Texas Instruments TI-Nspire Reference Guide

Reference Guide
This guidebook applies to TI-Nspire™ software version 1.4. To obtain the latest version of the documentation, go to education.ti.com/guides.

Important Information

Except as otherwise expressly stated in the License that accompanies a program, Texas Instruments makes no warranty, either express or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis. In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the amount set forth in the license for the program. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.
License
Please see the complete license installed in C:\Program Files\TI Education\TI-Nspire.
© 2008 Texas Instruments Incorporated
Macintosh®, Windows®, Excel®, Vernier EasyLink®, EasyTemp®, Go!®Link, Go!®Motion, and Go!®Temp are trademarks of their respective owners.
ii

Contents

Expression templates
Fraction template ........................................ 1
Exponent template ......................................1
Square root template .................................. 1
Nth root template ........................................1
e exponent template ................................... 1
Log template ................................................ 2
Piecewise template (2-piece) .......................2
Piecewise template (N-piece) ......................2
Absolute value template .............................2
dd°mm’ss.ss’’ template ................................2
Matrix template (2 x 2) ................................3
Matrix template (1 x 2) ................................3
Matrix template (2 x 1) ................................3
Matrix template (m x n) .............................. 3
Sum template (G) ......................................... 3
Product template (Π) ...................................4
Alphabetical listing A
abs() ..............................................................5
amortTbl() .................................................... 5
and ................................................................5
angle() ..........................................................6
ANOVA .........................................................6
ANOVA2way ................................................ 7
Ans ................................................................8
approx() ........................................................9
approxRational() .......................................... 9
augment() .....................................................9
avgRC() ....................................................... 10
B
bal() .............................................................10
4Base2 .........................................................10
4Base10 .......................................................11
4Base16 .......................................................11
binomCdf() ................................................. 11
binomPdf() ................................................. 12
C
ceiling() .......................................................12
char() ...........................................................12
2
2way ........................................................12
c
2
Cdf() .........................................................13
c
2
GOF ......................................................... 13
c
2
Pdf() .........................................................13
c
ClearAZ .......................................................13
ClrErr ...........................................................14
colAugment() ............................................. 14
colDim() ......................................................14
colNorm() ....................................................14
conj() ...........................................................14
constructMat() ............................................ 15
CopyVar ...................................................... 15
corrMat() ....................................................15
cos() .............................................................16
cosê() ...........................................................17
cosh() .......................................................... 17
coshê() ........................................................ 17
cot() ............................................................ 18
cotê() .......................................................... 18
coth() .......................................................... 18
cothê() ........................................................ 18
count() ........................................................ 19
countif() ..................................................... 19
crossP() ....................................................... 19
csc() ............................................................. 20
cscê() ........................................................... 20
csch() ........................................................... 20
cschê() ......................................................... 20
CubicReg .................................................... 21
cumSum() ................................................... 21
Cycle ........................................................... 22
4Cylind ........................................................ 22
D
dbd() ........................................................... 22
4DD ............................................................. 23
4Decimal ..................................................... 23
Define ......................................................... 23
Define LibPriv ............................................ 24
Define LibPub ............................................ 24
DelVar ........................................................ 25
det() ............................................................ 25
diag() .......................................................... 25
dim() ........................................................... 26
Disp ............................................................. 26
4DMS ........................................................... 26
dotP() .......................................................... 26
E
e^() ............................................................. 27
eff() ............................................................. 27
eigVc() ........................................................ 27
eigVl() ......................................................... 28
Else ............................................................. 28
ElseIf ........................................................... 28
EndFor ........................................................ 28
EndFunc ...................................................... 28
EndIf ........................................................... 28
EndLoop ..................................................... 28
EndPrgm ..................................................... 28
EndTry ........................................................ 28
EndWhile .................................................... 29
Exit .............................................................. 29
exp() ........................................................... 29
expr() .......................................................... 29
ExpReg ....................................................... 30
F
factor() ....................................................... 30
FCdf() ......................................................... 31
Fill ............................................................... 31
FiveNumSummary ...................................... 31
floor() ......................................................... 32
For .............................................................. 32
format() ...................................................... 32
iii
fPart() ..........................................................33
FPdf() ..........................................................33
freqTable4list() ............................................33
frequency() .................................................33
FTest_2Samp ..............................................34
Func .............................................................34
G
gcd() ............................................................35
geomCdf() ...................................................35
geomPdf() ...................................................35
getDenom() ................................................35
getLangInfo() .............................................36
getMode() ...................................................36
getNum() ....................................................37
getVarInfo() ................................................37
Goto ............................................................38
4Grad ...........................................................38
I
identity() .....................................................38
If ..................................................................39
ifFn() ............................................................40
imag() ..........................................................40
Indirection ..................................................40
inString() .....................................................40
int() .............................................................41
intDiv() ........................................................41
2
() .........................................................41
invc
invF() ...........................................................41
invNorm() ....................................................41
invt() ............................................................41
iPart() ..........................................................41
irr() ..............................................................42
isPrime() ......................................................42
L
Lbl ...............................................................42
lcm() ............................................................43
left() ............................................................43
libShortcut() ................................................43
LinRegBx .....................................................44
LinRegMx ....................................................44
LinRegtIntervals .........................................45
LinRegtTest .................................................46
@List() ..........................................................47
