Texas Instruments TMS320DM6431 Datasheet

www.ti.com
1 TMS320DM6431 Digital Media Processor
1.1 Features
TMS320DM6431
Digital Media Processor
High-Performance Digital Media Processor C64x+ L1/L2 Memory Architecture
(DM6431)
256K-Bit (32K-Byte) L1P Program
3.33-ns Instruction Cycle Time RAM/Cache [Flexible Allocation] – 300-MHz C64x+™ Clock Rate 256K-Bit (32K-Byte) L1D Data RAM/Cache
[Flexible Allocation]
Eight 32-Bit C64x+ Instructions/Cycle
512K-Bit (64K-Byte) L2 Unified Mapped
2400 MIPS
RAM/Cache [Flexible Allocation]
Fully Software-Compatible With C64x
Supports Little Endian Mode Only
Commercial and Extended Temperature
Ranges
Video Processing Subsystem (VPSS), VPFE
Only
VelociTI.2™ Extensions to VelociTI™
Front End Provides:
Advanced Very-Long-Instruction-Word (VLIW) TMS320C64x+™ DSP Core
CCD and CMOS Imager Interface
Eight Highly Independent Functional Units
BT.601/BT.656 Digital YCbCr 4:2:2
With VelociTI.2 Extensions:
(10-Bit) Interface
Six ALUs (32-/40-Bit), Each Supports
Glueless Interface to Common Video
Single 32-Bit, Dual 16-Bit, or Quad 8-Bit
Decoders
Arithmetic per Clock Cycle
External Memory Interfaces (EMIFs)
Two Multipliers Support Four 16 x 16-Bit
16-Bit DDR2 SDRAM Memory Controller
Multiplies (32-Bit Results) per Clock
With 128M-Byte Address Space (1.8-V I/O)
Cycle or Eight 8 x 8-Bit Multiplies (16-Bit
Asynchronous 8-Bit Wide EMIF (EMIFA)
Results) per Clock Cycle
With up to 64M-Byte Address Reach
Load-Store Architecture With Non-Aligned
Flash Memory Interfaces
Support
NOR (8-Bit-Wide Data)
64 32-Bit General-Purpose Registers
NAND (8-Bit-Wide Data)
Instruction Packing Reduces Code Size
Enhanced Direct-Memory-Access (EDMA)
All Instructions Conditional
Controller (64 Independent Channels)
Additional C64x+™ Enhancements
Two 64-Bit General-Purpose Timers (Each
Protected Mode Operation
Configurable as Two 32-Bit Timers)
Exceptions Support for Error Detection
One 64-Bit Watch Dog Timer
and Program Redirection
Hardware Support for Modulo Loop
One UART With RTS and CTS Flow Control
Auto-Focus Module Operation
Master/Slave Inter-Integrated Circuit (I2C
C64x+ Instruction Set Features
Bus™)
Byte-Addressable (8-/16-/32-/64-Bit Data)
One Multichannel Buffered Serial Port
8-Bit Overflow Protection
(McBSP0)
Bit-Field Extract, Set, Clear
I2S and TDM
Normalization, Saturation, Bit-Counting
AC97 Audio Codec Interface
VelociTI.2 Increased Orthogonality
SPI
C64x+ Extensions
Standard Voice Codec Interface (AIC12)
Compact 16-bit Instructions
Telecom Interfaces ST-Bus, H-100
Additional Instructions to Support
128 Channel Mode
Complex Multiplies
Multichannel Audio Serial Port (McASP0)
Four Serializers and SPDIF (DIT) Mode
High-End CAN Controller (HECC)
10/100 Mb/s Ethernet MAC (EMAC)
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this document.
All trademarks are the property of their respective owners.
PRODUCT PREVIEW information concerns products in the
Copyright © 2006–2007, Texas Instruments Incorporated
formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.
www.ti.com
PRODUCT PREVIEW
1.2 Description
TMS320DM6431 Digital Media Processor
SPRS342A – NOVEMBER 2006 – REVISED MARCH 2007
IEEE 802.3 Compliant
Packages:
Supports Media Independent Interface (MII)
361-Pin Pb-Free PBGA Package
(ZWT Suffix), 0.8-mm Ball Pitch
Management Data I/O (MDIO) Module
376-Pin Plastic BGA Package
Three Pulse Width Modulator (PWM) Outputs
(ZDU Suffix), 1.0-mm Ball Pitch
On-Chip ROM Bootloader
0.09- µ m/6-Level Cu Metal Process (CMOS)
Individual Power-Savings Modes
3.3-V and 1.8-V I/O, 1.2-V Internal (-300)
Flexible PLL Clock Generators
Applications:
IEEE-1149.1 (JTAG™)
Digital Media
Boundary-Scan-Compatible
Networked Media Encode
Up to 111 General-Purpose I/O (GPIO) Pins
Video Imaging
(Multiplexed With Other Device Functions)
The TMS320C64x+™ DSPs (including the TMS320DM6431 device) are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The DM6431 device is based on the third-generation high-performance, advanced VelociTI™ very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for digital media applications. The C64x+™ devices are upward code-compatible from previous devices that are part of the C6000™ DSP platform. The C64x™ DSPs support added functionality and have an expanded instruction set from previous devices.
Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively.
With performance of up to 2400 million instructions per second (MIPS) at a clock rate of 300 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 1200 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 2400 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732 ).
The DM6431 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6431 core uses a two-level cache-based architecture. The Level 1 program memory/cache (L1P) consists of 32K-byte (KB) memory space that can be configured as mapped memory or direct mapped cache. The Level 1 data/memory memory/cache (L1D) of 32KB memory space that can be configured as mapped memory or 2-way set-associative cache. The Level 2 memory/cache (L2) consists of a 64KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both.
The peripheral set includes: 1 configurable video port; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; a multichannel buffered serial port (McBSP0); a multichannel audio serial port (McASP0) with 4 serializers; 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 111-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 1 UART with hardware handshaking support; 3 pulse width modulator (PWM) peripherals; 1 high-end controller area network (CAN) controller [HECC]; and 2 glueless external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2.
TMS320DM6431 Digital Media Processor2 Submit Documentation Feedback
www.ti.com
TMS320DM6431
Digital Media Processor
The DM6431 device includes a Video Processing Subsystem (VPSS) with a Video Processing Front-End (VPFE) input used for video capture.
The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC). The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs).
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM6431 and the network. The DM6431 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support.
The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system.
The I2C port allows DM6431 to easily control peripheral devices and/or communicate with host processors.
The high-end controller area network (CAN) controller [HECC] module provides a network protocol in a harsh environment to communicate serially with other controllers, typically in automotive applications.
The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
The DM6431 has a complete set of development tools. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
Submit Documentation Feedback TMS320DM6431 Digital Media Processor 3
www.ti.com
PRODUCT PREVIEW
1.3 Functional Block Diagram
JTAG Interface
System Control
PLLs/Clock Generator
Input
Clock(s)
Power/Sleep Controller
Pin Multiplexing
DSP Subsystem
C64x+t DSP CPU
32 KB
L1 Pgm
64 KB L2 RAM
32 KB
L1 Data
BT.656, Y/C, Raw (Bayer)
Video Processing Subsystem (VPSS)
CCD
Controller
Video
Interface
Front End
Switched Central Resource (SCR)
Peripherals
EDMA
I2C HECC UART
Serial Interfaces
DDR2
Mem Ctlr
(16b)
Async EMIF/
NAND/
(8b)
Program/Data Storage
Watchdog
Timer
PWM
System
General­Purpose
Timer
EMAC
With
MDIO
Connectivity
McASP
McBSP
OSC
Boot ROM
10b
GPIO
TMS320DM6431 Digital Media Processor
SPRS342A – NOVEMBER 2006 – REVISED MARCH 2007
Figure 1-1 shows the functional block diagram of the DM6431 device.
