434 6111 6232
Table G-2 — RTAC High Efficiency
Size 120 130 140 155 170 185 200 Compressor
Quantity 2 2 2 2 2 2 2
Nominal Size (1) tons 60/60 60/70 70/70 70/85 85/85 85/100 100/100
Evaporator
Evaporator Model F140 F155 F170 F185 F200 F220 F240
Water Storage L 132.3 141.3 150.7 156 163.5 175.9 188.3
Minimum Flow Lps 10.8 11.5 12.5 13.6 13.6 14.9 16.3
Maximum Flow Lps 33.1 38.2 43.3 39.5 48.4 53.5 58.6
Condenser
Qty of Coils 4 4 4 4 4 4 4
Coil Length mm 3962/3962 4572/3962 4572/4572 5486/4572 5486/5486 6400/2486 6400/6400 Coil Height mm 1067 1067 1067 1067 1067 1067 1067
Fin series fins/ft 192 192 192 192 192 192 192
Number of Rows 3 3 3 3 3 3 3
Condenser Fans
Quantity (1) 4/4 5/4 5/5 6/5 6/6 7/6 7/7
Diameter mm 762 762 762 762 762 762 762
Total Air Flow m3/s 35.82 39.53 43.22 47.55 51.88 56.17 60.47
Nominal RPM 915 915 915 915 915 915 915
Tip Speed m/s 36.48 36.48 36.48 36.48 36.48 36.48 36.48 Motor kW kW 1.9 1.9 1.9 1.9 1.9 1.9 1.9
Min Starting/Operating Ambient(2)
Standard Unit °C -4 -4 -4 -4 -4 -4 -4
Low-Ambient Unit °C -23 -23 -23 -23 -23 -23 -23
General Unit
Refrigerant HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a
Number of Independent
Refrigerant Circuits 2 2 2 2 2 2 2
% Minimum Load (3) 15 15 15 15 15 15 15
Refrigerant Charge (1) kg 65.8/65.8 70.3/65.8 70.3/70.3 99.8/95.3 99.8/99.8 104.4/99.8 104.4/104.4
Oil Charge (1) L 7.6/7.6 7.6/7.6 7.6/7.6 7.6/7.6 7.6/7.6 9.9/7.6 9.9/9.9
Operating Weight kg 5198 5271 5274 6073 6323 6555 6759
Shipping Weight kg 5089 5129 5122 5916 6159 6378 6569
General Data
14
RLC-PRC005-E4
SI Units
Table G-3 — RTAC Low Noise Standard
Size 140 155 170 185 200 Compressor
Quantity 2 2 2 2 2
Nominal Size (1) tons 70/70 70/85 85/85 85/100 100/100
Evaporator
Evaporator Model F140 F155 F170 F185 F200
Water Storage L 132.3 141.3 150.7 156 163.5
Minimum Flow Lps 10.8 11.5 12.5 13.6 13.6
Maximum Flow Lps 33.1 38.2 43.1 39.5 48.4
Condenser
Qty of Coils 4 4 4 4 4 Coil Length mm 3962/3962 4572/3962 4572/4572 5486/4572 5486/5486
Coil Height mm 1067 1067 1067 1067 1067
Fin series fins/ft 192 192 192 192 192
Number of Rows 3 3 3 3 3
Condenser Fans
Quantity (1) 4/4 5/4 5/5 6/5 6/6
Diameter mm 762 762 762 762 762
Total Air Flow m3/s 25.61 28.27 30.93 34.02 37.11
Nominal RPM 680 680 680 680 680
Tip Speed m/s 27.5 27.5 27.5 27.5 27.5 Motor kW kW 0.85 0.85 0.85 0.85 0.85
Min Starting/Operating Ambient(2)
Standard Unit °C -4 -4 -4 -4 -4
Low-Ambient Unit °C -23 -23 -23 -23 -23
General Unit
Refrigerant HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a
Number of Independent
Refrigerant Circuits 2 2 2 2 2
% Minimum Load (3) 15 15 15 15 15
Refrigerant Charge (1) kg 65.8/65.8 70.3/65.8 70.3/70.3 99.8/95.3 99.8/99.8
Oil Charge (1) L 7.6/7.6 7.6/7.6 7.6/7.6 9.9/7.6 9.9/9.9
Operating Weight kg 5306 5497 5676 6358 6486
Shipping Weight kg 5197 5355 5524 6201 6322
15
RLC-PRC005-E4
Table G-4 — RTAC High Efficiency Low Noise
Size 120 130 140 155 170 185 200 Compressor
Quantity 2 2 2 2 2 2 2
Nominal Size (1) tons 60/60 60/70 70/70 70/85 85/85 85/100 100/100
Evaporator
Evaporator Model F140 F155 F170 F185 F200 F220 F240
Water Storage L 132.3 141.3 150.7 156 163.5 175.9 188.3
Minimum Flow Lps 10.8 11.5 12.5 13.6 13.6 14.9 16.3
Maximum Flow Lps 33.1 38.2 43.3 39.5 48.4 53.5 58.6
Condenser
Qty of Coils 4 4 4 4 4 4 4
Coil Length mm 3962/3962 4572/3962 4572/4572 5486/4572 5486/5486 6400/2486 6400/6400 Coil Height mm 1067 1067 1067 1067 1067 1067 1067
Fin series fins/ft 192 192 192 192 192 192 192
Number of Rows 3 3 3 3 3 3 3
Condenser Fans
Quantity (1) 4/4 5/4 5/5 6/5 6/6 7/6 7/7
Diameter mm 762 762 762 762 762 762 762
Total Air Flow m3/s 25.61 28.27 30.93 34.02 37.11 40.23 43.34
Nominal RPM 680 680 680 680 680 680 680
Tip Speed m/s 27.5 27.5 27.5 27.5 27.5 27.5 27.5 Motor kW kW 0.85 0.85 0.85 0.85 0.85 0.85 0.85
Min Starting/Operating Ambient(2)
Standard Unit °C -4 -4 -4 -4 -4 -4 -4
Low-Ambient Unit °C -23 -23 -23 -23 -23 -23 -23
General Unit
Refrigerant HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a
Number of Independent
Refrigerant Circuits 2 2 2 2 2 2 2
% Minimum Load (3) 15 15 15 15 15 15 15
Refrigerant Charge (1) kg 65.8/65.8 70.3/65.8 70.3/70.3 99.8/95.3 99.8/99.8 104.4/99.8 104.4/104.4
Oil Charge (1) L 7.6/7.6 7.6/7.6 7.6/7.6 7.6/7.6 7.6/7.6 9.9/7.6 9.9/9.9
Operating Weight kg 5288 5361 5364 6163 6413 6645 6849
Shipping Weight kg 5179 5219 5212 60 06 6249 6468 6659
Notes:
1. Data containing information on two circuits shown as follows: ckt1/ckt2
2. Minimum start-up/operation ambient based on a 2.22 m/s (5mph) wind across the condenser.
3. Percent minimum load is for total machine at 10°C (50°F) ambient and 7°C (44°F) leaving chilled water temperature. Not each individual circuit.
SI Units
General Data
16
RLC-PRC005-E4
General Data
English Units
Table G-5 — RTAC Standard
Size 140 155 170 185 200 Compressor
Quantity 2 2 2 2 2
Nominal Size (1) tons 70/70 70/85 85/85 85/100 100/100
Evaporator
Evaporator Model F140 F155 F170 F185 F200
Water Storage gal 35 37.3 39.8 41.2 43.2
Minimum Flow gpm 171.2 182.3 198.2 215.6 215.6
Maximum Flow gpm 524.7 605.6 683.2 626.2 767.2
Condenser
Quantity of Coils 4 4 4 4 4
Coil Length ft 13/13 15/13 15/15 18/15 18/18
Coil Height ft 3.5 3.5 3.5 3.5 3.5
Fin Series fins/ft 192 192 192 192 192
Number of Rows 3 3 3 3 3
Condenser Fans
Quantity (1) 4/4 5/4 5/5 6/5 6/6
Diameter in. 30 30 30 30 30
Total Air Flow cfm 75867 83725 91540 100710 109882
Nominal RPM 915 915 915 915 915
Tip Speed ft/s 120 120 120 120 120
Motor kW kW 1.9 1.9 1.9 1.9 1.9
Minimum Starting/Operating Ambient(2)
Standard Unit °F 25 25 25 25 25
Low-Ambient Unit °F -9 -9 -9 -9 -9
General Unit
Refrigerant HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a
Number of Independent
Refrigerant Circuits 2 2 2 2 2
% Minimum Load (3) 15 15 15 15 15
Refrigerant Charge (1) lb 145/145 155/145 155/155 220/210 220/220
Oil Charge (1) gal 2/2 2.2 2.2 2.6/2 2.6/2.6
Operating Weight lb 12018 12459 12871 14442 14737
Shipping Weight lb 11767 12131 12521 14081 14359
Table G-6 — RTAC High Efficiency
Size 120 130 140 155 170 185 200 Compressor
Quantity 2 2 2 2 2 2 2
Nominal Size (1) tons 60/60 60/70 70/70 70/85 85/85 85/100 100/100
Evaporator
Evaporator Model F140 F155 F170 F185 F200 F220 F240
Water Storage gal 35 37.3 39.8 41.2 43.2 46.5 49.8
Minimum Flow gpm 171.2 182.3 198.2 215.6 215.6 231.4 258.4
Maximum Flow gpm 524.7 605.6 683.2 626.2 767.2 848.1 928.9
Condenser
Quantity of Coils 4 4 4 4 4 4 4
Coil Length ft 13/13 15/13 15/15 18/15 18/18 21/18 21/21
Coil Height ft 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Fin Series fins/ft 192 192 192 192 192 192 192
Number of Rows 3 3 3 3 3 3 3
Condenser Fans
Quantity (1) 4/4 5/4 5/5 6/5 6/6 7/6 7/7
Diameter in. 30 30 30 30 30 30 30
Total Air Flow cfm 75867 83725 91540 100710 109882 118968 128075
Nominal RPM 915 915 915 915 915 915 915
Tip Speed ft/s 120 120 120 120 120 120 120 Motor kW kW 1.9 1.9 1.9 1.9 1.9 1.9 1.9
Minimum Starting/Operating Ambient(2)
Standard Unit °F 25 25 25 25 25 25 25
Low-Ambient Unit °F -9 -9 -9 -9 -9 -9 -9
General Unit
Refrigerant HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a
Number of Independent
Refrigerant Circuits 2 2 2 2 2 2 2
% Minimum Load (3) 15 15 15 15 15 15 15
Refrigerant Charge (1) lb 145/145 155/145 155/155 220/210 220/220 230/220 230/230
Oil Charge (1) gal 2/2 2.2 2.2 2.6/2 2.6/2.6 2.6/2 2.6/2.6
Operating Weight lb 11977 12145 12152 13993 14569 15104 15574
Shipping Weight lb 11726 11818 11802 13631 14191 14696 15136
17
RLC-PRC005-E4
General Data
English Units
Table G-7 — RTAC Low Noise Standard
Size 140 155 170 185 200 Compressor
Quantity 2 2 2 2 2
Nominal Size (1) tons 70/70 70/85 85/85 85/100 100/100
Evaporator
Evaporator Model F140 F155 F170 F185 F200
Water Storage gal 35 37.3 39.8 41.2 43.2
Minimum Flow gpm 171.2 182.3 198.2 215.6 215.6
Maximum Flow gpm 524.7 605.6 683.2 626.2 767.2
Condenser
Quantity of Coils 4 4 4 4 4
Coil Length ft 13/13 15/13 15/15 18/15 18/18 Coil Height ft 3.5 3.5 3.5 3.5 3.5
Fin Series fins/ft 192 192 192 192 192
Number of Rows 3 3 3 3 3
Condenser Fans
Quantity (1) 4/4 5/4 5/5 6/5 6/6
Diameter in. 30 30 30 30 30
Total Air Flow cfm 54242 59876 65510 72054 78600
Nominal RPM 680 680 680 680 680
Tip Speed ft/s 90 90 90 90 90 Motor kW kW 0.85 0.85 0.85 0.85 0.85
Minimum Starting/Operating Ambient(2)
Standard Unit °F 25 25 25 25 25
Low-Ambient Unit °F -9 -9 -9 -9 -9
General Unit
Refrigerant HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a
Number of Independent
Refrigerant Circuits 2 2 2 2 2
% Minimum Load (3) 15 15 15 15 15
Refrigerant Charge (1) lb 145/145 155/145 155/155 220/210 220/220
Oil Charge (1) gal 2/2 2.2 2.2 2.6/2 2.6/2.6
Operating Weight lb 12226 12666 13078 14650 14945
Shipping Weight lb 11975 12339 12728 14288 14567
18
RLC-PRC005-E4
General Data
English Units
Table G-8 — RTAC High Efficiency Low Noise
Size 120 130 140 155 170 185 200 Compressor
Quantity 2 2 2 2 2 2 2
Nominal Size (1) tons 60/60 60/70 70/70 70/85 85/85 85/100 100/100
Evaporator
Evaporator Model F140 F155 F170 F185 F200 F220 F240
Water Storage gal 35 37.3 39.8 41.2 43.2 46.5 49.8
Minimum Flow gpm 171.2 182.3 198.2 215.6 215.6 231.4 258.4
Maximum Flow gpm 524.7 605.6 683.2 626.2 767.2 848.1 928.9
Condenser
Quantity of Coils 4 4 4 4 4 4 4
Coil Length ft 13/13 15/13 15/15 18/15 18/18 21/18 21/21
Coil Height ft 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Fin Series fins/ft 192 192 192 192 192 192 192
Number of Rows 3 3 3 3 3 3 3
Condenser Fans
Quantity (1) 4/4 5/4 5/5 6/5 6/6 7/6 7/7
Diameter in. 30 30 30 30 30 30 30
Total Air Flow cfm 54242 59876 65510 72054 78600 85207 91794
Nominal RPM 680 680 680 680 680 680 680
Tip Speed ft/s 90 90 90 90 90 90 90 Motor kW kW 0.85 0.85 0.85 0.85 0.85 0.85 0.85
Minimum Starting/Operating Ambient(2)
Standard Unit °F 25 25 25 25 25 25 25
Low-Ambient Unit °F -9 -9 -9 -9 -9 -9 -9
General Unit
Refrigerant HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a HFC 134a
Number of Independent
Refrigerant Circuits 2 2 2 2 2 2 2
% Minimum Load (3) 15 15 15 15 15 15 15
Refrigerant Charge (1) lb 145/145 155/145 155/155 220/210 220/220 230/220 230/230
Oil Charge (1) gal 2/2 2.2 2.2 2.6/2 2.6/2.6 2.6/2 2.6/2.6
Operating Weight lb 12184 12353 12359 14200 14776 15311 15781
Shipping Weight lb 11933 12025 12009 13839 14399 14903 15343
Notes:
1. Data containing information on two circuits shown as follows: ckt1/ckt2
2. Minimum start-up/operation ambient based on a 5mph wind across the condenser.
3. Percent minimum load is for total machine at 10°C [50°F] ambient and 7°C [44°F] leaving chilled water temperature. Not each individual circuit.
19
RLC-PRC005-E4
Performance Data
Standard Units (SI Units)
Table P-1 — RTAC 140 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 4 0 46 50 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW 5 536.3 131.3 3.65 505.7 141.8 3.21 474.1 153.5 2.80 441.6 166.5 2.42 400.7 184.0 2.01 374.2 196.1 1.77 7 571.1 136.4 3.75 539.0 147.1 3.31 505.9 159.0 2.90 471.7 172.1 2.51 428.8 189.8 2.09 400.9 202.1 1.84 9 606.9 141.7 3.85 573.2 152.6 3.41 538.4 164.6 2.99 502.6 177.9 2.60 457.6 195.8 2.16 409.6 197.1 1.92 11 643.4 147.2 3.95 608.1 158.2 3.50 571.7 170.4 3.07 534.2 183.9 2.68 486.9 202.0 2.24 417.2 191.3 2.01 13 680.6 152.8 4.04 643.7 164.0 3.58 605.6 176.4 3.15 566.3 190.0 2.75 509.4 204.9 2.31 423.3 184.6 2.11
Table P-2 — RTAC 155 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 4 0 46 50 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW 5 587.8 145.8 3.60 554.5 156.9 3.18 520.0 169.4 2.78 484.5 183.2 2.41 440.0 201.9 2.00 411.0 214.9 1.77 7 625.7 151.7 3.70 590.6 163.0 3.27 554.4 175.6 2.87 517.1 189.6 2.50 470.2 208.5 2.08 439.7 221.7 1.84 9 664.3 157.8 3.79 627.5 169.3 3.36 589.5 182.0 2.95 550.3 196.2 2.57 501.1 215.3 2.15 450.5 217.4 1.92 11 703.7 164.1 3.87 665.1 175.7 3.44 625.3 188.7 3.03 584.2 203.0 2.65 532.6 222.3 2.22 454.9 209.3 2.00 13 743.7 170.6 3.95 703.4 182.4 3.52 661.7 195.5 3.10 618.7 209.9 2.72 561.8 225.5 2.31 461.3 202.5 2.10
Table P-3 — RTAC 170 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 4 0 46 50 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW 5 640.2 160.5 3.56 603.9 172.2 3.15 566.5 185.4 2.77 527.9 200.0 2.41 479.5 220.0 2.00 448.1 233.9 1.77 7 681.1 167.2 3.65 642.9 179.1 3.24 603.5 192.4 2.85 562.9 207.2 2.48 511.9 227.4 2.07 478.8 241.4 1.84 9 722.7 174.2 3.73 682.6 186.2 3.32 641.2 199.7 2.93 598.6 214.6 2.56 545.0 234.9 2.14 491.5 237.7 1.91 11 765.0 181.4 3.81 723.0 193.5 3.39 679.5 207.2 3.00 634.9 222.2 2.63 578.7 242.7 2.21 497.9 230.3 1.99 13 807.9 188.8 3.88 763.9 201.1 3.46 718.5 214.8 3.07 671.8 230.0 2.69 607.7 245.1 2.30 504.4 222.7 2.08
Table P-4 — RTAC 185 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 4 0 46 50 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW 5 708.2 177.3 3.57 669.4 190.2 3.16 629.1 204.6 2.78 587.4 220.8 2.43 534.9 242.8 2.03 500.5 258.0 1.79 7 753.1 184.7 3.66 712.2 197.8 3.25 669.8 212.5 2.86 625.9 228.9 2.50 570.5 251.2 2.09 525.9 261.3 1.86 9 798.8 192.3 3.74 755.9 205.7 3.33 711.3 220.6 2.94 665.2 237.3 2.57 607.0 259.9 2.16 539.2 256.9 1.94 11 845.3 200.2 3.81 800.3 213.8 3.40 753.6 229.0 3.01 705.3 245.9 2.64 644.2 268.9 2.22 548.1 249.3 2.03 13 892.5 208.4 3.88 845.4 222.2 3.47 796.6 237.6 3.08 746.1 254.8 2.70 672.6 271.9 2.29 551.0 238.7 2.12
Table P-5 — RTAC 200 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 4 0 46 50 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW 5 777.8 194.3 3.58 736.2 208.3 3.18 692.9 224.2 2.80 647.9 241.8 2.44 591.0 265.7 2.04 553.7 282.4 1.81 7 827.0 202.4 3.66 783.1 216.7 3.26 737.4 232.9 2.88 690.1 250.8 2.52 630.0 275.3 2.11 580.4 285.5 1.88 9 877.0 210.8 3.75 830.9 225.5 3.34 782.9 241.9 2.95 733.1 260.2 2.59 670.1 285.1 2.17 588.7 276.7 1.96 11 928.0 219.5 3.82 879.7 234.5 3.41 829.4 251.3 3.02 777.2 270.0 2.65 711.0 295.4 2.23 598.7 268.6 2.05 13 979.8 228.5 3.89 929.3 243.8 3.48 876.7 260.9 3.08 822.1 280.0 2.71 741.1 298.2 2.31 607.0 258.8 2.15
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.
20
RLC-PRC005-E4
Performance Data
High Efficiency Units (SI Units)
Table P-6— RTAC 120 Entering Condenser Air Temperature (°C)
LWT 2 5 30 3 5 4 0 46 52 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW 5 459.3 104.9 3.81 433.2 112.9 3.37 406.2 122.1 2.95 378.2 132.4 2.55 342.9 146.6 2.11 310.0 161.0 1.75 7 490.9 108.9 3.94 463.4 117.0 3.49 434.8 126.3 3.06 405.3 136.8 2.66 368.1 151.2 2.21 333.4 165.8 1.84 9 523.2 113.0 4.07 494.3 121.3 3.61 464.2 130.7 3.17 433.1 141.4 2.76 393.9 155.9 2.29 350.7 167.0 1.92 11 556.3 117.2 4.18 525.8 125.7 3.72 494.2 135.3 3.27 461.5 146.1 2.85 420.3 160.8 2.38 366.3 167.0 2.00 13 590.0 121.6 4.29 558.0 130.3 3.82 524.8 140.0 3.37 490.6 150.9 2.94 447.3 165.8 2.46 383.8 167.5 2.09
Table P-7— RTAC 130 Entering Condenser Air Temperature (°C)
LWT 2 5 30 3 5 4 0 46 52 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW 5 506.6 115.3 3.81 478.2 124.2 3.37 448.7 134.2 2.95 418.3 145.5 2.56 380.0 160.9 2.13 344.3 176.5 1.77 7 541.5 119.7 3.94 511.5 128.7 3.50 480.4 138.9 3.07 448.4 150.3 2.67 408.1 165.9 2.22 370.4 181.7 1.86 9 577.2 124.3 4.07 545.7 133.4 3.61 513.0 143.8 3.18 479.3 155.3 2.77 436.9 171.0 2.32 393.9 185.0 1.94 11 613.9 129.0 4.19 580.8 138.3 3.73 546.5 148.7 3.28 511.1 160.4 2.87 466.5 176.3 2.41 413.3 185.9 2.03 13 651.4 133.9 4.30 616.7 143.3 3.83 580.7 153.9 3.39 543.5 165.7 2.97 496.7 181.7 2.49 425.5 182.7 2.12
Table P-8— RTAC 140 Entering Condenser Air Temperature (°C)
LWT 2 5 30 3 5 4 0 46 52 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW 5 554.6 125.8 3.82 523.6 135.5 3.38 491.7 146.5 2.96 458.7 158.7 2.57 417.4 175.3 2.14 378.9 192.0 1.79 7 592.8 130.7 3.95 560.2 140.5 3.50 526.6 151.6 3.08 491.9 163.9 2.68 448.4 180.7 2.24 407.8 197.6 1.88 9 632.1 135.7 4.07 597.9 145.7 3.62 562.6 156.9 3.19 526.2 169.3 2.79 480.3 186.2 2.33 437.6 203.3 1.96 11 672.6 140.9 4.19 636.7 151.0 3.73 599.6 162.3 3.30 561.3 174.9 2.89 513.1 191.9 2.43 457.7 203.5 2.05 13 714.2 146.3 4.31 676.5 156.5 3.84 637.5 167.9 3.40 597.3 180.6 2.99 546.7 197.7 2.52 466.4 197.6 2.15
Table P-9— RTAC 155 Entering Condenser Air Temperature (°C)
LWT 2 5 30 3 5 4 0 46 52 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW
161.7 2.93 501.0 174.7 2.55 456.0 192.6 2.13 414.1 210.7 1.78 7 645.9 145.3 3.88 610.6 155.7 3.45 574.0 167.5 3.04 536.3 180.7 2.65 489.0 198.7 2.22 444.8 217.0 1.87 9 687.9 151.0 3.99 650.7 161.6 3.56 612.3 173.5 3.14 572.6 186.8 2.75 522.8 205.0 2.31 476.3 223.4 1.95 11 730.9 157.0 4.10 691.9 167.7 3.66 651.5 179.7 3.24 609.9 193.2 2.84 557.5 211.4 2.39 501.2 225.6 2.03 13 774.8 163.2 4.20 733.9 174.0 3.76 691.6 186.1 3.33 648.0 199.6 2.93 593.1 218.0 2.48 506.2 217.5 2.12
Table P-10— RTAC 170 Entering Condenser Air Temperature (°C)
LWT 2 5 30 3 5 4 0 46 52 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW 5 656.3 153.7 3.71 619.9 164.6 3.30 582.3 177.0 2.91 543.6 190.9 2.54 494.8 210.0 2.12 449.4 229.4 1.78 7 700.0 160.0 3.82 661.6 171.1 3.40 622.0 183.6 3.01 581.2 197.6 2.63 529.8 216.9 2.21 481.9 236.4 1.86 9 744.6 166.6 3.92 704.3 177.7 3.50 662.7 190.4 3.10 619.7 204.5 2.72 565.7 223.9 2.29 515.3 243.5 1.93 11 790.3 173.3 4.02 748.0 184.6 3.60 704.2 197.4 3.19 659.2 211.6 2.81 602.5 231.1 2.37 539.5 245.1 2.01 13 836.8 180.3 4.11 792.5 191.7 3.69 746.7 204.5 3.28 699.5 218.8 2.89 640.1 238.4 2.45 546.7 237.3 2.10
Table P-11— RTAC 185 Entering Condenser Air Temperature (°C)
LWT 2 5 30 3 5 4 0 46 52 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW 5 728.8 170.9 3.72 689.7 182.8 3.32 649.0 196.4 2.93 606.9 211.6 2.56 553.8 232.6 2.15 504.2 253.8 1.81 7 777.3 178.0 3.83 736.0 190.1 3.42 693.1 203.8 3.03 648.7 219.3 2.65 592.8 240.5 2.23 540.3 261.9 1.88 9 827.0 185.3 3.93 783.5 197.6 3.52 738.3 211.5 3.12 691.6 227.2 2.74 632.7 248.6 2.31 577.5 270.3 1.95 11 877.8 192.9 4.03 832.0 205.4 3.61 784.7 219.5 3.21 735.7 235.3 2.82 673.8 257.0 2.39 590.5 264.2 2.04 13 929.6 200.8 4.11 881.7 213.4 3.70 832.0 227.7 3.29 780.7 243.7 2.90 715.8 265.6 2.46 599.4 256.0 2.13
21
RLC-PRC005-E4
Performance Data
High Efficiency Units (SI Units)
Table P-12— RTAC 200 Entering Condenser Air Temperature (°C)
LWT 2 5 30 3 5 4 0 46 52 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW 5 803.3 188.3 3.73 761.2 201.3 3.33 717.3 216.1 2.95 671.8 232.6 2.59 614.2 255.4 2.17 560.1 278.4 1.83 7 856.9 196.2 3.84 812.3 209.4 3.44 766.0 224.4 3.05 717.9 241.2 2.68 657.1 264.3 2.26 600.0 287.8 1.91 9 911.8 204.4 3.94 864.8 217.8 3.53 816.0 233.0 3.14 765.4 250.2 2.76 701.3 273.7 2.33 629.6 290.6 1.98 11 968.0 212.9 4.04 918.6 226.5 3.62 867.3 242.0 3.22 814.1 259.4 2.84 746.8 283.3 2.41 642.5 283.5 2.07 13 1025.5 221.6 4.12 973.7 235.5 3.71 919.9 251.2 3.31 864.1 269.0 2.92 793.5 293.3 2.48 648.9 272.4 2.17
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.