list4mat() .....................................................47
ln() ...............................................................47
LnReg ..........................................................48
Local ............................................................49
log() .............................................................49
Logistic ........................................................50
LogisticD .....................................................50
Loop ............................................................51
LU ................................................................52
M
mat4list() .....................................................52
max() ...........................................................52
mean() .........................................................53
median() .....................................................53
MedMed .....................................................53
mid() ............................................................54
min() ........................................................... 54
mirr() ........................................................... 55
mod() .......................................................... 55
mRow() ....................................................... 55
mRowAdd() ................................................ 55
MultReg ...................................................... 55
MultRegIntervals ....................................... 56
MultRegTests ............................................. 56
N
nCr() ............................................................ 58
nDeriv() ....................................................... 58
newList() ..................................................... 58
newMat() .................................................... 58
nfMax() ....................................................... 59
nfMin() ....................................................... 59
nInt() ........................................................... 59
nom() .......................................................... 59
norm() ......................................................... 60
normCdf() ................................................... 60
normPdf() ................................................... 60
not .............................................................. 60
nPr() ............................................................ 61
npv() ........................................................... 61
nSolve() ....................................................... 61
O
OneVar ....................................................... 62
or ................................................................ 63
ord() ............................................................ 63
P
P4Rx() .......................................................... 63
P4Ry() .......................................................... 64
PassErr ........................................................ 64
piecewise() ................................................. 64
poissCdf() .................................................... 64
poissPdf() .................................................... 64
4Polar .......................................................... 65
polyEval() .................................................... 65
PowerReg ................................................... 65
Prgm ........................................................... 66
Product (PI) ................................................. 66
product() .................................................... 66
propFrac() ................................................... 67
Q
QR ............................................................... 68
QuadReg .................................................... 68
QuartReg .................................................... 69
R
R4Pq() .......................................................... 70
R4Pr() ........................................................... 70
4Rad ............................................................ 70
rand() .......................................................... 70
randBin() .................................................... 71
randInt() ..................................................... 71
randMat() ................................................... 71
randNorm() ................................................ 71
randPoly() ................................................... 71
randSamp() ................................................. 71
RandSeed ................................................... 72
iv
real() ...........................................................72
4Rect ............................................................72
ref() .............................................................73
remain() ......................................................73
Return .........................................................73
right() ..........................................................73
root() ...........................................................74
rotate() .......................................................74
round() ........................................................75
rowAdd() ....................................................75
rowDim() ....................................................75
rowNorm() ..................................................75
rowSwap() ..................................................75
rref() ............................................................76
S
sec() .............................................................76
sec/() ...........................................................76
sech() ...........................................................76
sechê() ......................................................... 77
seq() ............................................................77
setMode() ................................................... 77
shift() ..........................................................78
sign() ...........................................................79
simult() ........................................................79
sin() .............................................................80
sinê() ...........................................................80
sinh() ...........................................................81
sinhê() .........................................................81
SinReg .........................................................81
SortA ...........................................................82
SortD ...........................................................82
4Sphere ....................................................... 83
sqrt() ...........................................................83
stat.results .................................................. 83
stat.values ...................................................84
stDevPop() .................................................. 84
stDevSamp() ............................................... 85
Stop .............................................................85
Store ...........................................................85
string() ........................................................85
subMat() .....................................................86
Sum (Sigma) ...............................................86
sum() ...........................................................86
sumIf() .........................................................87
system() .......................................................87
T
T (transpose) ...............................................87
tan() ............................................................88
tanê() ..........................................................88
tanh() ..........................................................89
tanhê() ........................................................89
tCdf() ...........................................................90
Then ............................................................90
tInterval ......................................................90
tInterval_2Samp .........................................90
tPdf() ...........................................................91
trace() .........................................................91
Try ...............................................................91
tTest ............................................................92
tTest_2Samp ...............................................93
tvmFV() .......................................................93
tvmI() .......................................................... 93
tvmN() ........................................................ 93
tvmPmt() .................................................... 94
tvmPV() ....................................................... 94
TwoVar ....................................................... 94
U
unitV() ........................................................ 96
V
varPop() ...................................................... 96
varSamp() ................................................... 96
W
when() ........................................................ 96
While .......................................................... 97
“With” ........................................................ 97
X
xor .............................................................. 97
Z
zInterval ..................................................... 98
zInterval_1Prop .......................................... 98
zInterval_2Prop .......................................... 99
zInterval_2Samp ........................................ 99
zTest ......................................................... 100
zTest_1Prop .............................................. 100
zTest_2Prop .............................................. 101
zTest_2Samp ............................................ 101
Symbols
+ (add) ...................................................... 102
N(subtract) ................................................ 102
·(multiply) ............................................... 103
à (divide) .................................................. 103
^ (power) .................................................. 104
2
(square) ................................................ 104
x
.+ (dot add) .............................................. 105
.. (dot subt.) ............................................. 105
·(dot mult.) ............................................ 105
.
