Texas Instruments OMAP-L138 C6000 User Manual

Product Folder
Order Now
Technical Documents
Tools & Software
Support & Community
TMS320C6748™ Fixed- and Floating-Point DSP
1 Device Overview
1.1 Features
1
• 375- and 456-MHz C674x Fixed- and Floating­Point VLIW DSP
• C674x Instruction Set Features – Superset of the C67x+ and C64x+ ISAs – Up to 3648 MIPS and 2746 MFLOPS – Byte-Addressable (8-, 16-, 32-, and 64-Bit Data) – 8-Bit Overflow Protection – Bit-Field Extract, Set, Clear – Normalization, Saturation, Bit-Counting – Compact 16-Bit Instructions
• C674x Two-Level Cache Memory Architecture – 32KB of L1P Program RAM/Cache – 32KB of L1D Data RAM/Cache – 256KB of L2 Unified Mapped RAM/Cache – Flexible RAM/Cache Partition (L1 and L2)
• Enhanced Direct Memory Access Controller 3 (EDMA3):
– 2 Channel Controllers – 3 Transfer Controllers – 64 Independent DMA Channels – 16 Quick DMA Channels – Programmable Transfer Burst Size
• TMS320C674x Floating-Point VLIW DSP Core – Load-Store Architecture With Nonaligned
Support – 64 General-Purpose Registers (32-Bit) – Six ALU (32- and 40-Bit) Functional Units
– Supports 32-Bit Integer, SP (IEEE Single
Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point
– Supports up to Four SP Additions Per Clock,
Four DP Additions Every Two Clocks
– Supports up to Two Floating-Point (SP or DP)
Reciprocal Approximation (RCPxP) and Square-Root Reciprocal Approximation (RSQRxP) Operations Per Cycle
– Two Multiply Functional Units:
– Mixed-Precision IEEE Floating-Point Multiply
Supported up to: – 2 SP × SP SP Per Clock – 2 SP × SP DP Every Two Clocks
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
– 2 SP × DP DP Every Three Clocks – 2 DP × DP DP Every Four Clocks
– Fixed-Point Multiply Supports Two 32 × 32-
Bit Multiplies, Four 16 × 16-Bit Multiplies, or Eight 8 × 8-Bit Multiplies per Clock Cycle,
and Complex Multiples – Instruction Packing Reduces Code Size – All Instructions Conditional – Hardware Support for Modulo Loop Operation – Protected Mode Operation – Exceptions Support for Error Detection and
Program Redirection
• Software Support – TI DSP BIOS™ – Chip Support Library and DSP Library
• 128KB of RAM Shared Memory
• 1.8-V or 3.3-V LVCMOS I/Os (Except for USB and DDR2 Interfaces)
• Two External Memory Interfaces: – EMIFA
– NOR (8- or 16-Bit-Wide Data) – NAND (8- or 16-Bit-Wide Data) – 16-Bit SDRAM With 128-MB Address Space
– DDR2/Mobile DDR Memory Controller With one
of the Following: – 16-Bit DDR2 SDRAM With 256-MB Address
Space
– 16-Bit mDDR SDRAM With 256-MB Address
Space
• Three Configurable 16550-Type UART Modules: – With Modem Control Signals – 16-Byte FIFO – 16x or 13x Oversampling Option
• LCD Controller
• Two Serial Peripheral Interfaces (SPIs) Each With Multiple Chip Selects
• Two Multimedia Card (MMC)/Secure Digital (SD) Card Interfaces With Secure Data I/O (SDIO) Interfaces
• Two Master and Slave Inter-Integrated Circuits (I2C Bus™)
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
• One Host-Port Interface (HPI) With 16-Bit-Wide Muxed Address and Data Bus For High Bandwidth
• Programmable Real-Time Unit Subsystem (PRUSS)
– Two Independent Programmable Real-Time Unit
(PRU) Cores – 32-Bit Load-Store RISC Architecture – 4KB of Instruction RAM Per Core – 512 Bytes of Data RAM Per Core – PRUSS can be Disabled Through Software to
Save Power
– Register 30 of Each PRU is Exported From
the Subsystem in Addition to the Normal R31 Output of the PRU Cores.
– Standard Power-Management Mechanism
– Clock Gating – Entire Subsystem Under a Single PSC Clock
Gating Domain – Dedicated Interrupt Controller – Dedicated Switched Central Resource
• USB 1.1 OHCI (Host) With Integrated PHY (USB1)
• USB 2.0 OTG Port With Integrated PHY (USB0) – USB 2.0 High- and Full-Speed Client – USB 2.0 High-, Full-, and Low-Speed Host – End Point 0 (Control) – End Points 1, 2, 3, and 4 (Control, Bulk,
Interrupt, or ISOC) RX and TX
• One Multichannel Audio Serial Port (McASP): – Two Clock Zones and 16 Serial Data Pins – Supports TDM, I2S, and Similar Formats – DIT-Capable – FIFO Buffers for Transmit and Receive
• Two Multichannel Buffered Serial Ports (McBSPs): – Supports TDM, I2S, and Similar Formats – AC97 Audio Codec Interface – Telecom Interfaces (ST-Bus, H100) – 128-Channel TDM – FIFO Buffers for Transmit and Receive
• 10/100 Mbps Ethernet MAC (EMAC): – IEEE 802.3 Compliant – MII Media-Independent Interface – RMII Reduced Media-Independent Interface – Management Data I/O (MDIO) Module
• Video Port Interface (VPIF): – Two 8-Bit SD (BT.656), Single 16-Bit or Single
Raw (8-, 10-, and 12-Bit) Video Capture Channels
– Two 8-Bit SD (BT.656), Single 16-Bit Video
Display Channels
• Universal Parallel Port (uPP): – High-Speed Parallel Interface to FPGAs and
Data Converters
– Data Width on Both Channels is 8- to 16-Bit
Inclusive – Single-Data Rate or Dual-Data Rate Transfers – Supports Multiple Interfaces With START,
ENABLE, and WAIT Controls
• Serial ATA (SATA) Controller: – Supports SATA I (1.5 Gbps) and SATA II
(3.0 Gbps)
– Supports All SATA Power-Management
Features
– Hardware-Assisted Native Command Queueing
(NCQ) for up to 32 Entries
– Supports Port Multiplier and Command-Based
Switching
• Real-Time Clock (RTC) With 32-kHz Oscillator and Separate Power Rail
• Three 64-Bit General-Purpose Timers (Each Configurable as Two 32-Bit Timers)
• One 64-Bit General-Purpose or Watchdog Timer (Configurable as Two 32-Bit General-Purpose Timers)
• Two Enhanced High-Resolution Pulse Width Modulators (eHRPWMs):
– Dedicated 16-Bit Time-Base Counter With
Period and Frequency Control
– 6 Single-Edge Outputs, 6 Dual-Edge Symmetric
Outputs, or 3 Dual-Edge Asymmetric Outputs – Dead-Band Generation – PWM Chopping by High-Frequency Carrier – Trip Zone Input
• Three 32-Bit Enhanced Capture (eCAP) Modules: – Configurable as 3 Capture Inputs or 3 Auxiliary
Pulse Width Modulator (APWM) Outputs
– Single-Shot Capture of up to Four Event
Timestamps
• Packages: – 361-Ball Pb-Free Plastic Ball Grid Array (PBGA)
[ZCE Suffix], 0.65-mm Ball Pitch
– 361-Ball Pb-Free PBGA [ZWT Suffix],
0.80-mm Ball Pitch
• Commercial, Extended, or Industrial Temperature
2
Device Overview Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
1.2 Applications
Currency Inspection
Biometric Identification
1.3 Description
The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs.
The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution.
The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a 32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance.
For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware­based “root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code.
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Machine Vision (Low-End)
Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the
TMS320C674x/OMAP-L1x Processor Security User’s Guide.
The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each with RTS and CTS); two enhanced high­resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller.
The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device OverviewCopyright © 2009–2017, Texas Instruments Incorporated
3
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps).
The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters.
A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with
external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides.
The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows®debugger interface for visibility into source code execution.
www.ti.com
Device Information
PART NUMBER PACKAGE BODY SIZE
TMS320C6748ZCE NFBGA (361) 13,00 mm x 13,00 mm TMS320C6748ZWT NFBGA (361) 16,00 mm x 16,00 mm
(1) For more information on these devices, see Section 8.
(1)
4
Device Overview Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Switched Central Resource (SCR)
BOOT ROM
256KB L2 RAM
32KB
L1 RAM
32KB
L1 Pgm
AET
C674x™
DSP CPU
DSP Subsystem
JTAG Interface
System Control
Input
Clock(s)
Power/Sleep
Controller
Pin
Multiplexing
PLL/Clock Generator
w/OSC
General­Purpose
Timer (x3)
Serial Interfaces
Audio Ports
McASP w/FIFO
DMA
Peripherals
Display Internal Memory
LCD
Ctlr
128KB
RAM
External Memory InterfacesConnectivity
EDMA3
(x2)
Control Timers
ePWM
(x2)
eCAP
(x3)
EMIFA(8b/16B)
NAND/Flash 16b SDRAM
DDR2/MDDR
Controller
RTC/
32-kHz
OSC
I C
(x2)
2
SPI (x2)
UART
(x3)
McBSP
(x2)
Video
VPIF
Parallel Port
uPP
EMAC 10/100
(MII/RMII)
MDIO
USB1.1
OHCI Ctlr
PHY
USB2.0
OTG Ctlr
PHY
HPI
MMC/SD
(8b) (x2)
SATA
Customizable Interface
PRU Subsystem
Memory
Protection
www.ti.com
1.4 Functional Block Diagram
Figure 1-1 shows the functional block diagram of the device.
