Texas Instruments OMAP-L138 C6000 User Manual

Product Folder
Order Now
Technical Documents
Tools & Software
Support & Community
TMS320C6748™ Fixed- and Floating-Point DSP
1 Device Overview
1.1 Features
1
• 375- and 456-MHz C674x Fixed- and Floating­Point VLIW DSP
• C674x Instruction Set Features – Superset of the C67x+ and C64x+ ISAs – Up to 3648 MIPS and 2746 MFLOPS – Byte-Addressable (8-, 16-, 32-, and 64-Bit Data) – 8-Bit Overflow Protection – Bit-Field Extract, Set, Clear – Normalization, Saturation, Bit-Counting – Compact 16-Bit Instructions
• C674x Two-Level Cache Memory Architecture – 32KB of L1P Program RAM/Cache – 32KB of L1D Data RAM/Cache – 256KB of L2 Unified Mapped RAM/Cache – Flexible RAM/Cache Partition (L1 and L2)
• Enhanced Direct Memory Access Controller 3 (EDMA3):
– 2 Channel Controllers – 3 Transfer Controllers – 64 Independent DMA Channels – 16 Quick DMA Channels – Programmable Transfer Burst Size
• TMS320C674x Floating-Point VLIW DSP Core – Load-Store Architecture With Nonaligned
Support – 64 General-Purpose Registers (32-Bit) – Six ALU (32- and 40-Bit) Functional Units
– Supports 32-Bit Integer, SP (IEEE Single
Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point
– Supports up to Four SP Additions Per Clock,
Four DP Additions Every Two Clocks
– Supports up to Two Floating-Point (SP or DP)
Reciprocal Approximation (RCPxP) and Square-Root Reciprocal Approximation (RSQRxP) Operations Per Cycle
– Two Multiply Functional Units:
– Mixed-Precision IEEE Floating-Point Multiply
Supported up to: – 2 SP × SP SP Per Clock – 2 SP × SP DP Every Two Clocks
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
– 2 SP × DP DP Every Three Clocks – 2 DP × DP DP Every Four Clocks
– Fixed-Point Multiply Supports Two 32 × 32-
Bit Multiplies, Four 16 × 16-Bit Multiplies, or Eight 8 × 8-Bit Multiplies per Clock Cycle,
and Complex Multiples – Instruction Packing Reduces Code Size – All Instructions Conditional – Hardware Support for Modulo Loop Operation – Protected Mode Operation – Exceptions Support for Error Detection and
Program Redirection
• Software Support – TI DSP BIOS™ – Chip Support Library and DSP Library
• 128KB of RAM Shared Memory
• 1.8-V or 3.3-V LVCMOS I/Os (Except for USB and DDR2 Interfaces)
• Two External Memory Interfaces: – EMIFA
– NOR (8- or 16-Bit-Wide Data) – NAND (8- or 16-Bit-Wide Data) – 16-Bit SDRAM With 128-MB Address Space
– DDR2/Mobile DDR Memory Controller With one
of the Following: – 16-Bit DDR2 SDRAM With 256-MB Address
Space
– 16-Bit mDDR SDRAM With 256-MB Address
Space
• Three Configurable 16550-Type UART Modules: – With Modem Control Signals – 16-Byte FIFO – 16x or 13x Oversampling Option
• LCD Controller
• Two Serial Peripheral Interfaces (SPIs) Each With Multiple Chip Selects
• Two Multimedia Card (MMC)/Secure Digital (SD) Card Interfaces With Secure Data I/O (SDIO) Interfaces
• Two Master and Slave Inter-Integrated Circuits (I2C Bus™)
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
• One Host-Port Interface (HPI) With 16-Bit-Wide Muxed Address and Data Bus For High Bandwidth
• Programmable Real-Time Unit Subsystem (PRUSS)
– Two Independent Programmable Real-Time Unit
(PRU) Cores – 32-Bit Load-Store RISC Architecture – 4KB of Instruction RAM Per Core – 512 Bytes of Data RAM Per Core – PRUSS can be Disabled Through Software to
Save Power
– Register 30 of Each PRU is Exported From
the Subsystem in Addition to the Normal R31 Output of the PRU Cores.
– Standard Power-Management Mechanism
– Clock Gating – Entire Subsystem Under a Single PSC Clock
Gating Domain – Dedicated Interrupt Controller – Dedicated Switched Central Resource
• USB 1.1 OHCI (Host) With Integrated PHY (USB1)
• USB 2.0 OTG Port With Integrated PHY (USB0) – USB 2.0 High- and Full-Speed Client – USB 2.0 High-, Full-, and Low-Speed Host – End Point 0 (Control) – End Points 1, 2, 3, and 4 (Control, Bulk,
Interrupt, or ISOC) RX and TX
• One Multichannel Audio Serial Port (McASP): – Two Clock Zones and 16 Serial Data Pins – Supports TDM, I2S, and Similar Formats – DIT-Capable – FIFO Buffers for Transmit and Receive
• Two Multichannel Buffered Serial Ports (McBSPs): – Supports TDM, I2S, and Similar Formats – AC97 Audio Codec Interface – Telecom Interfaces (ST-Bus, H100) – 128-Channel TDM – FIFO Buffers for Transmit and Receive
• 10/100 Mbps Ethernet MAC (EMAC): – IEEE 802.3 Compliant – MII Media-Independent Interface – RMII Reduced Media-Independent Interface – Management Data I/O (MDIO) Module
• Video Port Interface (VPIF): – Two 8-Bit SD (BT.656), Single 16-Bit or Single
Raw (8-, 10-, and 12-Bit) Video Capture Channels
– Two 8-Bit SD (BT.656), Single 16-Bit Video
Display Channels
• Universal Parallel Port (uPP): – High-Speed Parallel Interface to FPGAs and
Data Converters
– Data Width on Both Channels is 8- to 16-Bit
Inclusive – Single-Data Rate or Dual-Data Rate Transfers – Supports Multiple Interfaces With START,
ENABLE, and WAIT Controls
• Serial ATA (SATA) Controller: – Supports SATA I (1.5 Gbps) and SATA II
(3.0 Gbps)
– Supports All SATA Power-Management
Features
– Hardware-Assisted Native Command Queueing
(NCQ) for up to 32 Entries
– Supports Port Multiplier and Command-Based
Switching
• Real-Time Clock (RTC) With 32-kHz Oscillator and Separate Power Rail
• Three 64-Bit General-Purpose Timers (Each Configurable as Two 32-Bit Timers)
• One 64-Bit General-Purpose or Watchdog Timer (Configurable as Two 32-Bit General-Purpose Timers)
• Two Enhanced High-Resolution Pulse Width Modulators (eHRPWMs):
– Dedicated 16-Bit Time-Base Counter With
Period and Frequency Control
– 6 Single-Edge Outputs, 6 Dual-Edge Symmetric
Outputs, or 3 Dual-Edge Asymmetric Outputs – Dead-Band Generation – PWM Chopping by High-Frequency Carrier – Trip Zone Input
• Three 32-Bit Enhanced Capture (eCAP) Modules: – Configurable as 3 Capture Inputs or 3 Auxiliary
Pulse Width Modulator (APWM) Outputs
– Single-Shot Capture of up to Four Event
Timestamps
• Packages: – 361-Ball Pb-Free Plastic Ball Grid Array (PBGA)
[ZCE Suffix], 0.65-mm Ball Pitch
– 361-Ball Pb-Free PBGA [ZWT Suffix],
0.80-mm Ball Pitch
• Commercial, Extended, or Industrial Temperature
2
Device Overview Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
1.2 Applications
Currency Inspection
Biometric Identification
1.3 Description
The TMS320C6748 fixed- and floating-point DSP is a low-power applications processor based on a C674x DSP core. This DSP provides significantly lower power than other members of the TMS320C6000™ platform of DSPs.
The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices with robust operating systems, rich user interfaces, and high processor performance through the maximum flexibility of a fully integrated, mixed processor solution.
The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a 32-KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by other hosts in the system, an additional 128KB of RAM shared memory is available for use by other hosts without affecting DSP performance.
For security-enabled devices, TI’s Basic Secure Boot lets users protect proprietary intellectual property and prevents external entities from modifying user-developed algorithms. By starting from a hardware­based “root-of-trust," the secure boot flow ensures a known good starting point for code execution. By default, the JTAG port is locked down to prevent emulation and debug attacks; however, the JTAG port can be enabled during the secure boot process during application development. The boot modules are encrypted while sitting in external nonvolatile memory, such as flash or EEPROM, and are decrypted and authenticated when loaded during secure boot. Encryption and decryption protects customers’ IP and lets them securely set up the system and begin device operation with known, trusted code.
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Machine Vision (Low-End)
Basic Secure Boot uses either SHA-1 or SHA-256, and AES-128 for boot image validation. Basic Secure Boot also uses AES-128 for boot image encryption. The secure boot flow employs a multilayer encryption scheme which not only protects the boot process but also offers the ability to securely upgrade boot and application software code. A 128-bit device-specific cipher key, known only to the device and generated using a NIST-800-22 certified random number generator, is used to protect customer encryption keys. When an update is needed, the customer uses the encryption keys to create a new encrypted image. Then the device can acquire the image through an external interface, such as Ethernet, and overwrite the existing code. For more details on the supported security features or TI’s Basic Secure Boot, see the
TMS320C674x/OMAP-L1x Processor Security User’s Guide.
The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two I2C Bus interfaces; one multichannel audio serial port (McASP) with 16 serializers and FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one configurable as a watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of general-purpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and event generation modes, multiplexed with other peripherals; three UART interfaces (each with RTS and CTS); two enhanced high­resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 APWM outputs; two external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR controller.
The EMAC provides an efficient interface between the device and a network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The EMAC supports both MII and RMII interfaces.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device OverviewCopyright © 2009–2017, Texas Instruments Incorporated
3
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
The Serial ATA (SATA) controller provides a high-speed interface to mass data storage devices. The SATA controller supports both SATA I (1.5 Gbps) and SATA II (3.0 Gbps).
The Universal Parallel Port (uPP) provides a high-speed interface to many types of data converters, FPGAs, or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE, and WAIT signals to provide control for a variety of data converters.
A video port interface (VPIF) provides a flexible video I/O port. The rich peripheral set provides the ability to control external peripheral devices and communicate with
external processors. For details on each peripheral, see the related sections in this document and the associated peripheral reference guides.
The device has a complete set of development tools for the DSP. These tools include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows®debugger interface for visibility into source code execution.
www.ti.com
Device Information
PART NUMBER PACKAGE BODY SIZE
TMS320C6748ZCE NFBGA (361) 13,00 mm x 13,00 mm TMS320C6748ZWT NFBGA (361) 16,00 mm x 16,00 mm
(1) For more information on these devices, see Section 8.
(1)
4
Device Overview Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Switched Central Resource (SCR)
BOOT ROM
256KB L2 RAM
32KB
L1 RAM
32KB
L1 Pgm
AET
C674x™
DSP CPU
DSP Subsystem
JTAG Interface
System Control
Input
Clock(s)
Power/Sleep
Controller
Pin
Multiplexing
PLL/Clock Generator
w/OSC
General­Purpose
Timer (x3)
Serial Interfaces
Audio Ports
McASP w/FIFO
DMA
Peripherals
Display Internal Memory
LCD
Ctlr
128KB
RAM
External Memory InterfacesConnectivity
EDMA3
(x2)
Control Timers
ePWM
(x2)
eCAP
(x3)
EMIFA(8b/16B)
NAND/Flash 16b SDRAM
DDR2/MDDR
Controller
RTC/
32-kHz
OSC
I C
(x2)
2
SPI (x2)
UART
(x3)
McBSP
(x2)
Video
VPIF
Parallel Port
uPP
EMAC 10/100
(MII/RMII)
MDIO
USB1.1
OHCI Ctlr
PHY
USB2.0
OTG Ctlr
PHY
HPI
MMC/SD
(8b) (x2)
SATA
Customizable Interface
PRU Subsystem
Memory
Protection
www.ti.com
1.4 Functional Block Diagram
Figure 1-1 shows the functional block diagram of the device.
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Figure 1-1. Functional Block Diagram
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device OverviewCopyright © 2009–2017, Texas Instruments Incorporated
5
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
Table of Contents
1 Device Overview ........................................ 1
1.1 Features .............................................. 1
1.2 Applications........................................... 3
1.3 Description............................................ 3
1.4 Functional Block Diagram ............................ 5
2 Revision History ......................................... 7
3 Device Comparison ..................................... 8
3.1 Device Characteristics................................ 8
3.2 Device Compatibility.................................. 9
3.3 DSP Subsystem ...................................... 9
3.4 Memory Map Summary ............................. 20
3.5 Pin Assignments .................................... 23
3.6 Pin Multiplexing Control............................. 26
3.7 Terminal Functions .................................. 27
3.8 Unused Pin Configurations.......................... 69
4 Device Configuration .................................. 71
4.1 Boot Modes ......................................... 71
4.2 SYSCFG Module.................................... 71
4.3 Pullup/Pulldown Resistors .......................... 74
5 Specifications........................................... 75
5.1 Absolute Maximum Ratings Over Operating Junction Temperature Range
(Unless Otherwise Noted) ................................. 75
5.2 Handling Ratings .................................... 75
5.3 Recommended Operating Conditions............... 76
5.4 Notes on Recommended Power-On Hours (POH) . 78
5.5 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Junction
Temperature (Unless Otherwise Noted) ............ 79
6 Peripheral Information and Electrical
Specifications........................................... 80
6.1 Parameter Information .............................. 80
6.2 Recommended Clock and Control Signal Transition
Behavior............................................. 81
6.3 Power Supplies...................................... 81
6.4 Reset ................................................ 82
6.5 Crystal Oscillator or External Clock Input........... 86
6.6 Clock PLLs .......................................... 87
6.7 Interrupts ............................................ 92
6.8 Power and Sleep Controller (PSC).................. 96
6.9 Enhanced Direct Memory Access Controller
(EDMA3) ........................................... 101
6.10 External Memory Interface A (EMIFA) ............. 107
6.11 DDR2/mDDR Memory Controller .................. 119
6.12 Memory Protection Units .......................... 132
6.13 MMC / SD / SDIO (MMCSD0, MMCSD1) ......... 135
6.14 Serial ATA Controller (SATA)...................... 138
6.15 Multichannel Audio Serial Port (McASP) .......... 143
6.16 Multichannel Buffered Serial Port (McBSP)........ 152
6.17 Serial Peripheral Interface Ports (SPI0, SPI1)..... 161
6.18 Inter-Integrated Circuit Serial Ports (I2C) .......... 182
6.19 Universal Asynchronous Receiver/Transmitter
(UART)............................................. 186
6.20 Universal Serial Bus OTG Controller (USB0)
[USB2.0 OTG] ..................................... 188
6.21 Universal Serial Bus Host Controller (USB1)
[USB1.1 OHCI]..................................... 195
6.22 Ethernet Media Access Controller (EMAC) ........ 196
6.23 Management Data Input/Output (MDIO)........... 203
6.24 LCD Controller (LCDC) ............................ 205
6.25 Host-Port Interface (UHPI)......................... 220
6.26 Universal Parallel Port (uPP) ...................... 228
6.27 Video Port Interface (VPIF) ........................ 233
6.28 Enhanced Capture (eCAP) Peripheral............. 239
6.29 Enhanced High-Resolution Pulse-Width Modulator
(eHRPWM)......................................... 242
6.30 Timers.............................................. 247
6.31 Real Time Clock (RTC) ............................ 249
6.32 General-Purpose Input/Output (GPIO)............. 252
6.33 Programmable Real-Time Unit Subsystem
(PRUSS) ........................................... 256
6.34 Emulation Logic .................................... 259
7 Device and Documentation Support.............. 263
7.1 Device Nomenclature .............................. 263
7.2 Tools and Software ................................ 264
7.3 Documentation Support............................ 264
7.4 Community Resources............................. 265
7.5 Trademarks ........................................ 265
7.6 Electrostatic Discharge Caution ................... 265
7.7 Export Control Notice .............................. 265
7.8 Glossary............................................ 265
8 Mechanical Packaging and Orderable
Information............................................. 266
8.1 Thermal Data for ZCE Package ................... 266
8.2 Thermal Data for ZWT Package................... 267
8.3 Packaging Information ............................. 267
6
Table of Contents Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
2 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from March 31, 2014 to January 31, 2017 Page
Removed internal pullup designation from RESET in Table 3-5.............................................................. 27
Added footnote to CLKOUT Description in Table 3-6 .......................................................................... 28
Added new column to Table 3-32 called "Configuration (When USB1 is used and USB0 is not used)" ................ 69
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Revision HistoryCopyright © 2009–2017, Texas Instruments Incorporated
7
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3 Device Comparison
3.1 Device Characteristics
Table 3-1 provides an overview of the device. The table shows significant features of the device, including
the capacity of on-chip RAM, peripherals, and the package type with pin count.