. / (dot divide) .......................................... 105
.^ (dot power) .......................................... 105
ë(negate) .................................................. 106
% (percent) .............................................. 106
= (equal) ................................................... 107
ƒ (not equal) ............................................ 107
< (less than) .............................................. 107
{ (less or equal) ........................................ 108
> (greater than) ....................................... 108
| (greater or equal) ................................. 108
! (factorial) ............................................... 108
& (append) ............................................... 108
() (square root) ...................................... 109
Π() (product) ............................................ 109
G() (sum) ................................................... 109
GInt() ......................................................... 110
GPrn() ........................................................ 111
# (indirection) .......................................... 111
í (scientific notation) .............................. 111
g (gradian) ............................................... 112
ô(radian) ................................................... 112
¡ (degree) ................................................. 112
v
¡, ', '' (degree/minute/second) .................112
(angle) ...................................................113
10^() ..........................................................113
^ê (reciprocal) ...........................................113
| (“with”) ...................................................114
& (store) ...................................................114
:= (assign) ..................................................114
© (comment) ............................................115
0b, 0h ........................................................115
Error codes and messages Texas Instruments Support and
Service
vi
TI-Nspire™
This guide lists the templates, functions, commands, and operators available for evaluating math expressions.
Reference Guide

Expression templates

Expression templates give you an easy way to enter math expressions in standard mathematical notation. When you insert a template, it appears on the entry line with small blocks at positions where you can enter elements. A cursor shows which element you can enter.
Use the arrow keys or press
value or expression for the element. Press
Fraction template
Note: See also / (divide), page 103.
e to move the cursor to each element’s position, and type a
· or to evaluate the expression.
/p keys
Example:
Exponent template
Note: Type the first value, press l, and then type the
exponent. To return the cursor to the baseline, press right arrow (¢).
Note: See also ^ (power), page 104.
Square root template
Note: See also
Nth root template
Note: See also root(), page 74.
e exponent template
Natural exponential e raised to a power
Note: See also e^(), page 27.
() (square root), page 109.
l key
Example:
/q keys
Example:
/l keys
Example:
u keys
Example:

TI-Nspire™ Reference Guide 1

Log template
Calculates log to a specified base. For a default of base 10, omit the base.
Note: See also log(), page 49.
/s key
Example:
Piecewise template (2-piece)
Lets you create expressions and conditions for a two-piece piecewise function. To add a piece, click in the template and repeat the template.
Note: See also piecewise(), page 64.
Piecewise template (N-piece)
Lets you create expressions and conditions for an N-piece piecewise function. Prompts for N.
Note: See also piecewise(), page 64.
Absolute value template
Note: See also abs(), page 5.
Catalog >
Example:
Catalog >
Example: See the example for Piecewise template (2-piece).
Catalog >
Example:
dd°mm’ss.ss’’ template
Lets you enter angles in dd°mmss.ss’’ format, where dd is the number of decimal degrees, mm is the number of minutes, and ss.ss is the number of seconds.
Example:
Catalog >
2 TI-Nspire™ Reference Guide
Matrix template (2 x 2)
Creates a 2 x 2 matrix.
Catalog >
Example:
Matrix template (1 x 2)
.
Matrix template (2 x 1)
Matrix template (m x n)
The template appears after you are prompted to specify the number of rows and columns.
Note: If you create a matrix with a large number of rows and columns, it may take a few moments to appear.
Sum template (G)
Catalog >
Example:
Catalog >
Example:
Catalog >
Example:
Catalog >
Example:
TI-Nspire™ Reference Guide 3
Product template (Π)
Note: See also Π() (product), page 109.
Catalog >
Example:
4 TI-Nspire™ Reference Guide

Alphabetical listing

Items whose names are not alphabetic (such as +, !, and >) are listed at the end of this section, starting on page 102. Unless otherwise specified, all examples in this section were performed in the default reset mode, and all variables are assumed to be undefined.
A
abs()
abs(Val u e 1 ) value abs(
List1) list
abs(Matrix1) matrix
Returns the absolute value of the argument.
Note: See also Absolute value template, page 2.
If the argument is a complex number, returns the number’s modulus.
amortTbl()
amortTbl(NPmt,N,I,PV, [Pmt], [FV], [PpY], [CpY], [PmtAt],
roundValue]) matrix
[
Amortization function that returns a matrix as an amortization table for a set of TVM arguments.
NPmt is the number of payments to be included in the table. The table starts with the first payment.
N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table of TVM arguments, page 94.
• If you omit Pmt, it defaults to Pmt=tvmPmt(N,I,PV,FV,PpY,CpY,PmtAt).
• If you omit FV, it defaults to FV=0.
• The defaults for PpY, CpY, and PmtAt are the same as for the TVM functions.
roundValue specifies the number of decimal places for rounding. Default=2.
The columns in the result matrix are in this order: Payment number, amount paid to interest, amount paid to principal, and balance.
The balance displayed in row n is the balance after payment n. You can use the output matrix as input for the other amortization
functions GInt() and GPrn(), page 110, and bal(), page 10.
Catalog
Catalog
>
>
and
BooleanExpr1 and BooleanExpr2 Boolean expression BooleanList1 and BooleanList2 Boolean list BooleanMatrix1 and BooleanMatrix2 Boolean matrix
Returns true or false or a simplified form of the original entry.
Catalog
>
TI-Nspire™ Reference Guide 5
and
Integer1 and Integer2 integer
Compares two real integers bit-by-bit using an Internally, both integers are converted to signed, 64-bit binary numbers. When corresponding bits are compared, the result is 1 if both bits are 1; otherwise, the result is 0. The returned value represents the bit results, and is displayed according to the Base mode.
You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the 0b or 0h prefix, respectively. Without a prefix, integers are treated as decimal (base 10).