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Figure 1-1. Functional Block Diagram
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device OverviewCopyright © 2009–2017, Texas Instruments Incorporated
5
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
Table of Contents
1 Device Overview ........................................ 1
1.1 Features .............................................. 1
1.2 Applications........................................... 3
1.3 Description............................................ 3
1.4 Functional Block Diagram ............................ 5
2 Revision History ......................................... 7
3 Device Comparison ..................................... 8
3.1 Device Characteristics................................ 8
3.2 Device Compatibility.................................. 9
3.3 DSP Subsystem ...................................... 9
3.4 Memory Map Summary ............................. 20
3.5 Pin Assignments .................................... 23
3.6 Pin Multiplexing Control............................. 26
3.7 Terminal Functions .................................. 27
3.8 Unused Pin Configurations.......................... 69
4 Device Configuration .................................. 71
4.1 Boot Modes ......................................... 71
4.2 SYSCFG Module.................................... 71
4.3 Pullup/Pulldown Resistors .......................... 74
5 Specifications........................................... 75
5.1 Absolute Maximum Ratings Over Operating Junction Temperature Range
(Unless Otherwise Noted) ................................. 75
5.2 Handling Ratings .................................... 75
5.3 Recommended Operating Conditions............... 76
5.4 Notes on Recommended Power-On Hours (POH) . 78
5.5 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Junction
Temperature (Unless Otherwise Noted) ............ 79
6 Peripheral Information and Electrical
Specifications........................................... 80
6.1 Parameter Information .............................. 80
6.2 Recommended Clock and Control Signal Transition
Behavior............................................. 81
6.3 Power Supplies...................................... 81
6.4 Reset ................................................ 82
6.5 Crystal Oscillator or External Clock Input........... 86
6.6 Clock PLLs .......................................... 87
6.7 Interrupts ............................................ 92
6.8 Power and Sleep Controller (PSC).................. 96
6.9 Enhanced Direct Memory Access Controller
(EDMA3) ........................................... 101
6.10 External Memory Interface A (EMIFA) ............. 107
6.11 DDR2/mDDR Memory Controller .................. 119
6.12 Memory Protection Units .......................... 132
6.13 MMC / SD / SDIO (MMCSD0, MMCSD1) ......... 135
6.14 Serial ATA Controller (SATA)...................... 138
6.15 Multichannel Audio Serial Port (McASP) .......... 143
6.16 Multichannel Buffered Serial Port (McBSP)........ 152
6.17 Serial Peripheral Interface Ports (SPI0, SPI1)..... 161
6.18 Inter-Integrated Circuit Serial Ports (I2C) .......... 182
6.19 Universal Asynchronous Receiver/Transmitter
(UART)............................................. 186
6.20 Universal Serial Bus OTG Controller (USB0)
[USB2.0 OTG] ..................................... 188
6.21 Universal Serial Bus Host Controller (USB1)
[USB1.1 OHCI]..................................... 195
6.22 Ethernet Media Access Controller (EMAC) ........ 196
6.23 Management Data Input/Output (MDIO)........... 203
6.24 LCD Controller (LCDC) ............................ 205
6.25 Host-Port Interface (UHPI)......................... 220
6.26 Universal Parallel Port (uPP) ...................... 228
6.27 Video Port Interface (VPIF) ........................ 233
6.28 Enhanced Capture (eCAP) Peripheral............. 239
6.29 Enhanced High-Resolution Pulse-Width Modulator
(eHRPWM)......................................... 242
6.30 Timers.............................................. 247
6.31 Real Time Clock (RTC) ............................ 249
6.32 General-Purpose Input/Output (GPIO)............. 252
6.33 Programmable Real-Time Unit Subsystem
(PRUSS) ........................................... 256
6.34 Emulation Logic .................................... 259
7 Device and Documentation Support.............. 263
7.1 Device Nomenclature .............................. 263
7.2 Tools and Software ................................ 264
7.3 Documentation Support............................ 264
7.4 Community Resources............................. 265
7.5 Trademarks ........................................ 265
7.6 Electrostatic Discharge Caution ................... 265
7.7 Export Control Notice .............................. 265
7.8 Glossary............................................ 265
8 Mechanical Packaging and Orderable
Information............................................. 266
8.1 Thermal Data for ZCE Package ................... 266
8.2 Thermal Data for ZWT Package................... 267
8.3 Packaging Information ............................. 267
6
Table of Contents Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
2 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from March 31, 2014 to January 31, 2017 Page
Removed internal pullup designation from RESET in Table 3-5.............................................................. 27
Added footnote to CLKOUT Description in Table 3-6 .......................................................................... 28
Added new column to Table 3-32 called "Configuration (When USB1 is used and USB0 is not used)" ................ 69
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Revision HistoryCopyright © 2009–2017, Texas Instruments Incorporated
7
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3 Device Comparison
3.1 Device Characteristics
Table 3-1 provides an overview of the device. The table shows significant features of the device, including
the capacity of on-chip RAM, peripherals, and the package type with pin count.
HARDWARE FEATURES C6748
DDR2/mDDR Memory Controller
EMIFA Flash Card Interface 2 MMC and SD cards supported EDMA3
Timers UART 3 (each with RTS and CTS flow control)
SPI 2 (Each with one hardware chip select)
Peripherals Not all peripherals pins
are available at the same time (for more detail, see the Device Configurations section).
On-Chip Memory
I2C 2 (both Master/Slave) Multichannel Audio Serial Port [McASP] 1 (each with transmit/receive, FIFO buffer, 16 serializers) Multichannel Buffered Serial Port [McBSP] 2 (each with transmit/receive, FIFO buffer, 16) 10/100 Ethernet MAC with Management Data I/O 1 (MII or RMII Interface)
eHRPWM eCAP 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs
UHPI 1 (16-bit multiplexed address/data) USB 2.0 (USB0) High-Speed OTG Controller with on-chip OTG PHY USB 1.1 (USB1) Full-Speed OHCI (as host) with on-chip PHY General-Purpose Input/Output Port 9 banks of 16-bit LCD Controller 1 SATA Controller 1 (Supports both SATA I and SATAII) Universal Parallel Port (uPP) 1 Video Port Interface (VPIF) 1 (video in and video out) PRU Subsystem (PRUSS) 2 Programmable PRU Cores Size (Bytes) 448KB RAM
Organization
www.ti.com
Table 3-1. Characteristics of C6748
DDR2, 16-bit bus width, up to 156 MHz
Mobile DDR, 16-bit bus width, up to 150 MHz
Asynchronous (8/16-bit bus width) RAM, Flash,
16-bit SDRAM, NOR, NAND
64 independent channels, 16 QDMA channels,
2 channel controllers, 3 transfer controllers
4 64-Bit General Purpose (each configurable as 2 separate
32-bit timers, one configurable as Watch Dog)
4 Single Edge, 4 Dual Edge Symmetric, or
2 Dual Edge Asymmetric Outputs
DSP
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB) 256KB Unified Mapped RAM/Cache (L2)
DSP Memories can be made accessible to EDMA3 and
other peripherals.
Security Secure Boot TI Basic Secure Boot C674x CPU ID + CPU
Rev ID C674x Megamodule
Revision JTAG BSDL_ID DEVIDR0 Register see Section 6.34.4.1, JTAG Peripheral Register Description CPU Frequency MHz 674x DSP 375 MHz (1.2V) or 456 MHz (1.3V)
8
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Control Status Register (CSR.[31:16]) 0x1400
Revision ID Register (MM_REVID[15:0]) 0x0000
ADDITIONAL MEMORY
128KB RAM
Submit Documentation Feedback
Product Folder Links: TMS320C6748
TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-1. Characteristics of C6748 (continued)
HARDWARE FEATURES C6748
Voltage
Packages
Product Status
(1) ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and
other specifications are subject to change without notice. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
(1)
Core (V) I/O (V) 1.8V or 3.3 V
Product Preview (PP), Advance Information (AI), or Production Data (PD)
Variable (1.2V-1.0V) for 375 MHz version Variable (1.3V-1.0V) for 456 MHz version
13 mm x 13 mm, 361-Ball 0.65 mm pitch, PBGA (ZCE)
16 mm x 16 mm, 361-Ball 0.80 mm pitch, PBGA (ZWT)
375 MHz versions - PD 456 MHz versions - PD
3.2 Device Compatibility
The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of both the C64x+ and C67x+ DSP families.
3.3 DSP Subsystem
The DSP Subsystem includes the following features:
C674x DSP CPU
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB)
256KB Unified Mapped RAM/Cache (L2)
Boot ROM (cannot be used for application code)
Little endian
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
9
Instruction Fetch
C674x
Fixed/Floating Point CPU
Register
File A
Register
File B
Cache Control
Memory Protect
Bandwidth Mgmt
L1P
256
Cache Control
Memory Protect
Bandwidth Mgmt
L1D
64 64
8 x 32
32K Bytes L1D RAM/
Cache
32K Bytes
L1P RAM/
Cache
256
Cache Control
Memory Protect
Bandwidth Mgmt
L2
256K Bytes
L2 RAM
256
BOOT
ROM
256
CFG
MDMA SDMA
EMC
Power Down
Interrupt
Controller
IDMA
256
256
256
256
256
64
High
Performance
Switch Fabric
64
64 64
Configuration
Peripherals
Bus
32
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
3.3.1 C674x DSP CPU Description
The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two data paths as shown in Figure 3-2. The two general-purpose register files (A and B) each contain 32 32­bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40­bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register).
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory.
The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the C67x+ core.
Figure 3-1. C674x Megamodule Block Diagram
10
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Product Folder Links: TMS320C6748
Submit Documentation Feedback
www.ti.com
Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x 32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four 16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended precision necessary for high-precision algorithms on a variety of signed and unsigned 32-bit data types.