Figure 1-1. TMS320DM6431 Functional Block Diagram
TMS320DM6431 Digital Media Processor4 Submit Documentation Feedback
www.ti.com
Contents
TMS320DM6431
Digital Media Processor
5.3 Electrical Characteristics Over Recommended
1 TMS320DM6431 Digital Media Processor ........... 1
Ranges of Supply Voltage and Operating
1.1 Features .............................................. 1
Temperature (Unless Otherwise Noted) ........... 119
1.2 Description ............................................ 2
6 Peripheral Information and Electrical
1.3 Functional Block Diagram ............................ 4
Specifications ......................................... 120
Revision History ............................................... 6
6.1 Parameter Information ............................. 120
2 Device Overview ......................................... 7
6.2 Recommended Clock and Control Signal Transition
Behavior ............................................ 121
2.1 Device Characteristics ................................ 7
6.3 Power Supplies .................................... 122
2.2 CPU (DSP Core) Description ......................... 8
6.4 Enhanced Direct Memory Access (EDMA3)
2.3 C64x+ CPU .......................................... 11
Controller ........................................... 129
2.4 Memory Map Summary ............................. 12
6.5 Reset ............................................... 141
2.5 Pin Assignments .................................... 16
6.6 External Clock Input From MXI/CLKIN Pin ........ 150
2.6 Terminal Functions .................................. 24
6.7 Clock PLLs ......................................... 152
2.7 Device Support ...................................... 56
6.8 Interrupts ........................................... 157
2.8 Device and Development-Support Tool
6.9 External Memory Interface (EMIF) ................. 160
Nomenclature ....................................... 56
6.10 Video Processing Sub-System (VPSS) Overview . 169
2.9 Documentation Support ............................. 58
6.11 Universal Asynchronous Receiver/Transmitter
3 Device Configurations ................................. 59
(UART) ............................................. 174
3.1 System Module Registers ........................... 59
6.12 Inter-Integrated Circuit (I2C) ....................... 176
3.2 Power Considerations ............................... 60
6.13 Multichannel Buffered Serial Port (McBSP) ........ 180
3.3 Clock Considerations ................................ 62
6.14 Multichannel Audio Serial Port (McASP0)
3.4 Boot Sequence ...................................... 64
Peripheral .......................................... 188
3.5 Configurations At Reset ............................. 74
6.15 High-End Controller Area Network Controller
3.6 Configurations After Reset .......................... 75
(HECC) ............................................. 196
3.7 Multiplexed Pin Configurations ...................... 79
6.16 Ethernet Media Access Controller (EMAC) ........ 202
3.8 Device Initialization Sequence After Reset ........ 112
6.17 Management Data Input/Output (MDIO) .......... 209
3.9 Debugging Considerations ......................... 114
6.18 Timers .............................................. 211
4 System Interconnect ................................. 115
6.19 Pulse Width Modulator (PWM) ..................... 213
4.1 System Interconnect Block Diagram ............... 115
6.20 General-Purpose Input/Output (GPIO) ............. 215
5 Device Operating Conditions ....................... 117
6.21 IEEE 1149.1 JTAG ................................. 219
5.1 Absolute Maximum Ratings Over Operating
7 Mechanical Data ....................................... 221
Temperature Range (Unless Otherwise Noted) ... 117
7.1 Thermal Data for ZWT ............................. 221
5.2 Recommended Operating Conditions ............. 118
7.1.1 Thermal Data for ZDU ............................. 222
7.1.2 Packaging Information ............................. 222
Submit Documentation Feedback Contents 5
www.ti.com
PRODUCT PREVIEW
Revision History
TMS320DM6431 Digital Media Processor
SPRS342A – NOVEMBER 2006 – REVISED MARCH 2007
This data manual revision history highlights the technical changes made to the SPRS342 device-specific data manual to make it an SPRS342A revision.
Scope: Applicable updates to the device family, specifically relating to the device, have been incorporated.
The RSV1 pin (E5, D4) must be left unconnected. Do not connect to power or ground.
Upon exit from the bootloader code, all C64x+ memories are configured as all RAM, Cache is disabled.
This is now a complete document. New sections and subsections have been added.
SEE ADDITIONS/MODIFICATIONS/DELETIONS
Global Added section cross-references throughout the entire document
Section 1.1 Section 1.1 , Features:
Deleted "/Debug" from the "Fully Software-Compatible With C64x" feature
Section 2.1 Section 2.1 , Device Characteristics:
Table 2-1 , Characteristics of the DM6431 Processor:
Added "MegaMdodule Rev ID" Updated/Changed the "CPU ID + CPU Rev ID" row to reference the " TMS320DM6437/35/33/31 Digital
Media Processor (DMP) [Silicon Revisions 1.1 and 1.0] Silicon Errata (literature number SPRZ250 )." Updated/Changed PLL Options " CLKIN1 frequency multiplier (27 MHz reference)" to " MXI/CLKIN
frequency multiplier (27 MHz reference)"
Section 2.4 Section 2.4 , Memory Map Summary:
Section 2.4 , Memory Map Summary:
Added "For all boot modes that default to ..." footnote
Table 2-4 , Configuration Memory Map Summary:
Deleted 0x01BC 0000 0x01BC 00FF AET Registers; now "Reserved"
Section 2.6 Section 2.6 , Terminal Functions:
Table 2-5 , Boot Terminal Functions:
Updated/Changed Bootmode[3:0] Descriptions to reference Section 3.4.1 , Boot Modes Updated/Changed EM_BA[1:0]/(AEM0:1) DSECRIPTION from "...pinout type" to ..."pinout mode"
Table 2-10 , EMIFA Terminal Functions (EMIFA Pinout Mode 1, AEM[2:0] = 001):
Updated/Changed the DESCRIPTION for EM_A[12:0]
Table 2-11 , EMIFA Terminal Functions (EMIFA Pinout Mode 5, AEM[2:0] = 101):
Updated/Changed DESPCRIPTION for EM_CS2/GP[12]
Table 2-12 , DDR2 Memory Controller Terminal Functions:
Added "Output" pin direction to the DESCRIPTION for all address bus and control signals Added "bi-directional" to the DESCRIPTION for the DDR2 data bus
Table 2-13 , EMAC and MDIO Terminal Functions:
Updated/Changed the "MTXCLK/GP[73]" DESCRIPTION from "output" to "input" Updated/Changed the "MTXD0/GP[72]" DESCRIPTION from "TXD0" to " MTXD0" Updated/Changed the "MRXD3/GP[82]" DESCRIPTION from "RXD3" to " MRXD3" Added " (I/O/Z)" to the MDIO/GP[83] DESCRIPTION
Table 2-14 , VPFE Terminal Functions:
Updated/Changed the DESCRIPTION for the following signals: CCDC9 through CCDC0 from "CCD AFE mode" to "CCD Raw mode" Added "In 8-bit YCbCr mode, this pin should not be used." to the DESCRIPTION for CCD8 and CCD9
Table 2-23 , Standalone GPIO 3.3 V Terminal Functions:
Updated/Changed the DESCRIPTION for GP[28] to "... pulled down via an external resistor"
Table 2-24 , Reserved Terminal Functions:
Deleted TYPE for the following signals: RSV4 through RSV15
Section 2.8 Section 2.8 , Device and Development-Support Tool Nomenclature:
Updated/Changed Figure 2-10 , Device Nomenclature
Section 5.3 Section 5.3 , Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating
Temperature (Unless Otherwise Noted): Updated/Changed CIand COMAX values from "10 pF" to "5 pF"
Updated/Changed the "Measured under the following conditions: ..." footnote
6 Revision History Submit Documentation Feedback
www.ti.com
2 Device Overview
2.1 Device Characteristics
TMS320DM6431
Digital Media Processor
Table 2-1 , provides an overview of the TMS320DM6431 DSP. The tables show significant features of the
DM6431 device, including the capacity of on-chip RAM, the peripherals, the CPU frequency, and the package type with pin count.
Table 2-1. Characteristics of the DM6431 Processor
HARDWARE FEATURES DM6431
DDR2 Memory Controller (16-bit bus width) [1.8 V I/O]
Asynchronous (8-bit bus width),
Asynchronous EMIF [EMIFA]
RAM, Flash, (8-bit NOR or 8-bit NAND)
EDMA3 1 (64 independent channels, 8 QDMA channels)
2 64-bit General Purpose
Timers (configurable as 2 64-bit or 4 32-bit)
1 64-bit Watch Dog
Peripherals
UART 1 (with RTS and CTS flow control)
Not all peripherals pins
I2C 1 (Master/Slave)
are available at the same time (For more detail, see
McBSP 1
the Device Configuration
McASP 1 (4 serailizers)
section).
10/100 Ethernet MAC (EMAC) with
1
Management Data Input/Output (MDIO) General-Purpose Input/Output Port (GPIO) Up to 111 pins PWM 3 outputs Configurable Video Port 1 Input (VPFE) HECC 1 Size (Bytes) 128KB RAM, 64KB ROM
32K-Byte (32KB) L1 Program (L1P) RAM/Cache (Cache up to 32KB)
On-Chip Memory
Organization 32KB L1 Data (L1D) RAM/Cache (Cache up to 32KB)
64KB Unified Mapped RAM/Cache (L2) 64KB Boot ROM
Revision ID Register (MM_REVID.[15:0])
See the TMS320DM6437/35/33/31 Digital Media
MegaModule Rev ID
(address location: 0x0181 2000)
Processor (DMP) [Silicon Revisions 1.1 and 1.0] Silicon Errata (literature number SPRZ250 ).
CPU ID + CPU Rev ID Control Status Register (CSR.[31:16])
JTAGID register See Section 6.21.1 , JTAG ID (JTAGID) Register
JTAG BSDL_ID
(address location: 0x01C4 0028) Description(s) CPU Frequency MHz 300 Cycle Time ns 3.33 ns (-300)
Core (V) 1.2 V (-300) Voltage
I/O (V) 1.8 V, 3.3 V
MXI/CLKIN frequency multiplier
PLL Options x1 (Bypass), x14 to x30
(27 MHz reference)
16 x 16 mm, 0.8 mm pitch 361-Pin BGA (ZWT) BGA Package(s)
23 x 23 mm, 1.0 mm pitch 376-Pin BGA (ZDU) Process Technology µm 0.09 µm
Product Preview (PP), Advance Information (AI),
Product Status
(1)
PP
or Production Data (PD)
(1) PRODUCT PREVIEW information concerns experimental products (designated as TMX) that are in the formative or design phase of
development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.
Submit Documentation Feedback Device Overview 7
www.ti.com
PRODUCT PREVIEW
2.2 CPU (DSP Core) Description
TMS320DM6431 Digital Media Processor
SPRS342A – NOVEMBER 2006 – REVISED MARCH 2007
The C64x+ Central Processing Unit (CPU) consists of eight functional units, two register files, and two data paths as shown in Figure 2-1 . The two general-purpose register files (A and B) each contain 32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register).