HARDWARE FEATURES C6748
DDR2/mDDR Memory Controller
EMIFA Flash Card Interface 2 MMC and SD cards supported EDMA3
Timers UART 3 (each with RTS and CTS flow control)
SPI 2 (Each with one hardware chip select)
Peripherals Not all peripherals pins
are available at the same time (for more detail, see the Device Configurations section).
On-Chip Memory
I2C 2 (both Master/Slave) Multichannel Audio Serial Port [McASP] 1 (each with transmit/receive, FIFO buffer, 16 serializers) Multichannel Buffered Serial Port [McBSP] 2 (each with transmit/receive, FIFO buffer, 16) 10/100 Ethernet MAC with Management Data I/O 1 (MII or RMII Interface)
eHRPWM eCAP 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs
UHPI 1 (16-bit multiplexed address/data) USB 2.0 (USB0) High-Speed OTG Controller with on-chip OTG PHY USB 1.1 (USB1) Full-Speed OHCI (as host) with on-chip PHY General-Purpose Input/Output Port 9 banks of 16-bit LCD Controller 1 SATA Controller 1 (Supports both SATA I and SATAII) Universal Parallel Port (uPP) 1 Video Port Interface (VPIF) 1 (video in and video out) PRU Subsystem (PRUSS) 2 Programmable PRU Cores Size (Bytes) 448KB RAM
Organization
www.ti.com
Table 3-1. Characteristics of C6748
DDR2, 16-bit bus width, up to 156 MHz
Mobile DDR, 16-bit bus width, up to 150 MHz
Asynchronous (8/16-bit bus width) RAM, Flash,
16-bit SDRAM, NOR, NAND
64 independent channels, 16 QDMA channels,
2 channel controllers, 3 transfer controllers
4 64-Bit General Purpose (each configurable as 2 separate
32-bit timers, one configurable as Watch Dog)
4 Single Edge, 4 Dual Edge Symmetric, or
2 Dual Edge Asymmetric Outputs
DSP
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB) 256KB Unified Mapped RAM/Cache (L2)
DSP Memories can be made accessible to EDMA3 and
other peripherals.
Security Secure Boot TI Basic Secure Boot C674x CPU ID + CPU
Rev ID C674x Megamodule
Revision JTAG BSDL_ID DEVIDR0 Register see Section 6.34.4.1, JTAG Peripheral Register Description CPU Frequency MHz 674x DSP 375 MHz (1.2V) or 456 MHz (1.3V)
8
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Control Status Register (CSR.[31:16]) 0x1400
Revision ID Register (MM_REVID[15:0]) 0x0000
ADDITIONAL MEMORY
128KB RAM
Submit Documentation Feedback
Product Folder Links: TMS320C6748
TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-1. Characteristics of C6748 (continued)
HARDWARE FEATURES C6748
Voltage
Packages
Product Status
(1) ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and
other specifications are subject to change without notice. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
(1)
Core (V) I/O (V) 1.8V or 3.3 V
Product Preview (PP), Advance Information (AI), or Production Data (PD)
Variable (1.2V-1.0V) for 375 MHz version Variable (1.3V-1.0V) for 456 MHz version
13 mm x 13 mm, 361-Ball 0.65 mm pitch, PBGA (ZCE)
16 mm x 16 mm, 361-Ball 0.80 mm pitch, PBGA (ZWT)
375 MHz versions - PD 456 MHz versions - PD
3.2 Device Compatibility
The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of both the C64x+ and C67x+ DSP families.
3.3 DSP Subsystem
The DSP Subsystem includes the following features:
C674x DSP CPU
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB)
256KB Unified Mapped RAM/Cache (L2)
Boot ROM (cannot be used for application code)
Little endian
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
9
Instruction Fetch
C674x
Fixed/Floating Point CPU
Register
File A
Register
File B
Cache Control
Memory Protect
Bandwidth Mgmt
L1P
256
Cache Control
Memory Protect
Bandwidth Mgmt
L1D
64 64
8 x 32
32K Bytes L1D RAM/
Cache
32K Bytes
L1P RAM/
Cache
256
Cache Control
Memory Protect
Bandwidth Mgmt
L2
256K Bytes
L2 RAM
256
BOOT
ROM
256
CFG
MDMA SDMA
EMC
Power Down
Interrupt
Controller
IDMA
256
256
256
256
256
64
High
Performance
Switch Fabric
64
64 64
Configuration
Peripherals
Bus
32
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
3.3.1 C674x DSP CPU Description
The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two data paths as shown in Figure 3-2. The two general-purpose register files (A and B) each contain 32 32­bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40­bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register).
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory.
The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the C67x+ core.
Figure 3-1. C674x Megamodule Block Diagram
10
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Product Folder Links: TMS320C6748
Submit Documentation Feedback
www.ti.com
Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x 32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four 16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended precision necessary for high-precision algorithms on a variety of signed and unsigned 32-bit data types.
The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.
The C674x core enhances the .S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2 comparisons were only available on the .L units. On the C674x core they are also available on the .S unit which increases the performance of algorithms that do searching and sorting. Finally, to increase data packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack instructions return parallel results to output precision including saturation support.
Other new features include:
SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where
Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common
Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit
Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to
Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a
Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a free-
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.
instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x compiler can restrict the code to use certain registers in the register file. This compression is performed by the code generation tools.
multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field multiplication.
detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and from system events (such as a watchdog time expiration).
basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with read, write, and execute permissions.
running time-stamp counter is implemented in the CPU which is not sensitive to system stalls.
For more details on the C674x CPU and its enhancements over the C64x architecture, see the following documents:
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRUFE8)
TMS320C64x Technical Overview (literature number SPRU395)
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
11
src2
src2
.D1
.M1
.S1
.L1
long src
odd dst
src2
src1
src1
src1
src1
even dst
even dst
odd dst
dst1
dst
src2
src2
src2
long src
DA1
ST1b
LD1b LD1a
ST1a
Data path A
Odd
register
file A
(A1, A3,
A5...A31)
Odd
register
file B
(B1, B3,
B5...B31)
.D2
src1
dst
src2
DA2
LD2a LD2b
src2
.M2
src1
dst1
.S2
src1
even dst
long src
odd dst
ST2a ST2b
long src
.L2
even dst
odd dst
src1
Data path B
Control Register
32 MSB 32 LSB
dst2
(A)
32 MSB 32 LSB
2x
1x
32 LSB
32 MSB
32 LSB
32 MSB
dst2
(B)
(B) (A)
8
8
8
8
32
32
32
32
(C)
(C)
Even
register
file A
(A0, A2,
A4...A30)
Even
register
file B
(B0, B2,
B4...B30)
(D)
(D)
(D)
(D)
A. On .M unit, dst2 is 32 MSB. B. On .M unit, dst1 is 32 LSB. C. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits. D. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
12
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Figure 3-2. TMS320C674x CPU (DSP Core) Data Paths
Product Folder Links: TMS320C6748
Submit Documentation Feedback
www.ti.com
3.3.2 DSP Memory Mapping
The DSP memory map is shown in Section 3.4. By default the DSP also has access to most on and off chip memory areas. Additionally, the DSP megamodule includes the capability to limit access to its internal memories through
its SDMA port; without needing an external MPU unit.
3.3.2.1 External Memories
The DSP has access to the following External memories:
Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA)
SDRAM (DDR2)
3.3.2.2 DSP Internal Memories
The DSP has access to the following DSP memories:
L2 RAM
L1P RAM
L1D RAM
3.3.2.3 C674x CPU
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2 memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both.
Table 3-2 shows a memory map of the C674x CPU cache registers for the device.
Table 3-2. C674x Cache Registers
Byte Address Register Name Register Description
0x0184 0000 L2CFG L2 Cache configuration register 0x0184 0020 L1PCFG L1P Size Cache configuration register 0x0184 0024 L1PCC L1P Freeze Mode Cache configuration register 0x0184 0040 L1DCFG L1D Size Cache configuration register 0x0184 0044 L1DCC L1D Freeze Mode Cache configuration register
0x0184 0048 - 0x0184 0FFC - Reserved
0x0184 1000 EDMAWEIGHT L2 EDMA access control register
0x0184 1004 - 0x0184 1FFC - Reserved
0x0184 2000 L2ALLOC0 L2 allocation register 0 0x0184 2004 L2ALLOC1 L2 allocation register 1 0x0184 2008 L2ALLOC2 L2 allocation register 2
0x0184 200C L2ALLOC3 L2 allocation register 3
0x0184 2010 - 0x0184 3FFF - Reserved
0x0184 4000 L2WBAR L2 writeback base address register 0x0184 4004 L2WWC L2 writeback word count register 0x0184 4010 L2WIBAR L2 writeback invalidate base address register 0x0184 4014 L2WIWC L2 writeback invalidate word count register 0x0184 4018 L2IBAR L2 invalidate base address register
0x0184 401C L2IWC L2 invalidate word count register
0x0184 4020 L1PIBAR L1P invalidate base address register 0x0184 4024 L1PIWC L1P invalidate word count register 0x0184 4030 L1DWIBAR L1D writeback invalidate base address register
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
13
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-2. C674x Cache Registers (continued)
Byte Address Register Name Register Description
0x0184 4034 L1DWIWC L1D writeback invalidate word count register 0x0184 4038 - Reserved 0x0184 4040 L1DWBAR L1D Block Writeback 0x0184 4044 L1DWWC L1D Block Writeback 0x0184 4048 L1DIBAR L1D invalidate base address register
0x0184 404C L1DIWC L1D invalidate word count register
0x0184 4050 - 0x0184 4FFF - Reserved
0x0184 5000 L2WB L2 writeback all register 0x0184 5004 L2WBINV L2 writeback invalidate all register 0x0184 5008 L2INV L2 Global Invalidate without writeback
0x0184 500C - 0x0184 5027 - Reserved
0x0184 5028 L1PINV L1P Global Invalidate
0x0184 502C - 0x0184 5039 - Reserved
0x0184 5040 L1DWB L1D Global Writeback 0x0184 5044 L1DWBINV L1D Global Writeback with Invalidate 0x0184 5048 L1DINV L1D Global Invalidate without writeback
0x0184 8000 – 0x0184 80FF MAR0 - MAR63 Reserved 0x0000 0000 – 0x3FFF FFFF 0x0184 8100 – 0x0184 817F MAR64 – MAR95
0x0184 8180 – 0x0184 8187 MAR96 - MAR97
0x0184 8188 – 0x0184 818F MAR98 – MAR99
0x0184 8190 – 0x0184 8197 MAR100 – MAR101
0x0184 8198 – 0x0184 819F MAR102 – MAR103
0x0184 81A0 – 0x0184 81FF MAR104 – MAR127 Reserved 0x6800 0000 – 0x7FFF FFFF
0x0184 8200 MAR128
0x0184 8204 – 0x0184 82FF MAR129 – MAR191 Reserved 0x8200 0000 – 0xBFFF FFFF 0x0184 8300 – 0x0184 837F MAR192 – MAR223 0x0184 8380 – 0x0184 83FF MAR224 – MAR255 Reserved 0xE000 0000 – 0xFFFF FFFF
Memory Attribute Registers for EMIFA SDRAM Data (CS0) External memory addresses 0x4000 0000 – 0x5FFF FFFF
Memory Attribute Registers for EMIFA Async Data (CS2) External memory addresses 0x6000 0000 – 0x61FF FFFF
Memory Attribute Registers for EMIFA Async Data (CS3) External memory addresses 0x6200 0000 – 0x63FF FFFF
Memory Attribute Registers for EMIFA Async Data (CS4) External memory addresses 0x6400 0000 – 0x65FF FFFF
Memory Attribute Registers for EMIFA Async Data (CS5) External memory addresses 0x6600 0000 – 0x67FF FFFF
Memory Attribute Register for RAM External memory addresses 0x8000 0000 – 0x8001 FFFF
Reserved 0x8002 0000 – 0x81FF FFFF
Memory Attribute Registers for DDR2 Data (CS2) External memory addresses 0xC000 0000 – 0xDFFF FFFF
www.ti.com
Table 3-3. C674x L1/L2 Memory Protection Registers
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 A000 L2MPFAR L2 memory protection fault address register 0x0184 A004 L2MPFSR L2 memory protection fault status register 0x0184 A008 L2MPFCR L2 memory protection fault command register
0x0184 A00C - 0x0184 A0FF - Reserved
0x0184 A100 L2MPLK0 L2 memory protection lock key bits [31:0] 0x0184 A104 L2MPLK1 L2 memory protection lock key bits [63:32] 0x0184 A108 L2MPLK2 L2 memory protection lock key bits [95:64]
0x0184 A10C L2MPLK3 L2 memory protection lock key bits [127:96]
0x0184 A110 L2MPLKCMD L2 memory protection lock key command register 0x0184 A114 L2MPLKSTAT L2 memory protection lock key status register
0x0184 A118 - 0x0184 A1FF - Reserved
14
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 A200 L2MPPA0
0x0184 A204 L2MPPA1
0x0184 A208 L2MPPA2
0x0184 A20C L2MPPA3
0x0184 A210 L2MPPA4
0x0184 A214 L2MPPA5
0x0184 A218 L2MPPA6
0x0184 A21C L2MPPA7
0x0184 A220 L2MPPA8
0x0184 A224 L2MPPA9
0x0184 A228 L2MPPA10
0x0184 A22C L2MPPA11
0x0184 A230 L2MPPA12
0x0184 A234 L2MPPA13
0x0184 A238 L2MPPA14
0x0184 A23C L2MPPA15
0x0184 A240 L2MPPA16
0x0184 A244 L2MPPA17
0x0184 A248 L2MPPA18
0x0184 A24C L2MPPA19
0x0184 A250 L2MPPA20
0x0184 A254 L2MPPA21
0x0184 A258 L2MPPA22
0x0184 A25C L2MPPA23
0x0184 A260 L2MPPA24
0x0184 A264 L2MPPA25
0x0184 A268 L2MPPA26
0x0184 A26C L2MPPA27
L2 memory protection page attribute register 0 (controls memory address 0x0080 0000 - 0x0080 1FFF)
L2 memory protection page attribute register 1 (controls memory address 0x0080 2000 - 0x0080 3FFF)