22
RLC-PRC005-E4
Performance Data
Low Noise Standard Units (SI Units)
Table P-13 RTAC 140 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 40 °C C.C. kW P.I. kW COP kW/kW C.C. kW P.I. kW COP kW/kW C.C. kW P.I. kW COP kW/kW C.C. kW P.I. kW COP kW/kW 5 510.3 144.5 3.36 478.7 156.3 2.92 446.2 169.3 2.52 412.9 183.5 2.16 7 541.1 150.7 3.42 507.9 162.7 2.98 473.7 175.9 2.58 438.8 190.4 2.22 9 572.3 157.1 3.48 537.4 169.4 3.04 501.6 182.8 2.64 465.3 197.4 2.27 11 603.8 163.7 3.53 567.3 176.2 3.09 529.7 189.9 2.68 491.5 204.7 2.32 13 635.6 170.6 3.57 597.3 183.3 3.13 558.0 197.2 2.73 509.0 205.6 2.39
Table P-14— RTAC 155 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 40 °C C.C. kW P.I. kW COP kW/kW C.C. kW P.I. kW COP kW/kW C.C. kW P.I. kW COP kW/kW C.C. kW P.I. kW COP kW/kW 5 560.0 159.7 3.33 525.5 172.2 2.91 490.0 186.1 2.52 453.8 201.2 2.16 7 593.4 166.7 3.39 557.0 179.5 2.97 519.8 193.5 2.57 481.6 208.9 2.22 9 627.1 173.9 3.44 588.9 186.9 3.02 549.8 201.2 2.62 509.8 216.8 2.26 11 661.1 181.4 3.48 621.1 194.7 3.06 580.0 209.2 2.67 538.1 224.9 2.31 13 695.3 189.1 3.52 653.4 202.6 3.10 610.5 217.3 2.71 556.8 225.9 2.38
Table P-15 — RTAC 170 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 40 °C C.C. kW P.I. kW COP kW/kW C.C. kW P.I. kW COP kW/kW C.C. kW P.I. kW COP kW/kW C.C. kW P.I. kW COP kW/kW 5 610.3 175.1 3.31 572.8 188.3 2.90 534.3 203.0 2.52 494.8 219.1 2.17 7 646.3 182.9 3.36 606.8 196.4 2.95 566.2 211.3 2.57 524.8 227.7 2.22 9 682.6 191.0 3.41 641.1 204.7 3.00 598.4 219.9 2.61 555.0 236.3 2.26 11 719.1 199.4 3.45 675.6 213.3 3.04 630.9 228.6 2.65 585.5 245.3 2.30 13 755.8 208.0 3.48 710.2 222.1 3.07 663.5 237.6 2.69 604.8 246.2 2.37
Table P-16— RTAC 185 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 40 °C C.C. kW P.I. kW COP kW/kW C.C. kW P.I. kW COP kW/kW C.C. kW P.I. kW COP kW/kW C.C. kW P.I. kW COP kW/kW 5 675.9 193.4 3.32 635.4 208.0 2.91 593.7 224.3 2.53 550.9 242.1 2.19 7 715.5 202.1 3.37 672.8 217.1 2.96 628.9 233.6 2.58 583.8 251.7 2.23 9 755.4 211.1 3.42 710.6 226.4 3.01 664.4 243.3 2.62 615.2 261.0 2.27 11 795.7 220.5 3.45 748.6 236.1 3.04 700.2 253.3 2.66 648.6 271.3 2.31 13 836.2 230.1 3.48 787.0 246.1 3.07 736.3 263.7 2.69 668.0 271.0 2.38
Table P-17 — RTAC 200 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 40 °C C.C. kW P.I. kW COP kW/kW C.C. kW P.I. kW COP kW/kW C.C. kW P.I. kW COP kW/kW C.C. kW P.I. kW COP kW/kW 5 742.7 212.0 3.33 699.2 228.1 2.93 654.1 245.8 2.55 607.7 265.2 2.20 7 786.1 221.6 3.38 740.1 238.0 2.97 692.6 256.2 2.59 643.7 276.1 2.24 9 829.9 231.6 3.42 781.5 248.5 3.01 731.6 267.1 2.63 680.5 287.3 2.28 11 874.1 242.0 3.46 823.3 259.3 3.05 771.0 278.4 2.66 717.1 299.2 2.31 13 918.6 252.8 3.48 865.5 270.6 3.07 810.6 290.2 2.69 730.4 292.2 2.41
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.
23
RLC-PRC005-E4
Performance Data
Low Noise HE Units (SI Units)
Table P-18— RTAC 120 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 40 46 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW 5 443.2 113.4 3.67 416.2 122.4 3.20 388.3 132.6 2.77 359.7 143.9 2.38 323.9 159.2 1.94 7 471.8 118.0 3.76 443.3 127.3 3.29 413.9 137.7 2.85 383.7 149.1 2.45 345.9 164.8 2.01 9 500.8 122.9 3.84 470.8 132.4 3.37 439.8 142.9 2.92 408.0 154.6 2.52 363.8 167.4 2.08 11 530.2 128.0 3.91 498.6 137.6 3.44 466.1 148.4 2.99 432.7 160.3 2.58 376.7 166.8 2.16
13.0 560.0 133.2 3.98 526.8 143.1 3.50 492.6 154.0 3.05 457.6 166.1 2.64 391.7 166.8 2.25
Table P-19— RTAC 130 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 40 46 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW 5 489.3 124.6 3.68 459.8 134.6 3.22 429.5 145.7 2.79 398.4 158.0 2.40 359.6 174.6 1.97 7 520.9 129.8 3.77 489.9 139.9 3.30 458.0 151.2 2.87 425.2 163.7 2.47 384.2 180.5 2.03 9 553.2 135.2 3.85 520.5 145.5 3.38 486.9 157.0 2.94 452.4 169.6 2.54 406.1 184.9 2.10 11 585.9 140.7 3.93 551.6 151.3 3.46 516.3 162.9 3.01 480.0 175.8 2.61 422.9 185.7 2.18 13 619.1 146.5 4.00 583.1 157.2 3.52 546.0 169.0 3.08 508.0 182.0 2.67 434.8 182.8 2.27
Table P-20— RTAC 140 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 40 46 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW 5 535.9 136.0 3.69 503.9 146.8 3.23 471.1 158.9 2.80 437.5 172.1 2.41 395.5 189.9 1.99 7 570.7 141.7 3.78 537.1 152.7 3.32 502.5 164.9 2.89 467.1 178.3 2.49 422.9 196.4 2.06 9 606.3 147.5 3.87 570.9 158.7 3.40 534.5 171.1 2.96 497.3 184.7 2.56 450.9 202.9 2.13 11 642.5 153.6 3.95 605.3 165.0 3.47 567.1 177.6 3.04 527.9 191.3 2.63 468.5 203.5 2.20 13 679.4 159.9 4.02 640.3 171.5 3.54 600.2 184.2 3.10 559.0 198.1 2.70 476.8 197.6 2.31
Table P-21 — RTAC 155 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 40 46 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW 5 584.6 150.5 3.64 550.0 162.0 3.20 514.3 174.9 2.78 477.8 189.1 2.40 432.1 208.3 1.98 7 621.9 156.9 3.73 585.3 168.6 3.28 547.8 181.7 2.86 509.3 196.1 2.47 461.2 215.5 2.04 9 659.8 163.5 3.80 621.3 175.4 3.35 581.8 188.7 2.93 541.4 203.3 2.54 491.1 222.9 2.11 11 698.3 170.4 3.87 657.9 182.5 3.42 616.4 195.9 2.99 573.9 210.6 2.60 511.6 224.4 2.18 13 737.3 177.5 3.93 695.0 189.7 3.48 651.5 203.3 3.05 606.9 218.2 2.66 519.4 217.6 2.28
Table P-22— RTAC 170 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 40 46 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW 5 634.0 165.0 3.60 596.5 177.3 3.17 557.9 191.0 2.76 518.4 206.2 2.39 468.9 226.8 1.97 7 673.7 172.2 3.68 634.2 184.7 3.24 593.6 198.6 2.83 551.9 213.9 2.45 499.8 234.8 2.03 9 714.1 179.6 3.75 672.5 192.3 3.31 629.7 206.4 2.90 585.9 221.9 2.52 531.3 242.8 2.09 11 755.0 187.3 3.81 711.3 200.1 3.37 666.4 214.4 2.96 620.4 230.1 2.57 551.4 243.6 2.17 13 796.3 195.2 3.86 750.5 208.2 3.42 703.5 222.6 3.01 655.3 238.4 2.63 561.1 237.4 2.26
Table P-23— RTAC 185 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 40 46 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW 5 704.3 183.7 3.60 663.7 197.1 3.18 621.7 212.2 2.78 578.6 228.9 2.40 524.5 251.5 1.99 7 748.4 191.7 3.68 705.5 205.5 3.25 661.2 220.8 2.84 615.7 237.8 2.47 558.6 260.8 2.05 9 793.2 200.1 3.74 747.9 214.2 3.31 701.3 229.8 2.90 653.4 247.0 2.52 590.1 267.9 2.11 11 838.5 208.9 3.80 791.0 223.1 3.37 742.0 239.0 2.96 691.7 256.6 2.58 605.9 264.3 2.19 13 884.5 217.8 3.85 834.7 232.4 3.42 783.3 248.6 3.01 730.6 266.4 2.63 614.9 256.3 2.29
24
RLC-PRC005-E4
Performance Data
Low Noise HE Units (SI Units)
Table P-24— RTAC 200 Entering Condenser Air Temperature (°C)
LWT 2 5 30 35 40 46 °C C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP C.C. P.I. COP
kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW kW kW kW/kW 5 776.4 202.6 3.61 732.4 217.3 3.19 686.9 233.7 2.79 640.1 251.9 2.42 581.1 276.6 2.01 7 824.9 211.6 3.68 778.4 226.6 3.25 730.3 243.4 2.85 680.8 262.0 2.48 618.6 287.2 2.06 9 874.3 221.0 3.74 825.2 236.4 3.31 774.5 253.6 2.91 722.4 272.5 2.53 644.6 289.6 2.13 11 924.4 230.8 3.80 872.8 246.5 3.37 819.5 264.1 2.96 764.6 283.5 2.58 654.7 281.3 2.23 13 975.2 240.9 3.85 921.0 257.1 3.42 865.1 275.1 3.01 807.5 294.9 2.63 665.5 272.6 2.33
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.