If you enter a decimal integer that is too large for a signed, 64-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range.
and operation.
Catalog
>
In Hex base mode:
Important: Zero, not the letter O.
In Bin base mode:
In Dec base mode:
Note: A binary entry can have up to 64 digits (not counting the
0b prefix). A hexadecimal entry can have up to 16 digits.
angle()
angle(Val u e 1 ) value
Returns the angle of the argument, interpreting the argument as a complex number.
In Degree angle mode:
In Gradian angle mode:
In Radian angle mode:
angle(List1) list angle(Matrix1) matrix
Returns a list or matrix of angles of the elements in List1 or Matrix1, interpreting each element as a complex number that represents a two-dimensional rectangular coordinate point.
ANOVA
ANOVA List1,List2[,List3,...,List20][,Flag]
Performs a one-way analysis of variance for comparing the means of two to 20 populations. A summary of results is stored in the
stat.results variable. (See page 83.) Flag=0 for Data, Flag=1 for Stats
Output variable Description
stat.F Value of the F statistic
stat.PVal Smallest level of significance at which the null hypothesis can be rejected
stat.df Degrees of freedom of the groups
stat.SS Sum of squares of the groups
stat.MS Mean squares for the groups
stat.dfError Degrees of freedom of the errors
Catalog
Catalog
>
>
6 TI-Nspire™ Reference Guide
Output variable Description
stat.SSError Sum of squares of the errors
stat.MSError Mean square for the errors
stat.sp Pooled standard deviation
stat.xbarlist Mean of the input of the lists
stat.CLowerList 95% confidence intervals for the mean of each input list
stat.CUpperList 95% confidence intervals for the mean of each input list
ANOVA2way
ANOVA2way List1,List2[,List3,,List20][,levRow]
Computes a two-way analysis of variance for comparing the means of two to 20 populations. A summary of results is stored in the
stat.results variable. (See page 83.) LevRow=0 for Block
LevRow=2,3,...,Len-1, for Two Factor, where Len=length(List1)=length(List2) = … = length(List10) and Len / LevRow {2,3,…}
Outputs: Block Design
Output variable Description
stat.FF statistic of the column factor
stat.PVal Smallest level of significance at which the null hypothesis can be rejected
stat.df Degrees of freedom of the column factor
stat.SS Sum of squares of the column factor
stat.MS Mean squares for column factor
stat.FBlock F statistic for factor
stat.PValBlock Least probability at which the null hypothesis can be rejected
stat.dfBlock Degrees of freedom for factor
stat.SSBlock Sum of squares for factor
stat.MSBlock Mean squares for factor
stat.dfError Degrees of freedom of the errors
stat.SSError Sum of squares of the errors
stat.MSError Mean squares for the errors
stat.s Standard deviation of the error
Catalog
>
COLUMN FACTOR Outputs
Output variable Description
stat.Fcol F statistic of the column factor
TI-Nspire™ Reference Guide 7
Output variable Description
stat.PValCol Probability value of the column factor
stat.dfCol Degrees of freedom of the column factor
stat.SSCol Sum of squares of the column factor
stat.MSCol Mean squares for column factor
ROW FACTOR Outputs
Output variable Description
stat.FRow F statistic of the row factor
stat.PValRow Probability value of the row factor
stat.dfRow Degrees of freedom of the row factor
stat.SSRow Sum of squares of the row factor
stat.MSRow Mean squares for row factor
INTERACTION Outputs
Output variable Description
stat.FInteract F statistic of the interaction
stat.PValInteract Probability value of the interaction
stat.dfInteract Degrees of freedom of the interaction
stat.SSInteract Sum of squares of the interaction
stat.MSInteract Mean squares for interaction
ERROR Outputs
Output variable Description
stat.dfError Degrees of freedom of the errors
stat.SSError Sum of squares of the errors
stat.MSError Mean squares for the errors
s Standard deviation of the error
Ans
Ans value
Returns the result of the most recently evaluated expression.
/v
keys
8 TI-Nspire™ Reference Guide
approx()
approx(Val u e 1 ) number
Returns the evaluation of the argument as an expression containing decimal values, when possible, regardless of the current Auto or
Approximate
This is equivalent to entering the argument and pressing
·
approx(List1) list approx(Matrix1) matrix
Returns a list or matrix where each element has been evaluated to a decimal value, when possible.
mode.
/
.
Catalog
>
approxRational()
approxRational(Expr[, tol]) expression approxRational(List[, tol]) list approxRational(Matrix[, tol]) matrix
Returns the argument as a fraction using a tolerance of tol. If tol is omitted, a tolerance of 5.E-14 is used.
augment()
augment(List1, List2) list
Returns a new list that is List2 appended to the end of List1.
augment(Matrix1, Matrix2) matrix
Returns a new matrix that is Matrix2 appended to Matrix1. When the “,” character is used, the matrices must have equal row dimensions, and Matrix2 is appended to Matrix1 as new columns. Does not alter Matrix1 or Matrix2.
Catalog
Catalog
>
>
TI-Nspire™ Reference Guide 9
avgRC()
avgRC(Expr1, Va r [=Value] [, H]) expression avgRC(Expr1, Va r [=Value] [, List1]) list avgRC(List1, Va r [=Value] [, H]) list avgRC(Matrix1, Var [=Value] [, H]) matrix
Returns the forward-difference quotient (average rate of change). Expr1 can be a user-defined function name (see Func). When value is specified, it overrides any prior variable assignment or
any current “such that” substitution for the variable. H is the step value. If H is omitted, it defaults to 0.001.