The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.
The C674x core enhances the .S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2 comparisons were only available on the .L units. On the C674x core they are also available on the .S unit which increases the performance of algorithms that do searching and sorting. Finally, to increase data packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack instructions return parallel results to output precision including saturation support.
Other new features include:
SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where
Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common
Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit
Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to
Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a
Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a free-
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.
instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x compiler can restrict the code to use certain registers in the register file. This compression is performed by the code generation tools.
multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field multiplication.
detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and from system events (such as a watchdog time expiration).
basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with read, write, and execute permissions.
running time-stamp counter is implemented in the CPU which is not sensitive to system stalls.
For more details on the C674x CPU and its enhancements over the C64x architecture, see the following documents:
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRUFE8)
TMS320C64x Technical Overview (literature number SPRU395)
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
11
src2
src2
.D1
.M1
.S1
.L1
long src
odd dst
src2
src1
src1
src1
src1
even dst
even dst
odd dst
dst1
dst
src2
src2
src2
long src
DA1
ST1b
LD1b LD1a
ST1a
Data path A
Odd
register
file A
(A1, A3,
A5...A31)
Odd
register
file B
(B1, B3,
B5...B31)
.D2
src1
dst
src2
DA2
LD2a LD2b
src2
.M2
src1
dst1
.S2
src1
even dst
long src
odd dst
ST2a ST2b
long src
.L2
even dst
odd dst
src1
Data path B
Control Register
32 MSB 32 LSB
dst2
(A)
32 MSB 32 LSB
2x
1x
32 LSB
32 MSB
32 LSB
32 MSB
dst2
(B)
(B) (A)
8
8
8
8
32
32
32
32
(C)
(C)
Even
register
file A
(A0, A2,
A4...A30)
Even
register
file B
(B0, B2,
B4...B30)
(D)
(D)
(D)
(D)
A. On .M unit, dst2 is 32 MSB. B. On .M unit, dst1 is 32 LSB. C. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits. D. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
12
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Figure 3-2. TMS320C674x CPU (DSP Core) Data Paths
Product Folder Links: TMS320C6748
Submit Documentation Feedback
www.ti.com
3.3.2 DSP Memory Mapping
The DSP memory map is shown in Section 3.4. By default the DSP also has access to most on and off chip memory areas. Additionally, the DSP megamodule includes the capability to limit access to its internal memories through
its SDMA port; without needing an external MPU unit.
3.3.2.1 External Memories
The DSP has access to the following External memories:
Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA)
SDRAM (DDR2)
3.3.2.2 DSP Internal Memories
The DSP has access to the following DSP memories:
L2 RAM
L1P RAM
L1D RAM
3.3.2.3 C674x CPU
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2 memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both.
Table 3-2 shows a memory map of the C674x CPU cache registers for the device.
Table 3-2. C674x Cache Registers
Byte Address Register Name Register Description
0x0184 0000 L2CFG L2 Cache configuration register 0x0184 0020 L1PCFG L1P Size Cache configuration register 0x0184 0024 L1PCC L1P Freeze Mode Cache configuration register 0x0184 0040 L1DCFG L1D Size Cache configuration register 0x0184 0044 L1DCC L1D Freeze Mode Cache configuration register
0x0184 0048 - 0x0184 0FFC - Reserved
0x0184 1000 EDMAWEIGHT L2 EDMA access control register
0x0184 1004 - 0x0184 1FFC - Reserved
0x0184 2000 L2ALLOC0 L2 allocation register 0 0x0184 2004 L2ALLOC1 L2 allocation register 1 0x0184 2008 L2ALLOC2 L2 allocation register 2
0x0184 200C L2ALLOC3 L2 allocation register 3
0x0184 2010 - 0x0184 3FFF - Reserved
0x0184 4000 L2WBAR L2 writeback base address register 0x0184 4004 L2WWC L2 writeback word count register 0x0184 4010 L2WIBAR L2 writeback invalidate base address register 0x0184 4014 L2WIWC L2 writeback invalidate word count register 0x0184 4018 L2IBAR L2 invalidate base address register
0x0184 401C L2IWC L2 invalidate word count register
0x0184 4020 L1PIBAR L1P invalidate base address register 0x0184 4024 L1PIWC L1P invalidate word count register 0x0184 4030 L1DWIBAR L1D writeback invalidate base address register
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
13
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-2. C674x Cache Registers (continued)
Byte Address Register Name Register Description
0x0184 4034 L1DWIWC L1D writeback invalidate word count register 0x0184 4038 - Reserved 0x0184 4040 L1DWBAR L1D Block Writeback 0x0184 4044 L1DWWC L1D Block Writeback 0x0184 4048 L1DIBAR L1D invalidate base address register
0x0184 404C L1DIWC L1D invalidate word count register
0x0184 4050 - 0x0184 4FFF - Reserved
0x0184 5000 L2WB L2 writeback all register 0x0184 5004 L2WBINV L2 writeback invalidate all register 0x0184 5008 L2INV L2 Global Invalidate without writeback
0x0184 500C - 0x0184 5027 - Reserved
0x0184 5028 L1PINV L1P Global Invalidate
0x0184 502C - 0x0184 5039 - Reserved
0x0184 5040 L1DWB L1D Global Writeback 0x0184 5044 L1DWBINV L1D Global Writeback with Invalidate 0x0184 5048 L1DINV L1D Global Invalidate without writeback
0x0184 8000 – 0x0184 80FF MAR0 - MAR63 Reserved 0x0000 0000 – 0x3FFF FFFF 0x0184 8100 – 0x0184 817F MAR64 – MAR95
0x0184 8180 – 0x0184 8187 MAR96 - MAR97
0x0184 8188 – 0x0184 818F MAR98 – MAR99
0x0184 8190 – 0x0184 8197 MAR100 – MAR101
0x0184 8198 – 0x0184 819F MAR102 – MAR103
0x0184 81A0 – 0x0184 81FF MAR104 – MAR127 Reserved 0x6800 0000 – 0x7FFF FFFF
0x0184 8200 MAR128
0x0184 8204 – 0x0184 82FF MAR129 – MAR191 Reserved 0x8200 0000 – 0xBFFF FFFF 0x0184 8300 – 0x0184 837F MAR192 – MAR223 0x0184 8380 – 0x0184 83FF MAR224 – MAR255 Reserved 0xE000 0000 – 0xFFFF FFFF
Memory Attribute Registers for EMIFA SDRAM Data (CS0) External memory addresses 0x4000 0000 – 0x5FFF FFFF
Memory Attribute Registers for EMIFA Async Data (CS2) External memory addresses 0x6000 0000 – 0x61FF FFFF
Memory Attribute Registers for EMIFA Async Data (CS3) External memory addresses 0x6200 0000 – 0x63FF FFFF
Memory Attribute Registers for EMIFA Async Data (CS4) External memory addresses 0x6400 0000 – 0x65FF FFFF
Memory Attribute Registers for EMIFA Async Data (CS5) External memory addresses 0x6600 0000 – 0x67FF FFFF
Memory Attribute Register for RAM External memory addresses 0x8000 0000 – 0x8001 FFFF
Reserved 0x8002 0000 – 0x81FF FFFF
Memory Attribute Registers for DDR2 Data (CS2) External memory addresses 0xC000 0000 – 0xDFFF FFFF
www.ti.com
Table 3-3. C674x L1/L2 Memory Protection Registers
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 A000 L2MPFAR L2 memory protection fault address register 0x0184 A004 L2MPFSR L2 memory protection fault status register 0x0184 A008 L2MPFCR L2 memory protection fault command register