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory.
The C64x+ CPU extends the performance of the C64x core through enhancements and new features. Each C64x+ .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x
32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four 16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended precision necessary for audio and other high-precision algorithms on a variety of signed and unsigned 32-bit data types.
The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.
The C64x+ core enhances the .S unit in several ways. In the C64x core, dual 16-bit MIN2 and MAX2 comparisons were only available on the .L units. On the C64x+ core they are also available on the .S unit which increases the performance of algorithms that do searching and sorting. Finally, to increase data packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack instructions return parallel results to output precision including saturation support.
Other new features include:
SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.
Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C64x+ compiler can restrict the code to use certain registers in the register file. This compression is performed by the code generation tools.
Device Overview8 Submit Documentation Feedback
www.ti.com
TMS320DM6431
Digital Media Processor
Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field multiplication.
Exceptions Handling - Intended to aid the programmer in isolating bugs. The C64x+ CPU is able to detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and from system events (such as a watchdog time expiration).
Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with read, write, and execute permissions.
Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a free-running time-stamp counter is implemented in the CPU which is not sensitive to system stalls.
For more details on the C64x+ CPU and its enhancements over the C64x architecture, see the following documents:
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732 )
TMS320C64x+ DSP Megamodule Reference Guide (literature number SPRU871 )
TMS320C64x to TMS320C64x+ CPU Migration Guide Application Report (literature number SPRAA84 )
TMS320C64x+ DSP Cache User's Guide (literature number SPRU862 )
Submit Documentation Feedback Device Overview 9
www.ti.com
PRODUCT PREVIEW
src2
src2
.D1
.M1
.S1
.L1
long src
odd dst
src2
src1
src1
src1
src1
even dst
even dst
odd dst
dst1
dst
src2
src2
src2
long src
DA1
ST1b
LD1b LD1a
ST1a
Data path A
Odd
register
file A
(A1, A3,
A5...A31)
Odd
register
file B
(B1, B3,
B5...B31)
.D2
src1
dst
src2
DA2
LD2a LD2b
src2
.M2
src1
dst1
.S2
src1
even dst
long src
odd dst
ST2a ST2b
long src
.L2
even dst
odd dst
src1
Data path B
Control Register
32 MSB 32 LSB
dst2
(A)
32 MSB 32 LSB
2x
1x
32 LSB
32 MSB
32 LSB
32 MSB
dst2
(B)
(B) (A)
8
8
8
8
32
32
32
32
(C)
(C)
Even
register
file A
(A0, A2,
A4...A30)
Even
register
file B
(B0, B2,
B4...B30)
(D)
(D)
(D)
(D)
A. On .M unit, dst2 is 32 MSB.
B. On .M unit, dst1 is 32 LSB. C. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits. D. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.
TMS320DM6431 Digital Media Processor
SPRS342A – NOVEMBER 2006 – REVISED MARCH 2007
Figure 2-1. TMS320C64x+™ CPU (DSP Core) Data Paths
10 Device Overview Submit Documentation Feedback
www.ti.com
2.3 C64x+ CPU
TMS320DM6431
Digital Media Processor
The C64x+ core uses a two-level cache-based architecture. The Level 1 Program memory/cache (L1P) consists of 32 KB memory space that can be configured as mapped memory or direct mapped cache. The Level 1 Data memory/cache (L1D) consists of 32 KB memory space that can be configured as mapped memory or 2-way set associated cache. The Level 2 memory/cache (L2) consists of a 64 KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both.
Table 2-2 shows a memory map of the C64x+ CPU cache registers for the device.
Table 2-2. C64x+ Cache Registers
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 0000 L2CFG L2 Cache configuration register 0x0184 0020 L1PCFG L1P Size Cache configuration register 0x0184 0024 L1PCC L1P Freeze Mode Cache configuration register 0x0184 0040 L1DCFG L1D Size Cache configuration register 0x0184 0044 L1DCC L1D Freeze Mode Cache configuration register
0x0184 0048 - 0x0184 0FFC - Reserved
0x0184 1000 EDMAWEIGHT L2 EDMA access control register
0x0184 1004 - 0x0184 1FFC - Reserved
0x0184 2000 L2ALLOC0 L2 allocation register 0 0x0184 2004 L2ALLOC1 L2 allocation register 1 0x0184 2008 L2ALLOC2 L2 allocation register 2
0x0184 200C L2ALLOC3 L2 allocation register 3
0x0184 2010 - 0x0184 3FFF - Reserved
0x0184 4000 L2WBAR L2 writeback base address register 0x0184 4004 L2WWC L2 writeback word count register 0x0184 4010 L2WIBAR L2 writeback invalidate base address register 0x0184 4014 L2WIWC L2 writeback invalidate word count register 0x0184 4018 L2IBAR L2 invalidate base address register
0x0184 401C L2IWC L2 invalidate word count register
0x0184 4020 L1PIBAR L1P invalidate base address register 0x0184 4024 L1PIWC L1P invalidate word count register 0x0184 4030 L1DWIBAR L1D writeback invalidate base address register 0x0184 4034 L1DWIWC L1D writeback invalidate word count register 0x0184 4038 - Reserved 0x0184 4040 L1DWBAR L1D Block Writeback 0x0184 4044 L1DWWC L1D Block Writeback 0x0184 4048 L1DIBAR L1D invalidate base address register
0x0184 404C L1DIWC L1D invalidate word count register
0x0184 4050 - 0x0184 4FFF - Reserved
0x0184 5000 L2WB L2 writeback all register 0x0184 5004 L2WBINV L2 writeback invalidate all register 0x0184 5008 L2INV L2 Global Invalidate without writeback
0x0184 500C - 0x0184 5027 - Reserved
0x0184 5028 L1PINV L1P Global Invalidate
0x0184 502C - 0x0184 5039 - Reserved
0x0184 5040 L1DWB L1D Global Writeback 0x0184 5044 L1DWBINV L1D Global Writeback with Invalidate
Submit Documentation Feedback Device Overview 11
www.ti.com
PRODUCT PREVIEW
2.4 Memory Map Summary
TMS320DM6431 Digital Media Processor
SPRS342A – NOVEMBER 2006 – REVISED MARCH 2007
Table 2-2. C64x+ Cache Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 5048 L1DINV L1D Global Invalidate without writeback 0x0184 8000 - 0x0184 80BC MAR0 - MAR47 Reserved (corresponds to byte address 0x0000 0000 - 0x2FFF FFFF) 0x0184 80C0 - 0x0184 80FC MAR48 - MAR63 Reserved (corresponds to byte address 0x3000 0000 - 0x3FFF FFFF)
0x0184 8100 - 0x0184 8104 MAR64 - MAR65 Reserved (corresponds to byte address 0x4000 0000 - 0x41FF FFFF)
Memory Attribute Registers for EMIFA
0x0184 8108 - 0x0184 8124 MAR66 - MAR73
(corresponds to byte address 0x4200 0000 - 0x49FF FFFF) 0x0184 8128 - 0x0184 812C MAR74 - MAR75 Reserved (corresponds to byte address 0x4A00 0000 - 0x4BFF FFFF) 0x0184 8130 - 0x0184 813C MAR76 - MAR79 Reserved (corresponds to byte address 0x4C00 0000 - 0x4FFF FFFF)
0x0184 8140- 0x0184 81FC MAR80 - MAR127 Reserved (corresponds to byte address 0x5000 0000 - 0x7FFF FFFF)
Memory Attribute Registers for DDR2
0x0184 8200 - 0x0184 823C MAR128 - MAR143
(corresponds to byte address 0x8000 0000 - 0x8FFF FFFF) 0x0184 8240 - 0x0184 83FC MAR144 - MAR255 Reserved (corresponds to byte address 0x9000 0000 - 0xFFFF FFFF)
Table 2-3 shows the memory map address ranges of the device. Table 2-4 depicts the expanded map of
the Configuration Space (0x0180 0000 through 0x0FFF FFFF). The device has multiple on-chip memories associated with its two processors and various subsystems. To help simplify software development a unified memory map is used where possible to maintain a consistent view of device resources across all bus masters.