L2 memory protection page attribute register 2 (controls memory address 0x0080 4000 - 0x0080 5FFF)
L2 memory protection page attribute register 3 (controls memory address 0x0080 6000 - 0x0080 7FFF)
L2 memory protection page attribute register 4 (controls memory address 0x0080 8000 - 0x0080 9FFF)
L2 memory protection page attribute register 5 (controls memory address 0x0080 A000 - 0x0080 BFFF)
L2 memory protection page attribute register 6 (controls memory address 0x0080 C000 - 0x0080 DFFF)
L2 memory protection page attribute register 7 (controls memory address 0x0080 E000 - 0x0080 FFFF)
L2 memory protection page attribute register 8 (controls memory address 0x0081 0000 - 0x0081 1FFF)
L2 memory protection page attribute register 9 (controls memory address 0x0081 2000 - 0x0081 3FFF)
L2 memory protection page attribute register 10 (controls memory address 0x0081 4000 - 0x0081 5FFF)
L2 memory protection page attribute register 11 (controls memory address 0x0081 6000 - 0x0081 7FFF)
L2 memory protection page attribute register 12 (controls memory address 0x0081 8000 - 0x0081 9FFF)
L2 memory protection page attribute register 13 (controls memory address 0x0081 A000 - 0x0081 BFFF)
L2 memory protection page attribute register 14 (controls memory address 0x0081 C000 - 0x0081 DFFF)
L2 memory protection page attribute register 15 (controls memory address 0x0081 E000 - 0x0081 FFFF)
L2 memory protection page attribute register 16 (controls memory address 0x0082 0000 - 0x0082 1FFF)
L2 memory protection page attribute register 17 (controls memory address 0x0082 2000 - 0x0082 3FFF)
L2 memory protection page attribute register 18 (controls memory address 0x0082 4000 - 0x0082 5FFF)
L2 memory protection page attribute register 19 (controls memory address 0x0082 6000 - 0x0082 7FFF)
L2 memory protection page attribute register 20 (controls memory address 0x0082 8000 - 0x0082 9FFF)
L2 memory protection page attribute register 21 (controls memory address 0x0082 A000 - 0x0082 BFFF)
L2 memory protection page attribute register 22 (controls memory address 0x0082 C000 - 0x0082 DFFF)
L2 memory protection page attribute register 23 (controls memory address 0x0082 E000 - 0x0082 FFFF)
L2 memory protection page attribute register 24 (controls memory address 0x0083 0000 - 0x0083 1FFF)
L2 memory protection page attribute register 25 (controls memory address 0x0083 2000 - 0x0083 3FFF)
L2 memory protection page attribute register 26 (controls memory address 0x0083 4000 - 0x0083 5FFF)
L2 memory protection page attribute register 27 (controls memory address 0x0083 6000 - 0x0083 7FFF)
TMS320C6748
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
15
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 A270 L2MPPA28
0x0184 A274 L2MPPA29
0x0184 A278 L2MPPA30
0x0184 A27C L2MPPA31
0x0184 A280 L2MPPA32
0x0184 A284 L2MPPA33
0x0184 A288 L2MPPA34
0x0184 A28C L2MPPA35
0x0184 A290 L2MPPA36
0x0184 A294 L2MPPA37
0x0184 A298 L2MPPA38
0x0184 A29C L2MPPA39
0x0184 A2A0 L2MPPA40
0x0184 A2A4 L2MPPA41
0x0184 A2A8 L2MPPA42
0x0184 A2AC L2MPPA43
0x0184 A2B0 L2MPPA44
0x0184 A2B4 L2MPPA45
0x0184 A2B8 L2MPPA46
0x0184 A2BC L2MPPA47
0x0184 A2C0 L2MPPA48
0x0184 A2C4 L2MPPA49
0x0184 A2C8 L2MPPA50
0x0184 A2CC L2MPPA51
0x0184 A2D0 L2MPPA52
0x0184 A2D4 L2MPPA53
0x0184 A2D8 L2MPPA54
0x0184 A2DC L2MPPA55
L2 memory protection page attribute register 28 (controls memory address 0x0083 8000 - 0x0083 9FFF)
L2 memory protection page attribute register 29 (controls memory address 0x0083 A000 - 0x0083 BFFF)
L2 memory protection page attribute register 30 (controls memory address 0x0083 C000 - 0x0083 DFFF)
L2 memory protection page attribute register 31 (controls memory address 0x0083 E000 - 0x0083 FFFF)
L2 memory protection page attribute register 32 (controls memory address 0x0070 0000 - 0x0070 7FFF)
L2 memory protection page attribute register 33 (controls memory address 0x0070 8000 - 0x0070 FFFF)
L2 memory protection page attribute register 34 (controls memory address 0x0071 0000 - 0x0071 7FFF)
L2 memory protection page attribute register 35 (controls memory address 0x0071 8000 - 0x0071 FFFF)
L2 memory protection page attribute register 36 (controls memory address 0x0072 0000 - 0x0072 7FFF)
L2 memory protection page attribute register 37 (controls memory address 0x0072 8000 - 0x0072 FFFF)
L2 memory protection page attribute register 38 (controls memory address 0x0073 0000 - 0x0073 7FFF)
L2 memory protection page attribute register 39 (controls memory address 0x0073 8000 - 0x0073 FFFF)
L2 memory protection page attribute register 40 (controls memory address 0x0074 0000 - 0x0074 7FFF)
L2 memory protection page attribute register 41 (controls memory address 0x0074 8000 - 0x0074 FFFF)
L2 memory protection page attribute register 42 (controls memory address 0x0075 0000 - 0x0075 7FFF)
L2 memory protection page attribute register 43 (controls memory address 0x0075 8000 - 0x0075 FFFF)
L2 memory protection page attribute register 44 (controls memory address 0x0076 0000 - 0x0076 7FFF)
L2 memory protection page attribute register 45 (controls memory address 0x0076 8000 - 0x0076 FFFF)
L2 memory protection page attribute register 46 (controls memory address 0x0077 0000 - 0x0077 7FFF)
L2 memory protection page attribute register 47 (controls memory address 0x0077 8000 - 0x0077 FFFF)
L2 memory protection page attribute register 48 (controls memory address 0x0078 0000 - 0x0078 7FFF)
L2 memory protection page attribute register 49 (controls memory address 0x0078 8000 - 0x0078 FFFF)
L2 memory protection page attribute register 50 (controls memory address 0x0079 0000 - 0x0079 7FFF)
L2 memory protection page attribute register 51 (controls memory address 0x0079 8000 - 0x0079 FFFF)
L2 memory protection page attribute register 52 (controls memory address 0x007A 0000 - 0x007A 7FFF)
L2 memory protection page attribute register 53 (controls memory address 0x007A 8000 - 0x007A FFFF)
L2 memory protection page attribute register 54 (controls memory address 0x007B 0000 - 0x007B 7FFF)
L2 memory protection page attribute register 55 (controls memory address 0x007B 8000 - 0x007B FFFF)
www.ti.com
16
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 A2E0 L2MPPA56
0x0184 A2E4 L2MPPA57
0x0184 A2E8 L2MPPA58
0x0184 A2EC L2MPPA59
0x0184 A2F0 L2MPPA60
0x0184 A2F4 L2MPPA61
0x0184 A2F8 L2MPPA62
0x0184 A2FC L2MPPA63
0x0184 A300 - 0x0184 A3FF - Reserved
0x0184 A400 L1PMPFAR L1P memory protection fault address register 0x0184 A404 L1PMPFSR L1P memory protection fault status register 0x0184 A408 L1PMPFCR L1P memory protection fault command register
0x0184 A40C - 0x0184 A4FF - Reserved
0x0184 A500 L1PMPLK0 L1P memory protection lock key bits [31:0] 0x0184 A504 L1PMPLK1 L1P memory protection lock key bits [63:32] 0x0184 A508 L1PMPLK2 L1P memory protection lock key bits [95:64]
0x0184 A50C L1PMPLK3 L1P memory protection lock key bits [127:96]
0x0184 A510 L1PMPLKCMD L1P memory protection lock key command register 0x0184 A514 L1PMPLKSTAT L1P memory protection lock key status register
0x0184 A518 - 0x0184 A5FF - Reserved
0x0184 A600 - 0x0184 A63F - Reserved
0x0184 A640 L1PMPPA16
0x0184 A644 L1PMPPA17
0x0184 A648 L1PMPPA18
0x0184 A64C L1PMPPA19
0x0184 A650 L1PMPPA20
0x0184 A654 L1PMPPA21
0x0184 A658 L1PMPPA22
0x0184 A65C L1PMPPA23
0x0184 A660 L1PMPPA24
0x0184 A664 L1PMPPA25
0x0184 A668 L1PMPPA26
L2 memory protection page attribute register 56 (controls memory address 0x007C 0000 - 0x007C 7FFF)
L2 memory protection page attribute register 57 (controls memory address 0x007C 8000 - 0x007C FFFF)
L2 memory protection page attribute register 58 (controls memory address 0x007D 0000 - 0x007D 7FFF)
L2 memory protection page attribute register 59 (controls memory address 0x007D 8000 - 0x007D FFFF)
L2 memory protection page attribute register 60 (controls memory address 0x007E 0000 - 0x007E 7FFF)
L2 memory protection page attribute register 61 (controls memory address 0x007E 8000 - 0x007E FFFF)
L2 memory protection page attribute register 62 (controls memory address 0x007F 0000 - 0x007F 7FFF)
L2 memory protection page attribute register 63 (controls memory address 0x007F 8000 - 0x007F FFFF)
(1)
L1P memory protection page attribute register 16 (controls memory address 0x00E0 0000 - 0x00E0 07FF)
L1P memory protection page attribute register 17 (controls memory address 0x00E0 0800 - 0x00E0 0FFF)
L1P memory protection page attribute register 18 (controls memory address 0x00E0 1000 - 0x00E0 17FF)
L1P memory protection page attribute register 19 (controls memory address 0x00E0 1800 - 0x00E0 1FFF)
L1P memory protection page attribute register 20 (controls memory address 0x00E0 2000 - 0x00E0 27FF)
L1P memory protection page attribute register 21 (controls memory address 0x00E0 2800 - 0x00E0 2FFF)
L1P memory protection page attribute register 22 (controls memory address 0x00E0 3000 - 0x00E0 37FF)
L1P memory protection page attribute register 23 (controls memory address 0x00E0 3800 - 0x00E0 3FFF)
L1P memory protection page attribute register 24 (controls memory address 0x00E0 4000 - 0x00E0 47FF)
L1P memory protection page attribute register 25 (controls memory address 0x00E0 4800 - 0x00E0 4FFF)
L1P memory protection page attribute register 26 (controls memory address 0x00E0 5000 - 0x00E0 57FF)
TMS320C6748
(1) These addresses correspond to the L1P memory protection page attribute registers 0-15 (L1PMPPA0-L1PMPPA15) of the C674x
megamaodule. These registers are not supported for this device.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
17
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 A66C L1PMPPA27
0x0184 A670 L1PMPPA28
0x0184 A674 L1PMPPA29
0x0184 A678 L1PMPPA30
0x0184 A67C L1PMPPA31
0x0184 A67F – 0x0184 ABFF - Reserved
0x0184 AC00 L1DMPFAR L1D memory protection fault address register 0x0184 AC04 L1DMPFSR L1D memory protection fault status register 0x0184 AC08 L1DMPFCR L1D memory protection fault command register
0x0184 AC0C - 0x0184 ACFF - Reserved
0x0184 AD00 L1DMPLK0 L1D memory protection lock key bits [31:0] 0x0184 AD04 L1DMPLK1 L1D memory protection lock key bits [63:32] 0x0184 AD08 L1DMPLK2 L1D memory protection lock key bits [95:64]
0x0184 AD0C L1DMPLK3 L1D memory protection lock key bits [127:96]
0x0184 AD10 L1DMPLKCMD L1D memory protection lock key command register 0x0184 AD14 L1DMPLKSTAT L1D memory protection lock key status register
0x0184 AD18 - 0x0184 ADFF - Reserved
0x0184 AE00 - 0x0184 AE3F - Reserved
0x0184 AE40 L1DMPPA16
0x0184 AE44 L1DMPPA17
0x0184 AE48 L1DMPPA18
0x0184 AE4C L1DMPPA19
0x0184 AE50 L1DMPPA20
0x0184 AE54 L1DMPPA21
0x0184 AE58 L1DMPPA22
0x0184 AE5C L1DMPPA23
0x0184 AE60 L1DMPPA24
0x0184 AE64 L1DMPPA25
0x0184 AE68 L1DMPPA26
0x0184 AE6C L1DMPPA27
0x0184 AE70 L1DMPPA28
0x0184 AE74 L1DMPPA29
L1P memory protection page attribute register 27 (controls memory address 0x00E0 5800 - 0x00E0 5FFF)
L1P memory protection page attribute register 28 (controls memory address 0x00E0 6000 - 0x00E0 67FF)
L1P memory protection page attribute register 29 (controls memory address 0x00E0 6800 - 0x00E0 6FFF)
L1P memory protection page attribute register 30 (controls memory address 0x00E0 7000 - 0x00E0 77FF)
L1P memory protection page attribute register 31 (controls memory address 0x00E0 7800 - 0x00E0 7FFF)
(2)
L1D memory protection page attribute register 16 (controls memory address 0x00F0 0000 - 0x00F0 07FF)
L1D memory protection page attribute register 17 (controls memory address 0x00F0 0800 - 0x00F0 0FFF)
L1D memory protection page attribute register 18 (controls memory address 0x00F0 1000 - 0x00F0 17FF)
L1D memory protection page attribute register 19 (controls memory address 0x00F0 1800 - 0x00F0 1FFF)
L1D memory protection page attribute register 20 (controls memory address 0x00F0 2000 - 0x00F0 27FF)
L1D memory protection page attribute register 21 (controls memory address 0x00F0 2800 - 0x00F0 2FFF)
L1D memory protection page attribute register 22 (controls memory address 0x00F0 3000 - 0x00F0 37FF)
L1D memory protection page attribute register 23 (controls memory address 0x00F0 3800 - 0x00F0 3FFF)
L1D memory protection page attribute register 24 (controls memory address 0x00F0 4000 - 0x00F0 47FF)
L1D memory protection page attribute register 25 (controls memory address 0x00F0 4800 - 0x00F0 4FFF)
L1D memory protection page attribute register 26 (controls memory address 0x00F0 5000 - 0x00F0 57FF)
L1D memory protection page attribute register 27 (controls memory address 0x00F0 5800 - 0x00F0 5FFF)
L1D memory protection page attribute register 28 (controls memory address 0x00F0 6000 - 0x00F0 67FF)
L1D memory protection page attribute register 29 (controls memory address 0x00F0 6800 - 0x00F0 6FFF)
www.ti.com
(2) These addresses correspond to the L1D memory protection page attribute registers 0-15 (L1DMPPA0-L1DMPPA15) of the C674x
megamaodule. These registers are not supported for this device.
18
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 AE78 L1DMPPA30
0x0184 AE7C L1DMPPA31
0x0184 AE80 – 0x0185 FFFF - Reserved
L1D memory protection page attribute register 30 (controls memory address 0x00F0 7000 - 0x00F0 77FF)
L1D memory protection page attribute register 31 (controls memory address 0x00F0 7800 - 0x00F0 7FFF)
TMS320C6748
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
19
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3.4 Memory Map Summary
Note: Read/Write accesses to illegal or reserved addresses in the memory map may cause undefined
behavior.