25
RLC-PRC005-E4
Performance Data
Standard Units (English Units)
Table P-25— RTAC 140 Entering Condenser Air Temperature (°F)
LWT 77 86 95 104 115 122 °F C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER
To n k W Ton k W To n k W To n k W To n k W To n kW 41 152.5 131.3 12.45 143.8 141.8 10.96 134.8 153.5 9.56 125.6 166.5 8.27 114.0 184.0 6.85 106.4 196.1 6.03 44 160.8 135.5 12.75 151.7 146.2 11.24 142.4 158.1 9.83 132.7 171.2 8.52 120.6 188.9 7.08 112.8 201.1 6.24 45 163.6 137.0 12.85 154.4 147.7 11.34 144.9 159.6 9.92 135.1 172.8 8.60 122.9 190.5 7.15 114.3 201.5 6.31 46 166.4 138.5 12.95 157.1 149.2 11.43 147.5 161.2 10.00 137.6 174.4 8.68 125.1 192.2 7.22 115.0 200.1 6.39 48 172.0 141.4 13.14 162.5 152.3 11.61 152.6 164.3 10.17 142.5 177.6 8.84 129.7 195.5 7.37 116.3 197.4 6.55
Table P-26 — RTAC 155 Entering Condenser Air Temperature (°F)
LWT 77 86 95 104 115 122 °F C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER
To n k W Ton k W To n k W To n k W To n k W To n kW 41 167.2 145.8 12.28 157.7 156.9 10.84 147.9 169.4 9.49 137.8 183.2 8.24 125.1 201.9 6.84 116.9 214.9 6.03 44 176.2 150.7 12.56 166.3 162.0 11.11 156.0 174.6 9.74 145.5 188.5 8.47 132.3 207.4 7.05 123.7 220.6 6.23 45 179.2 152.4 12.65 169.1 163.7 11.20 158.8 176.3 9.83 148.1 190.3 8.55 134.7 209.3 7.12 125.4 221.2 6.30 46 182.2 154.1 12.74 172.1 165.4 11.28 161.6 178.1 9.91 150.7 192.1 8.62 137.2 211.2 7.19 126.2 220.0 6.38 48 188.3 157.5 12.91 177.9 168.9 11.44 167.1 181.7 10.06 156.0 195.8 8.77 142.0 214.9 7.33 127.9 217.6 6.53
Table P-27 — RTAC 170 Entering Condenser Air Temperature (°F)
LWT 77 86 95 104 115 122 °F C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER
To n k W Ton k W To n k W To n k W To n k W To n kW 41 182.1 160.5 12.14 171.8 172.2 10.75 161.1 185.4 9.44 150.2 200.0 8.21 136.4 220.0 6.83 127.4 233.9 6.04 44 191.8 166.1 12.40 181.0 177.9 11.00 169.9 191.2 9.67 158.4 206.0 8.43 144.1 226.1 7.04 134.7 240.1 6.23 45 195.0 168.0 12.48 184.1 179.9 11.08 172.8 193.2 9.75 161.2 208.0 8.50 146.6 228.2 7.10 136.5 241.0 6.29 46 198.3 170.0 12.56 187.2 181.9 11.16 175.8 195.2 9.82 164.0 210.1 8.57 149.3 230.3 7.17 137.5 240.0 6.36 48 204.9 173.8 12.72 193.5 185.8 11.31 181.8 199.3 9.97 169.7 214.2 8.71 154.5 234.5 7.30 139.5 237.9 6.51
Table P-28 — RTAC 185 Entering Condenser Air Temperature (°F)
LWT 77 86 95 104 115 122 °F C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER
To n k W Ton k W To n k W To n k W To n k W To n kW 41 201.4 177.3 12.17 190.4 190.2 10.80 178.9 204.6 9.50 167.1 220.8 8.28 152.1 242.8 6.91 142.4 258.0 6.11 44 212.1 183.4 12.43 200.5 196.5 11.04 188.6 211.2 9.73 176.2 227.5 8.49 160.6 249.8 7.11 148.3 260.8 6.31 45 215.6 185.5 12.51 203.9 198.6 11.12 191.8 213.4 9.80 179.3 229.8 8.56 163.4 252.1 7.17 150.0 260.8 6.38 46 219.3 187.6 12.59 207.4 200.8 11.20 195.1 215.7 9.88 182.4 232.1 8.63 166.3 254.6 7.23 151.0 259.6 6.45 48 226.5 191.9 12.74 214.3 205.2 11.35 201.6 220.2 10.02 188.6 236.8 8.76 172.1 259.4 7.35 153.1 257.1 6.60
Table P-29 — RTAC 200 Entering Condenser Air Temperature (°F)
LWT 77 86 95 104 115 122 °F C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER
To n k W Ton k W To n k W To n k W To n k W To n kW 41 221.2 194.3 12.21 209.4 208.3 10.85 197.1 224.2 9.56 184.3 241.8 8.34 168.1 265.7 6.98 157.5 282.4 6.18 44 232.9 201.0 12.46 220.5 215.3 11.09 207.6 231.4 9.78 194.3 249.3 8.55 177.3 273.7 7.17 163.8 285.0 6.38 45 236.8 203.3 12.54 224.2 217.7 11.17 211.2 233.9 9.85 197.6 251.9 8.62 180.5 276.3 7.23 165.3 284.5 6.45 46 240.7 205.7 12.62 228.0 220.1 11.24 214.8 236.4 9.93 201.0 254.5 8.69 183.6 279.1 7.29 166.0 282.1 6.53 48 248.6 210.3 12.77 235.6 225.0 11.39 221.9 241.4 10.06 207.8 259.7 8.81 189.9 284.6 7.40 167.3 277.2 6.68
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.
26
RLC-PRC005-E4
Performance Data
High Efficiency Units (English Units)
Table P-30— RTAC 120 Entering Condenser Air Temperature (°F)
LWT 77 86 95 104 115 122 °F C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER
Ton kW EER Ton kW EER Ton kW EER Ton kW EER Ton kW EER Ton kW EER
41 130.6 104.9 12.99 123.2 112.9 11.49 115.5 122.1 10.06 107.6 132.4 8.71 97.5 146.6 7.21 88.1 161.0 1.72 44 138.1 108.2 13.37 130.4 116.3 11.84 122.3 125.6 10.38 114.0 136.1 9.01 103.5 150.4 7.48 93.7 165.0 6.22 45 140.6 109.3 13.49 132.8 117.5 11.96 124.6 126.8 10.49 116.2 137.3 9.11 105.5 151.7 7.56 95.3 165.9 6.30 46 143.2 110.5 13.62 135.2 118.7 12.07 126.9 128.0 10.59 118.3 138.6 9.20 107.5 153.0 7.65 96.7 166.3 6.38 48 148.3 112.7 13.85 140.1 121.0 12.29 131.6 130.5 10.80 122.7 141.1 9.39 111.6 155.7 7.81 99.4 166.9 6.53
Table P-31— RTAC 130 Entering Condenser Air Temperature (°F)
LWT 77 86 95 104 115 122 °F C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER
Ton kW EER Ton kW EER Ton kW EER Ton kW EER Ton kW EER Ton kW EER
41 144.1 115.3 13.01 136.0 124.2 11.51 127.6 134.2 10.08 119.0 145.5 8.75 108.1 160.9 7.27 97.9 176.5 1.74 44 152.4 119.0 13.38 143.9 128.0 11.86 135.1 138.1 10.41 126.1 149.5 9.05 114.7 165.1 7.54 104.1 180.8 6.30 45 155.1 120.2 13.51 146.6 129.2 11.98 137.7 139.5 10.52 128.5 150.9 9.15 117.0 166.5 7.62 106.1 182.0 6.38 46 158.0 121.5 13.63 149.3 130.5 12.09 140.2 140.8 10.62 131.0 152.2 9.25 119.2 167.9 7.71 107.9 183.0 6.46 48 163.6 124.0 13.86 154.7 133.2 12.31 145.4 143.5 10.83 135.8 155.0 9.44 123.8 170.8 7.89 111.6 184.8 6.62
Table P-32 — RTAC 140 Entering Condenser Air Temperature (°F)
LWT 77 86 95 104 115 122 °F C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER
Ton kW EER Ton kW EER Ton kW EER Ton kW EER Ton kW EER Ton kW EER
41 157.7 125.8 13.03 148.9 135.5 11.53 139.8 146.5 10.11 130.5 158.7 8.79 118.7 175.3 7.31 107.7 192.0 6.11 44 166.8 129.8 13.40 157.6 139.7 11.88 148.1 150.7 10.44 138.3 163.0 9.10 126.1 179.8 7.59 114.6 196.6 6.36 45 169.8 131.2 13.52 160.5 141.1 12.00 150.9 152.2 10.55 141.0 164.5 9.20 128.5 181.3 7.68 116.9 198.2 6.44 46 172.9 132.6 13.64 163.5 142.5 12.11 153.7 153.6 10.66 143.7 166.0 9.30 131.1 182.8 7.77 119.3 199.8 6.53 48 179.2 135.4 13.88 169.5 145.4 12.33 159.4 156.6 10.87 149.1 169.0 9.49 136.1 185.9 7.95 124.0 203.0 6.69
Table P-33— RTAC 155 Entering Condenser Air Temperature (°F)
LWT 77 86 95 104 115 122 °F C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER
Ton kW EER Ton kW EER Ton kW EER Ton kW EER Ton kW EER Ton kW EER
41 172.1 139.7 12.82 162.5 150.0 11.38 152.7 161.7 10.01 142.5 174.7 8.72 129.7 192.6 7.27 117.7 210.7 6.09 44 181.8 144.3 13.16 171.8 154.8 11.70 161.5 166.5 10.31 150.9 179.7 9.00 137.5 197.7 7.53 125.0 215.9 6.32 45 185.0 145.9 13.27 174.9 156.4 11.81 164.5 168.2 10.41 153.7 181.4 9.09 140.1 199.4 7.62 127.5 217.7 6.40 46 188.4 147.5 13.38 178.1 158.0 11.91 167.5 169.9 10.51 156.6 183.1 9.19 142.8 201.2 7.70 130.0 219.4 6.48 48 195.0 150.7 13.59 184.4 161.3 12.12 173.5 173.2 10.70 162.3 186.5 9.37 148.2 204.7 7.87 134.9 223.0 6.63
Table P-34— RTAC 170 Entering Condenser Air Temperature (°F)
LWT 77 86 95 104 115 122 °F C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER
Ton kW EER Ton kW EER Ton kW EER Ton kW EER Ton kW EER Ton kW EER
41 186.7 153.7 12.66 176.3 164.6 11.26 165.6 177.0 9.92 154.6 190.9 8.66 140.7 210.0 7.24 127.8 229.4 6.07 44 197.0 159.0 12.97 186.2 170.0 11.56 175.0 182.5 10.21 163.5 196.5 8.93 149.0 215.7 7.48 135.5 235.2 6.29 45 200.5 160.7 13.07 189.5 171.8 11.66 178.2 184.3 10.30 166.5 198.4 9.02 151.8 217.7 7.56 138.1 237.2 6.36 46 204.0 162.6 13.17 192.9 173.6 11.76 181.4 186.2 10.39 169.6 200.3 9.10 154.7 219.6 7.64 140.7 239.1 6.44 48 211.1 166.2 13.37 199.6 177.4 11.94 187.8 190.0 10.57 175.6 204.1 9.27 160.3 223.5 7.80 146.0 243.1 6.58
Table P-35— RTAC 185 Entering Condenser Air Temperature (°F)
LWT 77 86 95 104 115 122 °F C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER
Ton kW EER Ton kW EER Ton kW EER Ton kW EER Ton kW EER Ton kW EER
41 207.3 170.9 12.69 196.2 182.8 11.32 184.6 196.4 10.00 172.6 211.6 8.75 157.5 232.6 7.34 143.4 253.8 6.17 44 218.8 176.8 13.00 207.1 188.9 11.61 195.0 202.6 10.28 182.5 218.0 9.01 166.7 239.1 7.57 151.9 260.6 6.38 45 222.7 178.8 13.10 210.8 190.9 11.71 198.5 204.7 10.37 185.9 220.2 9.09 169.9 241.4 7.65 154.8 262.9 6.45 46 226.6 180.8 13.20 214.6 193.0 11.80 202.1 206.8 10.46 189.3 222.4 9.18 173.0 243.6 7.72 157.8 265.2 6.52 48 234.4 184.9 13.39 222.1 197.2 11.99 209.3 211.1 10.63 196.0 226.7 9.34 179.3 248.1 7.87 163.6 269.9 6.66
27
RLC-PRC005-E4
Performance Data
Table P-36— RTAC 200 Entering Condenser Air Temperature (°F)
LWT 77 86 95 104 115 122 °F C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER C.C. P.I. EER
Ton kW EER Ton kW EER Ton kW EER Ton kW EER Ton kW EER Ton kW EER
232.6 8.83 174.7 255.4 7.42 159.3 278.4 6.26 44 241.2 194.9 13.04 228.6 208.1 11.67 215.5 223.0 10.34 202.0 239.8 9.08 184.9 262.8 7.65 168.7 286.2 6.46 45 245.5 197.1 13.14 232.7 210.3 11.76 219.4 225.4 10.43 205.7 242.2 9.17 188.3 265.4 7.73 171.5 288.1 6.53 46 249.8 199.4 13.24 236.8 212.7 11.86 223.4 227.8 10.52 209.4 244.7 9.25 191.8 268.0 7.80 173.9 288.9 6.61 48 258.5 204.0 13.43 245.1 217.3 12.04 231.3 232.6 10.69 216.9 249.7 9.41 198.8 273.1 7.95 178.6 290.4 6.75
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.