Device Overview12 Submit Documentation Feedback
www.ti.com
TMS320DM6431
Digital Media Processor
Table 2-3. Memory Map Summary
START END SIZE C64x+ EDMA PERIPHERAL VPSS
ADDRESS ADDRESS (Bytes) MEMORY MAP MEMORY MAP MEMORY MAP
0x0000 0000 0x000F FFFF 1M Reserved 0x0010 0000 0x0010 FFFF 64K Boot ROM 0x0011 0000 0x007F FFFF 7M-64K Reserved 0x0080 0000 0x0080 FFFF 64K Reserved 0x0081 0000 0x0081 FFFF 64K L2 RAM/Cache
(1)
0x0082 0000 0x00E0 7FFF 6048K Reserved
Reserved
0x00E0 8000 0x00E0 FFFF 32K L1P RAM/Cache
(1)
0x00E1 0000 0x00F0 3FFF 976K Reserved 0x00F0 4000 0x00F0 FFFF 48K Reserved 0x00F1 0000 0x00F1 7FFF 32K L1D RAM/Cache
(1)
0x00F1 8000 0x017F FFFF 9120K Reserved 0x0180 0000 0x01BF FFFF 4M CFG Space 0x01C0 0000 0x01FF FFFF 4M CFG Bus Peripherals CFG Bus Peripherals 0x0200 0000 0x100F FFFF 225M Reserved 0x1010 0000 0x1010 FFFF 64K Boot ROM Reserved 0x1011 0000 0x107F FFFF 7M-48K Reserved 0x1080 0000 0x1080 FFFF 64K Reserved Reserved 0x1081 0000 0x1081 FFFF 64K L2 RAM/Cache
(1)
L2 RAM/Cache
(1)
0x1082 0000 0x10E0 7FFF 6048K Reserved Reserved 0x10E0 8000 0x10E0 FFFF 32K L1P RAM/Cache
(1)
L1P RAM/Cache
(1)
Reserved
0x10E1 0000 0x10F0 3FFF 976K Reserved Reserved 0x10F0 4000 0x10F0 FFFF 48K Reserved Reserved 0x10F1 0000 0x10F1 7FFF 32K L1D RAM/Cache
(1)
L1D RAM/Cache
(1)
0x10F1 8000 0x10FF FFFF 1M-96K Reserved Reserved 0x1100 0000 0x1FFF FFFF 240M Reserved Reserved 0x2000 0000 0x2000 7FFF 32K DDR2 Control Regs DDR2 Control Regs 0x2000 8000 0x2FFF FFFF 256M-32K Reserved Reserved 0x3000 0000 0x3FFF FFFF 256M Reserved Reserved 0x4000 0000 0x41FF FFFF 32M Reserved Reserved 0x4200 0000 0x42FF FFFF 16M EMIFA Data ( CS2)
(2)
EMIFA Data ( CS2)
(2)
0x4300 0000 0x43FF FFFF 16M Reserved Reserved 0x4400 0000 0x44FF FFFF 16M EMIFA Data ( CS3)
(2)
EMIFA Data ( CS3)
(2)
0x4500 0000 0x45FF FFFF 16M Reserved Reserved 0x4600 0000 0x46FF FFFF 16M EMIFA Data ( CS4)
(2)
EMIFA Data ( CS4)
(2)
0x4700 0000 0x47FF FFFF 16M Reserved Reserved 0x4800 0000 0x48FF FFFF 16M EMIFA Data ( CS5)
(2)
EMIFA Data ( CS5)
(2)
0x4900 0000 0x49FF FFFF 16M Reserved Reserved 0x4A00 0000 0x4BFF FFFF 32M Reserved Reserved 0x4C00 0000 0x4FFF FFFF 64M Reserved Reserved 0x5000 0000 0x7FFF FFFF 768M Reserved Reserved 0x8000 0000 0x8FFF FFFF 256M DDR2 Memory Controller DDR2 Memory Controller DDR2 Memory Controller 0x9000 0000 0xFFFF FFFF 1792M Reserved Reserved Reserved
(1) For all bootmodes that default to DSPBOOTADDR = 0x0010 0000 (i.e., all boot modes except the EMIFA ROM Direct Boot,
BOOTMODE[3:0] = 0100, FASTBOOT = 0), the bootloader code disables all C64x+ cache (L2, L1P, and L1D) so that upon exit from the bootloader code, all C64x+ memories are configured as all RAM (L2CFG.L2MODE = 0h, L1PCFG.L1PMODE = 0h, and L1DCFG.L1DMODE = 0h). If cache use is required, the application code must explicitly enable the cache. For more information on boot modes, see Section 3.4.1 , Boot Modes. For more information on the bootloader, see the Using the TMS320DM643x Bootloader Application Report (literature number SPRAAG0 ). For the EMIFA ROM Direct Boot (BOOTMODE[3:0] = 0100, FASTBOOT = 0), the bootloader is not executed—that is, L2 RAM/Cache defaults to all RAM (L2CFG.L2MODE = 0h); L1P RAM/Cache defaults to all cache (L1PCFG.L1PMODE = 7h); and L1D RAM/Cache defaults to all cache (L1DCFG.L1DMODE = 7h).
(2) The EMIFA CS0 and CS1 are not functionally supported on the DM6431 device, and therefore, are not pinned out.
Submit Documentation Feedback Device Overview 13
www.ti.com
PRODUCT PREVIEW
TMS320DM6431 Digital Media Processor
SPRS342A – NOVEMBER 2006 – REVISED MARCH 2007
Table 2-4. Configuration Memory Map Summary
START END SIZE C64x+ ADDRESS ADDRESS (Bytes)
0x0180 0000 0x0180 FFFF 64K C64x+ Interrupt Controller 0x0181 0000 0x0181 0FFF 4K C64x+ Powerdown Controller 0x0181 1000 0x0181 1FFF 4K C64x+ Security ID 0x0181 2000 0x0181 2FFF 4K C64x+ Revision ID 0x0182 0000 0x0182 FFFF 64K C64x+ EMC 0x0183 0000 0x0183 FFFF 64K Reserved 0x0184 0000 0x0184 FFFF 64K C64x+ Memory System 0x0185 0000 0x0187 FFFF 192K Reserved 0x0188 0000 0x01BB FFFF 3328K Reserved 0x01BC 0000 0x01BC 00FF 256 Reserved 0x01BC 0100 0x01BC 01FF 256 Pin Manager and Trace 0x01BC 0400 0x01BF FFFF 255K Reserved 0x01C0 0000 0x01C0 FFFF 64K EDMA CC 0x01C1 0000 0x01C1 03FF 1K EDMA TC0 0x01C1 0400 0x01C1 07FF 1K EDMA TC1 0x01C1 0800 0x01C1 0BFF 1K EDMA TC2 0x01C1 0C00 0x01C1 9FFF 5K Reserved 0x01C1 A000 0x01C1 A7FF 2K Reserved 0x01C1 A800 0x01C1 FFFF 22K Reserved 0x01C2 0000 0x01C2 03FF 1K UART0 0x01C2 0400 0x01C2 07FF 1K Reserved 0x01C2 0800 0x01C2 0FFF 2K Reserved 0x01C2 1000 0x01C2 13FF 1K I2C 0x01C2 1400 0x01C2 17FF 1K Timer0 0x01C2 1800 0x01C2 1BFF 1K Timer1 0x01C2 1C00 0x01C2 1FFF 1K Timer2 (Watchdog) 0x01C2 2000 0x01C2 23FF 1K PWM0 0x01C2 2400 0x01C2 27FF 1K PWM1 0x01C2 2800 0x01C2 2BFF 1K PWM2 0x01C2 2C00 0x01C2 2FFF 1K Reserved 0x01C2 3000 0x01C2 3FFF 4K HECC Control
(1)
0x01C2 4000 0x01C2 53FF 5K HECC RAM 0x01C2 5400 0x01C3 FFFF 107K Reserved 0x01C4 0000 0x01C4 07FF 2K System Module 0x01C4 0800 0x01C4 0BFF 1K PLL Controller 1 0x01C4 0C00 0x01C4 0FFF 1K PLL Controller 2 0x01C4 1000 0x01C4 1FFF 4K Power and Sleep Controller 0x01C4 2000 0x01C6 6FFF 148K Reserved 0x01C6 7000 0x01C6 77FF 2K GPIO 0x01C6 7800 0x01C6 7FFF 2K Reserved 0x01C6 8000 0x01C6 FFFF 32K Reserved 0x01C7 0000 0x01C7 3FFF 16K VPSS Registers 0x01C7 4000 0x01C7 FFFF 48K Reserved 0x01C8 0000 0x01C8 0FFF 4K EMAC Control Registers 0x01C8 1000 0x01C8 1FFF 4K EMAC Control Module Registers
(1) Software must not access "Reserved" locations of the HECC. Access to HECC "Reserved" locations may hang the device.
Device Overview14 Submit Documentation Feedback
www.ti.com
TMS320DM6431
Digital Media Processor
Table 2-4. Configuration Memory Map Summary (continued)
START END SIZE C64x+ ADDRESS ADDRESS (Bytes)
0x01C8 2000 0x01C8 3FFF 8K EMAC Control Module RAM 0x01C8 4000 0x01C8 47FF 2K MDIO Control Registers 0x01C8 4800 0x01CF FFFF 494K Reserved 0x01D0 0000 0x01D0 07FF 2K McBSP0 0x01D0 0800 0x01D0 0FFF 2K Reserved 0x01D0 1000 0x01D0 13FF 1K McASP0 Control 0x01D0 1400 0x01D0 17FF 1K McASP0 Data 0x01D0 1800 0x01DF FFFF 1018K Reserved 0x01E0 0000 0x01E0 0FFF 4K EMIFA Control 0x01E0 1000 0x01E0 1FFF 4K Reserved 0x01E0 2000 0x0FFF FFFF 226M-8K Reserved
Submit Documentation Feedback Device Overview 15
www.ti.com
PRODUCT PREVIEW
2.5 Pin Assignments
2.5.1 Pin Map (Bottom View)
W
V
U
T
R
P
N
M
L
K
10987654321
10987654321
DDR_D[3]
V
SS
HECC_TX/
TOUT1L/
GP[55]
V
SS
UCTS0/
GP[87]
UTXD0/
GP[86]
URXD0/
GP[85]
SCL SDA
TCK RESETOUTEMU1 POR
DV
DD33
TDOEMU0
TRST
DV
DDR2
TMS
DDR_D[1] DDR_DQM[0]
DDR_D[2]
RSV16
TDI
RESET
RSV3
HECC_RX/
TINP1L/
GP[56]
RSV2
CV
DD
V
SS
V
SS
V
SS
CV
DD
DV
DDR2
DDR_A[11]DDR_A[12]DDR_CLK0DDR_CLK0DDR_D[14]
V
SS
DV
DD33
V
SS
DDR_D[5]
DDR_D[6]
DDR_D[9]
V
SS
V
SS
DV
DDR2
DDR_BS[2]
V
SS
DDR_D[11] DDR_D[15] DDR_CKE
CV
DD
V
SS
CV
DD
CV
DD
V
SS
DDR_DQM[1] DDR_CAS DDR_WE DDR_ZN
V
SS
V
SS
DDR_DQS[1] DDR_RAS DDR_A[10]
CV
DD
CV
DD
DV
DDR2
DDR_D[4] DDR_D[8] DDR_D[13] DDR_BS[1]
DDR_D[12]
DV
DDR2
TINP0L/
GP[98]
V
SS
V
SS
V
SS
DV
DDR2
CLKOUT0/
PWM2/ GP[84]
DV
DD33
V
SS
DV
DD33
DV
DDR2
DV
DDR2
V
SS
DV
DDR2
DDR_CS
CV
DD
DDR_DQS[0] DDR_D[10] DDR_BS[0]
DDR_D[0]
URTS0/
PWM0/ GP[88]
DDR_D[7]
W
V
U
T
R
P
N
M
L
K
V
SS
V
SS
DDR_A[8]DDR_A[8]
TMS320DM6431 Digital Media Processor
SPRS342A – NOVEMBER 2006 – REVISED MARCH 2007
Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings. For more information on pin muxing, see Section 3.7 , Multiplexed Pin Configurations of this document.