Note that the similar function nDeriv() uses the central-difference quotient.
B
Catalog
>
bal()
bal(NPmt,N,I,PV ,[Pmt], [FV], [PpY], [CpY], [PmtAt],
roundValue]) value
[
bal(NPmt,amortTable) value
Amortization function that calculates schedule balance after a specified payment.
N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table of TVM arguments, page 94.
NPmt specifies the payment number after which you want the data calculated.
N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table of TVM arguments, page 94.
• If you omit Pmt, it defaults to Pmt=tvmPmt(N,I,PV,FV,PpY,CpY,PmtAt).
• If you omit FV, it defaults to FV=0.
• The defaults for PpY, CpY, and PmtAt are the same as for the TVM functions.
roundValue specifies the number of decimal places for rounding. Default=2.
bal(NPmt,amortTable) calculates the balance after payment
number NPmt, based on amortization table amortTable. The amortTable argument must be a matrix in the form described under
amortTbl(), page 5.
Note: See also GInt() and GPrn(), page 110.
4
Base2
Integer1 4Base2 integer
Converts Integer1 to a binary number. Binary or hexadecimal numbers always have a 0b or 0h prefix, respectively.
Catalog
Catalog
>
>
10 TI-Nspire™ Reference Guide
4
Base2
0b binaryNumber 0h hexadecimalNumber
Zero, not the letter O, followed by b or h. A binary number can have up to 64 digits. A hexadecimal number can
have up to 16. Without a prefix, Integer1 is treated as decimal (base 10). The result
is displayed in binary, regardless of the Base mode. If you enter a decimal integer that is too large for a signed, 64-bit
binary form, a symmetric modulo operation is used to bring the value into the appropriate range.
4
Base10
Integer1 4Base10 integer
Converts Integer1 to a decimal (base 10) number. A binary or hexadecimal entry must always have a 0b or 0h prefix, respectively.
0b binaryNumber 0h hexadecimalNumber
Zero, not the letter O, followed by b or h. A binary number can have up to 64 digits. A hexadecimal number can
have up to 16. Without a prefix, Integer1 is treated as decimal. The result is
displayed in decimal, regardless of the Base mode.
4
Base16
Integer1 4Base16 integer
Converts Integer1 to a hexadecimal number. Binary or hexadecimal numbers always have a 0b or 0h prefix, respectively.
0b binaryNumber 0h hexadecimalNumber
Zero, not the letter O, followed by b or h. A binary number can have up to 64 digits. A hexadecimal number can
have up to 16. Without a prefix, Integer1 is treated as decimal (base 10). The result
is displayed in hexadecimal, regardless of the Base mode. If you enter a decimal integer that is too large for a signed, 64-bit
binary form, a symmetric modulo operation is used to bring the value into the appropriate range.
Catalog
Catalog
Catalog
>
>
>
binomCdf()
binomCdf(n,p,lowBound,upBound) number if lowBound
and
upBound are numbers, list if lowBound and upBound are
lists
binomCdf(
list if upBound is a list
Computes a cumulative probability for the discrete binomial distribution with n number of trials and probability p of success on each trial.
For P(X upBound), set lowBound=0
n,p,upBound) number if upBound is a number,
Catalog
>
TI-Nspire™ Reference Guide 11
binomPdf()
binomPdf(n,p) number binomPdf(n,p,XVal) number if XVal is a number, list if
XVal is a list
Computes a probability for the discrete binomial distribution with n number of trials and probability p of success on each trial.
C
Catalog
>
ceiling()
ceiling(Val u e 1 ) value
Returns the nearest integer that is the argument.
The argument can be a real or a complex number.
Note: See also floor().
ceiling(List1) list ceiling(Matrix1) matrix
Returns a list or matrix of the ceiling of each element.
char()
char(Integer) character
Returns a character string containing the character numbered Integer from the handheld character set. The valid range for Integer is 0–
65535.
2
c
2way
2
c
2way obsMatrix
chi22way obsMatrix
Computes a c2 test for association on the two-way table of counts in the observed matrix obsMatrix. A summary of results is stored in the stat.results variable. (See page 83.)
Output variable Description
stat.c2 Chi square stat: sum (observed - expected)2/expected
stat.PVal Smallest level of significance at which the null hypothesis can be rejected
stat.df Degrees of freedom for the chi square statistics
stat.ExpMat Matrix of expected elemental count table, assuming null hypothesis
stat.CompMat Matrix of elemental chi square statistic contributions
Catalog
Catalog
Catalog
>
>
>
12 TI-Nspire™ Reference Guide
2
c
Cdf()
2
c
Cdf(lowBound,upBound,df) number if lowBound and
upBound are numbers, list if lowBound and upBound are lists
chi2Cdf(
lowBound,upBound,df) number if lowBound and
upBound are numbers, list if lowBound and upBound are lists
Computes the c2 distribution probability between lowBound and upBound for the specified degrees of freedom df.
upBound), set lowBound = 0.
For P(X
2
c
GOF
2
c
GOF obsList,expList,df
chi2GOF obsList,expList,df
Performs a test to confirm that sample data is from a population that conforms to a specified distribution. obsList is a list of counts and must contain integers. A summary of results is stored in the stat.results variable. (See page 83.)