Table 3-4. C6748 Top Level Memory Map
Start Address End Address Size DSP Mem Map EDMA Mem Map PRUSS Mem Map Master
0x0000 0000 0x0000 0FFF 4K PRUSS Local
0x0000 1000 0x006F FFFF 0x0070 0000 0x007F FFFF 1024K DSP L2 ROM 0x0080 0000 0x0083 FFFF 256K DSP L2 RAM 0x0084 0000 0x00DF FFFF 0x00E0 0000 0x00E0 7FFF 32K DSP L1P RAM 0x00E0 8000 0x00EF FFFF 0x00F0 0000 0x00F0 7FFF 32K DSP L1D RAM 0x00F0 8000 0x017F FFFF 0x0180 0000 0x0180 FFFF 64K DSP Interrupt
0x0181 0000 0x0181 0FFF 4K DSP Powerdown
0x0181 1000 0x0181 1FFF 4K DSP Security ID 0x0181 2000 0x0181 2FFF 4K DSP Revision ID 0x0181 3000 0x0181 FFFF 52K 0x0182 0000 0x0182 FFFF 64K DSP EMC 0x0183 0000 0x0183 FFFF 64K DSP Internal
0x0184 0000 0x0184 FFFF 64K DSP Memory
0x0185 0000 0x01BF FFFF 0x01C0 0000 0x01C0 7FFF 32K EDMA3 CC 0x01C0 8000 0x01C0 83FF 1K EDMA3 TC0 0x01C0 8400 0x01C0 87FF 1K EDMA3 TC1 0x01C0 8800 0x01C0 FFFF 0x01C1 0000 0x01C1 0FFF 4K PSC 0 0x01C1 1000 0x01C1 1FFF 4K PLL Controller 0 0x01C1 2000 0x01C1 3FFF 0x01C1 4000 0x01C1 4FFF 4K SYSCFG0 0x01C1 5000 0x01C1 FFFF 0x01C2 0000 0x01C2 0FFF 4K Timer0 0x01C2 1000 0x01C2 1FFF 4K Timer1 0x01C2 2000 0x01C2 2FFF 4K I2C 0 0x01C2 3000 0x01C2 3FFF 4K RTC 0x01C2 4000 0x01C3 FFFF 0x01C4 0000 0x01C4 0FFF 4K MMC/SD 0 0x01C4 1000 0x01C4 1FFF 4K SPI 0 0x01C4 2000 0x01C4 2FFF 4K UART 0 0x01C4 3000 0x01CF FFFF 0x01D0 0000 0x01D0 0FFF 4K McASP 0 Control 0x01D0 1000 0x01D0 1FFF 4K McASP 0 AFIFO Ctrl
(1) The DSP L2 ROM is used for boot purposes and cannot be programmed with application code 20
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Controller
Controller
Reserved
System
Product Folder Links: TMS320C6748
(1)
Submit Documentation Feedback
Address Space
Peripheral Mem
Map
www.ti.com
LCDC
Mem Map
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-4. C6748 Top Level Memory Map (continued)
Start Address End Address Size DSP Mem Map EDMA Mem Map PRUSS Mem Map Master
0x01D0 2000 0x01D0 2FFF 4K McASP 0 Data
0x01D0 3000 0x01D0 BFFF 0x01D0 C000 0x01D0 CFFF 4K UART 1 0x01D0 D000 0x01D0 DFFF 4K UART 2 0x01D0 E000 0x01D0 FFFF
0x01D1 0000 0x01D1 07FF 2K McBSP0
0x01D1 0800 0x01D1 0FFF 2K McBSP0 FIFO Ctrl
0x01D1 1000 0x01D1 17FF 2K McBSP1
0x01D1 1800 0x01D1 1FFF 2K McBSP1 FIFO Ctrl
0x01D1 2000 0x01DF FFFF
0x01E0 0000 0x01E0 FFFF 64K USB0
0x01E1 0000 0x01E1 0FFF 4K UHPI
0x01E1 1000 0x01E1 2FFF
0x01E1 3000 0x01E1 3FFF 4K LCD Controller
0x01E1 4000 0x01E1 4FFF 4K Memory Protection Unit 1 (MPU 1)
0x01E1 5000 0x01E1 5FFF 4K Memory Protection Unit 2 (MPU 2)
0x01E1 6000 0x01E1 6FFF 4K UPP
0x01E1 7000 0x01E1 7FFF 4K VPIF
0x01E1 8000 0x01E1 9FFF 8K SATA 0x01E1 A000 0x01E1 AFFF 4K PLL Controller 1 0x01E1 B000 0x01E1 BFFF 4K MMCSD1 0x01E1 C000 0x01E1 FFFF
0x01E2 0000 0x01E2 1FFF 8K EMAC Control Module RAM
0x01E2 2000 0x01E2 2FFF 4K EMAC Control Module Registers
0x01E2 3000 0x01E2 3FFF 4K EMAC Control Registers
0x01E2 4000 0x01E2 4FFF 4K EMAC MDIO port
0x01E2 5000 0x01E2 5FFF 4K USB1
0x01E2 6000 0x01E2 6FFF 4K GPIO
0x01E2 7000 0x01E2 7FFF 4K PSC 1
0x01E2 8000 0x01E2 8FFF 4K I2C 1
0x01E2 9000 0x01E2 BFFF 0x01E2 C000 0x01E2 CFFF 4K SYSCFG1 0x01E2 D000 0x01E2 FFFF
0x01E3 0000 0x01E3 7FFF 32K EDMA3 CC1
0x01E3 8000 0x01E3 83FF 1K EDMA3 TC2
0x01E3 8400 0x01EF FFFF
0x01F0 0000 0x01F0 0FFF 4K eHRPWM 0
0x01F0 1000 0x01F0 1FFF 4K HRPWM 0
0x01F0 2000 0x01F0 2FFF 4K eHRPWM 1
0x01F0 3000 0x01F0 3FFF 4K HRPWM 1
0x01F0 4000 0x01F0 5FFF
0x01F0 6000 0x01F0 6FFF 4K ECAP 0
0x01F0 7000 0x01F0 7FFF 4K ECAP 1
0x01F0 8000 0x01F0 8FFF 4K ECAP 2
0x01F0 9000 0x01F0 BFFF 0x01F0 C000 0x01F0 CFFF 4K Timer2
Peripheral Mem
Map
TMS320C6748
LCDC
Mem Map
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
21
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-4. C6748 Top Level Memory Map (continued)
Start Address End Address Size DSP Mem Map EDMA Mem Map PRUSS Mem Map Master
0x01F0 D000 0x01F0 DFFF 4K Timer3
0x01F0 E000 0x01F0 EFFF 4K SPI1
0x01F0 F000 0x01F0 FFFF
0x01F1 0000 0x01F1 0FFF 4K McBSP0 FIFO Data
0x01F1 1000 0x01F1 1FFF 4K McBSP1 FIFO Data
0x01F1 2000 0x116F FFFF
0x1170 0000 0x117F FFFF 1024K DSP L2 ROM
0x1180 0000 0x1183 FFFF 256K DSP L2 RAM
0x1184 0000 0x11DF FFFF
0x11E0 0000 0x11E0 7FFF 32K DSP L1P RAM
0x11E0 8000 0x11EF FFFF
0x11F0 0000 0x11F0 7FFF 32K DSP L1D RAM
0x11F0 8000 0x3FFF FFFF
0x4000 0000 0x5FFF FFFF 512M EMIFA SDRAM data (CS0)
0x6000 0000 0x61FF FFFF 32M EMIFA async data (CS2)
0x6200 0000 0x63FF FFFF 32M EMIFA async data (CS3)
0x6400 0000 0x65FF FFFF 32M EMIFA async data (CS4)
0x6600 0000 0x67FF FFFF 32M EMIFA async data (CS5)
0x6800 0000 0x6800 7FFF 32K EMIFA Control Regs
0x6800 8000 0x7FFF FFFF
0x8000 0000 0x8001 FFFF 128K On-chip RAM
0x8002 0000 0xAFFF FFFF
0xB000 0000 0xB000 7FFF 32K DDR2/mDDR Control Regs
0xB000 8000 0xBFFF FFFF
0xC000 0000 0xCFFF FFFF 256M DDR2/mDDR Data
0xD000 0000 0xFFFF FFFF
(1)
Peripheral Mem
Map
www.ti.com
LCDC
Mem Map
22
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
W
V
U
T
R
P
N
M
L
K
10987654321
10987654321
DVDD3318_C
VP_CLKOUT3/ PRU1_R30[0]/
GP6[1]/
PRU1_R31[1]
SATA_VSS
SATA_RXP
VP_CLKOUT2/
MMCSD1_DAT[2]/
PRU1_R30[2]/
GP6[3]/
PRU1_R31[3]
SATA_RXN
SATA_VDD
SATA_REFCLKN
SATA_REGSATA_REFCLKP SATA_VDD
SATA_VDD SATA_VDDRSATA_VDD
DVDD3318_C
DDR_A[11]
VP_DOUT[15]/
LCD_D[15]/ UPP_XD[7]/
GP7[7]/
BOOT[7]
DV
DD3318_C
DV
DD18
DDR_DVDD18 DDR_DVDD18
DDR_D[15]
DDR_RAS
DDR_CLKP
DDR_CLKN
DDR_A[2]DDR_A[10]
V
SS
LCD_AC_ENB_CS/
GP6[0]/
PRU1_R31[28]
DDR_A[13]
DDR_CAS
DDR_A[5]
DDR_CKE
DDR_BA[0]
V
SS
CV
DD
RV
DD
DDR_A[9] DDR_A[1]
DDR_WE
DDR_D[10]
DDR_A[7]
DDR_A[0] DDR_D[12]
DDR_A[12] DDR_A[3]
DDR_CS
DDR_A[6]
DDR_DQM[1]
SATA_VSS
CV
DD
SATA_VSS
DDR_DVDD18
VP_DOUT[12]/
LCD_D[12]/ UPP_XD[4]/
GP7[4]/
BOOT[4]
DDR_VREF
DDR_BA[1]
DDR_A[8]
DDR_A[4]
DDR_BA[2]
SATA_VSS
W
V
U
T
R
P
N
M
L
K
DDR_D[13]
V
SS
V
SS
V
SS
V
SS
DV
DD18
V
SS
V
SS
V
SS
V
SS
NC
V
SS
V
SS
V
SS
V
SS
CV
DD
CV
DD
V
SS
DDR_DVDD18DDR_DVDD18DDR_DVDD18DDR_DVDD18
DVDD3318_C
VP_DOUT[13]/
LCD_D[13]/ UPP_XD[5]/
GP7[5]/
BOOT[5]
VP_DOUT[14]/
LCD_D[14]/
UPP_XD[6]/
GP7[6]/
BOOT[6]
DDR_DVDD18 DDR_DVDD18 DDR_DVDD18
VP_DOUT[9]/
LCD_D[9]/
UPP_XD[1]/
GP7[1]/
BOOT[1]
VP_DOUT[10]/
LCD_D[10]/ UPP_XD[2]/
GP7[2]/
BOOT[2]
VP_DOUT[11]/
LCD_D[11]/
UPP_XD[3]/
GP7[3]/
BOOT[3]
VP_DOUT[6]/
LCD_D[6]/
UPP_XD[14]/
GP7[14]/
PRU1_R31[14]
VP_DOUT[7]/
LCD_D[7]/
UPP_XD[15]/
GP7[15]/
PRU1_R31[15]
VP_DOUT[8]/
LCD_D[8]/
UPP_XD[0]/
GP7[0]/
BOOT[0]
VP_DOUT[3]/
LCD_D[3]/
UPP_XD[11]/
GP7[11]/
PRU1_R31[11]
VP_DOUT[4]/
LCD_D[4]/
UPP_XD[12]/
GP7[12]/
PRU1_R31[12]
VP_DOUT[5]/
LCD_D[5]/
UPP_XD[13]/
GP7[13]/
PRU1_R31[13]
VP_DOUT[0]/
LCD_D[0]/
UPP_XD[8]/
GP7[8]/
PRU1_R31[8]
VP_DOUT[1]/
LCD_D[1]/
UPP_XD[9]/
GP7[9]/
PRU1_R31[9]
VP_DOUT[2]/
LCD_D[2]/
UPP_XD[10]/
GP7[10]/
PRU1_R31[10]
www.ti.com
3.5 Pin Assignments
Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings.
3.5.1 Pin Map (Bottom View)
The following graphics show the bottom view of the ZCE and ZWT packages pin assignments in four quadrants (A, B, C, and D). The pin assignments for both packages are identical.