Figure 2-2 through Figure 2-5 show the bottom view of the ZWT package pin assignments in four
quadrants (A, B, C, and D). Figure 2-6 through Figure 2-9 show the bottom view of the ZDU package pin assignments in four quadrants (A, B, C, and D).
Figure 2-2. ZWT Pin Map [Quadrant A]
Device Overview16 Submit Documentation Feedback
www.ti.com
W
V
U
T
R
P
N
M
L
K
191817161514131211
191817161514131211
RSV14
CV
DD
V
SS
V
SS
CV
DD
V
SS
CV
DD
V
SS
V
SS
V
SS
DV
DDR2
V
SS
RSV5DV
DDR2
DDR_ZP DDR_VSSDLLDDR_VDDDLL
DV
DDR2
CV
DD
DV
DDR2
V
SS
V
SS
V
SS
V
SS
V
SS
RSV9 RSV6
RSV8
DV
DDR2
DV
DDR2
RSV35RSV29RSV26
RSV7
RSV4
DV
DDR2
V
SS
DV
DDR2
RSV22 RSV36
MXV
DD
RSV25 RSV30 RSV32 V
SS
V
SS
RSV12
RSV10
V
SS
RSV15
DDR_VREF RSV21 RSV31 RSV39
DV
DD33
MXI/
CLKIN
RSV28 RSV23 RSV38
V
SS
V
SS
RSV27 RSV37
RSV24
V
SS
CV
DD
DV
DD33
V
SS
PLL
PWR18
V
SS
V
SS
DV
DD33
RSV13
V
SS
RSV11
V
SS
RSV34
MXV
SS
RSV20
RSV33
CV
DD
W
V
U
T
R
P
N
M
L
K
DDR_A[0]
DDR_A[1]
DDR_A[2]
DDR_A[5]
DDR_A[3]
DDR_A[4]
DDR_A[6]
DDR_A[9]
DDR_A[7]
TMS320DM6431
Digital Media Processor
Figure 2-3. ZWT Pin Map [Quadrant B]
Submit Documentation Feedback Device Overview 17
www.ti.com
PRODUCT PREVIEW
H
G
F
E
D
C
B
A
191817161514131211
191817161514131211
CV
DD
EM_WAIT/
(RDY/BSY)
VD/
GP[53]
YI7(CCD7)/
GP[43]
EM_A[15]/
GP[49]
EM_A[16]/
GP[48]
CI0(CCD8)/
EM_A[20]/
GP[44]
C_FIELD/
EM_A[21]/
GP[34]
EM_A[18]/
GP[46]
C_WE/
EM_R/W/
GP[35]
RSV19RSV18
DV
DD33
DV
DD33
V
SS
V
SS
V
SS
DV
DD33
V
SS
YI5(CCD5)/
GP[41]
YI3(CCD3)/
GP[39]
YI6(CCD6)/
GP[42]
PCLK/ GP[54]
EM_CS3/
GP[13]
EM_CS2/
GP[12]
GP[22]/
(BOOTMODE0)
EM_D[1]/
GP[15]
GP[31]
EM_D[4]/
GP[18]
EM_CS4/
GP[32]
YI1(CCD1)/
GP[37]
EM_D[6]/
GP[20]
V
SS
YI4(CCD4)/
GP[40]
V
SS
DV
DD33
DV
DD33
EM_A[3]/
GP[11]
EM_A[1]/
(ALE)/GP[9]/
(AEAW1/ PLLMS1)
EM_D[5]/
GP[19]
EM_D[2]/
GP[16]
EM_BA[1]/
GP[5]/
(AEM0)
EM_D[0]/
GP[14]
GP[24]/
(BOOTMODE2)
GP[25]/
(BOOTMODE3)
GP[26]/
(FASTBOOT)
GP[30]
EM_A[4]/
GP[10]/ (AEAW2/ PLLMS2)
V
SS
GP[29] GP[28] V
SS
EM_A[0]/
GP[7]/
(AEM2)
V
SS
EM_A[17]/
GP[47]
HD/
GP[52]
EM_BA[0]/
GP[6]/
(AEM1)
EM_A[2]/
(CLE)/GP[8]/
(AEAW0/ PLLMS0)
EM_D[7]/
GP[21]
YI2(CCD2)/
GP[38]
YI0(CCD0)/
GP[36]
EM_OE
EM_WE
EM_D[3]/
GP[17]
GP[23]/
(BOOTMODE1)
V
SS
DV
DD33
CV
DD
V
SS
GP[27]
CI1(CCD9)/
EM_A[19]/
GP[45]
H
G
F
E
D
C
B
A
J
V
SS
CV
DD
V
SS
V
SS
DV
DD33
MXO
V
SS
DV
DD33
V
SS
J
EM_CS5/
GP[33]
TMS320DM6431 Digital Media Processor
SPRS342A – NOVEMBER 2006 – REVISED MARCH 2007
Figure 2-4. ZWT Pin Map [Quadrant C]
Device Overview18 Submit Documentation Feedback
www.ti.com
J
H
G
F
E
D
C
B
A
10987654321
10987654321
AXR0[0]/ GP[105]
DV
DD33
MTXCLK/
GP[73]
DV
DD33
V
SS
MRXCLK/
GP[77]
MRXD1/
GP[79]
MRXD3/
GP[82]
MRXD0/
GP[78]
MDIO/
GP[83]
MTXEN/
GP[75]
MRXD2/
GP[80]
MTXD0/
GP[72]
GP[0] GP[2]GP[1]
AMUTEIN0/
GP[109]
V
SS
GP[4]/ PWM1
AFSX0/
GP[107]
AXR0[3]/
FSR0/
GP[102]
ACLKR0/
CLKX0/
GP[99]
AMUTE0/
GP[110]
GP[3]
MRXDV/
GP[74]
MCRS/
GP[68]
MTXD1/
GP[71]
GP[66]
EM_A[7]/
GP[94]
EM_A[11]/
GP[90]
EM_A[9]/
GP[92]
EM_A[12]/
GP[89]
V
SS
RSV17
GP[65]
DV
DD33
AXR0[2]/
FSX0/
GP[103]
AXR0[1]/
DX0/
GP[104]
MTXD2/
GP[70]
DV
DD33
V
SS
CV
DD
EM_A[8]/
GP[93]
V
SS
V
SS
CV
DD
CV
DD
GP[57]
DV
DD33
EM_A[6]/
GP[95]
GP[62]
GP[59]
DV
DD33
V
SS
DV
DD33
DV
DD33
GP[60]
EM_A[14]/
GP[50]
V
SS
CV
DD
V
SS
EM_A[5]/
GP[96]
EM_A[13]/
GP[51]
DV
DD33
AHCLKR0/
CLKR0/
GP[101]
CLKS0/
TOUT0L/
GP[97]
DV
DD33
V
SS
V
SS
DV
DD33
GP[63]
GP[58]
GP[61]
V
SS
MDCLK/
GP[81]
MTXD3/
GP[69]
MCOL/ GP[67]
GP[64]
RSV1 V
SS
ACLKX0/
GP[106]
V
SS
V
SS
AFSR0/
DR0/
GP[100]
DV
DD33
V
SS
AHCLKX0/
GP[108]
MRXER/
GP[76]
J
H
G
F
E
D
C
B
A
DV
DD33
EM_A[10]/
GP[91]
TMS320DM6431
Digital Media Processor
Figure 2-5. ZWT Pin Map [Quadrant D]
Submit Documentation Feedback Device Overview 19
www.ti.com
PRODUCT PREVIEW
M
N
P
R
T
U
V
11109
43
11109876543
M
N
V
W
W
Y Y
21
21
AA AA
AB AB
M
N
P
R
T
U
P
11
5
109
8
76
CLKOUT0/
PWM2/ GP[84]
RESET
RESETOUT
POR
TMS
TDO TDITCK
TRST
EMU1EMU0
RSV16
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DDR2
DV
DDR2
DV
DDR2
DV
DDR2
DV
DDR2
DV
DDR2
DV
DDR2
DV
DDR2 DV
DDR2
DV
DDR2
URTS0/ PWM0/
GP[88]
HECC_RX/
TINP1L/
GP[56]
HECC_TX/
TOUT1L/
GP[55]
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
CV
DD
V
SS
V
SS
V
SS
V
SS
V
SS
RSV3
UCTS0/
GP[87]
UTXD0/
GP[86]
URXD0/
GP[85]
SDA
SCL
DDR_D[0] DDR_D[1]
DDR_D[2]
DDR_D[3] DDR_D[4]
DDR_D[5]
DDR_D[6]
DDR_D[7]
DDR_D[8]
DDR_D[9]
DDR_D[10]
DDR_D[11]
DDR_D[12]
DDR_D[13]
DDR_D[14]
DDR_D[15]
DDR_A[11]
DDR_A[10]
DDR_A[12]
DDR_BS[2]DDR_BS[1]
DDR_BS[0]
DDR_DQS[1]DDR_DQS[0]
DDR_CAS
DDR_RAS
DDR_DQM[0] DDR_DQM[1]