28
RLC-PRC005-E4
Performance Data
Low Noise Standard Units (English Units)
Table P-37— RTAC 140 Entering Condenser Air Temperature (°F)
LWT 77 86 95 10 4 °F C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER 41 145.1 144.5 11.46 136.1 156.3 9.97 126.9 169.3 8.61 117.4 183.5 7.38 44 152.4 149.7 11.64 143.1 161.7 10.15 133.4 174.8 8.78 123.5 189.2 7.54 45 154.9 151.4 11.70 145.4 163.5 10.20 135.6 176.7 8.83 125.6 191.1 7.59 46 157.3 153.2 11.75 147.7 165.3 10.26 137.8 178.6 8.89 127.7 193.1 7.64 48 162.3 156.7 11.86 152.4 169.0 10.36 142.2 182.4 8.98 131.9 197.0 7.74
Table P-38— RTAC 155 Entering Condenser Air Temperature (°F)
LWT 77 86 95 10 4 °F C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER 41 159.3 159.7 11.37 149.5 172.2 9.93 139.4 186.1 8.60 129.0 201.2 7.39 44 167.2 165.5 11.54 156.9 178.3 10.09 146.4 192.3 8.76 135.6 207.7 7.54 45 169.8 167.5 11.59 159.4 180.3 10.14 148.8 194.4 8.81 137.8 209.8 7.58 46 172.5 169.5 11.64 162.0 182.4 10.19 151.2 196.5 8.85 140.1 212.0 7.63 48 177.8 173.5 11.73 167.0 186.5 10.28 155.9 200.8 8.94 144.5 216.3 7.72
Table P-39— RTAC 170 Entering Condenser Air Temperature (°F)
LWT 77 86 95 10 4 °F C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER 41 173.6 175.1 11.30 162.9 188.3 9.90 152.0 203.0 8.59 140.7 219.1 7.40 44 182.1 181.6 11.45 171.0 195.0 10.05 159.5 209.9 8.74 147.8 226.2 7.53 45 185.0 183.8 11.50 173.7 197.3 10.09 162.1 212.3 8.78 150.2 228.6 7.58 46 187.8 186.0 11.54 176.4 199.6 10.13 164.6 214.6 8.82 152.6 231.0 7.62 48 193.6 190.6 11.63 181.8 204.3 10.22 169.7 219.4 8.91 157.3 235.8 7.71
Table P-40— RTAC 185 Entering Condenser Air Temperature (°F)
LWT 77 86 95 10 4 °F C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER 41 192.2 193.4 11.34 180.7 208.0 9.94 168.9 224.3 8.65 156.7 242.1 7.46 44 201.6 200.6 11.48 189.6 215.6 10.08 177.2 232.0 8.78 164.4 250.1 7.59 45 204.7 203.1 11.53 192.6 218.1 10.13 180.0 234.7 8.83 167.0 252.8 7.63 46 207.9 205.6 11.57 195.5 220.7 10.17 182.8 237.4 8.87 169.5 255.3 7.66 48 214.2 210.6 11.65 201.5 225.9 10.25 188.4 242.7 8.94 174.4 260.5 7.74
Table P-41— RTAC 200 Entering Condenser Air Temperature (°F)
LWT 77 86 95 10 4 °F C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER 41 211.2 212.0 11.37 198.9 228.1 9.99 186.0 245.8 8.70 172.8 265.2 7.51 44 221.5 220.0 11.51 208.6 236.4 10.12 195.2 254.5 8.83 181.3 274.3 7.63 45 225.0 222.7 11.55 211.8 239.2 10.16 198.2 257.4 8.87 184.2 277.3 7.67 46 228.4 225.5 11.59 215.1 242.1 10.20 201.3 260.4 8.90 187.1 280.4 7.71 48 235.3 231.0 11.67 221.6 247.9 10.28 207.5 266.5 8.98 192.9 286.7 7.78
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressors, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control™ Microprocessor control algorithms.
29
RLC-PRC005-E4
Performance Data
Low Noise HE Units (English Units)
Table P-42— RTAC 120 Entering Condenser Air Temperature (°F)
LWT 7 7 86 95 1 04 115 °F C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER 41 126.0 113.4 12.51 118.4 122.4 10.93 110.4 132.6 9.46 102.3 143.9 8.11 92.1 159.2 6.63 44 132.8 117.3 12.78 124.8 126.5 11.18 116.5 136.8 9.69 108.0 148.3 8.32 97.3 163.8 6.82 45 135.1 118.6 12.86 126.9 127.9 11.25 118.5 138.2 9.76 109.9 149.8 8.38 98.9 165.1 6.88 46 137.4 119.9 12.94 129.1 129.3 11.33 120.6 139.7 9.83 111.8 151.3 8.45 100.3 165.8 6.95 48 142.0 122.6 13.09 133.5 132.1 11.47 124.7 142.6 9.97 115.6 154.3 8.58 103.2 167.3 7.08
Table P-43— RTAC 130 Entering Condenser Air Temperature (°F)
LWT 7 7 86 95 1 04 115 °F C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER 41 139.2 124.6 12.56 130.8 134.6 10.98 122.2 145.7 9.52 113.3 158.0 8.18 102.2 174.6 6.71 44 146.7 128.9 12.82 137.9 139.1 11.23 128.9 150.3 9.75 119.7 162.7 8.39 108.1 179.5 6.90 45 149.2 130.4 12.90 140.3 140.6 11.31 131.2 151.9 9.82 121.8 164.4 8.46 109.9 181.0 6.97 46 151.7 131.9 12.98 142.7 142.1 11.38 133.4 153.5 9.90 123.9 166.0 8.53 111.7 182.2 7.03 48 156.8 134.9 13.14 147.6 145.2 11.53 138.0 156.7 10.04 128.2 169.3 8.66 115.1 184.6 7.16
Table P-44— RTAC 140 Entering Condenser Air Temperature (°F)
LWT 7 7 86 95 1 04 115 °F C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER 41 152.4 136.0 12.60 143.3 146.8 11.02 134.0 158.9 9.57 124.4 172.1 8.24 112.5 189.9 6.78 44 160.7 140.7 12.86 151.2 151.7 11.27 141.4 163.9 9.81 131.5 177.3 8.46 119.0 195.3 6.98 45 163.4 142.3 12.94 153.8 153.3 11.36 143.9 165.6 9.88 133.8 179.0 8.53 121.1 197.1 7.05 46 166.3 143.9 13.03 156.5 155.0 11.43 146.5 167.3 9.96 136.2 180.8 8.60 123.4 198.9 7.11 48 171.9 147.2 13.19 161.8 158.4 11.59 151.5 170.8 10.10 140.9 184.4 8.74 127.8 202.5 7.24
Table P-45— RTAC 155 Entering Condenser Air Temperature (°F)
LWT 7 7 86 95 1 04 115 °F C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER 41 166.3 150.5 12.43 156.4 162.0 10.91 146.3 174.9 9.49 135.9 189.1 8.19 122.9 208.3 6.75 44 175.1 155.8 12.67 164.8 167.5 11.14 154.2 180.5 9.71 143.4 194.9 8.39 129.8 214.3 6.94 45 178.1 157.6 12.75 167.6 169.4 11.21 156.9 182.5 9.78 145.9 196.9 8.46 132.1 216.4 7.00 46 181.1 159.4 12.82 170.5 171.3 11.28 159.6 184.4 9.85 148.4 198.9 8.52 134.4 218.4 7.06 48 187.1 163.1 12.96 176.1 175.1 11.42 164.9 188.3 9.98 153.4 202.9 8.65 139.2 222.5 7.18
Table P-46— RTAC 170 Entering Condenser Air Temperature (°F)
LWT 7 7 86 95 1 04 115 °F C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER 41 180.3 165.0 12.30 169.7 177.3 10.82 158.7 191.0 9.43 147.4 206.2 8.15 133.3 226.8 6.73 44 189.7 171.0 12.52 178.6 183.4 11.03 167.1 197.3 9.63 155.4 212.6 8.34 140.6 233.4 6.91 45 192.9 173.0 12.59 181.6 185.5 11.09 170.0 199.4 9.70 158.1 214.9 8.40 143.1 235.7 6.97 46 196.1 175.1 12.65 184.6 187.6 11.16 172.8 201.6 9.76 160.7 217.1 8.46 145.6 237.9 7.02 48 202.5 179.2 12.78 190.7 191.9 11.28 178.5 205.9 9.88 166.1 221.5 8.58 150.6 242.4 7.14
Table P-47— RTAC 185 Entering Condenser Air Temperature (°F)
LWT 7 7 86 95 1 04 115 °F C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER 41 200.3 183.7 12.30 188.8 197.1 10.84 176.8 212.2 9.47 164.6 228.9 8.21 149.1 251.5 6.80 44 210.8 190.4 12.51 198.7 204.1 11.04 186.2 219.4 9.67 173.4 236.3 8.39 157.2 259.3 6.96 45 214.3 192.7 12.58 202.0 206.4 11.11 189.3 221.8 9.73 176.3 238.9 8.44 159.8 261.6 7.02 46 217.8 195.0 12.64 205.3 208.9 11.17 192.5 224.3 9.79 179.3 241.4 8.50 162.3 263.6 7.08 48 224.9 199.7 12.76 212.0 213.7 11.29 198.8 229.3 9.90 185.2 246.5 8.61 167.3 267.5 7.19
30
RLC-PRC005-E4
Performance Data
Table P-48 — RTAC 200 Entering Condenser Air Temperature (°F)
LWT 7 7 86 95 1 04 115 °F C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER C.C.Ton P.I. kW EER 41 220.8 202.6 12.32 208.3 217.3 10.87 195.4 233.7 9.52 182.0 251.9 8.26 165.2 276.6 6.86 44 232.3 210.1 12.52 219.2 225.1 11.07 205.7 241.8 9.70 191.7 260.3 8.43 174.1 285.4 7.01 45 236.2 212.6 12.58 222.9 227.7 11.13 209.1 244.6 9.76 195.0 263.2 8.48 176.7 287.4 7.07 46 240.1 215.3 12.64 226.6 230.4 11.19 212.6 247.4 9.81 198.2 266.1 8.53 178.8 288.1 7.14 48 247.9 220.5 12.76 234.0 235.8 11.30 219.6 253.0 9.92 204.8 272.0 8.64 182.9 289.5 7.27
Notes :