0x0184 A00C - 0x0184 A0FF - Reserved
0x0184 A100 L2MPLK0 L2 memory protection lock key bits [31:0] 0x0184 A104 L2MPLK1 L2 memory protection lock key bits [63:32] 0x0184 A108 L2MPLK2 L2 memory protection lock key bits [95:64]
0x0184 A10C L2MPLK3 L2 memory protection lock key bits [127:96]
0x0184 A110 L2MPLKCMD L2 memory protection lock key command register 0x0184 A114 L2MPLKSTAT L2 memory protection lock key status register
0x0184 A118 - 0x0184 A1FF - Reserved
14
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 A200 L2MPPA0
0x0184 A204 L2MPPA1
0x0184 A208 L2MPPA2
0x0184 A20C L2MPPA3
0x0184 A210 L2MPPA4
0x0184 A214 L2MPPA5
0x0184 A218 L2MPPA6
0x0184 A21C L2MPPA7
0x0184 A220 L2MPPA8
0x0184 A224 L2MPPA9
0x0184 A228 L2MPPA10
0x0184 A22C L2MPPA11
0x0184 A230 L2MPPA12
0x0184 A234 L2MPPA13
0x0184 A238 L2MPPA14
0x0184 A23C L2MPPA15
0x0184 A240 L2MPPA16
0x0184 A244 L2MPPA17
0x0184 A248 L2MPPA18
0x0184 A24C L2MPPA19
0x0184 A250 L2MPPA20
0x0184 A254 L2MPPA21
0x0184 A258 L2MPPA22
0x0184 A25C L2MPPA23
0x0184 A260 L2MPPA24
0x0184 A264 L2MPPA25
0x0184 A268 L2MPPA26
0x0184 A26C L2MPPA27
L2 memory protection page attribute register 0 (controls memory address 0x0080 0000 - 0x0080 1FFF)
L2 memory protection page attribute register 1 (controls memory address 0x0080 2000 - 0x0080 3FFF)
L2 memory protection page attribute register 2 (controls memory address 0x0080 4000 - 0x0080 5FFF)
L2 memory protection page attribute register 3 (controls memory address 0x0080 6000 - 0x0080 7FFF)
L2 memory protection page attribute register 4 (controls memory address 0x0080 8000 - 0x0080 9FFF)
L2 memory protection page attribute register 5 (controls memory address 0x0080 A000 - 0x0080 BFFF)
L2 memory protection page attribute register 6 (controls memory address 0x0080 C000 - 0x0080 DFFF)
L2 memory protection page attribute register 7 (controls memory address 0x0080 E000 - 0x0080 FFFF)
L2 memory protection page attribute register 8 (controls memory address 0x0081 0000 - 0x0081 1FFF)
L2 memory protection page attribute register 9 (controls memory address 0x0081 2000 - 0x0081 3FFF)
L2 memory protection page attribute register 10 (controls memory address 0x0081 4000 - 0x0081 5FFF)
L2 memory protection page attribute register 11 (controls memory address 0x0081 6000 - 0x0081 7FFF)
L2 memory protection page attribute register 12 (controls memory address 0x0081 8000 - 0x0081 9FFF)
L2 memory protection page attribute register 13 (controls memory address 0x0081 A000 - 0x0081 BFFF)
L2 memory protection page attribute register 14 (controls memory address 0x0081 C000 - 0x0081 DFFF)
L2 memory protection page attribute register 15 (controls memory address 0x0081 E000 - 0x0081 FFFF)
L2 memory protection page attribute register 16 (controls memory address 0x0082 0000 - 0x0082 1FFF)
L2 memory protection page attribute register 17 (controls memory address 0x0082 2000 - 0x0082 3FFF)
L2 memory protection page attribute register 18 (controls memory address 0x0082 4000 - 0x0082 5FFF)
L2 memory protection page attribute register 19 (controls memory address 0x0082 6000 - 0x0082 7FFF)
L2 memory protection page attribute register 20 (controls memory address 0x0082 8000 - 0x0082 9FFF)
L2 memory protection page attribute register 21 (controls memory address 0x0082 A000 - 0x0082 BFFF)
L2 memory protection page attribute register 22 (controls memory address 0x0082 C000 - 0x0082 DFFF)
L2 memory protection page attribute register 23 (controls memory address 0x0082 E000 - 0x0082 FFFF)
L2 memory protection page attribute register 24 (controls memory address 0x0083 0000 - 0x0083 1FFF)
L2 memory protection page attribute register 25 (controls memory address 0x0083 2000 - 0x0083 3FFF)
L2 memory protection page attribute register 26 (controls memory address 0x0083 4000 - 0x0083 5FFF)
L2 memory protection page attribute register 27 (controls memory address 0x0083 6000 - 0x0083 7FFF)
TMS320C6748
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
15
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 A270 L2MPPA28
0x0184 A274 L2MPPA29
0x0184 A278 L2MPPA30
0x0184 A27C L2MPPA31
0x0184 A280 L2MPPA32
0x0184 A284 L2MPPA33
0x0184 A288 L2MPPA34
0x0184 A28C L2MPPA35
0x0184 A290 L2MPPA36
0x0184 A294 L2MPPA37
0x0184 A298 L2MPPA38
0x0184 A29C L2MPPA39
0x0184 A2A0 L2MPPA40
0x0184 A2A4 L2MPPA41
0x0184 A2A8 L2MPPA42
0x0184 A2AC L2MPPA43
0x0184 A2B0 L2MPPA44
0x0184 A2B4 L2MPPA45
0x0184 A2B8 L2MPPA46
0x0184 A2BC L2MPPA47
0x0184 A2C0 L2MPPA48
0x0184 A2C4 L2MPPA49
0x0184 A2C8 L2MPPA50
0x0184 A2CC L2MPPA51
0x0184 A2D0 L2MPPA52
0x0184 A2D4 L2MPPA53
0x0184 A2D8 L2MPPA54
0x0184 A2DC L2MPPA55
L2 memory protection page attribute register 28 (controls memory address 0x0083 8000 - 0x0083 9FFF)
L2 memory protection page attribute register 29 (controls memory address 0x0083 A000 - 0x0083 BFFF)
L2 memory protection page attribute register 30 (controls memory address 0x0083 C000 - 0x0083 DFFF)
L2 memory protection page attribute register 31 (controls memory address 0x0083 E000 - 0x0083 FFFF)
L2 memory protection page attribute register 32 (controls memory address 0x0070 0000 - 0x0070 7FFF)
L2 memory protection page attribute register 33 (controls memory address 0x0070 8000 - 0x0070 FFFF)
L2 memory protection page attribute register 34 (controls memory address 0x0071 0000 - 0x0071 7FFF)
L2 memory protection page attribute register 35 (controls memory address 0x0071 8000 - 0x0071 FFFF)
L2 memory protection page attribute register 36 (controls memory address 0x0072 0000 - 0x0072 7FFF)
L2 memory protection page attribute register 37 (controls memory address 0x0072 8000 - 0x0072 FFFF)
L2 memory protection page attribute register 38 (controls memory address 0x0073 0000 - 0x0073 7FFF)
L2 memory protection page attribute register 39 (controls memory address 0x0073 8000 - 0x0073 FFFF)
L2 memory protection page attribute register 40 (controls memory address 0x0074 0000 - 0x0074 7FFF)
L2 memory protection page attribute register 41 (controls memory address 0x0074 8000 - 0x0074 FFFF)
L2 memory protection page attribute register 42 (controls memory address 0x0075 0000 - 0x0075 7FFF)
L2 memory protection page attribute register 43 (controls memory address 0x0075 8000 - 0x0075 FFFF)
L2 memory protection page attribute register 44 (controls memory address 0x0076 0000 - 0x0076 7FFF)
L2 memory protection page attribute register 45 (controls memory address 0x0076 8000 - 0x0076 FFFF)
L2 memory protection page attribute register 46 (controls memory address 0x0077 0000 - 0x0077 7FFF)
L2 memory protection page attribute register 47 (controls memory address 0x0077 8000 - 0x0077 FFFF)
L2 memory protection page attribute register 48 (controls memory address 0x0078 0000 - 0x0078 7FFF)
L2 memory protection page attribute register 49 (controls memory address 0x0078 8000 - 0x0078 FFFF)
L2 memory protection page attribute register 50 (controls memory address 0x0079 0000 - 0x0079 7FFF)
L2 memory protection page attribute register 51 (controls memory address 0x0079 8000 - 0x0079 FFFF)
L2 memory protection page attribute register 52 (controls memory address 0x007A 0000 - 0x007A 7FFF)