DDR_CSDDR_WE
DDR_CKE
DDR_CLK0DDR_CLK0
CV
DD
CV
DD
V
SS
CV
DD
V
SS
V
SS
CV
DD
TMS320DM6431 Digital Media Processor
SPRS342A – NOVEMBER 2006 – REVISED MARCH 2007
Figure 2-6. ZDU Pin Map [Quadrant A]
Device Overview20 Submit Documentation Feedback
www.ti.com
M
N
P
R
T
U
V
12 13 14
19 20
12 13 14 15 16 17 18 19 20
M
N
V
W
W
YY
21 22
21 22
AAAA
ABAB
M
N
P
R
T
U
P
12
18
13 14
15
16 17
MXI/
CLKIN
MXOMXV
SS
PLL
PWR18
RSV6RSV7
RSV8
RSV9 RSV10
RSV12
RSV11
RSV13RSV14
RSV15
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
MXV
DD
DV
DDR2
DV
DDR2
DV
DDR2
DV
DDR2
DV
DDR2
DV
DDR2
DV
DDR2
DV
DDR2
CV
DD
CV
DD
CV
DD
CV
DD
V
SS
V
SS
V
SS
RSV32RSV28RSV20DDR_A[5]
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
RSV4
V
SS
V
SS
V
SS
V
SS
RSV5DDR_ZPDDR_ZN
DDR_VDDDLL DDR_VSSDLL
DDR_VREF
RSV24
RSV25
RSV26
RSV27
RSV29 RSV30
RSV31
RSV33
RSV34
RSV35
RSV36
RSV37
RSV38
RSV39
DDR_A[0]DDR_A[1]
DDR_A[2]
DDR_A[3]
DDR_A[4]
DDR_A[6]
DDR_A[7]
DDR_A[8]
DDR_A[9] RSV23RSV22
RSV21
V
SS
TMS320DM6431
Digital Media Processor
Figure 2-7. ZDU Pin Map [Quadrant B]
Submit Documentation Feedback Device Overview 21
www.ti.com
PRODUCT PREVIEW
L
K
J
H
G
F
E
12 13 14
19 20
12 13 14 15 16 17 18 19 20
L
K
E
D
V
SS
EM_BA[0]/
GP[6]/
(AEM1)
DV
DD33
DV
DD33
RSV19RSV18 EM_OEV
SS
RSV17
D
C
C_WE/
EM_R/W/
GP[35]
EM_BA[1]/
GP[5[/
(AEM0)
C_FIELD/
EM_A[21]/
GP[34]
CI1(CCD9)/
EM_A[19]/
GP[45]
EM_A[15]/
GP[49]
EM_WE
CI0(CCD8)/
EM_A[20]/
GP[44]
EM_A[11]/
GP[90]
C
21 22
21 22
EM_D[2]/
GP[16]
EM_D[5]/
GP[19]
EM_D[6]/
GP[20]
EM_D[4]/
GP[18]
EM_CS4
/
GP[32]
EM_CS5/
GP[33]
GP[29]
DV
DD33
EM_D[0]/
GP[14]
GP[31]
GP[30]
V
SS
EM_CS3/
GP[13]
EM_A[3]/
GP[11]
EM_CS2/
GP[12]
B
YI2(CCD2)
GP[38]
YI4(CCD4)/
GP[40]
YI1(CCD1)/
GP[37]
EM_A[17]/
GP[47]
EM_A[16]/
GP[48]
YI0(CCD0)/
GP[36]
YI6(CCD6)/
GP[42]
EM_A[12]/
GP[89]
B
A
YI7(CCD7)/
GP[43]
PCLK/ GP[54]
YI3(CCD3)/
GP[39]
EM_A[18]/
GP[46]
EM_A[14]/
GP[50]
HD/
GP[52]
VD/
GP[53]
EM_A[13]/
GP[51]
A
V
SS
V
SS
DV
DD33
13 14 15 16 17
L
K
J
H
G
F
J
12
18
GP[27]
GP[25]/
(BOOTMODE3)
GP[24]/
(BOOTMODE2)
GP[23]/
(BOOTMODE1)
GP[28]
GP[26]/
(FASTBOOT)
EM_A[4]/
GP[10]/ (AEAW2/ PLLMS2)
EM_A[1]/
(ALE)/GP[9]/
(AEAW1/ PLLMS1)
EM_A[2]/
(CLE)/GP[8]/
(AEAW0/ PLLMS0)
EM_A[0]/
GP[7]/
(AEM2)
EM_WAIT/
(RDY/BSY)
GP[22]/
(BOOTMODE0)
DV
DD33
DV
DD33
DV
DD33
V
SS
V
SS
V
SS
V
SS
DV
DD33
V
SS
V
SS
DV
DD33
DV
DD33
V
SS
DV
DD33
DV
DD33
DV
DD33
CV
DD
CV
DD
CV
DD
V
SS
CV
DD
CV
DD
V
SS
V
SS
V
SS
V
SS
V
SS
EM_D[7]/
GP[21]
EM_D[3]/
GP[17]
EM_D[1]/
GP[15]
YI5(CCD5)/
GP[41]
TMS320DM6431 Digital Media Processor
SPRS342A – NOVEMBER 2006 – REVISED MARCH 2007
Figure 2-8. ZDU Pin Map [Quadrant C]
Device Overview22 Submit Documentation Feedback
www.ti.com
L
K
J
H
G
F
E
1110943
1110987
6
543
L
K
E
D
DV
DD33
MRXDV/
GP[74]
V
SS
DV
DD33
RSV1 DV
DD33
V
SS
D
C
MCOL/ GP[67]
MRXD2/
GP[80]
MTXD2/
GP[70]
GP[64] GP[59]
EM_A[7]/
GP[94]
MTXEN/
GP[75]
GP[62]
EM_A[9]/
GP[92]
C
21
21
GP[0]
GP[2] GP[3]
AFSX0/
GP[107]
AHCLKX0/
GP[108]
AXR0[0]/
GP[105]
ACLKR0/
CLKX0/ GP[99]
AXR0[2]/
FSX0/
GP[103]
AXR0[1]/
DX0/
GP[104]
TINP0L/
GP[98]
GP[1]
ACLKX0/
GP[106]
AHCLKR0/
CLKR0/ GP[101]
DV
DD33
MDIO/
GP[83]
MRXD3/
GP[82]
MDCLK/
GP[81]
MRXD0/
GP[78]
B
MCRS/ GP[68]
MRXD1/
GP[79]
MTXD0/
GP[72]
GP[65] GP[58]
EM_A[6]/
GP[95]
MTXD1/
GP[71]
GP[61]
EM_A[10]/
GP[91]
B
A
GP[66]
MRXCLK/
GP[77]
MTXD3/
GP[69]
GP[63] GP[60]
EM_A[5]/
GP[96]
MTXCLK/
GP[73]
GP[57]
EM_A[8]/
GP[93]
A
DV
DD33
MRXER/
GP[76]
V
SS
DV
DD33
11109876
L
K
J
H
G
F
J
5
DV
DD33
DV
DD33
DV
DD33
DV
DD33
V
SS
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
DV
DD33
GP[4]/
PWM1
TOUT0L/
GP[97]
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
RSV2
AMUTE0/
GP[110]
AMUTEIN0/
GP[109]
AFSR0/
DR0/
GP[100]
AXR0[3]/
FSR0/
GP[102]
CV
DD
CV
DD
CV
DD
CV
DD
2.5.2 Signal Groups Description
TMS320DM6431
Digital Media Processor
Figure 2-9. ZDU Pin Map [Quadrant D]
TBD
Submit Documentation Feedback Device Overview 23
www.ti.com
PRODUCT PREVIEW
2.6 Terminal Functions
TMS320DM6431 Digital Media Processor
SPRS342A – NOVEMBER 2006 – REVISED MARCH 2007
The terminal functions tables (Table 2-5 through Table 2-26 ) identify the external signal names, the associated pin (ball) numbers along with the mechanical package designator, the pin type, whether the pin has any internal pullup or pulldown resistors, and a functional pin description. For more detailed information on device configuration, peripheral selection, multiplexed/shared pin, and debugging considerations, see the Device Configurations section of this data manual.