1. Ratings based on sea level altitude and evaporator fouling factor of 0.0176 m²°K/kW.
2. Consult Trane representative for performance at temperatures outside of the ranges shown.
3. P.I. kW = compressor power input only.
4. COP = Coefficient of Performance (kW/kW). Power input includes compressor, condenser fans and control power.
5. Ratings are based on an evaporator temperature drop of 6°C.
6. Interpolation between points is permissible. Extrapolation is not permitted.
7. Above 40°C ambient, the units will have the High-Ambient option.
8. Shaded area reflects Adaptive Control Microprocessor control algorithms.
31
RLC-PRC005-E4
Performance Data
SI Units English Units
Table P-49 — ARI Part-Load Values RTAC Standard Table P-51 — ARI Part-Load Values RTAC Standard (along with ARI 550/590-98) (along with ARI 550/590-98)
Unit % Load kW cooling P.I. kW COP (kW/kW) IPLV (kW/kW) Unit % Load tons P.I. kW EER IPLV 140 100 505.9 159.0 2.90 4.09 140 100 143.9 159.0 9.88 13.95
75 372.0 85.8 3.67 75 105.8 85.8 12.51 50 247.9 47.3 4.47 50 70.5 47.3 15.24 25 124.1 21.0 4.25 25 35.3 21.0 14.51
155 100 554.3 175.6 2.87 3.98 155 100 157.6 175.6 9.79 13.59
75 407.6 94.7 3.63 75 115.9 94.7 12.39 50 271.9 52.2 4.36 50 77.3 52.2 14.89 25 135.7 24.8 3.89 25 38.6 24.8 13.29
170 100 603.4 192.4 2.85 3.98 170 100 171.6 192.4 9.72 13.58
75 443.8 103.7 3.60 75 126.2 103.7 12.29 50 295.8 58.4 4.32 50 84.1 58.4 14.74 25 148.1 26.0 4.11 25 42.1 26.0 14.02
185 100 669.7 212.5 2.86 3.98 185 100 190.4 212.5 9.77 13.60
75 491.7 114.6 3.62 75 139.8 114.6 12.34 50 328.1 62.6 4.40 50 93.3 62.6 15.02 25 164.2 31.1 3.81 25 46.7 31.1 13.00
200 100 737.6 232.9 2.88 4.00 200 100 209.7 232.9 9.83 13.64
75 542.3 125.8 3.64 75 154.2 125.8 12.42 50 361.5 71.3 4.34 50 102.8 71.3 14.81 25 180.8 32.7 4.05 25 51.4 32.7 13.81
Table P-50 — ARI Part-Load Values RTAC High-Efficiency Table P-52 — ARI Part-Load Values RTAC High-Efficiency (along with ARI 550/590-98) (along with ARI 550/590-98)
Unit % Load kW cooling P.I. kW COP (kW/kW) IPLV (kW/kW) Unit % Load tons P.I. kW EER IPLV 120 100 434.8 126.3 3.06 4.17 120 100 434.8 126.3 10.45 14.23
75 320.0 70.5 3.71 75 320.0 70.5 12.66 50 213.1 38.3 4.58 50 213.1 38.3 15.63 25 106.6 16.3 4.34 25 106.6 16.3 14.82
130 100 480.3 138.9 3.07 4.14 130 100 480.3 138.9 10.47 14.14
75 353.5 76.9 3.74 75 353.5 76.9 12.76 50 235.3 41.2 4.59 50 235.3 41.2 15.66 25 117.8 19.6 3.97 25 117.8 19.6 13.55
140 100 526.6 151.6 3.08 4.18 140 100 526.6 151.6 10.50 14.27
75 387.2 83.4 3.76 75 387.2 83.4 12.84 50 258.1 46.2 4.59 50 258.1 46.2 15.65 25 129.1 20.6 4.21 25 129.1 20.6 14.37
155 100 574.0 167.5 3.04 4.08 155 100 574.0 167.5 10.37 13.93
75 423.4 92.1 3.73 75 423.4 92.1 12.73 50 281.4 50.7 4.49 50 281.4 50.7 15.31 25 140.7 24.2 3.89 25 140.7 24.2 13.26
170 100 622.0 183.6 3.01 4.08 170 100 622.0 183.6 10.26 13.92
75 456.9 100.1 3.70 75 456.9 100.1 12.64 50 304.9 56.5 4.45 50 304.9 56.5 15.20 25 152.3 25.4 4.07 25 152.3 25.4 13.90
185 100 693.1 203.9 3.03 4.08 185 100 693.1 203.9 10.33 13.91
75 510.3 111.9 3.72 75 510.3 111.9 12.71 50 339.7 61.7 4.50 50 339.7 61.7 15.35 25 169.9 30.6 3.82 25 169.9 30.6 13.04
200 100 765.9 224.4 3.05 4.10 200 100 765.9 224.4 10.40 13.98
75 561.7 122.8 3.75 75 561.7 122.8 12.80 50 375.6 70.6 4.45 50 375.6 70.6 15.17 25 187.8 32.2 4.08 25 187.8 32.2 13.93
32
RLC-PRC005-E4
Performance Data
SI Units English Units
Table P-53 — ARI Part-Load Values RTAC Low-Noise Standard Table P-55 — ARI Part-Load Values RTAC Low-Noise Standard (along with ARI 550/590-98) (along with ARI 550/590-98)
Unit % Load kW cooling P.I. kW COP (kW/kW) IPLV (kW/kW) Unit % Load tons P.I. kW EER IPLV 140 100 473.9 175.9 2.58 4.03 140 100 473.9 175.9 8.82 13.75
75 353.4 90.2 3.62 75 353.4 90.2 12.35 50 232.5 49.6 4.33 50 232.5 49.6 14.77 25 116.1 21.9 4.47 25 116.1 21.9 15.26
155 100 519.8 193.6 2.57 3.98 155 100 519.8 193.6 8.78 13.60
75 382.6 99.5 3.55 75 382.6 99.5 12.11 50 254.6 53.5 4.35 50 254.6 53.5 14.86 25 127.3 25.1 4.24 25 127.3 25.1 14.48
170 100 566.1 211.3 2.57 3.96 170 100 566.1 211.3 8.76 13.51
75 417.1 108.8 3.53 75 417.1 108.8 12.06 50 277.5 60.1 4.27 50 277.5 60.1 14.56 25 138.9 26.6 4.40 25 138.9 26.6 15.03
185 100 628.8 233.5 2.58 3.98 185 100 628.8 233.5 8.81 13.58
75 463.5 120.6 3.55 75 463.5 120.6 12.11 50 308.1 64.4 4.39 50 308.1 64.4 14.98 25 154.0 32.1 4.07 25 154.0 32.1 13.89
200 100 692.7 256.2 2.59 3.96 200 100 692.7 256.2 8.85 13.53
75 508.9 131.9 3.56 75 508.9 131.9 12.16 50 339.4 73.5 4.28 50 339.4 73.5 14.61 25 169.9 33.8 4.29 25 169.9 33.8 14.64
Table P-54 — ARI Part-Load Values RTAC Low-Noise High-Efficiency Table P-56 — ARI Part-Load Values RTAC Low-Noise High­(along with ARI 550/590-98) Efficiency (along with ARI 550/590-98)
Unit % Load kW cooling P.I. kW COP (kW/kW) IPLV (kW/kW) Unit % Load tons P.I. kW EER IPLV 120 100 412.6 137.4 2.85 4.24 120 100 117.3 137.4 9.72 14.48
75 302.8 73.9 3.72 75 86.1 73.9 12.70 50 202.2 39.8 4.61 50 57.5 39.8 15.73 25 101.3 16.9 4.83 25 28.8 16.9 16.49
130 100 458.1 151.2 2.87 4.27 130 100 130.3 151.2 9.80 14.58
75 337.9 81.1 3.78 75 96.1 81.1 12.89 50 224.4 42.7 4.71 50 63.8 42.7 16.09 25 112.2 20.2 4.45 25 31.9 20.2 15.20
140 100 502.6 164.9 2.89 4.28 140 100 142.9 164.9 9.85 14.62
75 370.7 87.8 3.82 75 105.4 87.8 13.04 50 246.2 48.1 4.64 50 70.0 48.1 15.83 25 123.1 21.3 4.69 25 35.0 21.3 15.99
155 100 547.7 181.7 2.86 4.24 155 100 155.7 181.7 9.75 14.46
75 401.6 95.8 3.79 75 114.2 95.8 12.95 50 268.3 52.1 4.63 50 76.3 52.1 15.81 25 134.3 24.7 4.41 25 38.2 24.7 15.04
170 100 593.7 198.6 2.83 4.20 170 100 168.8 198.6 9.67 14.35
75 437.9 105.1 3.78 75 124.5 105.1 12.88 50 291.2 58.4 4.54 50 82.8 58.4 15.49 25 145.6 26.0 4.58 25 41.4 26.0 15.62
185 100 661.2 220.9 2.84 4.21 185 100 188.0 220.9 9.70 14.36
75 484.3 116.4 3.78 75 137.7 116.4 12.90 50 324.3 63.5 4.63 50 92.2 63.5 15.79 25 162.1 31.5 4.25 25 46.1 31.5 14.49
200 100 730.4 243.4 2.85 4.20 200 100 207.7 243.4 9.74 14.34
75 536.7 129.0 3.79 75 152.6 129.0 12.94 50 358.0 72.3 4.54 50 101.8 72.3 15.48 25 179.0 33.2 4.49 25 50.9 33.2 15.33
33
RLC-PRC005-E4
Performance Adjustment Factors
Table F1— Performance Data Adjustment Factors
Chilled
Altitude
Fouling Water
Sea level 600 m 1200 m 1800 m
Factor Temperature Cooling Evaporator Compressor Cooling Evaporator Compressor Cooling Evaporator Compressor Cooling Evaporator Compressor
(SI) Drop °C Capacity Flow Rate kW Capacity Flow Rate kW Capacity Flow Rate kW Capacity Flow Rate kW
4 0.998 1.500 0.999 0.986 1.485 1.011 0.974 1.466 1.026 0.96 1.443 1.044 5 1.000 1.200 1.000 0.989 1.188 1.011 0.975 1.172 1.027 0.961 1.154 1.045
0.0176 6 1.000 1.000 1.000 0.99 0.990 1.013 0.977 0.977 1.028 0.962 0.962 1.046
m² K/kW 7 1.002 0.857 1.001 0.991 0.849 1.013 0.979 0.837 1.029 0.964 0.825 1.047
8 1.003 0.750 1.001 0.992 0.743 1.015 0.98 0.733 1.03 0.966 0.722 1.049 9 1.004 0.667 1.02 0.995 0.660 1.016 0.982 0.651 1.031 0.967 0.641 1.05
10 1.005 0.600 1.025 0.997 0.594 1.017 0.983 0.586 1.032 0.97 0.577 1.051
4 0.982 1.479 0.99 0.972 1.464 1.020 0.96 1.446 1.017 0.946 1.425 1.035 5 0.984 1.183 0.991 0.974 1.171 1.030 0.962 1.157 1.019 0.947 1.140 1.036
0.044 6 0.986 0.986 0.992 0.976 0.976 1.050 0.964 0.964 1.02 0.95 0.950 1.038
m² K/kW 7 0.987 0.845 0.993 0.978 0.837 1.060 0.966 0.826 1.021 0.952 0.814 1.039
8 0.99 0.740 0.995 0.98 0.732 1.080 0.968 0.723 1.022 0.954 0.713 1.041 9 0.993 0.657 0.996 0.983 0.651 1.090 0.97 0.643 1.023 0.956 0.633 1.042
10 0.995 0.592 0.997 0.985 0.586 1.010 0.973 0.578 1.024 0.958 0.570 1.043
Chilled
Altitude
Fouling Water
Sea level 2000 ft 4000 ft 6000 ft
Factor Temperature Cooling Evaporator Compressor Cooling Evaporator Compressor Cooling Evaporator Compressor Cooling Evaporator Compressor
(US) Drop °F Capacity gpm kW Capacity gpm kW Capacity gpm kW Capacity gpm kW
8 0.997 1.246 0.999 0.987 1.233 1.012 0.975 1.217 1.027 0.960 1.200 1.045
10 1 1 1 0.989 0.989 1.013 0.977 0.977 1.028 0.963 0.963 1.047
0.0001 12 1.003 0.835 1.001 0.992 0.826 1.014 0.979 0.816 1.030 0.965 0.804 1.048 14 1.004 0.717 1.002 0.993 0.710 1.016 0.981 0.701 1.031 0.966 0.690 1.049 16 1.006 0.629 1.003 0.995 0.622 1.016 0.982 0.614 1.032 0.968 0.605 1.050
8 0.982 1.227 0.991 0.972 1.215 1.003 0.961 1.200 1.018 0.947 1.183 1.036
10 0.986 0.985 0.992 0.975 0.975 1.005 0.963 0.963 1.020 0.950 0.950 1.038
0.00025 12 0.988 0.823 0.994 0.978 0.815 1.006 0.966 0.805 1.022 0.952 0.793 1.040 14 0.991 0.708 0.995 0.980 0.700 1.008 0.968 0.692 1.023 0.954 0.682 1.041 16 0.992 0.621 0.996 0.982 0.614 1.009 0.970 0.606 1.024 0.956 0.598 1.042
34
RLC-PRC005-E4
Performance Adjustment Factors
Figure F1 — Evaporator Water Pressure Drops, RTAC 120 to 200 (SI)
Figure F2 — Evaporator Water Pressure Drops, RTAC 120 to 200 (US Units)
100
90 80 70 60
50 40
30
20
10
10 100
20
30 40 50 60 70 80 90
Flow Lps
Evp. F140 (RTAC 120/140) Evp. F155 (RTAC 130/155) Evp. F170 (RTAC 140/170) Evp. F185 RTAC (155/185) Evp. F200 (RTAC 170/200) Evp. F220 (RTAC 185HE) Evp. F240 (RTAC 200HE) Legend (RTAC HE/STD)
100.0
10.0
WPD ft of WG
1.0
100.0
Evp. F140 (RTAC 120/140) Evp. F155 (RTAC 130/155) Evp. F170 (RTAC 140/170) Evp. F185 RTAC (155/185) Evp. F200 (RTAC 170/200) Evp. F220 (RTAC 185HE) Evp. F240 (RTAC 200HE) Legend (RTAC HE/STD)
200 300 400 500 600 700 800 900
Flow GPM
1000.0
35
RLC-PRC005-E4
Performance Adjustment Factors
Figure F-3 — Ethylene Glycol Performance Factors Figure F-4 — Propylene Glycol Performance Factors
Figure F-5 — Ethylene Glycol and Propylene Glycol Freeze Point
36
RLC-PRC005-E4
Simple Interface with Other Control Systems
Microcomputer controls afford a simple interface with other control systems, such as time clocks, building automation systems, and ice storage systems. This means you can have the flexibility to meet job requirements while not having to learn a complicated control system. This setup has the same standard features as a stand-alone water chiller, with the possibility of having the following optional features.