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Figure 3-3. Pin Map (Quad A)
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
23
W
V
U
T
R
P
N
M
L
K
191817161514131211
191817161514131211
USB1_VDDA33
DVDD3318_C
CV
DD
USB_CVDD
DVDD3318_C
DDR_DQGATE0
DVDD18
DDR_DQGATE1
DDR_D[9] DDR_D[8]DDR_D[11]
DVDD18
RTC_CVDD
RESET
USB0_DM USB0_DP
VP_DIN[11]/ UHPI_HD[3]/
UPP_D[3]/
PRU0_R30[11]/
PRU0_R31[11]
USB0_VDDA33 USB0_VBUS
USB1_DM
VP_DIN[0]/
UHPI_HD[8]/
UPP_D[8]/ RMII_CRS_DV/ PRU1_R31[29]
VP_DIN[1]/
UHPI_HD[9]/
UPP_D[9]/
RMII_MHZ_50_CLK/
PRU0_R31[23]
VP_DIN[2]/
UHPI_HD[10]/
UPP_D[10]/
RMII_RXER/
PRU0_R31[24]
VP_DIN[4]/
UHPI_HD[12]/
UPP_D[12]/
RMII_RXD[1]/
PRU0_R31[26]
PRU0_R30[28]/ UHPI_HCNTL1/
UPP_CHA_START/
GP6[10]
USB1_DP
PLL0_VDDA
PRU0_R30[30]/
/
PRU1_R30[11]/
GP6[12]
UHPI_HINT
USB0_VDDA18
VP_DIN[5]/
UHPI_HD[13]/
UPP_D[13]/
RMII_TXEN/
PRU0_R31[27]
DDR_D[1]
VP_DIN[7]/
UHPI_HD[15]/
UPP_D[15]/
RMII_TXD[1]/
PRU0_R31[29]
OSCVSS
DDR_D[2]
VP_DIN[6]/
UHPI_HD[14]/
UPP_D[14]/
RMII_TXD[0]/
PRU0_R31[28]
VP_DIN[3]/
UHPI_HD[11]/
UPP_D[11]/
RMII_RXD[0]/
PRU0_R31[25]
VP_DIN[14]_
HSYNC/
UHPI_HD[6]/
UPP_D[6]/ PRU0_R30[14]/ PRU0_R31[14]
EMU1
VP_DIN[8]/
UHPI_HD[0]/
UPP_D[0]/
GP6[5]/
PRU1_R31[0]
USB0_VDDA12
TDI
NC
PRU0_R30[26]/
UHPI_HR /
UPP_CHA_WAIT/
GP6[8]/
PRU1_R31[17]
W
VP_DIN[12]/
UHPI_HD[4]/
UPP_D[4]/
PRU0_R30[12]/
PRU0_R31[12]
RESETOUT
UHPI_HAS//
PRU1_R30[14]/
GP6[15]
RSV2
GP8[0]
OSCOUT
DDR_D[0]
PRU0_R30[27]/
UHPI_HHWIL/
UPP_CHA_ENABLE/
GP6[9]
VP_DIN[13]_
FIELD/
UHPI_HD[5]/
UPP_D[5]/ PRU0_R30[13]/ PRU0_R31[13]
TRST
OSCIN
VP_CLKIN1/
/
PRU1_R30[9]/
GP6[6]/
PRU1_R31[16]
UHPI_HDS1
VP_DIN[15]_
VSYNC/
UHPI_HD[7]/
UPP_D[7]/ PRU0_R30[15]/ PRU0_R31[15]
VP_CLKIN0/
/
PRU1_R30[10]/
GP6[7]/
UPP_2xTXCLK
UHPI_HCS
VP_DIN[10]/
UHPI_HD[2]/
UPP_D[2]/ PRU0_R30[10]/ PRU0_R31[10]
V
SS
DVDD3318_B
PLL0_VSSA
TMS
PRU0_R30[31]/
/
PRU1_R30[12]/
GP6[13]
UHPI_HRDY
NC PLL1_VSSA
PLL1_VDDA
USB1_VDDA18 USB0_ID
VP_DIN[9]/
UHPI_HD[1]/
UPP_D[1]/
PRU0_R30[9]/
PRU0_R31[9]
CLKOUT/
/
PRU1_R30[13]/
GP6[14]
UHPI_HDS2
USB0_DRVVBUS
DDR_DQS[0]
PRU0_R30[29]/
UHPI_HCNTL0/
UPP_CHA_CLOCK/
GP6[11]
W
V
U
T
R
P
N
M
L
K
DDR_DQM[0]
DDR_D[3]
DDR_D[4]
DDR_D[6]
DDR_ZP
DDR_D[5]
DDR_D[7]
DDR_D[14]
DDR_DQS[1]
V
SS
V
SS
V
SS
V
SS
V
SS
CV
DD
DVDD3318_C
DVDD3318_C
DVDD3318_C
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
Figure 3-4. Pin Map (Quad B)
24
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
H
G
F
E
D
C
B
A
191817161514131211
191817161514131211
CV
DD
EMA_A[8]/
PRU1_R30[16]/
GP5[8]
EMA_A[14]/
MMCSD0_DAT[7]/
PRU1_R30[22]/
GP5[14]/
PRU1_R31[22]
EMA_A[15]/
MMCSD0_DAT[6]/
PRU1_R30[23]/
GP5[15]/
PRU1_R31[23]
EMA_A[10]/
PRU1_R30[18]/
GP5[10]/
PRU1_R31[18]
EMA_A[9]/
PRU1_R30[17]/
GP5[9]
EMA_A[13]/
PRU0_R30[21]/
PRU1_R30[21] /
GP5[13]/
PRU1_R31[21]
EMA_A[12]/
PRU1_R30[20]/
GP5[12]/
PRU1_R31[20]
EMA_A[16]/
MMCSD0_DAT[5]/
PRU1_R30[24]/
GP4[0]
EMA_A[18]/
MMCSD0_DAT[3]/
PRU1_R30[26]/
GP4[2]
DV
DD3318_B
DV
DD18
EMA_A[6]/
GP5[6]
EMA_A[5]/
GP5[5]
EMA_A[2]/
GP5[2]
EMA_A[7]/
PRU1_R30[15]/
GP5[7]
EMA_A[4]/
GP5[4]
SPI0_SIMO/
EPWMSYNCO/
GP8[5]/
MII_CRS
SPI0_SCS[5]/ UART0_RXD/
GP8[4]/
MII_RXD[3]
SPI1_SCS[1]/
EPWM1A/
PRU0_R30[8]/
GP2[15]/
TM64P2_IN12
SPI0_SCS[4]/ UART0_TXD/
GP8[3]/
MII_RXD[2]
SPI0_CLK/
EPWM0A/
GP1[8]/
MII_RXCLK
SPI1_SCS[3]/ UART1_RXD/
SATA_LED/
GP1[1]
SPI1_SCS[0]/
EPWM1B/
PRU0_R30[7]/
GP2[14]/
TM64P3_IN12
EMA_OE/
GP3[10]
SPI1_SCS[4]/ UART2_TXD/
I2C1_SDA/
GP1[2]
EMA_A[3]/
GP5[3]
DV
DD18
RTC_VSS
EMA_WAIT[0]/ PRU0_R30[0]/
GP3[8]/
PRU0_R31[0]
EMA_RAS/
PRU0_R30[3]/
GP2[5]/
PRU0_R31[3]
SPI0_SCS[3]
UART0_CTS//
GP8[2]/
MII_RXD[1]/
SATA_MP_SWITCH
SPI0_SCS[0]/
TM64P1_OUT12/
GP1[6]/
MDIO/
TM64P1_IN12
SPI0_SOMI/
EPWMSYNCI/
GP8[6]/
MII_RXER
SPI0_SCS[2] UART0_RTS//
GP8[1]/
MII_RXD[0]/
SATA_CP_DET
SPI1_SCS[7]/
I2C0_SCL/
TM64P2_OUT12/
GP1[5]
SPI1_SIMO/
GP2[10]
SPI1_CLK/
GP2[13]
EMA_CS[3]/
GP3[14]
V
SS
V
SS
SPI1_ENA/
GP2[12]
RTC_XO
EMA_CS[2]/
GP3[15]
EMA_WAIT[1]/ PRU0_R30[1]/
GP2[1]/
PRU0_R31[1]
EMA_A[20]/
MMCSD0_DAT[1]/
PRU1_R30[28]/
GP4[4]
EMA_BA[1]/
GP2[9]
SPI0_ENA/
EPWM0B/
PRU0_R30[6]/
MII_RXDV
EMA_CS[5]/
GP3[12]
SPI1_SCS[5]/ UART2_RXD/
I2C1_SCL/
GP1[3]
EMA_A[0]/
GP5[0]
EMA_BA[0]/
GP2[8]
EMA_A[1]/
GP5[1]
DV
DD3318_B
SPI0_SCS[1]/
TM64P0_OUT12/
GP1[7]/ MDCLK/
TM64P0_IN12
DV
DD3318_A
SPI1_SCS[6]/
I2C0_SDA/
TM64P3_OUT12/
GP1[4]
EMA_CS[0]/
GP2[0]
CV
DD
SPI1_SOMI/
GP2[11]
H
G
F
E
D
C
B
A
J
TDO
TCK
EMU0
RTC_XI
NMI
J
SPI1_SCS[2]/ UART1_TXD/
SATA_CP_POD/
GP1[0]
EMA_A[11]/
PRU1_R30[19]/
GP5[11]/
PRU1_R31[19]
EMA_A[17]/
MMCSD0_DAT[4]/
PRU1_R30[25]
GP4[1]
DV
DD3318_B
DV
DD3318_B
DV
DD18
CV
DD
DV
DD3318_A
DV
DD3318_A
RV
DD
CV
DD
CV
DD
V
SS
CV
DD
DV
DD18
DV
DD3318_B
www.ti.com
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Figure 3-5. Pin Map (Quad C)
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
25
J
H
G
F
E
D
C
B
A
10987654321
10987654321
EMA_D[15]/
GP3[7]
AXR15/
EPWM0TZ[0]/
ECAP2_APWM2/
GP0[7]
ACLKR/
PRU0_R30[20]/
GP0[15]/
PRU0_R31[22]
ACLKX/
PRU0_R30[19]/
GP0[14]/
PRU0_R31[21]
AHCLKX/
USB_REFCLKIN/
/
GP0[10]/
PRU0_R31[17]
UART1_CTS
AFSX/
GP0[12]/
PRU0_R31[19]
AFSR/
GP0[13]/
PRU0_R31[20]
AXR9/
DX1/
GP0[1]
AXR4/
FSR0/ GP1[12]/ MII_COL
AXR5/
CLKX0/
GP1[13]/
MII_TXCLK
AXR7/
EPWM1TZ[0]/
PRU0_R30[17]
GP1[15]/
PRU0_R31[7]
AXR10/
DR1/
GP0[2]
AXR1/
DX0/
GP1[9]/
MII_TXD[1]
AXR3/
FSX0/
GP1[11]/
MII_TXD[3]
AXR2/
DR0/
GP1[10]/
MII_TXD[2]
MMCSD1_DAT[6]/
LCD_MCLK/
PRU1_R30[6]/
GP8[10]/
PRU1_R31[7]
RTC_ALARM/
/
GP0[8]/
UART2_CTS
DEEPSLEEP
AXR0/
ECAP0_APWM0/
GP8[7]/
MII_TXD[0]/
CLKS0
PRU0_R30[24]/ MMCSD1_CLK/
UPP_CHB_START/
GP8[14]/
PRU1_R31[26]
MMCSD1_DAT[4]/
LCD_VSYNC/ PRU1_R30[4]/
GP8[8]/
PRU1_R31[5]
SATA_VSS
PRU0_R30[22]/
PRU1_R30[8]/
UPP_CHB_WAIT/
GP8[12]/
PRU1_R31[24]
AXR8/
CLKS1/
ECAP1_APWM1/
GP0[0]/
PRU0_R31[8]
AXR12/
FSR1/ GP0[4]
EMA_D[4]/
GP4[12]
AXR14/ CLKR1/
GP0[6]
EMA_WEN_DQM[1]/
GP2[2]
EMA_D[0]/
GP4[8]
EMA_A[19]/
MMCSD0_DAT[2]/
PRU1_R30[27]/
GP4[3]
EMA_D[9]/
GP3[1]
EMA_A_R /
GP3[9]
W
MMCSD0_CLK/ PRU1_R30[31]/
GP4[7]
EMA_D[8]/
GP3[0]
EMA_D[13]/
GP3[5]
VP_CLKIN2/
MMCSD1_DAT[3]/
PRU1_R30[3]/
GP6[4]/
PRU1_R31[4]
VP_CLKIN3/
MMCSD1_DAT[1]/
PRU1_R30[1]/
GP6[2]/
PRU1_R31[2]
AMUTE/
GP0[9]/
PRU0_R31[16]
PRU0_R30[16]/
UART2_RTS/
DV
DD3318_A
DV
DD3318_A
EMA_WE/
GP3[11]
EMA_D[10]/
GP3[2]
EMA_D[3]/
GP4[11]
EMA_SDCKE/ PRU0_R30[4]/
GP2[6]/
PRU0_R31[4]
EMA_D[14]/
GP3[6]
EMA_D[7]/
GP4[15]
EMA_D[1]/
GP4[9]
EMA_A[22]/
MMCSD0_CMD/
PRU1_R30[30]/
GP4[6]
EMA_D[2]/
GP4[10]
EMA_A[21]/
MMCSD0_DAT[0]/
PRU1_R30[29]/
GP4[5]
PRU0_R30[23]/
MMCSD1_CMD/
UPP_CHB_ENABLE/
GP8[13]/
PRU1_R31[25]
AHCLKR/
/
GP0[11]/
PRU0_R31[18]
PRU0_R30[18]/
UART1_RTS
EMA_D[12]/
GP3[4]
EMA_WEN_DQM[0]/
GP2[3]
EMA_CLK/
PRU0_R30[5]/
GP2[7]/
PRU0_R31[5]
AXR6/
CLKR0/
GP1[14]/
MII_TXEN/
PRU0_R31[6]
AXR11/
FSX1/ GP0[3]
EMA_D[6]/
GP4[14]
EMA_D[11]/
GP3[3]
RV
DD
EMA_D[5]/
GP4[13]
MMCSD1_DAT[7]/
LCD_PCLK/
PRU1_R30[7]/
GP8[11]
MMCSD1_DAT[5]/
LCD_HSYNC/ PRU1_R30[5]/
GP8[9]/
PRU1_R31[6]
PRU0_R30[25]/
MMCSD1_DAT[0]/
UPP_CHB_CLOCK/
GP8[15]/
PRU1_R31[27]
AXR13/ CLKX1/
GP0[5]
J
H
G
F
E
D
C
B
A
EMA_CS[4]/
GP3[13]
EMA_CAS/
PRU0_R30[2]/
GP2[4]/
PRU0_R31[2]
DV
DD3318_B
DV
DD3318_B
DV
DD3318_B
DV
DD3318_B
DV
DD18
CV
DD
CV
DD
DV
DD3318_B
DV
DD18
SATA_VSS
DV
DD3318_A
V
SS
V
SS
CV
DD
CV
DD
V
SS
V
SS
CV
DD
SATA_TXP
SATA_TXN
DV
DD3318_C
CV
DD
V
SS
V
SS
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
3.6 Pin Multiplexing Control
Device level pin multiplexing is controlled by registers PINMUX0 - PINMUX19 in the SYSCFG module. For the device family, pin multiplexing can be controlled on a pin-by-pin basis. Each pin that is multiplexed
with several different functions has a corresponding 4-bit field in one of the PINMUX registers. Pin multiplexing selects which of several peripheral pin functions controls the pin's IO buffer output data
and output enable values only. The default pin multiplexing control for almost every pin is to select 'none' of the peripheral functions in which case the pin's IO buffer is held tri-stated.
Note that the input from each pin is always routed to all of the peripherals that share the pin; the PINMUX registers have no effect on input from a pin.
Figure 3-6. Pin Map (Quad D)
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
26
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7 Terminal Functions
Table 3-5 to Table 3-31 identify the external signal names, the associated pin/ball numbers along with the
mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin description.
3.7.1 Device Reset, NMI and JTAG
Table 3-5. Reset, NMI and JTAG Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
RESET K14 I B Device reset input NMI J17 I IPU B Non-Maskable Interrupt RESETOUT / UHPI_HAS / PRU1_R30[14] /
GP6[15]
TMS L16 I IPU B JTAG test mode select TDI M16 I IPU B JTAG test data input TDO J18 O IPU B JTAG test data output TCK J15 I IPU B JTAG test clock TRST L17 I IPD B JTAG test reset EMU0 J16 I/O IPU B Emulation pin EMU1 K16 I/O IPU B Emulation pin
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor. CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
(4) Open drain mode for RESETOUT function.
T17 O
TYPE
(1)
PULL
RESET
(4)
CP[21] C Reset output
JTAG
POWER
(2)
GROUP
(3)
DESCRIPTION
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
27
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3.7.2 High-Frequency Oscillator and PLL
Table 3-6. High-Frequency Oscillator and PLL Terminal Functions
www.ti.com
SIGNAL
NAME NO.
CLKOUT / UHPI_HDS2 /
PRU1_R30[13] / GP6[14]
(1)
TYPE
PULL
T18 O CP[22] C PLL Observation Clock
POWER
(2)
GROUP
(3)
DESCRIPTION
(4)
1.2-V OSCILLATOR
OSCIN L19 I Oscillator input OSCOUT K19 O Oscillator output OSCVSS L18 GND Oscillator ground
1.2-V PLL0
PLL0_VDDA L15 PWR PLL analog VDD(1.2-V filtered supply) PLL0_VSSA M17 GND PLL analog VSS(for filter)
1.2-V PLL1
PLL1_VDDA N15 PWR PLL analog VDD(1.2-V filtered supply) PLL1_VSSA M15 GND PLL analog VSS(for filter)
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
(4) Note: The CLKOUT clock output is provided as PLL observation clock, and is provided for debug purposes only. It may be routed to a
test point, but should never be connected to a load.
28
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7.3 Real-Time Clock and 32-kHz Oscillator
Table 3-7. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
TYPE
(1)
PULL
POWER
(2)
GROUP
(3)
DESCRIPTION
RTC_XI J19 I RTC 32-kHz oscillator input RTC_XO H19 O RTC 32-kHz oscillator output RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 O CP[0] A RTC Alarm
RTC_CVDD L14 PWR RTC_V
ss
H18 GND Oscillator ground
RTC module core power (isolated from chip CVDD)
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
3.7.4 DEEPSLEEP Power Control
Table 3-8. DEEPSLEEP Power Control Terminal Functions
SIGNAL
NAME NO.