L2 memory protection page attribute register 53 (controls memory address 0x007A 8000 - 0x007A FFFF)
L2 memory protection page attribute register 54 (controls memory address 0x007B 0000 - 0x007B 7FFF)
L2 memory protection page attribute register 55 (controls memory address 0x007B 8000 - 0x007B FFFF)
www.ti.com
16
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 A2E0 L2MPPA56
0x0184 A2E4 L2MPPA57
0x0184 A2E8 L2MPPA58
0x0184 A2EC L2MPPA59
0x0184 A2F0 L2MPPA60
0x0184 A2F4 L2MPPA61
0x0184 A2F8 L2MPPA62
0x0184 A2FC L2MPPA63
0x0184 A300 - 0x0184 A3FF - Reserved
0x0184 A400 L1PMPFAR L1P memory protection fault address register 0x0184 A404 L1PMPFSR L1P memory protection fault status register 0x0184 A408 L1PMPFCR L1P memory protection fault command register
0x0184 A40C - 0x0184 A4FF - Reserved
0x0184 A500 L1PMPLK0 L1P memory protection lock key bits [31:0] 0x0184 A504 L1PMPLK1 L1P memory protection lock key bits [63:32] 0x0184 A508 L1PMPLK2 L1P memory protection lock key bits [95:64]
0x0184 A50C L1PMPLK3 L1P memory protection lock key bits [127:96]
0x0184 A510 L1PMPLKCMD L1P memory protection lock key command register 0x0184 A514 L1PMPLKSTAT L1P memory protection lock key status register
0x0184 A518 - 0x0184 A5FF - Reserved
0x0184 A600 - 0x0184 A63F - Reserved
0x0184 A640 L1PMPPA16
0x0184 A644 L1PMPPA17
0x0184 A648 L1PMPPA18
0x0184 A64C L1PMPPA19
0x0184 A650 L1PMPPA20
0x0184 A654 L1PMPPA21
0x0184 A658 L1PMPPA22
0x0184 A65C L1PMPPA23
0x0184 A660 L1PMPPA24
0x0184 A664 L1PMPPA25
0x0184 A668 L1PMPPA26
L2 memory protection page attribute register 56 (controls memory address 0x007C 0000 - 0x007C 7FFF)
L2 memory protection page attribute register 57 (controls memory address 0x007C 8000 - 0x007C FFFF)
L2 memory protection page attribute register 58 (controls memory address 0x007D 0000 - 0x007D 7FFF)
L2 memory protection page attribute register 59 (controls memory address 0x007D 8000 - 0x007D FFFF)
L2 memory protection page attribute register 60 (controls memory address 0x007E 0000 - 0x007E 7FFF)
L2 memory protection page attribute register 61 (controls memory address 0x007E 8000 - 0x007E FFFF)
L2 memory protection page attribute register 62 (controls memory address 0x007F 0000 - 0x007F 7FFF)
L2 memory protection page attribute register 63 (controls memory address 0x007F 8000 - 0x007F FFFF)
(1)
L1P memory protection page attribute register 16 (controls memory address 0x00E0 0000 - 0x00E0 07FF)
L1P memory protection page attribute register 17 (controls memory address 0x00E0 0800 - 0x00E0 0FFF)
L1P memory protection page attribute register 18 (controls memory address 0x00E0 1000 - 0x00E0 17FF)
L1P memory protection page attribute register 19 (controls memory address 0x00E0 1800 - 0x00E0 1FFF)
L1P memory protection page attribute register 20 (controls memory address 0x00E0 2000 - 0x00E0 27FF)
L1P memory protection page attribute register 21 (controls memory address 0x00E0 2800 - 0x00E0 2FFF)
L1P memory protection page attribute register 22 (controls memory address 0x00E0 3000 - 0x00E0 37FF)
L1P memory protection page attribute register 23 (controls memory address 0x00E0 3800 - 0x00E0 3FFF)
L1P memory protection page attribute register 24 (controls memory address 0x00E0 4000 - 0x00E0 47FF)
L1P memory protection page attribute register 25 (controls memory address 0x00E0 4800 - 0x00E0 4FFF)
L1P memory protection page attribute register 26 (controls memory address 0x00E0 5000 - 0x00E0 57FF)
TMS320C6748
(1) These addresses correspond to the L1P memory protection page attribute registers 0-15 (L1PMPPA0-L1PMPPA15) of the C674x
megamaodule. These registers are not supported for this device.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
17
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 A66C L1PMPPA27
0x0184 A670 L1PMPPA28
0x0184 A674 L1PMPPA29
0x0184 A678 L1PMPPA30
0x0184 A67C L1PMPPA31
0x0184 A67F – 0x0184 ABFF - Reserved
0x0184 AC00 L1DMPFAR L1D memory protection fault address register 0x0184 AC04 L1DMPFSR L1D memory protection fault status register 0x0184 AC08 L1DMPFCR L1D memory protection fault command register
0x0184 AC0C - 0x0184 ACFF - Reserved
0x0184 AD00 L1DMPLK0 L1D memory protection lock key bits [31:0] 0x0184 AD04 L1DMPLK1 L1D memory protection lock key bits [63:32] 0x0184 AD08 L1DMPLK2 L1D memory protection lock key bits [95:64]
0x0184 AD0C L1DMPLK3 L1D memory protection lock key bits [127:96]
0x0184 AD10 L1DMPLKCMD L1D memory protection lock key command register 0x0184 AD14 L1DMPLKSTAT L1D memory protection lock key status register
0x0184 AD18 - 0x0184 ADFF - Reserved
0x0184 AE00 - 0x0184 AE3F - Reserved
0x0184 AE40 L1DMPPA16
0x0184 AE44 L1DMPPA17
0x0184 AE48 L1DMPPA18
0x0184 AE4C L1DMPPA19
0x0184 AE50 L1DMPPA20
0x0184 AE54 L1DMPPA21
0x0184 AE58 L1DMPPA22
0x0184 AE5C L1DMPPA23
0x0184 AE60 L1DMPPA24
0x0184 AE64 L1DMPPA25
0x0184 AE68 L1DMPPA26
0x0184 AE6C L1DMPPA27
0x0184 AE70 L1DMPPA28
0x0184 AE74 L1DMPPA29
L1P memory protection page attribute register 27 (controls memory address 0x00E0 5800 - 0x00E0 5FFF)
L1P memory protection page attribute register 28 (controls memory address 0x00E0 6000 - 0x00E0 67FF)
L1P memory protection page attribute register 29 (controls memory address 0x00E0 6800 - 0x00E0 6FFF)
L1P memory protection page attribute register 30 (controls memory address 0x00E0 7000 - 0x00E0 77FF)
L1P memory protection page attribute register 31 (controls memory address 0x00E0 7800 - 0x00E0 7FFF)
(2)
L1D memory protection page attribute register 16 (controls memory address 0x00F0 0000 - 0x00F0 07FF)
L1D memory protection page attribute register 17 (controls memory address 0x00F0 0800 - 0x00F0 0FFF)
L1D memory protection page attribute register 18 (controls memory address 0x00F0 1000 - 0x00F0 17FF)
L1D memory protection page attribute register 19 (controls memory address 0x00F0 1800 - 0x00F0 1FFF)
L1D memory protection page attribute register 20 (controls memory address 0x00F0 2000 - 0x00F0 27FF)
L1D memory protection page attribute register 21 (controls memory address 0x00F0 2800 - 0x00F0 2FFF)
L1D memory protection page attribute register 22 (controls memory address 0x00F0 3000 - 0x00F0 37FF)
L1D memory protection page attribute register 23 (controls memory address 0x00F0 3800 - 0x00F0 3FFF)
L1D memory protection page attribute register 24 (controls memory address 0x00F0 4000 - 0x00F0 47FF)
L1D memory protection page attribute register 25 (controls memory address 0x00F0 4800 - 0x00F0 4FFF)
L1D memory protection page attribute register 26 (controls memory address 0x00F0 5000 - 0x00F0 57FF)
L1D memory protection page attribute register 27 (controls memory address 0x00F0 5800 - 0x00F0 5FFF)
L1D memory protection page attribute register 28 (controls memory address 0x00F0 6000 - 0x00F0 67FF)
L1D memory protection page attribute register 29 (controls memory address 0x00F0 6800 - 0x00F0 6FFF)
www.ti.com
(2) These addresses correspond to the L1D memory protection page attribute registers 0-15 (L1DMPPA0-L1DMPPA15) of the C674x
megamaodule. These registers are not supported for this device.
18
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 AE78 L1DMPPA30
0x0184 AE7C L1DMPPA31
0x0184 AE80 – 0x0185 FFFF - Reserved
L1D memory protection page attribute register 30 (controls memory address 0x00F0 7000 - 0x00F0 77FF)