Alarm Indication Contacts
The unit provides four single-pole, double-throw contact closures to indicate that a failure has occurred, if any compressors are running, or if the compressors are running at maximum capacity. These contact closures may be used to trigger job-site-provided alarm lights or alarm bells.
Generic Building Automation System Controls
External Chilled-Water Set Point
Allows the external setting independent of the front panel set point by one of two means: a) 2-10 VDC input, or b) 4-20 mA input.
External Current-Limit Set Point
Allows the external setting independent of the front panel set point by one of two means: a) 2-10 VDC input, or b) 4-20 mA input.
Ice-Making Control
Provides an interface to ice-making control systems.
Chilled-Water Temperature Reset
Reset can be based on return water temperature or outdoor air temperature.
Figure 6
Pumps
Tracer Chiller Plant Manager
IBM PC with Building Management Network
Modem
Tracer Summit™ Controls — Interface with the Trane Integrated Comfort System (ICS)
Trane Chiller Plant Manager with ICS
The Tracer Chiller Plant Manager building management system provides building automation and energy management functions through stand­alone control. The Chiller Plant Manager is capable of monitoring and controlling your entire chiller plant system.
Application software available:
Time-of-day scheduling
Duty cycle
Demand limiting
Chiller sequencing
Process control language
Boolean processing
Zone control
Reports and logs
Custom messages
Run time and maintenance
Trend log
PID control loops
And of course, the Trane Chiller Plant Manager panel can be used on a stand­alone basis or tied into a complete building automation system.
When the air-cooled Series R
chiller is
used in conjunction with a Trane Tracer
system, the unit can be monitored and controlled from a remote location. The air-cooled Series R chiller can be controlled to fit into the overall building automation strategy by using time-of­day scheduling, timed override, duty cycling, demand limiting, and chiller sequencing. A building owner can completely monitor the air-cooled Series R chiller from the Tracer system, since all of the monitoring information indicated on the microcomputer can be read on the Tracer system display. In addition, all
the powerful diagnostic information can be read back at the Tracer system. Best of all, this powerful capability comes over a single twisted pair of wires! Air­cooled Series R chillers can interface with many different external control systems, from simple stand-alone units to ice-making systems. Each unit requires a single-source, three-phase power supply and a 115-volt power supply. The 115-volt supply handles the freeze protection for the evaporator heaters.
A single twisted pair of wires tied directly between the air-cooled Series R
chiller and a Tracer™system provides control, monitoring, and diagnostic capabilities. Control functions include auto/stop, adjustment of leaving-water­temperature set point, compressor operation lockout for kW demand limiting, and control of ice-making mode. The Tracer system reads monitoring information such as entering- and leaving-evaporator-water temperatures and outdoor air temperature. Over 60 individual diagnostic codes can be read by the Tracer system. In addition, the Tracer system can provide sequencing control for two to six units on the same chilled­water loop. Pump sequencing control can be provided from the Tracer system. Tracer ICS is not available in conjunction with the remote display or the external set point capability.
Required Options 1
Tracer Comm 3 Interface
Additional Options that May Be Used
Ice-Making Control
External Trane Devices Required
Tracer Summit
, Tracer 100 System or
Tracer Chiller Plant Manager
Ice-Making Systems Controls
An ice-making option may be ordered with the air-cooled Series R
chiller. The unit will have two operating modes, ice making and normal daytime cooling. In the ice-making mode, the air-cooled Series R chiller will operate at full compressor capacity until the return chilled-fluid temperature entering the evaporator meets the ice-making set point. This ice-making set point is manually adjusted on the unit’s microcomputer. Two input signals are required to the air-cooled Series R chiller for the ice-making option. The first is an auto/stop signal for scheduling, and the second is required to switch the unit between the ice-making mode and normal daytime operation. The signals are provided by a remote job site building­automation device such as a time clock or a manual switch. In addition, the signals may be provided over the twisted wire pair from a Tracer
system.
Required Options
External Auto/Stop (Standard) Ice-Making Control
Additional Options That May Be Used
Failure Indication Contacts Communications Interface (For Tracer
Systems) Chilled-Water Temperature Reset
External Trane Devices Required-None
Note: All wiring outside the unit is supplied at the job site.
Generic Building Automation System Controls
37
RLC-PRC005-E4
38
RLC-PRC005-E4
Controls
Safety Controls
A centralized microcomputer offers a higher level of machine protection. Because the safety controls are smarter, they limit compressor operation in order to avoid compressor or evaporator failures, thereby minimizing nuisance shutdowns. Tracer
Chiller Controls directly senses the control variables that govern the operation of the chiller: motor current draw, evaporator pressure, condenser pressure, and so forth. When any one of these variables approaches a limit condition at which the unit may be damaged or shut down on a safety, Tracer Chiller Controls takes corrective action to avoid shutdown and keep the chiller operating. It does this through combined actions of compressor slide-valve modulation, electronic expansion-valve modulation, and fan staging. Tracer Chiller Controls optimizes total chiller power consumption during normal operating conditions. During abnormal operating
Tracer
Chiller Control human interfaces
The Trane air-cooled Series R Model RTAC chiller offers two easy-to-use operator interface panels, the EasyView, and the DynaView.
Standard Features External Auto/Stop
A job-site-provided contact closure will turn the unit on and off.
Chilled Waterflow Interlock
A job-site-provided contact closure from a chilled-water pump contactor, or a flow switch, is required and will allow unit operation if a load exists. This feature will allow the unit to run in conjunction with the pump system.
External Interlock
A job-site-provided contact opening wired to this input will turn the unit off and require a manual reset of the unit microcomputer. This closure is typically triggered by a job-site-provided system such as a fire alarm.
Chilled Water Pump Control
Unit controls provide an output to control the chilled-water pump(s). One contact closure to the chiller is all that is required to initiate the chilled-water system.
Additional Features That May Be Used (requires some optional factory-installed hardware)
Alarm Indication Contacts Chilled-Water Temperature Reset Note: All wiring outside the unit is supplied at the job site.
Integrated Comfort™ System Interface
Easy Interface to a Generic Building Management System
Controlling the air-cooled Series R chiller with building management systems is state-of-the-art, yet simple. Chiller inputs include:
Chiller enable/disable
Circuit enable/disable
Chilled liquid set point
Current limit set point
Ice-making enable
Chiller outputs include:
Compressor running indication
Alarm indication (ckt 1/ckt 2)
Maximum capacity
Ice making
conditions, the microprocessor will continue to optimize chiller performance by taking the corrective action necessary to avoid shutdown. This keeps cooling capacity available until the problem can be solved. Whenever possible, the chiller is allowed to perform its function: make chilled water. In addition, microcomputer controls allow for more types of protection, such as over and under voltage! Overall, the safety controls help keep the building or process running and out of trouble.
Stand-alone controls
Interfacing to stand-alone units is very simple: only a remote auto/stop for scheduling is required for unit operation. Signals from the chilled-water pump contactor auxiliary, or a flow switch, are wired to the chilled-water flow interlock. Signals from a time clock or some other remote device are wired to the external auto/stop input.
Figure 7 — Easy View
Figure 8 — Dyna View
39
RLC-PRC005-E4
Typical Wiring Diagram
Figure 9 — Compressor wiring diagram and control supply
RTAC 120-200
Figure 10 — Control diagram
40
RLC-PRC005-E4
Typical Wiring Diagram
Figure 11 — Compressor control diagram
RTAC 120-200
41
RLC-PRC005-E4
Figure 13 — Option control diagram
Typical Wiring Diagram
Figure 12 — Control wiring diagram
RTAC 120-200
42
RLC-PRC005-E4
Notes
1 Refer to Power Wiring Diagram 2 Refer to Control Wiring Diagram 3 Refer to Fans Power Wiring
Diagram
4 Remove the Jumper Wire When
Using the Remote Contact
5 Not Supplied with Night Noise
Setback (Option 19) 6 Supplied When PED Approval 7 Factory Connected 10 Valid for RTAC 155-170-185-200 11 Valid for RTAC 185-200 12 Valid for RTAC 170 - 185 - 200 13 Valid for RTAC 200 14 Valid for RTAC 130- 140-155-170-
185-200 15 Valid for RTAC 140- 155- 170-
185- 200
Customer Inputs
E1 External Current Limit Set Point E2 External Chilled-Water Set Point E4 Ice-Making Enable Customer
Outputs S2 Programmable Relays S8 Ice-Making Enable S10 Tracer Communication Link
Trane Wiring
Customer Wiring
Component Identification
Ex 1K20-1
Index Attribute Designation Location
Location Numbering
Nothing = Control Panel Wiring 1 Control Panel Power Wiring 2 Compressor 3 Oil Circuit 4 Fans 5 Heat Exchanger 6 Customer Wiring 7 Miscellaneous
Typical Wiring Diagram
RTAC 120-200
Legend
Item Designation
A2 Dual Analog Input/Output
Module A3 Fans Inverter Interface Module A4 4 Relays Output Module A5 2 Relays Output Module A6 Dual Low Voltage Binary Input
Module A7 Dual High Voltage Binary Input
Module A8 Dual Triac Output Module A9 Communication Module A10 Power Supply Module A14 Starter Module A53 Local Human Interface A54 Remote Human Interface A55 IPC Buffer K43 6S43 Relay Q2 Circuit Breaker 1B52 Evaporator Heater Thermostat 1 F3 1T3 Protection Fuse 1F25 Compressor Fuse 1F45 Fan Motor Fuse 1K4 Protection Relay 1K21 Compressor Transition
Contactor 1K22 Compressor Line
Contactor 1K23 Star Compressor Contactor 1K24 Delta Compressor Starter 1K40 Fan Contactor 1Q5 Circuit Breaker 1Q10 Disconnect Switch 1Q45 Condenser Fan Motor Circuit
Breaker 1R20 Compressor Transition Resistors 1T2 Control Power Transformer 1T3 Over/Undervoltage Transformer 1T10 to 1T20 Current Transformers 1X Control Terminal 1X20 Compressor Power Terminal 2M20 Compressor Motor
2Y21 Compressor Unloading
Solenoid Valve 2Y22 Compressor Loading Solenoid
Valve 2Y23 Compressor Unloading Step
Solenoid Valve 3B30 Oil Control Sensor 3E30 Compressor Oil Heater 3E31 Oil Separator Heater 3R30 Oil Temperature Sensor 3Y30 Oil Line Solenoid Valve 4M40 Condenser Fan Motor 5B23 Low Pressure Control 5B51 High Pressure Control
5B53 Evaporator Refrigerant Level
Control 5B56 High Pressure Transducer 5E51 Evaporator Heater 5R3 Ambient Air Sensor 5R51 Leaving-Evaporator-Water
Temperature Sensor 5R52 Entering-Evaporator-Water
Temperature Sensor 5Y53 Electronic Expansion Valve 6K51 Chilled-water Pump Contactor 6M51 Chilled-Water Pump Motor 6Q... Circuit Breaker 6S1 Chiller On/Off Switch 6S3 Stop/Manual Reset Switch 6S6 Circuit 1 Interlock Switch 6S7 Circuit 2 Interlock Switch 6S43 Time Clock Contact 6S51 Chilled-water Pump On/Off