TYPE
(1)
PULL
RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 I CP[0] A DEEPSLEEP power control output
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
POWER
(2)
GROUP
(3)
DESCRIPTION
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
29
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3.7.5 External Memory Interface A (EMIFA)
Table 3-9. External Memory Interface A (EMIFA) Terminal Functions
www.ti.com
SIGNAL
NAME NO.
TYPE
(1)
PULL
(2)
POWER
GROUP
EMA_D[15] / GP3[7] E6 I/O CP[17] B EMA_D[14] / GP3[6] C7 I/O CP[17] B EMA_D[13] / GP3[5] B6 I/O CP[17] B EMA_D[12] / GP3[4] A6 I/O CP[17] B EMA_D[11] / GP3[3] D6 I/O CP[17] B EMA_D[10] / GP3[2] A7 I/O CP[17] B EMA_D[9] / GP3[1] D9 I/O CP[17] B EMA_D[8] / GP3[0] E10 I/O CP[17] B EMA_D[7] / GP4[15] D7 I/O CP[17] B EMA_D[6] / GP4[14] C6 I/O CP[17] B EMA_D[5] / GP4[13] E7 I/O CP[17] B EMA_D[4] / GP4[12] B5 I/O CP[17] B EMA_D[3] / GP4[11] E8 I/O CP[17] B EMA_D[2] / GP4[10] B8 I/O CP[17] B EMA_D[1] / GP4[9] A8 I/O CP[17] B EMA_D[0] / GP4[8] C9 I/O CP[17] B
(3)
EMIFA data bus
DESCRIPTION
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
30
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-9. External Memory Interface A (EMIFA) Terminal Functions (continued)
SIGNAL
NAME NO.
EMA_A[22] / MMCSD0_CMD /
PRU1_R30[30] / GP4[6] EMA_A[21] / MMCSD0_DAT[0] /
PRU1_R30[29] / GP4[5] EMA_A[20] / MMCSD0_DAT[1] /
PRU1_R30[28] / GP4[4] EMA_A[19] / MMCSD0_DAT[2] /
PRU1_R30[27] / GP4[3] EMA_A[18] / MMCSD0_DAT[3] /
PRU1_R30[26] / GP4[2] EMA_A[17] / MMCSD0_DAT[4] /
PRU1_R30[25] / GP4[1] EMA_A[16] / MMCSD0_DAT[5] /
PRU1_R30[24] / GP4[0] EMA_A[15] / MMCSD0_DAT[6] /
PRU1_R30[23] / GP5[15] / PRU1_R31[23] EMA_A[14] / MMCSD0_DAT[7] /
PRU1_R30[22] / GP5[14] / PRU1_R31[22] EMA_A[13] / PRU0_R30[21] / PRU1_R30[21]
/ GP5[13] / PRU1_R31[21] EMA_A[12] / PRU1_R30[20] / GP5[12] /
PRU1_R31[20] EMA_A[11] / PRU1_R30[19] / GP5[11] /
PRU1_R31[19] EMA_A[10] / PRU1_R30[18] / GP5[10] /
PRU1_R31[18]
A10 O CP[18] B
B10 O CP[18] B
A11 O CP[18] B
C10 O CP[18] B
E11 O CP[18] B
B11 O CP[18] B
E12 O CP[18] B
C11 O CP[19] B
A12 O CP[19] B
D11 O CP[19] B
D13 O CP[19] B
B12 O CP[19] B
C12 O CP[19] B
TYPE
(1)
PULL
EMA_A[9] / PRU1_R30[17] / GP5[9] D12 O CP[19] B EMA_A[8] / PRU1_R30[16] / GP5[8] A13 O CP[19] B EMA_A[7] / PRU1_R30[15] / GP5[7] B13 O CP[20] B EMA_A[6] / GP5[6] E13 O CP[20] B EMA_A[5] / GP5[5] C13 O CP[20] B EMA_A[4] / GP5[4] A14 O CP[20] B EMA_A[3] / GP5[3] D14 O CP[20] B EMA_A[2] / GP5[2] B14 O CP[20] B EMA_A[1] / GP5[1] D15 O CP[20] B EMA_A[0] / GP5[0] C14 O CP[20] B EMA_BA[0] / GP2[8] C15 O CP[16] B EMA_BA[1] / GP2[9] A15 O CP[16] B EMA_CLK / PRU0_R30[5] / GP2[7] /
PRU0_R31[5] EMA_SDCKE / PRU0_R30[4] / GP2[6] /
PRU0_R31[4] EMA_RAS / PRU0_R30[3] / GP2[5] /
PRU0_R31[3] EMA_CAS / PRU0_R30[2] / GP2[4] /
PRU0_R31[2]
B7 O CP[16] B EMIFA clock
D8 O CP[16] B EMIFA SDRAM clock enable
A16 O CP[16] B EMIFA SDRAM row address strobe
A9 O CP[16] B EMIFA SDRAM column address strobe
EMA_CS[0] / GP2[0] A18 O CP[16] B EMIFA SDRAM Chip Select EMA_CS[2] / GP3[15] B17 O CP[16] B EMA_CS[3] / GP3[14] A17 O CP[16] B EMA_CS[4] / GP3[13] F9 O CP[16] B EMA_CS[5] / GP3[12] B16 O CP[16] B EMA_A_RW / GP3[9] D10 O CP[16] B EMIFA Async Read/Write control
(2)
POWER
GROUP
(3)
EMIFA address bus
EMIFA address bus
EMIFA bank address
EMIFA Async chip select
DESCRIPTION
TMS320C6748
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
31
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
Table 3-9. External Memory Interface A (EMIFA) Terminal Functions (continued)
SIGNAL
NAME NO.
TYPE
(1)
PULL
EMA_WE / GP3[11] B9 O CP[16] B EMIFA SDRAM write enable EMA_WEN_DQM[1] / GP2[2] A5 O CP[16] B EMA_WEN_DQM[0] / GP2[3] C8 O CP[16] B EMIFA write enable/data mask for EMA_D[7:0]
EMA_OE / GP3[10] B15 O CP[16] B EMIFA output enable EMA_WAIT[0] / PRU0_R30[0] / GP3[8] /
PRU0_R31[0] EMA_WAIT[1] / PRU0_R30[1] / GP2[1] /
PRU0_R31[1]
B18 I CP[16] B
B19 I CP[16] B
(2)
POWER
GROUP
(3)
DESCRIPTION
EMIFA write enable/data mask for EMA_D[15:8]
EMIFA wait input/interrupt
32
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7.6 DDR2/mDDR Controller
Table 3-10. DDR2/mDDR Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
DDR_D[15] W10 I/O IPD DDR_D[14] U11 I/O IPD DDR_D[13] V10 I/O IPD DDR_D[12] U10 I/O IPD DDR_D[11] T12 I/O IPD DDR_D[10] T10 I/O IPD DDR_D[9] T11 I/O IPD DDR_D[8] T13 I/O IPD DDR_D[7] W11 I/O IPD DDR_D[6] W12 I/O IPD DDR_D[5] V12 I/O IPD DDR_D[4] V13 I/O IPD DDR_D[3] U13 I/O IPD DDR_D[2] V14 I/O IPD DDR_D[1] U14 I/O IPD DDR_D[0] U15 I/O IPD DDR_A[13] T5 O IPD DDR_A[12] V4 O IPD DDR_A[11] T4 O IPD DDR_A[10] W4 O IPD DDR_A[9] T6 O IPD DDR_A[8] U4 O IPD DDR_A[7] U6 O IPD DDR_A[6] W5 O IPD DDR_A[5] V5 O IPD DDR_A[4] U5 O IPD DDR_A[3] V6 O IPD DDR_A[2] W6 O IPD DDR_A[1] T7 O IPD DDR_A[0] U7 O IPD DDR_CLKP W8 O IPD DDR2 clock (positive) DDR_CLKN W7 O IPD DDR2 clock (negative) DDR_CKE V7 O IPD DDR2 clock enable DDR_WE T8 O IPD DDR2 write enable DDR_RAS W9 O IPD DDR2 row address strobe DDR_CAS U9 O IPD DDR2 column address strobe DDR_CS V9 O IPD DDR2 chip select
TYPE
(1)
PULL
(2)
DDR2 SDRAM data bus
DDR2 row/column address
DESCRIPTION
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
33
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-10. DDR2/mDDR Terminal Functions (continued)
SIGNAL
NAME NO.
DDR_DQM[0] W13 O IPD DDR_DQM[1] R10 O IPD DDR_DQS[0] T14 I/O IPD DDR_DQS[1] V11 I/O IPD DDR_BA[2] U8 O IPD
DDR_BA[0] V8 O IPD
DDR_DQGATE0 R11 O IPD
DDR_DQGATE1 R12 I IPD
DDR_ZP U12 O
DDR_VREF R6 I
N6, N9, N10,
DDR_DVDD18
P7, P8, P9,
P10, R7, R8,
R9
(1)
TYPE
PULL
PWR DDR PHY 1.8V power supply pins
(2)
DESCRIPTION
DDR2 data mask outputs
DDR2 data strobe inputs/outputs
DDR2 SDRAM bank addressDDR_BA[1] T9 O IPD
DDR2 loopback signal for external DQS gating. Route to DDR and back to DDR_DQGATE1 with same constraints as used for DDR clock and data.
DDR2 loopback signal for external DQS gating. Route to DDR and back to DDR_DQGATE0 with same constraints as used for DDR clock and data.
DDR2 reference output for drive strength calibration of N and P channel outputs. Tie to ground via 50 ohm resistor @ 5% tolerance.
DDR voltage input for the DDR2/mDDR I/O buffers. Note even in the case of mDDR an external resistor divider connected to this pin is necessary.
www.ti.com
34
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7.7 Serial Peripheral Interface Modules (SPI)
Table 3-11. Serial Peripheral Interface (SPI) Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
TYPE
(1)
PULL
(2)
POWER
GROUP
(3)
DESCRIPTION
SPI0
SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK D19 I/O CP[7] A SPI0 clock SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV C17 I/O CP[7] A SPI0 enable SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO / TM64P1_IN12 D17 I/O CP[10] A SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDCLK / TM64P0_IN12 E16 I/O CP[10] A SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] /SATA_CP_DET D16 I/O CP[9] A SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] /
SATA_MP_SWITCH
E17 I/O CP[9] A
SPI0 chip selects
SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2] D18 I/O CP[8] A SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3] C19 I/O CP[8] A
SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS C18 I/O CP[7] A
SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 I/O CP[7] A
SPI0 data slave-in­master-out
SPI0 data slave-out­master-in
SPI1
SPI1_CLK / GP2[13] G19 I/O CP[15] A SPI1 clock SPI1_ENA / GP2[12] H16 I/O CP[15] A SPI1 enable SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 I/O CP[14] A SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 I/O CP[14] A SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0] F19 I/O CP[13] A SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1] E18 I/O CP[13] A SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2] F16 I/O CP[12] A
SPI1 chip selects
SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3] F17 I/O CP[12] A SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] G18 I/O CP[11] A SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] G16 I/O CP[11] A
SPI1_SIMO / GP2[10] G17 I/O CP[15] A
SPI1_SOMI / GP2[11] H17 I/O CP[15] A
SPI1 data slave-in­master-out
SPI1 data slave-out­master-in
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
35
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3.7.8 Programmable Real-Time Unit (PRU)
Table 3-12. Programmable Real-Time Unit (PRU) Terminal Functions
www.ti.com
SIGNAL
NAME NO.
TYPE
(1)
PULL
(2)
POWER
GROUP
PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] / GP6[13] R17 O CP[23] C PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] R16 O CP[23] C PRU0_R30[29]/ UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] U17 O CP[24] C PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] W15 O CP[24] C PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] U16 O CP[24] C PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT / GP6[8] / PRU1_R31[17] T15 O CP[24] C PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15] /
PRU1_R31[27] PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] /
PRU1_R31[26] PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] /
PRU1_R31[25] PRU0_R30[22] / PRU1_R30[8]UPP_CHB_WAIT / / GP8[12] /
PRU1_R31[24]
G1 O CP30] C
G2 O CP[30] C
J4 O CP[30] C
G3 O CP[30] C
EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] / PRU1_R31[21] D11 O CP[19] B ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] A1 O CP[0] A ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] B1 O CP[0] A AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] / PRU0_R31[18] A2 O CP[0] A AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] D2 O CP[4] A
(3)
PRU0 Output Signals
DESCRIPTION
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
36
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued)
SIGNAL
NAME NO.
TYPE
(1)
PULL
AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] D5 O CP[0] A VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] /
PRU0_R31[15] VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / PRU0_R30[14] /
PRU0_R31[14] VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] /
PRU0_R31[13]
V18 O CP[27] C
V19 O CP[27] C
U19 O CP[27] C
VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / PRU0_R31[12] T16 O CP[27] C VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / PRU0_R31[11] R18 O CP[27] C VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] / PRU0_R31[10] R19 O CP[27] C VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9] R15 O CP[27] C SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 O CP[14] A SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 O CP[14] A SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV C17 O CP[7] A EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5] B7 O CP[16] B EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4] D8 O CP[16] B EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3] A16 O CP[16] B EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2] A9 O CP[16] B EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1] B19 O CP[16] B EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0] B18 O CP[16] B
(2)
POWER
GROUP
TMS320C6748
DESCRIPTION
(3)
PRU0 Output Signals
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
37
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued)
SIGNAL
NAME NO.
TYPE
(1)
PULL
VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / PRU0_R31[29] U18 I CP[26] C VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / PRU0_R31[28] V16 I CP[26] C VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / PRU0_R31[27] R14 I CP[26] C VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] / PRU0_R31[26] W16 I CP[26] C VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] / PRU0_R31[25] V17 I CP[26] C VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / PRU0_R31[24] W17 I CP[26] C VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK /
PRU0_R31[23]
W18 I CP[26] C
ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] A1 I CP[0] A ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] B1 I CP[0] A AFSR / GP0[13] / PRU0_R31[20] C2 I CP[0] A AFSX / GP0[12] / PRU0_R31[19] B2 I CP[0] A AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] / PRU0_R31[18] A2 I CP[0] A AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17] A3 I CP[0] A AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] D5 I CP[0] A VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] /
PRU0_R31[15]
VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / PRU0_R30[14] /
PRU0_R31[14]
VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] /
PRU0_R31[13]
V18 I CP[27] C
V19 I CP[27] C
U19 I CP[27] C
VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / PRU0_R31[12] T16 I CP[27] C VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / PRU0_R31[11] R18 I CP[27] C VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] / PRU0_R31[10] R19 I CP[27] C VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9] R15 I CP[27] C AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8] E4 I CP[3] A AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] D2 I CP[4] A AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 I CP[5] A EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5] B7 I CP[16] B EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4] D8 I CP[16] B EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3] A16 I CP[16] B EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2] A9 I CP[16] B EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1] B19 I CP[16] B EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0] B18 I CP[16] B
(2)
POWER
GROUP
(3)
PRU0 Input Signals
www.ti.com
DESCRIPTION
38
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued)
SIGNAL
NAME NO.