L1D memory protection page attribute register 31 (controls memory address 0x00F0 7800 - 0x00F0 7FFF)
TMS320C6748
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
19
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3.4 Memory Map Summary
Note: Read/Write accesses to illegal or reserved addresses in the memory map may cause undefined
behavior.
Table 3-4. C6748 Top Level Memory Map
Start Address End Address Size DSP Mem Map EDMA Mem Map PRUSS Mem Map Master
0x0000 0000 0x0000 0FFF 4K PRUSS Local
0x0000 1000 0x006F FFFF 0x0070 0000 0x007F FFFF 1024K DSP L2 ROM 0x0080 0000 0x0083 FFFF 256K DSP L2 RAM 0x0084 0000 0x00DF FFFF 0x00E0 0000 0x00E0 7FFF 32K DSP L1P RAM 0x00E0 8000 0x00EF FFFF 0x00F0 0000 0x00F0 7FFF 32K DSP L1D RAM 0x00F0 8000 0x017F FFFF 0x0180 0000 0x0180 FFFF 64K DSP Interrupt
0x0181 0000 0x0181 0FFF 4K DSP Powerdown
0x0181 1000 0x0181 1FFF 4K DSP Security ID 0x0181 2000 0x0181 2FFF 4K DSP Revision ID 0x0181 3000 0x0181 FFFF 52K 0x0182 0000 0x0182 FFFF 64K DSP EMC 0x0183 0000 0x0183 FFFF 64K DSP Internal
0x0184 0000 0x0184 FFFF 64K DSP Memory
0x0185 0000 0x01BF FFFF 0x01C0 0000 0x01C0 7FFF 32K EDMA3 CC 0x01C0 8000 0x01C0 83FF 1K EDMA3 TC0 0x01C0 8400 0x01C0 87FF 1K EDMA3 TC1 0x01C0 8800 0x01C0 FFFF 0x01C1 0000 0x01C1 0FFF 4K PSC 0 0x01C1 1000 0x01C1 1FFF 4K PLL Controller 0 0x01C1 2000 0x01C1 3FFF 0x01C1 4000 0x01C1 4FFF 4K SYSCFG0 0x01C1 5000 0x01C1 FFFF 0x01C2 0000 0x01C2 0FFF 4K Timer0 0x01C2 1000 0x01C2 1FFF 4K Timer1 0x01C2 2000 0x01C2 2FFF 4K I2C 0 0x01C2 3000 0x01C2 3FFF 4K RTC 0x01C2 4000 0x01C3 FFFF 0x01C4 0000 0x01C4 0FFF 4K MMC/SD 0 0x01C4 1000 0x01C4 1FFF 4K SPI 0 0x01C4 2000 0x01C4 2FFF 4K UART 0 0x01C4 3000 0x01CF FFFF 0x01D0 0000 0x01D0 0FFF 4K McASP 0 Control 0x01D0 1000 0x01D0 1FFF 4K McASP 0 AFIFO Ctrl
(1) The DSP L2 ROM is used for boot purposes and cannot be programmed with application code 20
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Controller
Controller
Reserved
System
Product Folder Links: TMS320C6748
(1)
Submit Documentation Feedback
Address Space
Peripheral Mem
Map
www.ti.com
LCDC
Mem Map
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-4. C6748 Top Level Memory Map (continued)
Start Address End Address Size DSP Mem Map EDMA Mem Map PRUSS Mem Map Master
0x01D0 2000 0x01D0 2FFF 4K McASP 0 Data
0x01D0 3000 0x01D0 BFFF 0x01D0 C000 0x01D0 CFFF 4K UART 1 0x01D0 D000 0x01D0 DFFF 4K UART 2 0x01D0 E000 0x01D0 FFFF
0x01D1 0000 0x01D1 07FF 2K McBSP0
0x01D1 0800 0x01D1 0FFF 2K McBSP0 FIFO Ctrl
0x01D1 1000 0x01D1 17FF 2K McBSP1
0x01D1 1800 0x01D1 1FFF 2K McBSP1 FIFO Ctrl
0x01D1 2000 0x01DF FFFF
0x01E0 0000 0x01E0 FFFF 64K USB0
0x01E1 0000 0x01E1 0FFF 4K UHPI
0x01E1 1000 0x01E1 2FFF
0x01E1 3000 0x01E1 3FFF 4K LCD Controller
0x01E1 4000 0x01E1 4FFF 4K Memory Protection Unit 1 (MPU 1)
0x01E1 5000 0x01E1 5FFF 4K Memory Protection Unit 2 (MPU 2)
0x01E1 6000 0x01E1 6FFF 4K UPP
0x01E1 7000 0x01E1 7FFF 4K VPIF
0x01E1 8000 0x01E1 9FFF 8K SATA 0x01E1 A000 0x01E1 AFFF 4K PLL Controller 1 0x01E1 B000 0x01E1 BFFF 4K MMCSD1 0x01E1 C000 0x01E1 FFFF
0x01E2 0000 0x01E2 1FFF 8K EMAC Control Module RAM
0x01E2 2000 0x01E2 2FFF 4K EMAC Control Module Registers
0x01E2 3000 0x01E2 3FFF 4K EMAC Control Registers
0x01E2 4000 0x01E2 4FFF 4K EMAC MDIO port
0x01E2 5000 0x01E2 5FFF 4K USB1
0x01E2 6000 0x01E2 6FFF 4K GPIO
0x01E2 7000 0x01E2 7FFF 4K PSC 1
0x01E2 8000 0x01E2 8FFF 4K I2C 1
0x01E2 9000 0x01E2 BFFF 0x01E2 C000 0x01E2 CFFF 4K SYSCFG1 0x01E2 D000 0x01E2 FFFF
0x01E3 0000 0x01E3 7FFF 32K EDMA3 CC1
0x01E3 8000 0x01E3 83FF 1K EDMA3 TC2
0x01E3 8400 0x01EF FFFF
0x01F0 0000 0x01F0 0FFF 4K eHRPWM 0
0x01F0 1000 0x01F0 1FFF 4K HRPWM 0
0x01F0 2000 0x01F0 2FFF 4K eHRPWM 1
0x01F0 3000 0x01F0 3FFF 4K HRPWM 1
0x01F0 4000 0x01F0 5FFF
0x01F0 6000 0x01F0 6FFF 4K ECAP 0
0x01F0 7000 0x01F0 7FFF 4K ECAP 1
0x01F0 8000 0x01F0 8FFF 4K ECAP 2
0x01F0 9000 0x01F0 BFFF 0x01F0 C000 0x01F0 CFFF 4K Timer2
Peripheral Mem
Map
TMS320C6748
LCDC
Mem Map
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
21
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-4. C6748 Top Level Memory Map (continued)
Start Address End Address Size DSP Mem Map EDMA Mem Map PRUSS Mem Map Master
0x01F0 D000 0x01F0 DFFF 4K Timer3
0x01F0 E000 0x01F0 EFFF 4K SPI1
0x01F0 F000 0x01F0 FFFF
0x01F1 0000 0x01F1 0FFF 4K McBSP0 FIFO Data
0x01F1 1000 0x01F1 1FFF 4K McBSP1 FIFO Data
0x01F1 2000 0x116F FFFF
0x1170 0000 0x117F FFFF 1024K DSP L2 ROM
0x1180 0000 0x1183 FFFF 256K DSP L2 RAM
0x1184 0000 0x11DF FFFF
0x11E0 0000 0x11E0 7FFF 32K DSP L1P RAM
0x11E0 8000 0x11EF FFFF
0x11F0 0000 0x11F0 7FFF 32K DSP L1D RAM
0x11F0 8000 0x3FFF FFFF
0x4000 0000 0x5FFF FFFF 512M EMIFA SDRAM data (CS0)
0x6000 0000 0x61FF FFFF 32M EMIFA async data (CS2)
0x6200 0000 0x63FF FFFF 32M EMIFA async data (CS3)
0x6400 0000 0x65FF FFFF 32M EMIFA async data (CS4)
0x6600 0000 0x67FF FFFF 32M EMIFA async data (CS5)
0x6800 0000 0x6800 7FFF 32K EMIFA Control Regs
0x6800 8000 0x7FFF FFFF
0x8000 0000 0x8001 FFFF 128K On-chip RAM
0x8002 0000 0xAFFF FFFF
0xB000 0000 0xB000 7FFF 32K DDR2/mDDR Control Regs
0xB000 8000 0xBFFF FFFF
0xC000 0000 0xCFFF FFFF 256M DDR2/mDDR Data
0xD000 0000 0xFFFF FFFF
(1)
Peripheral Mem
Map
www.ti.com
LCDC
Mem Map
22
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
W
V
U
T
R
P
N
M
L
K
10987654321
10987654321
DVDD3318_C
VP_CLKOUT3/ PRU1_R30[0]/
GP6[1]/
PRU1_R31[1]
SATA_VSS
SATA_RXP
VP_CLKOUT2/
MMCSD1_DAT[2]/
PRU1_R30[2]/
GP6[3]/
PRU1_R31[3]
SATA_RXN
SATA_VDD
SATA_REFCLKN
SATA_REGSATA_REFCLKP SATA_VDD
SATA_VDD SATA_VDDRSATA_VDD
DVDD3318_C
DDR_A[11]
VP_DOUT[15]/
LCD_D[15]/ UPP_XD[7]/
GP7[7]/
BOOT[7]
DV
DD3318_C
DV
DD18
DDR_DVDD18 DDR_DVDD18
DDR_D[15]
DDR_RAS
DDR_CLKP
DDR_CLKN
DDR_A[2]DDR_A[10]
V
SS
LCD_AC_ENB_CS/
GP6[0]/
PRU1_R31[28]
DDR_A[13]
DDR_CAS
DDR_A[5]
DDR_CKE
DDR_BA[0]
V
SS
CV
DD
RV
DD
DDR_A[9] DDR_A[1]
DDR_WE
DDR_D[10]
DDR_A[7]
DDR_A[0] DDR_D[12]
DDR_A[12] DDR_A[3]
DDR_CS
DDR_A[6]
DDR_DQM[1]
SATA_VSS
CV
DD
SATA_VSS
DDR_DVDD18
VP_DOUT[12]/
LCD_D[12]/ UPP_XD[4]/
GP7[4]/
BOOT[4]
DDR_VREF
DDR_BA[1]
DDR_A[8]
DDR_A[4]
DDR_BA[2]
SATA_VSS
W
V
U
T
R
P
N
M
L
K
DDR_D[13]
V
SS
V
SS
V
SS
V
SS
DV
DD18
V
SS
V
SS
V
SS
V
SS
NC
V
SS
V
SS
V
SS
V
SS
CV
DD
CV
DD
V
SS
DDR_DVDD18DDR_DVDD18DDR_DVDD18DDR_DVDD18
DVDD3318_C
VP_DOUT[13]/
LCD_D[13]/ UPP_XD[5]/
GP7[5]/
BOOT[5]
VP_DOUT[14]/
LCD_D[14]/
UPP_XD[6]/
GP7[6]/
BOOT[6]
DDR_DVDD18 DDR_DVDD18 DDR_DVDD18
VP_DOUT[9]/
LCD_D[9]/
UPP_XD[1]/
GP7[1]/
BOOT[1]
VP_DOUT[10]/
LCD_D[10]/ UPP_XD[2]/
GP7[2]/
BOOT[2]
VP_DOUT[11]/
LCD_D[11]/
UPP_XD[3]/
GP7[3]/
BOOT[3]
VP_DOUT[6]/
LCD_D[6]/
UPP_XD[14]/
GP7[14]/
PRU1_R31[14]
VP_DOUT[7]/
LCD_D[7]/
UPP_XD[15]/
GP7[15]/
PRU1_R31[15]
VP_DOUT[8]/
LCD_D[8]/
UPP_XD[0]/
GP7[0]/
BOOT[0]
VP_DOUT[3]/
LCD_D[3]/
UPP_XD[11]/
GP7[11]/
PRU1_R31[11]
VP_DOUT[4]/
LCD_D[4]/
UPP_XD[12]/
GP7[12]/
PRU1_R31[12]
VP_DOUT[5]/
LCD_D[5]/
UPP_XD[13]/
GP7[13]/
PRU1_R31[13]
VP_DOUT[0]/
LCD_D[0]/
UPP_XD[8]/
GP7[8]/
PRU1_R31[8]
VP_DOUT[1]/
LCD_D[1]/
UPP_XD[9]/
GP7[9]/
PRU1_R31[9]
VP_DOUT[2]/
LCD_D[2]/
UPP_XD[10]/
GP7[10]/
PRU1_R31[10]
www.ti.com
3.5 Pin Assignments
Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings.
3.5.1 Pin Map (Bottom View)
The following graphics show the bottom view of the ZCE and ZWT packages pin assignments in four quadrants (A, B, C, and D). The pin assignments for both packages are identical.