Output variable Description
stat.c2 Chi square stat: sum((observed - expected)2/expected
stat.PVal Smallest level of significance at which the null hypothesis can be rejected
stat.df Degrees of freedom for the chi square statistics
stat.CompList Elemental chi square statistic contributions
2
c
Pdf()
2
c
Pdf(XVal,df) number if XVal is a number, list if XVal is a
list
chi2Pdf(
XVal,df) ⇒ number if XVal is a number, list if XVal is
a list
Computes the probability density function (pdf) for the c2 distribution at a specified XVal value for the specified degrees of freedom df.
Catalog
Catalog
Catalog
>
>
>
ClearAZ
ClearAZ
Catalog
>
Clears all single-character variables in the current problem space.
TI-Nspire™ Reference Guide 13
ClrErr
ClrErr
Clears the error status and sets system variable errCode to zero.
Else clau se of the Try...Else...EndTry block should use ClrErr
The or
PassErr. If the error is to be processed or ignored, use ClrErr. If
what to do with the error is not known, us e next error handler. If there are no more pendin g Try...Else...EndTry error handlers, the error dialog box will be displayed as normal.
Note: See also PassErr, page 64, and Try , page 91. Note for entering the example: In the Calculator application
on the handheld, you can enter multi-line definitions by pressing
PassErr to send i t to the
@ instead of · at the end of each line. On the computer
keyboard, hold down Alt and press Enter.
For an example of command, page 92.
Catalog
ClrErr, See Example 2 under the Try
>
colAugment()
colAugment(Matrix1, Matrix2) matrix
Returns a new matrix that is Matrix2 appended to Matrix1. The matrices must have equal column dimensions, and Matrix2 is appended to Matrix1 as new rows. Does not alter Matrix1 or Matrix2.
colDim()
colDim(Matrix) expression
Returns the number of columns contained in Matrix.
Note: See also rowDim() .
colNorm()
colNorm(Matrix) expression
Returns the maximum of the sums of the absolute values of the elements in the columns in Matrix.
Note: Undefined matrix elements are not allowed. See also rowNorm().
conj()
conj(Val u e 1 ) value conj(List1) list conj(Matrix1) matrix
Returns the complex conjugate of the argument.
Catalog
Catalog
Catalog
Catalog
>
>
>
>
14 TI-Nspire™ Reference Guide
constructMat()
constructMat(Expr,Var 1 ,Var 2 ,numRows,numCols)
matrix
Returns a matrix based on the arguments. Expr is an expression in variables Va r 1 and Va r 2 . Elements in the
resulting matrix are formed by evaluating Expr for each incremented value of Var 1 and Va r 2.
Var 1 is automatically incremented from each row, Va r2 is incremented from 1 through numCols.
1 through numRows. Within
Catalog
>
CopyVar
CopyVar Var 1 , Va r 2 CopyVar Var 1 ., Va r2 .
CopyVar Var 1 , Va r2 copies the value of variable Va r 1 to variable
Var 2 , creating Va r 2 if necessary. Variable Va r1 must have a value. If Var 1 is the name of an existing user-defined function, copies the
definition of that function to function Va r 2. Function Va r 1 must be defined.
Var 1 must meet the variable-naming requirements or must be an indirection expression that simplifies to a variable name meeting the requirements.
CopyVar Var 1 ., Va r 2. copies all members of the Va r 1 . variable
group to the Var 2 . group, creating Var 2 . if necessary. Var 1 . must be the name of an existing variable group, such as the
statistics stat.nn results, or variables created using the
LibShortcut() function. If Var 2 . already exists, this command
replaces all members that are common to both groups and adds the members that do not already exist. If a simple (non-group) variable named Va r2 exists, an error occurs.
corrMat()
corrMat(List1,List2[,…[,List20]])
Computes the correlation matrix for the augmented matrix [List1, List2, ..., List20].
Catalog
Catalog
>
>
TI-Nspire™ Reference Guide 15
cos()
cos(Val u e 1 ) value cos(List1) list
cos(Val u e 1 ) returns the cosine of the argument as a value. cos(List1) returns a list of the cosines of all elements in List1. Note: The argument is interpreted as a degree, gradian or radian
angle, according to the current angle mode setting. You can us e ó,G, or ôto override the angle mode temporarily.
n key
In Degree angle mode:
In Gradian angle mode:
In Radian angle mode:
cos(squareMatrix1) squareMatrix
Returns the matrix cosine of squareMatrix1. This is not the same as calculating the cosine of each element.
When a scalar function f(A) operates on squareMatrix1 (A), the result is calculated by the algorithm:
Compute the eigenvalues (li) and eigenvectors (Vi) of A.
squareMatrix1 must be diagonalizable. Also, it cannot have symbolic variables that have not been assigned a value.
Form the matrices:
Then A = X B Xêand f(A) = X f(B) Xê. For example, cos(A) = X cos(B) Xê where:
cos(B) =
All computations are performed using floating-point arithmetic.
In Radian angle mode:
16 TI-Nspire™ Reference Guide
cosê()
cosê(Va lu e 1 ) value cosê(List1) list
/n keys
In Degree angle mode:
cosê(Va lu e 1 ) returns the angle whose cosine is Va lu e 1 .
cosê(List1) returns a list of the inverse cosines of each element of
List1.