All device boot and configuration pins are multiplexed configuration pins— meaning they are multiplexed with functional pins. These pins function as device boot and configuration pins only during device reset. The input states of these pins are sampled and latched into the BOOTCFG register when device reset is deasserted (see Note below). After device reset is deasserted, the values on these multiplexed pins no longer have to hold the configuration.
For proper device operation, external pullup/pulldown resistors may be required on these device boot and configuration pins. Section 3.9.1 , Pullup/Pulldown Resistors discusses situations where external pullup/pulldown resistors are required.
Note: Internal to the chip, the two device reset pins RESET and POR are logically AND’d together for the purpose of latching device boot and configuration pins. The values on all device boot and configuration pins are latched into the BOOTCFG register when the logical AND of RESET and POR transitions from low-to-high.
Device Overview24 Submit Documentation Feedback
www.ti.com
TMS320DM6431
Digital Media Processor
Table 2-5. BOOT Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTION
ZWT ZDU
NAME
NO. NO.
BOOT
GP[25]/
(BOOTMODE3)
G16 H21 Bootmode configuration bits. These bootmode functions along with
GP[24]/
the FASTBOOT function determine what device bootmode
(BOOTMODE2) G15 L20
IPD configuration is selected.
I/O/Z
DV
DD33
The DM6431 device supports several types of bootmodes along with
GP[23]/ F15 K20
a FASTBOOT option; for more details on the types/options, see
(BOOTMODE1)
F18 J20 Section 3.4.1 , Boot Modes.
GP[22]/
(BOOTMODE0)
Fast Boot
GP[26]/ IPD
G17 K19 I/O/Z 0 = Not Fast Boot
(FASTBOOT) DV
DD33
1 = Fast Boot
EM_A[4]/GP[10]/ IPD EMIFA Address Bus Width (AEAW) and Fast Boot PLL Multiplier
A17 B21 I/O/Z
(AEAW2/PLLMS2) DV
DD33
Select (PLLMS). These configuration pins serve two purposes which are based on
EM_A[1]/(ALE)/
IPD
AEM[2:0] settings.
GP[9]/ A16 B20 I/O/Z
DV
DD33
For AEM[2:0] = 001 [8-bit EMIFA (Async) Pinout Mode 1], the
(AEAW1/PLLMS1)
AEAW/PLLMS pins serve as the AEAW function to select EMIFA Address Bus Width.
EM_A[2]/(CLE)/
For all other AEM modes, the AEAW/PLLMS pins select the PLL
IPD
GP[8]/ B16 A20 I/O/Z
multiplier for fast boot.
DV
DD33
(AEAW0/PLLMS0)
For more details, see Section 3.5.1.2 , EMIFA Address Width Select (AEAW) and Fast Boot PLL Multipler Select (PLLMS).
EM_A[0]/ IPD Selects EMIFA Pinout Mode
B17 C21 I/O/Z
GP[7]/(AEM2) DV
DD33
The DM6431 supports the following EMIFA Pinout Modes:
EM_BA[0]/ IPD
C17 E20 I/O/Z
AEM[2:0] = 000, No EMIFA
GP[6]/(AEM1) DV
DD33
AEM[2:0] = 001, 8-bit EMIFA (Async) Pinout Mode 1 AEM[2:0] = 101, 8-bit EMIFA (NAND) Pinout Mode 5
EM_BA[1]/ IPD
C16 C20 I/O/Z
GP[5]/(AEM0) DV
DD33
This signal doesn't actually affect the EMIFA module. It only affects how the EMIFA is pinned out.
For proper DM6431 device operation, if this pin is both routed and 3-stated (not driven) during device reset, it must be pulled down via
IPD
GP[28] H16 J21 I/O/Z an external resistor. For more detailed information on
DV
DD33
pullup/pulldown resistors, see Section 3.9.1 , Pullup/Pulldown Resistors.
For proper DM6431 device operation, if this pin is both routed and
IPU 3-stated (not driven) during device reset, it must be pulled up via an
GP[27] H17 L19 I/O/Z
DV
DD33
external resistor. For more detailed information on pullup/pulldown resistors, see Section 3.9.1 , Pullup/Pulldown Resistors.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 3.9.1 , Pullup/Pulldown Resistors.
(3) Specifies the operating I/O supply voltage for each signal
Submit Documentation Feedback Device Overview 25
www.ti.com
PRODUCT PREVIEW
TMS320DM6431 Digital Media Processor
SPRS342A – NOVEMBER 2006 – REVISED MARCH 2007
Table 2-6. Oscillator/PLL Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2)
DESCRIPTION
ZWT ZDU
NAME
NO. NO.
OSCILLATOR, PLL
Crystal input MXI for MX oscillator (system oscillator, typically 27 MHz).
MXI/
K19 N22 I MXV
DD
If the internal oscillator is bypassed, this is the external oscillator clock
CLKIN
input.
(3)
MXO J19 M22 O MXV
DD
Crystal output for MX oscillator
1.8 V power supply for MX oscillator. On the board, this pin can be
MXV
DD
L18 N21 S
(4)
connected to the same 1.8 V power supply as DV
DDR2
.
MXV
SS
K18 M21 GND
(4)
Ground for MX oscillator
PLL
PWR18
L16 N20 S
(4)
1.8 V power supply for PLLs
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) Specifies the operating I/O supply voltage for each signal (3) For more information on external board connections, see Section 6.6 , External Clock Input From MXI/CLKIN Pin. (4) For more information, see the Recommended Operating Conditions table
Table 2-7. Clock Generator Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTION
ZWT ZDU
NAME
NO. NO.
CLOCK GENERATOR
This pin is multiplexed between the System Clock generator (PLL1), PWM2, and GPIO.
CLKOUT0/ IPD
M1 R1 I/O/Z For the System Clock generator (PLL1), it is clock output CLKOUT0. This is
PWM2/GP[84] DV
DD33
configurable for 27 MHz or other 27 MHz-divided-down (/1 to /32) clock outputs.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 3.9.1 , Pullup/Pulldown Resistors.
(3) Specifies the operating I/O supply voltage for each signal
Device Overview26 Submit Documentation Feedback
www.ti.com
TMS320DM6431
Digital Media Processor
Table 2-8. RESET and JTAG Terminal Functions
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTION
ZWT ZDU
NAME
NO. NO.
RESET
IPU
RESET M4 R3 I Device reset
DV
DD33
Reset output status pin. The RESETOUT pin indicates when the
RESETOUT N3 T3 O/Z
DV
DD33
device is in reset.
IPU
POR N4 R2 I Power-on reset.
DV
DD33
JTAG
IPU
TMS R3 V3 I JTAG test-port mode select input
DV
DD33
TDO P3 U2 O/Z JTAG test-port data output
DV
DD33
IPU
TDI P4 U3 I JTAG test-port data input
DV
DD33
IPU
TCK N1 U1 I JTAG test-port clock input
DV
DD33
JTAG test-port reset. For IEEE 1149.1 JTAG compatibility, see
IPD
TRST R2 V2 I the IEEE 1149.1 JTAG compatibility statement portion of this data
DV
DD33
sheet
IPU
EMU1 N2 T2 I/O/Z Emulation pin 1
DV
DD33
IPU
EMU0 P2 T1 I/O/Z Emulation pin 0
DV
DD33
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 3.9.1 , Pullup/Pulldown Resistors.
(3) Specifies the operating I/O supply voltage for each signal
Submit Documentation Feedback Device Overview 27
www.ti.com
PRODUCT PREVIEW
TMS320DM6431 Digital Media Processor
SPRS342A – NOVEMBER 2006 – REVISED MARCH 2007
Table 2-9. EMIFA Terminal Functions (Boot Configuration)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTION
ZWT ZDU
NAME
NO. NO.
EMIFA: BOOT CONFIGURATION
EM_A[4]/GP[10]/ IPD These pins are multiplexed between the EMIFA and GPIO. When
A17 B21 I/O/Z
(AEAW2/PLLMS2) DV
DD33
RESET or POR is asserted, these pins function as EMIFA configuration pins. At reset if AEM[2:0] = 001 (EMIFA in 8-bit Async
EM_A[1]/(ALE)/GP[
IPD
mode), then the input states of AEAW[2:0] are sampled to set the
9]/ A16 B20 I/O/Z
DV
DD33
EMIFA Address Bus Width. After reset, these pins function as EMIFA
(AEAW1/PLLMS1)
or GPIO pin functions based on pin mux selection.
EM_A[2]/(CLE)/GP
For more details on the AEAW/PLLMS functions, see Section 3.5.1.2 ,
IPD
[8]/ B16 A20 I/O/Z
EMIFA Address Bus Width (AEAW) and Fast Boot PLL Multiplier
DV
DD33
(AEAW0/PLLMS0)
Select (PLLMS).
EM_BA[1]/ IPD These pins are multiplexed between the EMIFA and GPIO. When
C16 C20 I/O/Z
GP[5]/(AEM0) DV
DD33
RESET or POR is asserted, these pins function as EMIFA configuration pins. At reset, the input states of AEM[2:0] are sampled
EM_BA[0]/ IPD
C17 E20 I/O/Z
to set the EMIFA Pinout Mode.