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Figure 3-3. Pin Map (Quad A)
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
23
W
V
U
T
R
P
N
M
L
K
191817161514131211
191817161514131211
USB1_VDDA33
DVDD3318_C
CV
DD
USB_CVDD
DVDD3318_C
DDR_DQGATE0
DVDD18
DDR_DQGATE1
DDR_D[9] DDR_D[8]DDR_D[11]
DVDD18
RTC_CVDD
RESET
USB0_DM USB0_DP
VP_DIN[11]/ UHPI_HD[3]/
UPP_D[3]/
PRU0_R30[11]/
PRU0_R31[11]
USB0_VDDA33 USB0_VBUS
USB1_DM
VP_DIN[0]/
UHPI_HD[8]/
UPP_D[8]/ RMII_CRS_DV/ PRU1_R31[29]
VP_DIN[1]/
UHPI_HD[9]/
UPP_D[9]/
RMII_MHZ_50_CLK/
PRU0_R31[23]
VP_DIN[2]/
UHPI_HD[10]/
UPP_D[10]/
RMII_RXER/
PRU0_R31[24]
VP_DIN[4]/
UHPI_HD[12]/
UPP_D[12]/
RMII_RXD[1]/
PRU0_R31[26]
PRU0_R30[28]/ UHPI_HCNTL1/
UPP_CHA_START/
GP6[10]
USB1_DP
PLL0_VDDA
PRU0_R30[30]/
/
PRU1_R30[11]/
GP6[12]
UHPI_HINT
USB0_VDDA18
VP_DIN[5]/
UHPI_HD[13]/
UPP_D[13]/
RMII_TXEN/
PRU0_R31[27]
DDR_D[1]
VP_DIN[7]/
UHPI_HD[15]/
UPP_D[15]/
RMII_TXD[1]/
PRU0_R31[29]
OSCVSS
DDR_D[2]
VP_DIN[6]/
UHPI_HD[14]/
UPP_D[14]/
RMII_TXD[0]/
PRU0_R31[28]
VP_DIN[3]/
UHPI_HD[11]/
UPP_D[11]/
RMII_RXD[0]/
PRU0_R31[25]
VP_DIN[14]_
HSYNC/
UHPI_HD[6]/
UPP_D[6]/ PRU0_R30[14]/ PRU0_R31[14]
EMU1
VP_DIN[8]/
UHPI_HD[0]/
UPP_D[0]/
GP6[5]/
PRU1_R31[0]
USB0_VDDA12
TDI
NC
PRU0_R30[26]/
UHPI_HR /
UPP_CHA_WAIT/
GP6[8]/
PRU1_R31[17]
W
VP_DIN[12]/
UHPI_HD[4]/
UPP_D[4]/
PRU0_R30[12]/
PRU0_R31[12]
RESETOUT
UHPI_HAS//
PRU1_R30[14]/
GP6[15]
RSV2
GP8[0]
OSCOUT
DDR_D[0]
PRU0_R30[27]/
UHPI_HHWIL/
UPP_CHA_ENABLE/
GP6[9]
VP_DIN[13]_
FIELD/
UHPI_HD[5]/
UPP_D[5]/ PRU0_R30[13]/ PRU0_R31[13]
TRST
OSCIN
VP_CLKIN1/
/
PRU1_R30[9]/
GP6[6]/
PRU1_R31[16]
UHPI_HDS1
VP_DIN[15]_
VSYNC/
UHPI_HD[7]/
UPP_D[7]/ PRU0_R30[15]/ PRU0_R31[15]
VP_CLKIN0/
/
PRU1_R30[10]/
GP6[7]/
UPP_2xTXCLK
UHPI_HCS
VP_DIN[10]/
UHPI_HD[2]/
UPP_D[2]/ PRU0_R30[10]/ PRU0_R31[10]
V
SS
DVDD3318_B
PLL0_VSSA
TMS
PRU0_R30[31]/
/
PRU1_R30[12]/
GP6[13]
UHPI_HRDY
NC PLL1_VSSA
PLL1_VDDA
USB1_VDDA18 USB0_ID
VP_DIN[9]/
UHPI_HD[1]/
UPP_D[1]/
PRU0_R30[9]/
PRU0_R31[9]
CLKOUT/
/
PRU1_R30[13]/
GP6[14]
UHPI_HDS2
USB0_DRVVBUS
DDR_DQS[0]
PRU0_R30[29]/
UHPI_HCNTL0/
UPP_CHA_CLOCK/
GP6[11]
W
V
U
T
R
P
N
M
L
K
DDR_DQM[0]
DDR_D[3]
DDR_D[4]
DDR_D[6]
DDR_ZP
DDR_D[5]
DDR_D[7]
DDR_D[14]
DDR_DQS[1]
V
SS
V
SS
V
SS
V
SS
V
SS
CV
DD
DVDD3318_C
DVDD3318_C
DVDD3318_C
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
Figure 3-4. Pin Map (Quad B)
24
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
H
G
F
E
D
C
B
A
191817161514131211
191817161514131211
CV
DD
EMA_A[8]/
PRU1_R30[16]/
GP5[8]
EMA_A[14]/
MMCSD0_DAT[7]/
PRU1_R30[22]/
GP5[14]/
PRU1_R31[22]
EMA_A[15]/
MMCSD0_DAT[6]/
PRU1_R30[23]/
GP5[15]/
PRU1_R31[23]
EMA_A[10]/
PRU1_R30[18]/
GP5[10]/
PRU1_R31[18]
EMA_A[9]/
PRU1_R30[17]/
GP5[9]
EMA_A[13]/
PRU0_R30[21]/
PRU1_R30[21] /
GP5[13]/
PRU1_R31[21]
EMA_A[12]/
PRU1_R30[20]/
GP5[12]/
PRU1_R31[20]
EMA_A[16]/
MMCSD0_DAT[5]/
PRU1_R30[24]/
GP4[0]
EMA_A[18]/
MMCSD0_DAT[3]/
PRU1_R30[26]/
GP4[2]
DV
DD3318_B
DV
DD18
EMA_A[6]/
GP5[6]
EMA_A[5]/
GP5[5]
EMA_A[2]/
GP5[2]
EMA_A[7]/
PRU1_R30[15]/
GP5[7]
EMA_A[4]/
GP5[4]
SPI0_SIMO/
EPWMSYNCO/
GP8[5]/
MII_CRS
SPI0_SCS[5]/ UART0_RXD/
GP8[4]/
MII_RXD[3]
SPI1_SCS[1]/
EPWM1A/
PRU0_R30[8]/
GP2[15]/
TM64P2_IN12
SPI0_SCS[4]/ UART0_TXD/
GP8[3]/
MII_RXD[2]
SPI0_CLK/
EPWM0A/
GP1[8]/
MII_RXCLK
SPI1_SCS[3]/ UART1_RXD/
SATA_LED/
GP1[1]
SPI1_SCS[0]/
EPWM1B/
PRU0_R30[7]/
GP2[14]/
TM64P3_IN12
EMA_OE/
GP3[10]
SPI1_SCS[4]/ UART2_TXD/
I2C1_SDA/
GP1[2]
EMA_A[3]/
GP5[3]
DV
DD18
RTC_VSS
EMA_WAIT[0]/ PRU0_R30[0]/
GP3[8]/
PRU0_R31[0]
EMA_RAS/
PRU0_R30[3]/
GP2[5]/
PRU0_R31[3]
SPI0_SCS[3]
UART0_CTS//
GP8[2]/
MII_RXD[1]/
SATA_MP_SWITCH
SPI0_SCS[0]/
TM64P1_OUT12/
GP1[6]/
MDIO/
TM64P1_IN12
SPI0_SOMI/
EPWMSYNCI/
GP8[6]/
MII_RXER
SPI0_SCS[2] UART0_RTS//
GP8[1]/
MII_RXD[0]/
SATA_CP_DET
SPI1_SCS[7]/
I2C0_SCL/
TM64P2_OUT12/
GP1[5]
SPI1_SIMO/
GP2[10]
SPI1_CLK/
GP2[13]
EMA_CS[3]/
GP3[14]
V
SS
V
SS
SPI1_ENA/
GP2[12]
RTC_XO
EMA_CS[2]/
GP3[15]
EMA_WAIT[1]/ PRU0_R30[1]/
GP2[1]/
PRU0_R31[1]
EMA_A[20]/
MMCSD0_DAT[1]/
PRU1_R30[28]/
GP4[4]
EMA_BA[1]/
GP2[9]
SPI0_ENA/
EPWM0B/
PRU0_R30[6]/
MII_RXDV
EMA_CS[5]/
GP3[12]
SPI1_SCS[5]/ UART2_RXD/
I2C1_SCL/
GP1[3]
EMA_A[0]/
GP5[0]
EMA_BA[0]/
GP2[8]
EMA_A[1]/
GP5[1]
DV
DD3318_B
SPI0_SCS[1]/
TM64P0_OUT12/
GP1[7]/ MDCLK/
TM64P0_IN12
DV
DD3318_A
SPI1_SCS[6]/
I2C0_SDA/
TM64P3_OUT12/
GP1[4]
EMA_CS[0]/
GP2[0]
CV
DD
SPI1_SOMI/
GP2[11]
H
G
F
E
D
C
B
A
J
TDO
TCK
EMU0
RTC_XI
NMI
J
SPI1_SCS[2]/ UART1_TXD/
SATA_CP_POD/
GP1[0]
EMA_A[11]/
PRU1_R30[19]/
GP5[11]/
PRU1_R31[19]
EMA_A[17]/
MMCSD0_DAT[4]/
PRU1_R30[25]
GP4[1]
DV
DD3318_B
DV
DD3318_B
DV
DD18
CV
DD
DV
DD3318_A
DV
DD3318_A
RV
DD
CV
DD
CV
DD
V
SS
CV
DD
DV
DD18
DV
DD3318_B
www.ti.com
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Figure 3-5. Pin Map (Quad C)
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
25
J
H
G
F
E
D
C
B
A
10987654321
10987654321
EMA_D[15]/
GP3[7]
AXR15/
EPWM0TZ[0]/
ECAP2_APWM2/
GP0[7]
ACLKR/
PRU0_R30[20]/
GP0[15]/
PRU0_R31[22]
ACLKX/
PRU0_R30[19]/
GP0[14]/
PRU0_R31[21]
AHCLKX/
USB_REFCLKIN/
/
GP0[10]/
PRU0_R31[17]
UART1_CTS
AFSX/
GP0[12]/
PRU0_R31[19]
AFSR/
GP0[13]/
PRU0_R31[20]
AXR9/
DX1/
GP0[1]
AXR4/
FSR0/ GP1[12]/ MII_COL
AXR5/
CLKX0/
GP1[13]/
MII_TXCLK
AXR7/
EPWM1TZ[0]/
PRU0_R30[17]
GP1[15]/
PRU0_R31[7]
AXR10/
DR1/
GP0[2]
AXR1/
DX0/
GP1[9]/
MII_TXD[1]
AXR3/
FSX0/
GP1[11]/
MII_TXD[3]
AXR2/
DR0/
GP1[10]/
MII_TXD[2]
MMCSD1_DAT[6]/
LCD_MCLK/
PRU1_R30[6]/
GP8[10]/
PRU1_R31[7]
RTC_ALARM/
/
GP0[8]/
UART2_CTS
DEEPSLEEP
AXR0/
ECAP0_APWM0/
GP8[7]/
MII_TXD[0]/
CLKS0
PRU0_R30[24]/ MMCSD1_CLK/
UPP_CHB_START/
GP8[14]/
PRU1_R31[26]
MMCSD1_DAT[4]/
LCD_VSYNC/ PRU1_R30[4]/
GP8[8]/
PRU1_R31[5]
SATA_VSS
PRU0_R30[22]/
PRU1_R30[8]/
UPP_CHB_WAIT/
GP8[12]/
PRU1_R31[24]
AXR8/
CLKS1/
ECAP1_APWM1/
GP0[0]/
PRU0_R31[8]
AXR12/
FSR1/ GP0[4]
EMA_D[4]/
GP4[12]
AXR14/ CLKR1/
GP0[6]
EMA_WEN_DQM[1]/
GP2[2]
EMA_D[0]/
GP4[8]
EMA_A[19]/
MMCSD0_DAT[2]/
PRU1_R30[27]/
GP4[3]
EMA_D[9]/
GP3[1]
EMA_A_R /
GP3[9]
W
MMCSD0_CLK/ PRU1_R30[31]/
GP4[7]
EMA_D[8]/
GP3[0]
EMA_D[13]/
GP3[5]
VP_CLKIN2/