Note: The result is returned as a degree, gradian or radian angle,
according to the current angle mode setting.
cosê(squareMatrix1) squareMatrix
Returns the matrix inverse cosine of squareMatrix1. This is not the same as calculating the inverse cosine of each element. For information about the calculation method, refer to cos().
squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.
cosh()
cosh(Va lu e 1 ) value cosh(List1) list
cosh(Va lu e 1 ) returns the hyperbolic cosine of the argument. cosh(List1) returns a list of the hyperbolic cosines of each element o f
List1.
cosh(squareMatrix1) squareMatrix
Returns the matrix hyperbolic cosine of squareMatrix1. This is not the same as calculating the hyperbolic cosine of each element. For information about the calculation method, refer to cos().
squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.
In Gradian angle mode:
In Radian angle mode:
In Radian angle mode and Rectangular Complex Format:
To see the entire result, press £ and then use ¡ and ¢ to move the cursor.
Catalog
>
In Radian angle mode:
coshê()
coshê(Va lu e 1 ) value coshê(List1) list
ê
cosh
(Va lu e 1 ) returns the inverse hyperbolic cosine of the
argument.
ê
cosh
(List1) returns a list of the inverse hyperbolic cosines of each
element of List1.
Catalog
>
TI-Nspire™ Reference Guide 17
coshê()
coshê(squareMatrix1) squareMatrix
Returns the matrix inverse hyperbolic cosine of squareMatrix1. This is not the same as calculating the inverse hyperbolic cosine of each element. For information about the calculation method, refer to
cos().
squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.
Catalog
>
In Radian angle mode and In Rectangular Complex Format:
To see the entire result, press £ and then use ¡ and ¢ to move the cursor.
cot()
cot(Val u e 1 ) value cot(List1) list
Returns the cotangent of Val u e1 or returns a list of the cotangents of all elements in List1.
Note: The argument is interpreted as a degree, gradian or radian
angle, according to the current angle mode setting. You can us e ó,G, orôto override the angle mode temporarily.
cotê()
cotê(Va lu e 1 ) value cotê(List1) list
Returns the angle whose cotangent is Va l ue 1 or returns a list containing the inverse cotangents of each element of List1.
Note: The result is returned as a degree, gradian or radian angle,
according to the current angle mode setting.
coth()
coth(Val u e 1 ) value coth(List1) list
Returns the hyperbolic cotangent of Va l ue 1 or returns a list of the hyperbolic cotangents of all elements of List1.
In Degree angle mode:
In Gradian angle mode:
In Radian angle mode:
In Degree angle mode:
In Gradian angle mode:
In Radian angle mode:
Catalog
Catalog
Catalog
>
>
>
cothê()
cothê(Va lu e 1 ) value cothê(List1) list
Returns the inverse hyperbolic cotangent of Va l u e1 or returns a list containing the inverse hyperbolic cotangents of each element of List1.
Catalog
>
18 TI-Nspire™ Reference Guide
count()
count(Val u e 1 or L i s t1 [,Value2orList2 [,...]]) value
Returns the accumulated count of all elements in the arguments that evaluate to numeric values.
Each argument can be an expression, value, list, or matrix. You can mix data types and use arguments of various dimensions.
For a list, matrix, or range of cells, each element is evaluated to determine if it should be included in the count.
Within the Lists & Spreadsheet application, you can use a range of cells in place of any argument.
Catalog
>
countif()
countif(List,Criteria) value
Returns the accumulated count of all elements in List that meet the specified Criteria.
Criteria can be:
• A value, expression, or string. For example, 3 counts only those elements in List that simplify to the value 3.
• A Boolean expression containing the symbol ? as a placeholder for each element. For example, ?<5 counts only those elements in List that are less than 5.
Within the Lists & Spreadsheet application, you can use a range of cells in place of List.
Note: See also sumIf(), page 87, and frequency(), page 33.
crossP()
crossP(List1, List2) list
Returns the cross product of List1 and List2 as a list. List1 and List2 must have equal dimension, and the dimension must
be either 2 or 3.
crossP(Vector1, Vector2) vector
Returns a row or column vector (depending on the arguments) that is the cross product of Vector1 and Vector2.
Both Vector1 and Vector2 must be row vectors, or both must be column vectors. Both vectors must have equal dimension, and the dimension must be either 2 or 3.
Counts the number of elements equal to 3.
Counts the number of elements equal to “def.”
Counts 1 and 3.
Counts 3, 5, and 7.
Counts 1, 3, 7, and 9.
Catalog
Catalog
>
>
TI-Nspire™ Reference Guide 19
csc()
csc(Val u e 1 ) value csc(List1) list
Returns the cosecant of Va lu e 1 or returns a list containing the cosecants of all elements in List1.
In Degree angle mode:
In Gradian angle mode:
In Radian angle mode:
Catalog
>
cscê()
cscê(Va l ue 1 ) value cscê(List1) list
Returns the angle whose cosecant is Va l ue 1 or returns a list containing the inverse cosecants of each element of List1.
Note: The result is returned as a degree, gradian or radian angle,
according to the current angle mode setting.
csch()
csch(Val u e 1 ) value csch(List1) list
Returns the hyperbolic cosecant of Va lu e 1 or returns a list of the hyperbolic cosecants of all elements of List1.
cschê()
cschê(Val u e ) value cschê(List1) list
Returns the inverse hyperbolic cosecant of Va l u e1 or returns a list containing the inverse hyperbolic cosecants of each element of List1.