GP[6]/(AEM1) DV
DD33
For more details, see Section 3.5.1 , Configurations at Reset. After reset, these pins function as EMIFA or GPIO pin functions based on
EM_A[0]/ IPD
pin mux selection.
B17 C21 I/O/Z
GP[7]/(AEM2) DV
DD33
For more details on the AEM functions, see Section 3.5.1.1 , EMIFA Pinout Mode (AEM[2:0]).
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 3.9.1 , Pullup/Pulldown Resistors.
(3) Specifies the operating I/O supply voltage for each signal
Device Overview28 Submit Documentation Feedback
www.ti.com
TMS320DM6431
Digital Media Processor
Table 2-10. EMIFA Terminal Functions (EMIFA Pinout Mode 1, AEM[2:0] = 001)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTION
ZWT ZDU
NAME
NO. NO.
EMIFA FUNCTIONAL PINS: 8-Bit ASYNC/NOR (EMIFA Pinout Mode 1, AEM[2:0] = 001)
Actual pin functions are determined by the PINMUX0 and PINMUX1 register bit settings (e.g., AEAW[2:0], AEM[2:0], etc.). For more details, see Section 3.7 , Multiplexed Pin Configurations
This pin is multiplexed between EMIFA and GPIO. For EMIFA, this pin is Chip Select 2 output EM_CS2 for use with
asynchronous memories (i.e., NOR flash).
IPD This is the chip select for the default boot and ROM boot modes.
EM_CS2/GP[12] C19 C22 I/O/Z
DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin is connected and used as an EMIFA chip select signal, for proper device operation, an external pullup resistor must be used to ensure the EM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between EMIFA and GPIO. For EMIFA, this pin is Chip Select 3 output EM_CS3 for use with
asynchronous memories (i.e., NOR flash).
IPD
EM_CS3/GP[13] C18 D22 I/O/Z
DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin is connected and used as an EMIFA chip select signal, for proper device operation, an external pullup resistor must be used to ensure the EM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between EMIFA and GPIO. For EMIFA, it is Chip Select 4 output EM_CS4 for use with
asynchronous memories (i.e., NOR flash).
IPD
EM_CS4/GP[32] E19 H22 I/O/Z
DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin is connected and used as an EMIFA chip select signal, for proper device operation, an external pullup resistor must be used to ensure the EM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between EMIFA and GPIO. For EMIFA, it is Chip Select 5 output EM_CS5 for use with
asynchronous memories (i.e., NOR flash).
IPD
EM_CS5/GP[33] F19 J22 I/O/Z
DV
DD33
Note: This pin features an internal pulldown (IPD). If this pin is connected and used as an EMIFA chip select signal, for proper device operation, an external pullup resistor must be used to ensure the EM_CSx function defaults to an inactive (high) state.
This pin is multiplexed between VPFE (CCDC), EMIFA, and GPIO.
C_WE/EM_R/ W/ IPD
D13 C17 I/O/Z
GP[35] DV
DD33
For EMIFA, it is read/write output EM_R/ W.
EM_WAIT/ IPU For EMIFA (ASYNC/NOR), this pin is wait state extension input
E15 D20 I/O/Z
(RDY/ BSY) DV
DD33
EM_WAIT.
IPU
EM_OE D15 D19 I/O/Z For EMIFA, it is output enable output EM_OE.
DV
DD33
IPU
EM_WE E14 C19 I/O/Z For EMIFA, it is write enable output EM_WE.
DV
DD33
This pin is multiplexed between EMIFA and GPIO.
EM_BA[0]/ IPD
For EMIFA, this is the Bank Address 0 output (EM_BA[0]). When
C17 E20 I/O/Z
GP[6]/(AEM1) DV
DD33
connected to an 8-bit asynchronous memory, this pin is the lowest order bit of the byte address.
This pin is multiplexed between EMIFA and GPIO.
EM_BA[1]/ IPD
For EMIFA, this is the Bank Address 1 output EM_BA[1]. When
C16 C20 I/O/Z
GP[5]/(AEM0) DV
DD33
connected to an 8-bit asynchronous memory, this pin is the 2nd bit of the address.
(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog signal (2) IPD = Internal pulldown, IPU = Internal pullup. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see Section 3.9.1 , Pullup/Pulldown Resistors.
(3) Specifies the operating I/O supply voltage for each signal
Submit Documentation Feedback Device Overview 29
www.ti.com
PRODUCT PREVIEW
TMS320DM6431 Digital Media Processor
SPRS342A – NOVEMBER 2006 – REVISED MARCH 2007
Table 2-10. EMIFA Terminal Functions (EMIFA Pinout Mode 1, AEM[2:0] = 001) (continued)
SIGNAL
TYPE
(1)
OTHER
(2) (3)
DESCRIPTION
ZWT ZDU
NAME
NO. NO.
This pin is multiplexed between VPFE (CCDC), EMIFA, and GPIO.
C_FIELD/ IPD
D12 C16 I/O/Z
EM_A[21]/GP[34] DV
DD33
For EMIFA, it is address bit 21 output EM_A[21]. This pin is multiplexed between VPFE (CCDC), EMIFA, and GPIO.
CI0(CCD8)/ IPD
C12 C15 I/O/Z
For EMIFA (AEM[2:0] = 001), this pin is address bit 20 output
EM_A[20]/GP[44] DV
DD33
EM_A[20] if AEAW[2:0] = 100b. This pin is multiplexed between VPFE (CCDC), EMIFA, and GPIO.
CI1(CCD9)/ IPD
B12 C14 I/O/Z
For EMIFA (AEM[2:0] = 001), this pin is address bit 19 output
EM_A[19]/GP[45] DV
DD33
EM_A[19] if AEAW[2:0] = 100b. This pin is multiplexed between EMIFA and GPIO.
IPD
EM_A[18]/GP[46] D11 A14 I/O/Z
For EMIFA (AEM[2:0] = 001), this pin is address bit 18 output
DV
DD33
EM_A[18] if AEAW[2:0] = 011/100b. This pin is multiplexed between EMIFA and GPIO.
IPD
EM_A[17]/GP[47] A11 B14 I/O/Z
For EMIFA (AEM[2:0] = 001), this pin is address bit 17 output
DV
DD33
EM_A[17] if AEAW[2:0] = 011/100b. This pin is multiplexed between EMIFA and GPIO.
IPD
EM_A[16]/GP[48] C11 B13 I/O/Z
For EMIFA (AEM[2:0] = 001), this pin is address bit 16 output
DV
DD33
EM_A[16] if AEAW[2:0] = 010/011/100b. This pin is multiplexed between EMIFA and GPIO.
IPD
EM_A[15]/GP[49] B11 C13 I/O/Z
For EMIFA (AEM[2:0] = 001), this pin is address bit 15 output
DV
DD33
EM_A[15] if AEAW[2:0] = 010/011/100b. This pin is multiplexed between EMIFAand GPIO.
IPD
EM_A[14]/GP[50] A10 A13 I/O/Z
For EMIFA (AEM[2:0] = 001), this pin is address bit 14 output
DV
DD33
EM_A[14] if AEAW[2:0] = 001/010/011/100b. This pin is multiplexed between EMIFA and GPIO.
IPD
EM_A[13]/GP[51] B10 A12 I/O/Z
For EMIFA (AEM[2:0] = 001), this pin is address bit 13 output
DV
DD33
EM_A[13] if AEAW[2:0] = 001/010/011/100b. This pin is multiplexed between EMIFA and GPIO.
IPD
EM_A[12]/GP[89] D10 B12 I/O/Z
DV
DD33
For EMIFA, this pin is address bit 12 output EM_A[12]. This pin is multiplexed between EMIFA and GPIO.
IPD
EM_A[11]/GP[90] C10 C12 I/O/Z
DV
DD33
For EMIFA, this pin is address bit 11 output EM_A[11]. This pin is multiplexed between EMIFA and GPIO.
IPD
EM_A[10]/GP[91] A9 B11 I/O/Z
DV
DD33
For EMIFA, this pin is address bit 10 output EM_A[10]. This pin is multiplexed between EMIFA and GPIO.
IPD
EM_A[9]/GP[92] D9 C11 I/O/Z
DV
DD33
For EMIFA, this pin is address bit 9 output EM_A[9]. This pin is multiplexed between EMIFA and GPIO.
IPD
EM_A[8]/GP[93] B9 A11 I/O/Z
DV
DD33
For EMIFA, this pin is address bit 8 output EM_A[8]. This pin is multiplexed between EMIFA and GPIO.
IPD
EM_A[7]/GP[94] C9 C10 I/O/Z
DV
DD33
For EMIFA, this pin is address bit 7 output EM_A[7]. This pin is multiplexed between EMIFA and GPIO.
IPD
EM_A[6]/GP[95] D8 B10 I/O/Z
DV
DD33
For EMIFA, this pin is address bit 6 output EM_A[6]. This pin is multiplexed between EMIFA and GPIO.
IPD
EM_A[5]/GP[96] B8 A10 I/O/Z
DV
DD33
For EMIFA, this pin is address bit 5 output EM_A[5]. This pin is multiplexed between EMIFA and GPIO.
EM_A[4]/GP[10]/ IPD
A17 B21 I/O/Z
(AEAW2/PLLMS2) DV
DD33
For EMIFA, this pin is address bit 4 output EM_A[4].
Device Overview30 Submit Documentation Feedback
Loading...
+ 195 hidden pages