MMCSD1_DAT[3]/
PRU1_R30[3]/
GP6[4]/
PRU1_R31[4]
VP_CLKIN3/
MMCSD1_DAT[1]/
PRU1_R30[1]/
GP6[2]/
PRU1_R31[2]
AMUTE/
GP0[9]/
PRU0_R31[16]
PRU0_R30[16]/
UART2_RTS/
DV
DD3318_A
DV
DD3318_A
EMA_WE/
GP3[11]
EMA_D[10]/
GP3[2]
EMA_D[3]/
GP4[11]
EMA_SDCKE/ PRU0_R30[4]/
GP2[6]/
PRU0_R31[4]
EMA_D[14]/
GP3[6]
EMA_D[7]/
GP4[15]
EMA_D[1]/
GP4[9]
EMA_A[22]/
MMCSD0_CMD/
PRU1_R30[30]/
GP4[6]
EMA_D[2]/
GP4[10]
EMA_A[21]/
MMCSD0_DAT[0]/
PRU1_R30[29]/
GP4[5]
PRU0_R30[23]/
MMCSD1_CMD/
UPP_CHB_ENABLE/
GP8[13]/
PRU1_R31[25]
AHCLKR/
/
GP0[11]/
PRU0_R31[18]
PRU0_R30[18]/
UART1_RTS
EMA_D[12]/
GP3[4]
EMA_WEN_DQM[0]/
GP2[3]
EMA_CLK/
PRU0_R30[5]/
GP2[7]/
PRU0_R31[5]
AXR6/
CLKR0/
GP1[14]/
MII_TXEN/
PRU0_R31[6]
AXR11/
FSX1/ GP0[3]
EMA_D[6]/
GP4[14]
EMA_D[11]/
GP3[3]
RV
DD
EMA_D[5]/
GP4[13]
MMCSD1_DAT[7]/
LCD_PCLK/
PRU1_R30[7]/
GP8[11]
MMCSD1_DAT[5]/
LCD_HSYNC/ PRU1_R30[5]/
GP8[9]/
PRU1_R31[6]
PRU0_R30[25]/
MMCSD1_DAT[0]/
UPP_CHB_CLOCK/
GP8[15]/
PRU1_R31[27]
AXR13/ CLKX1/
GP0[5]
J
H
G
F
E
D
C
B
A
EMA_CS[4]/
GP3[13]
EMA_CAS/
PRU0_R30[2]/
GP2[4]/
PRU0_R31[2]
DV
DD3318_B
DV
DD3318_B
DV
DD3318_B
DV
DD3318_B
DV
DD18
CV
DD
CV
DD
DV
DD3318_B
DV
DD18
SATA_VSS
DV
DD3318_A
V
SS
V
SS
CV
DD
CV
DD
V
SS
V
SS
CV
DD
SATA_TXP
SATA_TXN
DV
DD3318_C
CV
DD
V
SS
V
SS
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
3.6 Pin Multiplexing Control
Device level pin multiplexing is controlled by registers PINMUX0 - PINMUX19 in the SYSCFG module. For the device family, pin multiplexing can be controlled on a pin-by-pin basis. Each pin that is multiplexed
with several different functions has a corresponding 4-bit field in one of the PINMUX registers. Pin multiplexing selects which of several peripheral pin functions controls the pin's IO buffer output data
and output enable values only. The default pin multiplexing control for almost every pin is to select 'none' of the peripheral functions in which case the pin's IO buffer is held tri-stated.
Note that the input from each pin is always routed to all of the peripherals that share the pin; the PINMUX registers have no effect on input from a pin.
Figure 3-6. Pin Map (Quad D)
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
26
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7 Terminal Functions
Table 3-5 to Table 3-31 identify the external signal names, the associated pin/ball numbers along with the
mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin description.
3.7.1 Device Reset, NMI and JTAG
Table 3-5. Reset, NMI and JTAG Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
RESET K14 I B Device reset input NMI J17 I IPU B Non-Maskable Interrupt RESETOUT / UHPI_HAS / PRU1_R30[14] /
GP6[15]
TMS L16 I IPU B JTAG test mode select TDI M16 I IPU B JTAG test data input TDO J18 O IPU B JTAG test data output TCK J15 I IPU B JTAG test clock TRST L17 I IPD B JTAG test reset EMU0 J16 I/O IPU B Emulation pin EMU1 K16 I/O IPU B Emulation pin
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor. CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
(4) Open drain mode for RESETOUT function.
T17 O
TYPE
(1)
PULL
RESET
(4)
CP[21] C Reset output
JTAG
POWER
(2)
GROUP
(3)
DESCRIPTION
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
27
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3.7.2 High-Frequency Oscillator and PLL
Table 3-6. High-Frequency Oscillator and PLL Terminal Functions
www.ti.com
SIGNAL
NAME NO.
CLKOUT / UHPI_HDS2 /
PRU1_R30[13] / GP6[14]
(1)
TYPE
PULL
T18 O CP[22] C PLL Observation Clock
POWER
(2)
GROUP
(3)
DESCRIPTION
(4)
1.2-V OSCILLATOR
OSCIN L19 I Oscillator input OSCOUT K19 O Oscillator output OSCVSS L18 GND Oscillator ground
1.2-V PLL0
PLL0_VDDA L15 PWR PLL analog VDD(1.2-V filtered supply) PLL0_VSSA M17 GND PLL analog VSS(for filter)
1.2-V PLL1
PLL1_VDDA N15 PWR PLL analog VDD(1.2-V filtered supply) PLL1_VSSA M15 GND PLL analog VSS(for filter)
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
(4) Note: The CLKOUT clock output is provided as PLL observation clock, and is provided for debug purposes only. It may be routed to a
test point, but should never be connected to a load.
28
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7.3 Real-Time Clock and 32-kHz Oscillator
Table 3-7. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
TYPE
(1)
PULL
POWER
(2)
GROUP
(3)
DESCRIPTION
RTC_XI J19 I RTC 32-kHz oscillator input RTC_XO H19 O RTC 32-kHz oscillator output RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 O CP[0] A RTC Alarm
RTC_CVDD L14 PWR RTC_V
ss
H18 GND Oscillator ground
RTC module core power (isolated from chip CVDD)
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
3.7.4 DEEPSLEEP Power Control
Table 3-8. DEEPSLEEP Power Control Terminal Functions
SIGNAL
NAME NO.
TYPE
(1)
PULL
RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 I CP[0] A DEEPSLEEP power control output
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
POWER
(2)
GROUP
(3)
DESCRIPTION
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
29
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3.7.5 External Memory Interface A (EMIFA)
Table 3-9. External Memory Interface A (EMIFA) Terminal Functions
www.ti.com
SIGNAL
NAME NO.
TYPE
(1)
PULL
(2)
POWER
GROUP
EMA_D[15] / GP3[7] E6 I/O CP[17] B EMA_D[14] / GP3[6] C7 I/O CP[17] B EMA_D[13] / GP3[5] B6 I/O CP[17] B EMA_D[12] / GP3[4] A6 I/O CP[17] B EMA_D[11] / GP3[3] D6 I/O CP[17] B EMA_D[10] / GP3[2] A7 I/O CP[17] B EMA_D[9] / GP3[1] D9 I/O CP[17] B EMA_D[8] / GP3[0] E10 I/O CP[17] B EMA_D[7] / GP4[15] D7 I/O CP[17] B EMA_D[6] / GP4[14] C6 I/O CP[17] B EMA_D[5] / GP4[13] E7 I/O CP[17] B EMA_D[4] / GP4[12] B5 I/O CP[17] B EMA_D[3] / GP4[11] E8 I/O CP[17] B EMA_D[2] / GP4[10] B8 I/O CP[17] B EMA_D[1] / GP4[9] A8 I/O CP[17] B EMA_D[0] / GP4[8] C9 I/O CP[17] B
(3)
EMIFA data bus
DESCRIPTION
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
30
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Loading...
+ 244 hidden pages