Switch 6S55 Ice-making Enable 6S56 Chilled-water Flow Switch 6X Customer Wiring Terminal
Optional Item Designation (circled items)
B Main Terminal Block and Fuses E Unit Disconnect Switch J Over/Undervoltage Transformer K Ground Fault Detection Relay R Evaporator Heater Thermostat 9 Low-Ambient Option 11 Communication Card 15 Remote Operator Interface 19 Night Noise Setback 20 Ice-Making Controls Card 22 External Setpoints Input Card 24 Evaporator Heaters
43
RLC-PRC005-E4
Figure 15 — Condenser fan control diagram
Typical Wiring Diagram
RTAC 120-200
Figure 14 — Condenser fan wiring diagram
44
RLC-PRC005-E4
Job Site Data
Job Site Connections
Table J-1— Customer Wire Selection
Unit without Disconnect Switch Unit with Disconnect Switch
Voltage 400/3/50 Wire Selection Size Wire Selection Size
to Main Terminal Block to Disconnect Switch Unit Minimum cable Maximum cable Disconnect Switch Minimum cable Maximum cable Size size mm² size mm² Size (amps) size mm² size mm²
Standard
140 2x95 mm² 2x240 mm² 6x250 + 3x125 2x95 mm² 2x240 mm² 155 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm² 170 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm² 185 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm² 200 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm²
Standard Low Noise
140 2x95 mm² 2x240 mm² 6x250 + 3x125 2x95 mm² 2x240 mm² 155 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm² 170 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm² 185 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm² 200 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm²
High Efficiency
120 2x95 mm² 2x240 mm² 6x250 + 3x125 2x95 mm² 2x240 mm² 130 2x95 mm² 2x240 mm² 6x250 + 3x125 2x95 mm² 2x240 mm² 140 2x95 mm² 2x240 mm² 6x250 + 3x125 2x95 mm² 2x240 mm² 155 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm² 170 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm² 185 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm² 200 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm²
High Efficiency Low Noise
120 2x95 mm² 2x240 mm² 6x250 + 3x125 2x95 mm² 2x240 mm² 130 2x95 mm² 2x240 mm² 6x250 + 3x125 2x95 mm² 2x240 mm² 140 2x95 mm² 2x240 mm² 6x250 + 3x125 2x95 mm² 2x240 mm² 155 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm² 170 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm² 185 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm² 200 2x185 mm² 2x240 mm² 6x400 + 3x125 2x185 mm² 2x240 mm²
45
RLC-PRC005-E4
Electrical Data
Table E-1— Electrical Data 400/3/50
Unit Wiring
Unit Number of Power Maximum Starting Power Disconnect Compressor Size Connections Amps (1) Amps (2) Factor Switch Size Fuse Size (A)
Standard 140 1 398 469 0.88 6x250 + 3x125 250/250 155 1 437 494 0.88 6x400 + 3x125 315/250 170 1 475 532 0.88 6x400 + 3x125 315/315 185 1 525 596 0.88 6x400 + 3x125 400/400 200 1 574 645 0.88 6x400 + 3x125 400/400 Standard Low Noise 0.88 140 1 383 454 0.88 6x250 + 3x125 250/250 155 1 420 477 0.88 6x400 + 3x125 315/250 170 1 456 513 0.88 6x400 + 3x125 315/315 185 1 504 575 0.88 6x400 + 3x125 400/400 200 1 551 622 0.88 6x400 + 3x125 400/400 High Efficiency 0.88 120 1 330 398 0.88 6x250 + 3x125 250/250 130 1 369 440 0.88 6x250 + 3x125 250/250 140 1 407 478 0.88 6x250 + 3x125 250/250 155 1 444 501 0.88 6x400 + 3x125 315/250 170 1 484 541 0.88 6x400 + 3x125 315/315 185 1 534 605 0.88 6x400 + 3x125 400/400 200 1 583 654 0.88 6x400 + 3x125 400/400 High Efficiency Low Noise 0.88 120 1 315 383 0.88 6x250 + 3x125 250/250 130 1 352 423 0.88 6x250 + 3x125 250/250 140 1 388 459 0.88 6x250 + 3x125 250/250 155 1 423 480 0.88 6x400 + 3x125 315/250 170 1 461 518 0.88 6x400 + 3x125 315/315 185 1 509 580 0.88 6x400 + 3x125 400/400 200 1 557 628 0.88 6x400 + 3x125 400/400
Notes:
1. Maximum Compressors FLA + all fans FLA + control Amps
2. Starting Amps of the circuit with the largest compressor circuit including fans plus RLA of the second circuit including fans and control amps
Electrical Data
46
RLC-PRC005-E4
Table E-1— Electrical Data 400/3/50
Motor Data Option
Compressor (Each) Fans (Each) Control Evaporator
Max Amps (1) Starting Amps (2) Fans Fuse Heater Quantity Circuit 1 Circuit 2 Circuit 1 Circuit 2 Quantity kW FLA Size (A) VA A kW Standard 2 180 180 251 251 8 1.88 4.5 80 860 2.15 0.5 2 214 180 271 251 9 1.88 4.5 80 860 2.15 0.5 2 214 214 271 271 10 1.88 4.5 80 860 2.15 0.5 2 259 214 330 271 11 1.88 4.5 80 860 2.15 0.5 2 259 259 330 330 12 1.88 4.5 80 860 2.15 0.5 Standard Low Noise 2 180 180 251 251 8 0.85 2.6 80 860 2.15 0.5 2 214 180 271 251 9 0.85 2.6 80 860 2.15 0.5 2 214 214 271 271 10 0.85 2.6 80 860 2.15 0.5 2 259 214 330 271 11 0.85 2.6 80 860 2.15 0.5 2 259 259 330 330 12 0.85 2.6 80 860 2.15 0.5 High Efficiency 2 146 146 214 214 8 1.88 4.5 80 860 2.15 0.5 2 180 146 251 214 9 1.88 4.5 80 860 2.15 0.5 2 180 180 251 251 10 1.88 4.5 80 860 2.15 0.5 2 214 178 271 251 11 1.88 4.5 80 860 2.15 0.5 2 214 214 271 271 12 1.88 4.5 80 860 2.15 0.5 2 259 214 330 271 13 1.88 4.5 80 860 2.15 0.5 2 259 259 330 330 14 1.88 4.5 80 860 2.15 0.5 High Efficiency Low Noise 2 146 146 214 214 8 0.85 2.6 80 860 2.15 0.5 2 180 146 251 214 9 0.85 2.6 80 860 2.15 0.5 2 180 180 251 251 10 0.85 2.6 80 860 2.15 0.5 2 214 178 271 251 11 0.85 2.6 80 860 2.15 0.5 2 214 214 271 271 12 0.85 2.6 80 860 2.15 0.5 2 259 214 330 271 13 0.85 2.6 80 860 2.15 0.5 2 259 259 330 330 14 0.85 2.6 80 860 2.15 0.5
Notes:
1. Maximum FLA per compressor.
2. Compressors starting amps, Star delta start.
47
RLC-PRC005-E4
Dimensional Data
140-155-170 STD 120-130-140 HE
Figure 16
48
RLC-PRC005-E4
Dimensional Data
185-200 STD 185-200 HE
Figure 17
49
RLC-PRC005-E4
Dimensional Data
Liquid Chillers
1 Evaporator Water Inlet Connection 2 Evaporator Water Outlet Connection 3 Electrical Panel 4 Power Supply Inlet (155 X 400) 5 Rigging Eyes 045 6 Operating Weight (Kg) 7 Refrigerant Charge (Kg) R134a 8 Oil Charge (Litres) 9 Minimum Clearance (For Maintenance) 10 Minimum Clearance (Evaporator Tubes
Removal) 11 Minimum Clearance (Air Entering) 12 Frame Post 13 Recommended Chilled Water Pipework Layout
Options
14 Power Disconnect Switch 15 Isolators 16 Chilled Water Pump Starter Panel
Figure 18
50
RLC-PRC005-E4
Mechanical Specifications
General
Units are leak- and pressure-tested at
24.5 bars [350 psi] high side and 14 bars [200 psi] low side, and then evacuated and charged. Packaged units ship with a full operating charge of oil and refrigerant. Unit panels, structural elements, and control boxes are constructed of 1.5 to 3 mm [11 to 16 gauge] galvanized sheet metal and mounted on a welded structural-steel base. Unit panels and control boxes are finished with baked-on powder paint, and the structural-steel base is finished with an air-dry paint RAL 1019.
Evaporator
The evaporator is a tube-in-shell heat exchanger design, with internally-finned copper tubes roller-expanded into the tube sheet. The evaporator is designed, tested, and stamped in accordance with the appropriate pressure-vessel code approval. The evaporator is designed for a waterside working pressure of 14 bars[200 psi]. Water connections are grooved pipe for Victaulic couplings. Each shell includes a vent, a drain, and fittings for temperature control sensors, and is insulated with 19mm [3/4 inch] Armaflex II (or equivalent) insulation (K=0.26). Optional evaporator heaters with thermostats are provided to protect the evaporator from freezing at ambient temperatures down to -25°C [-13°F].
Condenser and Fans
Air-cooled condenser coils have aluminum fins mechanically bonded to internally-finned seamless copper tubing. The condenser coil has an integral subcooling circuit. Condensers are factory proof- and leak-tested at 35 bars [500 psi]. Direct-drive vertical­discharge airfoil
ZephyrWing
condenser fans are dynamically balanced. Three­phase condenser fan motors with
permanently-lubricated ball bearings are provided. Standard units will start and operate from -4 to 46°C [25 to 11 5 °F] ambient.
Compressor and Lube Oil System
The helical-rotary compressor is semi­hermetic, direct drive, 3000 rpm, with capacity-control slide valve, a load/unload valve, rolling element bearings, differential refrigerant pressure oil pump, and oil heater. The motor is a suction-gas-cooled, hermetically sealed, two-pole squirrel­cage induction motor. Oil separator and filtration devices are provided separate from the compressor. Check valves in the compressor discharge and lube oil system, and a solenoid valve in the lube system, are provided.
Refrigeration Circuits
Each unit has two refrigerant circuits, with one helical-rotary compressor per circuit. Each refrigerant circuit includes a removable-core filter drier, liquid-line shutoff valve, liquid-line sight glass with moisture indicator, charging port, and an electronic expansion valve. Fully modulating compressors and electronic expansion valves provide variable capacity modulation over the entire operating range. (Optional compressor discharge and suction service valve).
Unit Controls
All unit controls are housed in a weather-tight enclosure, with removable plates to allow for customer connection of power wiring and remote interlocks. All controls, including sensors, are factory-mounted and ­tested prior to shipment. Microcomputer controls provide all control functions including startup and shutdown, leaving-chilled-water temperature control, compressor and
electronic expansion-valve modulation, fan sequencing, anti-recycle logic, automatic lead/lag compressor starting, and load limiting. The unit control module, utilizing the Adaptive Control
microprocessor, automatically takes action to avoid unit shutdown due to abnormal operating conditions associated with low refrigerant pressure, high condensing pressure, and motor current overload. Should the abnormal operating condition continue until a protective limit is violated, the unit will be shut down. Unit protective functions include loss of chilled-water flow, evaporator freezing, loss of refrigerant, low refrigerant pressure, high refrigerant pressure, reverse rotation, compressor­starting and -running overcurrent, phase loss, phase imbalance, phase reversal, and loss of oil flow. A digital display indicates chilled-water set point and leaving-chilled-water temperature as standard, while current-limit set point, evaporator and condenser refrigerant pressures, and electrical information are an option. Both standard and optional displays can be viewed on the unit without opening any control panel doors. Standard power connections include main three-phase power to the compressors, condenser fans, and control power transformer, and optional connections are available for the 230 volt single-phase power for freeze protection on the evaporator heaters.
Starters
Starters are housed in a weather-tight enclosure with hinged doors to allow for customer connection of power wiring. Wye-Delta closed transition starters (33 percent of LRA inrush) are standard. An optional Wye-Delta closed transition starter (33 percent of LRA inrush) is available on 400/3/50 volt units.
Literature Order Number File Number Supersedes Stocking Location
Since The Trane Company has a policy of continuous product improvement, it reserves the right to change design and specifications without notice.
Société Trane – Société Anonyme au capital de 41500 000 F – Siege Social: 1 rue des Amériques – 88190 Golbey – France – Siret 306 050 188-00011 – RSC Epinal B 306 050 188 Numéro d’identification taxe intracommunanutaire: FR 83 3060501888
The Trane Company An American Standard Company www.trane.com
For more information contact your local sales office or e-mail us at comfort@trane.com
RLC-PRC005-E4 PL-RF-RLC-PRC-0005-E4-0800 New La Crosse
Loading...