In Degree angle mode:
In Gradian angle mode:
In Radian angle mode:
Catalog
Catalog
Catalog
>
>
>
20 TI-Nspire™ Reference Guide
CubicReg
CubicReg X, Y[, [Freq] [, Category, Include]]
Catalog
Computes the cubic polynomial regression y = a·x3+b· x2+c·x+d on lists X and Y with frequency Freq. A summary of
results is stored in the stat.results variable. (See page 83.) All the lists must have equal dimension except for Include.
X and Y are lists of independent and dependent variables. Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers | 0.
Category is a list of numeric category codes for the corresponding X and Y data.
Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.
Output variable Description
stat.RegEqn
stat.a, stat.b, stat.c, stat.d
2
stat.R
Regression equation: a·x3+b·x2+c·x+d
Regression coefficients
Coefficient of determination
stat.Resid Residuals from the regression
stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories
Category List, and Include Categories
stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg
>
cumSum()
cumSum(List1) list
Returns a list of the cumulative sums of the elements in List1, starting at element 1.
cumSum(Matrix1) matrix
Returns a matrix of the cumulative sums of the elements in Matrix1. Each element is the cumulative sum of the column from top to bottom.
Catalog
>
TI-Nspire™ Reference Guide 21
Cycle
Cycle
Transfers control immediately to the next iteration of t he current loop
For, While, or Loop).
(
Cycle is not allowed outside the three looping structures (For, While, or Loop).
Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line definitions by pressing @ instead of · at the end of each line. On the
computer keyboard, hold down Alt and press Enter.
Catalog
>
Function listing that sums the integers from 1 to 100 skipping
50.
4Cylind
Vec t o r 4Cylind
Displays the row or column vector in cylindrical form [r,q, z].
Vec t o r must have exactly three elements. It can be either a row or a column.
D
dbd()
dbd(date1,date2) value
Returns the number of days between date1 and date2 using the actual-day-count method.
date1 and date2 can be numbers or lists of numbers within the range of the dates on the standard calendar. If both date1 and date2 are lists, they must be the same length.
date1 and date2 must be between the years 1950 through 2049. You can enter the dates in either of two formats. The decimal
placement differentiates between the date formats. MM.DDYY (format used commonly in the United States)
DDMM.YY (format use commonly in Europe)
Catalog
Catalog
>
>
22 TI-Nspire™ Reference Guide
4DD
4DD value
Expr1 List1 4DD list Matrix1
4DD matrix
Returns the decimal equivalent of the argument expresse d in degrees. The argument is a number, list, or matrix that is interpreted by the Angle mode setting in gradians, radians or degrees.
In Degree angle mode:
In Gradian angle mode:
In Radian angle mode:
Catalog
>
4Decimal
4Decimal
Number1
4Decimal
List1
4
Decimal
Matrix1
Displays the argument in decimal form. This operator can be used only at the end of the entry line.
Define
Define Var = Expression Define Function(Param1, Param2, ...) = Expression
Defines the variable Var or the user-defined function Function. Parameters, such as Param1, provide placeholders for passing
arguments to the function. When calling a user-defined function, you must supply arguments (for example, values or variables) that correspond to the parameters. When called, the function evaluates
Expression using the supplied arguments. Var and Function cannot be the name of a system variable or built -in
function or command.
Note: This form of Define is equivalent to executing the
expression: expression & Function(Param1,Param2).
value
value
value
Catalog
Catalog
>
>
TI-Nspire™ Reference Guide 23
Define
Define Function(Param1, Param2, ...) = Func
Block
EndFunc
Program(Param1, Param2, ...) = Prgm
Define
Block
EndPrgm
In this form, the user-defined function or program can execute a block of multiple statements.
Block can be either a single statement or a series of statements on separate lines. Block also can include expressions and instructions (such as If, Then, Else, and For).
Note for entering the example: In the Calculator application
on the handheld, you can enter multi-line definitions by pressing
@ instead of · at the end of each line. On the computer
keyboard, hold down Alt and press Enter.
Note: See also Define LibPriv, page 24, and Define LibPub,
page 24.
Catalog
>
Define LibPriv
Define LibPriv Var = Expression Define LibPriv Function(Param1, Param2, ...) = Expression
Define LibPriv Function(Param1, Param2, ...) = Func
Block
EndFunc Define LibPriv
EndPrgm
Operates the same as Define, except defines a private library variable, function, or program. Private functions and progr ams do not appear in the Catalog.
Note: See also Define, page 23, and Define LibPub, page 24.
Program(Param1, Param2, ...) = Prgm
Block
Define LibPub
Define LibPub Var = Expression Define LibPub Function(Param1, Param2, ...) = Expression
Define LibPub Function(Param1, Param2, ...) = Func
Block
EndFunc Define LibPub
EndPrgm
Operates the same as Define, except defines a public library variable, function, or program. Public functions and programs appear in the Catalog after the library has been saved and refreshed.
Note: See also Define, page 23, and Define LibPriv, page 24.
Program(Param1, Param2, ...) = Prgm
Block
Catalog
Catalog
>
>
24 TI-Nspire™ Reference Guide
Loading...
+ 108 hidden pages