TYPE
(1)
PULL
MMCSD0_CLK / PRU1_R30[31] /GP4[7] E9 O CP[18] B EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6] A10 O CP[18] B EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5] B10 O CP[18] B EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4] A11 O CP[18] B EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3] C10 O CP[18] B EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2] E11 O CP[18] B EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1] B11 O CP[18] B EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0] E12 O CP[18] B EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] /
PRU1_R31[23] EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] /
PRU1_R31[22]
C11 O CP[19] B
A12 O CP[19] B
EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] / PRU1_R31[21] D11 O CP[19] B EMA_A[12] / PRU1_R30[20] / GP5[12] / PRU1_R31[20] D13 O CP[19] B EMA_A[11] / PRU1_R30[19] / GP5[11] / PRU1_R31[19] B12 O CP[19] B EMA_A[10] / PRU1_R30[18] / GP5[10] / PRU1_R31[18] C12 O CP[19] B EMA_A[9] / PRU1_R30[17] / GP5[9] D12 O CP[19] B EMA_A[8] / PRU1_R30[16] / GP5[8] A13 O CP[19] B EMA_A[7] / PRU1_R30[15] / GP5[7] B13 O CP[20] B RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15] T17 O CP[21] C CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14] T18 O CP[22] C PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] / GP6[13] R17 O CP[23] C PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] R16 O CP[23] C VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] / GP6[7] / UPP_2xTXCLK W14 O CP[25] C VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 O CP[25] C PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] /
PRU1_R31[24]
G3 O CP[30] C
MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 O CP[31] C MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / PRU1_R31[7] F2 O CP[31] C MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / PRU1_R31[6] H4 O CP[31] C MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / PRU1_R31[5] G4 O CP[31] C VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / PRU1_R31[4] H3 O CP[30] C VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] /
PRU1_R31[3]
K3 O CP[30] C
VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] / PRU1_R31[2] J3 O CP[30] C VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 O CP[30] C
(2)
POWER
GROUP
TMS320C6748
DESCRIPTION
(3)
PRU1 Output Signals
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
39
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-12. Programmable Real-Time Unit (PRU) Terminal Functions (continued)
SIGNAL
NAME NO.
TYPE
(1)
PULL
VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / PRU1_R31[29] W19 I CP[26] C LCD_AC_ENB_CS / GP6[0] / PRU1_R31[28] R5 I CP[31] C PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15] /
PRU1_R31[27]
PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] /
PRU1_R31[26]
PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] /
PRU1_R31[25]
PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] /
PRU1_R31[24]
G1 I CP[30] C
G2 I CP[30] C
J4 I CP[30] C
G3 I CP[30] C
EMA_A[15]/MMCSD0_DAT[6]/PRU1_R30[23]/GP5[15]/PRU1_R31[23] C11 I CP[19] B EMA_A[14]/MMCSD0_DAT[7]/PRU1_R30[22]/GP5[14]/PRU1_R31[22] A12 I CP[19] B EMA_A[13]/PRU0_R30[21]/PRU1_R30[21]/GP5[13]/PRU1_R31[21] D11 I CP[19] B EMA_A[12]/PRU1_R30[20]/GP5[12]/PRU1_R31[20] D13 I CP[19] B EMA_A[11]/PRU1_R30[19]/GP5[11]/PRU1_R31[19] B12 I CP[19] B EMA_A[10]/PRU1_R30[18]/GP5[10]/PRU1_R31[18] C12 I CP[19] B PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT / GP6[8] / PRU1_R31[17] T15 I CP[24] C VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 I CP[25] C VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] U2 I CP[28] C VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] U1 I CP[28] C VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] V3 I CP[28] C VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] V2 I CP[28] C VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] V1 I CP[28] C VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] W3 I CP[28] C VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 I CP[28] C VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 I CP[28] C MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] / PRU1_R31[7] F2 I CP[31] C MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] / PRU1_R31[6] H4 I CP[31] C MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] / PRU1_R31[5] G4 I CP[31] C VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] / PRU1_R31[4] H3 I CP[30] C VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] /
PRU1_R31[3]
K3 I CP[30] C
VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] / PRU1_R31[2] J3 I CP[30] C VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 I CP[30] C VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 I CP[27] C
(2)
POWER
GROUP
(3)
PRU1 Input Signals
www.ti.com
DESCRIPTION
40
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7.9 Enhanced Capture/Auxiliary PWM Modules (eCAP0)
The eCAP Module pins function as either input captures or auxiliary PWM 32-bit outputs, depending upon how the eCAP module is programmed.
Table 3-13. Enhanced Capture Module (eCAP) Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0 F3 I/O CP[6] A
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8] E4 I/O CP[3] A
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] A4 I/O CP[1] A
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
TYPE
eCAP0
eCAP1
eCAP2
(1)
PULL
(2)
POWER
GROUP
(3)
enhanced capture 0 input or auxiliary PWM 0 output
enhanced capture 1 input or auxiliary PWM 1 output
enhanced capture 2 input or auxiliary PWM 2 output
DESCRIPTION
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
41
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3.7.10 Enhanced Pulse Width Modulators (eHRPWM)
Table 3-14. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions
www.ti.com
SIGNAL
NAME NO.
TYPE
(1)
PULL
(2)
POWER
GROUP
(3)
DESCRIPTION
eHRPWM0
SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK D19 I/O CP[7] A
eHRPWM0 A output
(with high-resolution) SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV C17 I/O CP[7] A eHRPWM0 B output AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] A4 I CP[1] A eHRPWM0 trip zone input SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 I CP[7] A eHRPWM0 sync input SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS C18 I/O CP[7] A eHRPWM0 sync output
eHRPWM1
SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12
SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12
AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7]
F18 I/O CP[14] A
E19 I/O CP[14] A eHRPWM1 B output
D2 I CP[4] A eHRPWM1 trip zone input
eHRPWM1 A output
(with high-resolution)
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
42
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7.11 Boot
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-15. Boot Mode Selection Terminal Functions
SIGNAL
NAME NO.
TYPE
(2)
PULL
(3)
(1)
POWER
GROUP
(4)
DESCRIPTION
VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 I CP[29] C VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 I CP[29] C VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] R2 I CP[29] C VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 I CP[29] C VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 I CP[29] C
Boot Mode Selection Pins
VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 I CP[29] C VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 I CP[29] C VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 I CP[29] C
(1) Boot decoding is defined in the bootloader application report. (2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(3) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(4) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
43
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3.7.12 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2)
Table 3-16. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions
www.ti.com
SIGNAL
NAME NO.
TYPE
(1)
PULL
POWER
(2)
GROUP
(3)
DESCRIPTION
UART0
SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3] C19 I CP[8] A UART0 receive data SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2] D18 O CP[8] A UART0 transmit data SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] /
SATA_CP_DET SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] /
SATA_MP_SWITCH
D16 O CP[9] A UART0 ready-to-send output
E17 I CP[9] A UART0 clear-to-send input
UART1
SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1] E18 I CP[13] A UART1 receive data SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0] F19 O CP[13] A UART1 transmit data AHCLKR / PRU0_R30[18] / UART1_RTS /GP0[11] /
PRU0_R31[18] AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] /
PRU0_R31[17]
A2 O CP[0] A UART1 ready-to-send output
A3 I CP[0] A UART1 clear-to-send input
UART2
SPI1_SCS[5] / UART2_RXD / I2C1_SCL /GP1[3] F17 I CP[12] A UART2 receive data SPI1_SCS[4] / UART2_TXD / I2C1_SDA /GP1[2] F16 O CP[12] A UART2 transmit data AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] /
PRU0_R31[16]
D5 O CP[0] A UART2 ready-to-send output
RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 I CP[0] A UART2 clear-to-send input
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
44
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7.13 Inter-Integrated Circuit Modules(I2C0, I2C1)
Table 3-17. Inter-Integrated Circuit (I2C) Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
TYPE
(1)
PULL
(2)
POWER
GROUP
(3)
DESCRIPTION
I2C0
SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] G18 I/O CP[11] A I2C0 serial data SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] G16 I/O CP[11] A I2C0 serial clock
I2C1
SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2] F16 I/O CP[12] A I2C1 serial data SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3] F17 I/O CP[12] A I2C1 serial clock
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
45
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3.7.14 Timers
www.ti.com
Table 3-18. Timers Terminal Functions
SIGNAL
NAME NO.
TYPE
(1)
PULL
(2)
POWER
GROUP
(3)
DESCRIPTION
TIMER0
SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDCLK /TM64P0_IN12 E16 I CP[10] A Timer0 lower input SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDCLK / TM64P0_IN12 E16 O CP[10] A
Timer0 lower output
TIMER1 (Watchdog)
SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO / TM64P1_IN12 D17 I CP[10] A Timer1 lower input SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO / TM64P1_IN12 D17 O CP[10] A
Timer1 lower output
TIMER2
SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 I CP[14] A Timer2 lower input SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] G16 O CP[11] A
Timer2 lower output
TIMER3
SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 I CP[14] A Timer3 lower input SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] G18 O CP[11] A
Timer3 lower output
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
46
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7.15 Multichannel Audio Serial Ports (McASP)
Table 3-19. Multichannel Audio Serial Ports Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
TYPE
(1)
PULL
(2)
POWER
GROUP
(3)
DESCRIPTION
McASP0
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] A4 I/O CP[1] A AXR14 / CLKR1 / GP0[6] B4 I/O CP[2] A AXR13 / CLKX1 / GP0[5] B3 I/O CP[2] A AXR12 / FSR1 / GP0[4] C4 I/O CP[2] A AXR11 / FSX1 / GP0[3] C5 I/O CP[2] A AXR10 / DR1 / GP0[2] D4 I/O CP[2] A AXR9 / DX1 / GP0[1] C3 I/O CP[2] A AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8] E4 I/O CP[3] A AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] /
PRU0_R31[7]
D2 I/O CP[4] A
McASP0 serial data
AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 I/O CP[5] A AXR5 / CLKX0 / GP1[13] / MII_TXCLK D3 I/O CP[5] A AXR4 / FSR0 / GP1[12] / MII_COL D1 I/O CP[5] A AXR3 / FSX0 / GP1[11] / MII_TXD[3] E3 I/O CP[5] A AXR2 / DR0 / GP1[10] / MII_TXD[2] E2 I/O CP[5] A AXR1 / DX0 / GP1[9] / MII_TXD[1] E1 I/O CP[5] A AXR0 / ECAP0_APWM0 / GP8[7]/ MII_TXD[0] / CLKS0 F3 I/O CP[6] A AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] /
PRU0_R31[17]
A3 I/O CP[0] A McASP0 transmit master clock
ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] B1 I/O CP[0] A McASP0 transmit bit clock AFSX / GP0[12] / PRU0_R31[19] B2 I/O CP[0] A McASP0 transmit frame sync AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] /
PRU0_R31[18]
A2 I/O CP[0] A McASP0 receive master clock
ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] A1 I/O CP[0] A McASP0 receive bit clock AFSR / GP0[13] / PRU0_R31[20] C2 I/O CP[0] A McASP0 receive frame sync AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] /
PRU0_R31[16]
D5 I/O CP[0] A McASP0 mute output
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
47
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3.7.16 Multichannel Buffered Serial Ports (McBSP)
Table 3-20. Multichannel Buffered Serial Ports (McBSPs) Terminal Functions
www.ti.com
SIGNAL
NAME NO.
TYPE
(1)
PULL
POWER
(2)
GROUP
(3)
DESCRIPTION
McBSP0
AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0
AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6]
F3 I CP[6] A McBSP0 sample rate generator clock input
C1 I/O CP[5] A McBSP0 receive clock
AXR4 / FSR0 / GP1[12] / MII_COL D1 I/O CP[5] A McBSP0 receive frame sync AXR2 / DR0 / GP1[10] / MII_TXD[2] E2 I CP[5] A McBSP0 receive data AXR5 / CLKX0 / GP1[13] / MII_TXCLK D3 I/O CP[5] A McBSP0 transmit clock AXR3 / FSX0 / GP1[11] / MII_TXD[3] E3 I/O CP[5] A McBSP0 transmit frame sync AXR1 / DX0 / GP1[9] / MII_TXD[1] E1 O CP[5] A McBSP0 transmit data
McBSP1
AXR8 / CLKS1 / ECAP1_APWM1 / GP0[0] / PRU0_R31[8]
E4 I CP[3] A McBSP1 sample rate generator clock input
AXR14 / CLKR1 / GP0[6] B4 I/O CP[2] A McBSP1 receive clock AXR12 / FSR1 / GP0[4] C4 I/O CP[2] A McBSP1 receive frame sync AXR10 / DR1 / GP0[2] D4 I CP[2] A McBSP1 receive data AXR13 / CLKX1 / GP0[5] B3 I/O CP[2] A McBSP1 transmit clock AXR11 / FSX1 / GP0[3] C5 I/O CP[2] A McBSP1 transmit frame sync AXR9 / DX1 / GP0[1] C3 O CP[2] A McBSP1 transmit data
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
48
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7.17 Universal Serial Bus Modules (USB0, USB1)
Table 3-21. Universal Serial Bus (USB) Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
TYPE
(1)
PULL
(2)
POWER
GROUP
(3)
DESCRIPTION
USB0 2.0 OTG (USB0)
USB0_DM M18 A IPD USB0 PHY data minus USB0_DP M19 A IPD USB0 PHY data plus USB0_VDDA33 N18 PWR USB0 PHY 3.3-V supply
USB0_ID P16 A
USB0 PHY identification (mini-A or mini-B plug)
USB0_VBUS N19 A USB0 bus voltage USB0_DRVVBUS K18 0 IPD B USB0 controller VBUS control output.
AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17]
A3 I CP[0] A USB_REFCLKIN. Optional clock input
USB0_VDDA18 N14 PWR USB0 PHY 1.8-V supply input
USB0 PHY 1.2-V LDO output for bypass cap For proper device operation, this pin must
USB0_VDDA12 N17 A
always be connected via a 0.22-μF capacitor to VSS (GND), even if USB0 is not being used.
USB_CVDD M12 PWR
USB0 and USB1 core logic 1.2-V supply input
USB1 1.1 OHCI (USB1)
USB1_DM P18 A USB1 PHY data minus USB1_DP P19 A USB1 PHY data plus
AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] / PRU0_R31[17]
A3 I CP[0] A USB_REFCLKIN. Optional clock input
USB1_VDDA33 P15 PWR USB1 PHY 3.3-V supply USB1_VDDA18 P14 PWR USB1 PHY 1.8-V supply
USB_CVDD M12 PWR
USB0 and USB1 core logic 1.2-V supply input
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
49
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3.7.18 Ethernet Media Access Controller (EMAC)
Table 3-22. Ethernet Media Access Controller (EMAC) Terminal Functions
www.ti.com
SIGNAL
NAME NO.
TYPE
(1)
PULL
POWER
(2)
GROUP
(3)
DESCRIPTION
MII
AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 O CP[5] A EMAC MII Transmit enable output AXR5 / CLKX0 / GP1[13] / MII_TXCLK D3 I CP[5] A EMAC MII Transmit clock input AXR4 / FSR0 / GP1[12] / MII_COL D1 I CP[5] A EMAC MII Collision detect input AXR3 / FSX0 / GP1[11] / MII_TXD[3] E3 O CP[5] A AXR2 / DR0 / GP1[10] / MII_TXD[2] E2 O CP[5] A AXR1 / DX0 / GP1[9] / MII_TXD[1] E1 O CP[5] A AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] /
CLKS0
F3 O CP[6] A
EMAC MII transmit data
SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 I CP[7] A EMAC MII receive error input SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS C18 I CP[7] A EMAC MII carrier sense input SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK D19 I CP[7] A EMAC MII receive clock input SPI0_ENA / EPWM0B / PRU0_R30[6] / MII_RXDV C17 I CP[7] A EMAC MII receive data valid input SPI0_SCS[5] /UART0_RXD / GP8[4] / MII_RXD[3] C19 I CP[8] A SPI0_SCS[4] /UART0_TXD / GP8[3] / MII_RXD[2] D18 I CP[8] A SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] /
SATA_MP_SWITCH SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] /
SATA_CP_DET
E17 I CP[9] A
D16 I CP[9] A
EMAC MII receive data
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
50
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
Table 3-22. Ethernet Media Access Controller (EMAC) Terminal Functions (continued)
SIGNAL
NAME NO.
VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / PRU0_R31[23]
VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / PRU0_R31[24]
VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] / PRU0_R31[25]
VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] /PRU0_R31[26]
VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / PRU1_R31[29]
VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / PRU0_R31[27]
VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / PRU0_R31[28]
VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / PRU0_R31[29]
SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO / TM64P1_IN12
SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDCLK / TM64P0_IN12
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
(1)
TYPE
PULL
RMII
W18 I/O CP[26] C EMAC 50-MHz clock input or output
W17 I CP[26] C EMAC RMII receiver error
V17 I CP[26] C
W16 I CP[26] C
W19 I CP[26] C EMAC RMII carrier sense data valid
R14 O CP[26] C EMAC RMII transmit enable
V16 O CP[26] C
U18 O CP[26] C
MDIO
D17 I/O CP[10] A MDIO serial data
E16 O CP[10] A MDIO clock
POWER
(2)
GROUP
(3)
DESCRIPTION
EMAC RMII receive data
EMAC RMII transmit data
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
51
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3.7.19 Multimedia Card/Secure Digital (MMC/SD)
Table 3-23. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions
www.ti.com
SIGNAL
NAME NO.
TYPE
(1)
PULL
(2)
POWER
GROUP
(3)
DESCRIPTION
MMCSD0
MMCSD0_CLK / PRU1_R30[31] /GP4[7] E9 O CP[18] B MMCSD0 Clock
EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6] A10 I/O CP[18] B MMCSD0 Command EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] /
PRU1_R31[22] EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] /
PRU1_R31[23]
A12 I/O CP[19] B
C11 I/O CP[19] B
EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0] E12 I/O CP[18] B EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1] B11 I/O CP[18] B
MMC/SD0 data
EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2] E11 I/O CP[18] B EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3] C10 I/O CP[18] B EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4] A11 I/O CP[18] B EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5] B10 I/O CP[18] B
MMCSD1
PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] / PRU1_R31[26]/
PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] / PRU1_R31[25]
G2 O CP[30] C MMCSD1 Clock
J4 I/O CP[30] C MMCSD1 Command
MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 I/O CP[31] C MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] /
PRU1_R31[7] MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] /
PRU1_R31[6] MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] /
PRU1_R31[5] VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] /
PRU1_R31[4] VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] /
PRU1_R31[3] VP_CLKIN3 / MMCSD1_DAT[1]/ PRU1_R30[1] / GP6[2] /
PRU1_R31[2] PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15]/
PRU1_R31[27]
F2 I/O CP[31] C
H4 I/O CP[31] C
G4 I/O CP[31] C
H3 I/O CP[30] C
K3 I/O CP[30] C
J3 I/O CP[30] C
G1 I/O CP[30] C
MMC/SD1 data
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
52
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7.20 Liquid Crystal Display Controller(LCD)
Table 3-24. Liquid Crystal Display Controller (LCD) Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
TYPE
(1)
PULL
(2)
POWER
GROUP
(3)
DESCRIPTION
VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 I/O CP[29] C VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 I/O CP[29] C VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] R2 I/O CP[29] C VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 I/O CP[29] C VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 I/O CP[29] C VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 I/O CP[29] C VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 I/O CP[29] C VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 I/O CP[29] C VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] /
PRU1_R31[15] VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] /
PRU1_R31[14] VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] /
PRU1_R31[13] VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] /
PRU1_R31[12] VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] /
PRU1_R31[11] VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] /
PRU1_R31[10]
U2 I/O CP[28] C
U1 I/O CP[28] C
V3 I/O CP[28] C
V2 I/O CP[28] C
V1 I/O CP[28] C
W3 I/O CP[28] C
LCD data bus
VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 I/O CP[28] C VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 I/O CP[28] C MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 O CP[31] C LCD pixel clock MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] /
PRU1_R31[6] MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] /
PRU1_R31[5] LCD_AC_ENB_CS / GP6[0] / PRU1_R31[28] R5 O CP[31] C MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] /
PRU1_R31[7]
H4 O CP[31] C LCD horizontal sync
G4 O CP[31] C LCD vertical sync
LCD AC bias enable chip select
F2 O CP[31] C LCD memory clock
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
53
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3.7.21 Serial ATA Controller (SATA)
Table 3-25. Serial ATA Controller (SATA) Terminal Functions
www.ti.com
SIGNAL
NAME NO.
TYPE
(1)
PULL
(2)
POWER
GROUP
(3)
DESCRIPTION
SATA_RXP L1 I SATA receive data (positive) SATA_RXN L2 I SATA receive data (negative) SATA_TXP J1 O SATA transmit data (positive) SATA_TXN J2 O SATA transmit data (negative) SATA_REFCLKP N2 I SATA PHY reference clock (positive) SATA_REFCLKN N1 I SATA PHY reference clock (negative)
SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] / SATA_MP_SWITCH
SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] / SATA_CP_DET
SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0]
SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1]
SATA_REG N3 A
E17 I CP[9] A SATA mechanical presence switch input
D16 I CP[9] A SATA cold presence detect input
F19 O CP[13] A SATA cold presence power-on output
E18 O CP[13] A SATA LED control output
SATA PHY PLL regulator output. Requires an external 0.1uF filter capacitor.
SATA_VDDR P3 PWR SATA PHY 1.8V internal regulator supply
M2,
SATA_VDD
P1, P2,
PWR SATA PHY 1.2V logic supply
N4
H1, H2,
SATA_VSS
K1, K2,
GND SATA PHY ground reference
L3, M1
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
54
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7.22 Universal Host-Port Interface (UHPI)
Table 3-26. Universal Host-Port Interface (UHPI) Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] / PRU0_R31[29]
VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] / PRU0_R31[28]
VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN / PRU0_R31[27]
VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] / PRU0_R31[26]
VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] / PRU0_R31[25]
VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER / PRU0_R31[24]
VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK / PRU0_R31[23]
VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV / PRU1_R31[29]
VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] / PRU0_R31[15]
VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / PRU0_R30[14] / PRU0_R31[14]
VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] / PRU0_R31[13]
VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] / PRU0_R31[12]
VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] / PRU0_R31[11]
VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] / PRU0_R31[10]
(1)
TYPE
PULL
U18 I/O CP[26] C
V16 I/O CP[26] C
R14 I/O CP[26] C
W16 I/O CP[26] C
V17 I/O CP[26] C
W17 I/O CP[26] C
W18 I/O CP[26] C
W19 I/O CP[26] C
V18 I/O CP[27] C
V19 I/O CP[27] C
U19 I/O CP[27] C
T16 I/O CP[27] C
R18 I/O CP[27] C
R19 I/O CP[27] C
(2)
POWER
GROUP
(3)
UHPI data bus
DESCRIPTION
VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] / PRU0_R31[9] R15 I/O CP[27] C VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 I/O CP[27] C PRU0_R30[29] / UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] U17 I CP[24] C PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] W15 I CP[24] C
PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] U16 I CP[24] C PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT /
GP6[8]/PRU1_R31[17]
T15 I CP[24] C UHPI read/write
UHPI access control
UHPI half-word identification control
VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] / GP6[7] / UPP_2xTXCLK W14 I CP[25] C UHPI chip select VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 I CP[25] C CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14] T18 I CP[22] C
UHPI data strobe
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
55
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
Table 3-26. Universal Host-Port Interface (UHPI) Terminal Functions (continued)
SIGNAL
NAME NO.
TYPE
(1)
PULL
PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] R16 O CP[23] C UHPI host interrupt PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] /GP6[13] R17 O CP[23] C UHPI ready RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15] T17 I CP[21] C UHPI address strobe
(2)
POWER
GROUP
(3)
DESCRIPTION
56
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7.23 Universal Parallel Port (uPP)
Table 3-27. Universal Parallel Port (uPP) Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
VP_CLKIN0 / UHPI_HCS /PRU1_R30[10] / GP6[7] /
UPP_2xTXCLK
PRU0_R30[25] /MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15]/PRU1_R31[27]
PRU0_R30[24]/ MMCSD1_CLK / UPP_CHB_START / GP8[14] / PRU1_R31[26]
PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13]/PRU1_R31[25]
PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12]/ PRU1_R31[24]
(1)
TYPE
PULL
W14 I CP[25] C uPP 2x transmit clock input
G1 I/O CP[30] C uPP channel B clock
G2 I/O CP[30] C uPP channel B start
J4 I/O CP[30] C uPP channel B enable
G3 I/O CP[30] C uPP channel B wait
(2)
POWER
GROUP
(3)
DESCRIPTION
PRU0_R30[29] /UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] U17 I/O CP[24] C uPP channel A clock PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] W15 I/O CP[24] C uPP channel A start PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] U16 I/O CP[24] C uPP channel A enable PRU0_R30[26] /UHPI_HRW / UPP_CHA_WAIT / GP6[8] /
PRU1_R31[17]
T15 I/O CP[24] C uPP channel A wait
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
57
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-27. Universal Parallel Port (uPP) Terminal Functions (continued)
SIGNAL
NAME NO.
VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15]
VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14]
VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13]
VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12]
VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11]
VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10]
U2 I/O CP[28] C
U1 I/O CP[28] C
V3 I/O CP[28] C
V2 I/O CP[28] C
V1 I/O CP[28] C
W3 I/O CP[28] C
TYPE
(1)
PULL
VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 I/O CP[28] C VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 I/O CP[28] C VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 I/O CP[29] C VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 I/O CP[29] C VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] R2 I/O CP[29] C VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 I/O CP[29] C VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 I/O CP[29] C VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 I/O CP[29] C VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 I/O CP[29] C VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 I/O CP[29] C VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] /
PRU0_R31[29] VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] /
PRU0_R31[28] VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN /
PRU0_R31[27] VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] /
PRU0_R31[26] VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / RMII_RXD[0] /
PRU0_R31[25] VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER /
PRU0_R31[24] VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK /
PRU0_R31[23] VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV /
PRU1_R31[29] VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7]/PRU0_R30[15] /
PRU0_R31[15] VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6]/ PRU0_R30[14] /
PRU0_R31[14] VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] /PRU0_R30[13] /
PRU0_R31[13] VP_DIN[12] / UHPI_HD[4] / UPP_D[4]/ PRU0_R30[12] /
PRU0_R31[12] VP_DIN[11] / UHPI_HD[3] / UPP_D[3]/ PRU0_R30[11] /
PRU0_R31[11] VP_DIN[10] / UHPI_HD[2] / UPP_D[2]/ PRU0_R30[10] /
PRU0_R31[10] VP_DIN[9] / UHPI_HD[1] / UPP_D[1]/ PRU0_R30[9] /
PRU0_R31[9]
U18 I/O CP[26] C
V16 I/O CP[26] C
R14 I/O CP[26] C
W16 I/O CP[26] C
V17 I/O CP[26] C
W17 I/O CP[26] C
W18 I/O CP[26] C
W19 I/O CP[26] C
V18 I/O CP[27] C
V19 I/O CP[27] C
U19 I/O CP[27] C
T16 I/O CP[27] C
R18 I/O CP[27] C
R19 I/O CP[27] C
R15 I/O CP[27] C
VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 I/O CP[27] C
(2)
POWER
GROUP
(3)
uPP data bus
www.ti.com
DESCRIPTION
58
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7.24 Video Port Interface (VPIF)
Table 3-28. Video Port Interface (VPIF) Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
TYPE
(1)
PULL
POWER
(2)
GROUP
(3)
DESCRIPTION
VIDEO INPUT
VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] / GP6[7] /
UPP_2xTXCLK
W14 I CP[25] C
VP_CLKIN1 / UHPI_HDS1/PRU1_R30[9] / GP6[6] / PRU1_R31[16] V15 I CP[25] C VP_DIN[15]_VSYNC / UHPI_HD[7] / UPP_D[7] / PRU0_R30[15] /
PRU0_R31[15] VP_DIN[14]_HSYNC / UHPI_HD[6] / UPP_D[6] / RU0_R30[14] /
PRU0_R31[14] VP_DIN[13]_FIELD / UHPI_HD[5] / UPP_D[5] / PRU0_R30[13] /
PRU0_R31[13] VP_DIN[12] / UHPI_HD[4] / UPP_D[4] / PRU0_R30[12] /
PRU0_R31[12] VP_DIN[11] / UHPI_HD[3] / UPP_D[3] / PRU0_R30[11] /
PRU0_R31[11] VP_DIN[10] / UHPI_HD[2] / UPP_D[2] / PRU0_R30[10] /
PRU0_R31[10] VP_DIN[9] / UHPI_HD[1] / UPP_D[1] / PRU0_R30[9] /
PRU0_R31[9]
V18 I CP[27] C
V19 I CP[27] C
U19 I CP[27] C
T16 I CP[27] C
R18 I CP[27] C
R19 I CP[27] C
R15 I CP[27] C
VPIF capture channel 0 input clock
VPIF capture channel 1 input clock
VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 I CP[27] C VP_DIN[7] / UHPI_HD[15] / UPP_D[15] / RMII_TXD[1] /
PRU0_R31[29] VP_DIN[6] / UHPI_HD[14] / UPP_D[14] / RMII_TXD[0] /
PRU0_R31[28] VP_DIN[5] / UHPI_HD[13] / UPP_D[13] / RMII_TXEN /
PRU0_R31[27] VP_DIN[4] / UHPI_HD[12] / UPP_D[12] / RMII_RXD[1] /
PRU0_R31[26] VP_DIN[3] / UHPI_HD[11] / UPP_D[11] / MII_RXD[0] /
PRU0_R31[25] VP_DIN[2] / UHPI_HD[10] / UPP_D[10] / RMII_RXER /
PRU0_R31[24] VP_DIN[1] / UHPI_HD[9] / UPP_D[9] / RMII_MHZ_50_CLK /
PRU0_R31[23] VP_DIN[0] / UHPI_HD[8] / UPP_D[8] / RMII_CRS_DV /
PRU1_R31[29]
U18 I CP[26] C
V16 I CP[26] C
R14 I CP[26] C
W16 I CP[26] C
V17 I CP[26] C
W17 I CP[26] C
W18 I CP[26] C
W19 I CP[26] C
VPIF capture data bus
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. or more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the
Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
59
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-28. Video Port Interface (VPIF) Terminal Functions (continued)
SIGNAL
NAME NO.
TYPE
(1)
PULL
VIDEO OUTPUT
VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] /
PRU1_R31[4] VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] /
PRU1_R31[3] VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] /
PRU1_R31[2]
H3 I CP[30] C
K3 O CP[30] C
J3 I CP[30] C
VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 O CP[30] C VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 O CP[29] C
VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 O CP[29] C VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5] / BOOT[5] R2 O CP[29] C VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 O CP[29] C VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 O CP[29] C VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 O CP[29] C VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 O CP[29] C VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 O CP[29] C VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] U2 O CP[28] C VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] U1 O CP[28] C VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] V3 O CP[28] C VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] V2 O CP[28] C VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] V1 O CP[28] C VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] W3 O CP[28] C VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 O CP[28] C VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 O CP[28] C
POWER
(2)
GROUP
(3)
DESCRIPTION
VPIF display channel 2 input clock
VPIF display channel 2 output clock
VPIF display channel 3 input clock
VPIF display channel 3 output clock
VPIF display data bus
www.ti.com
60
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7.25 General Purpose Input Output
Table 3-29. General Purpose Input Output Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
TYPE
(1)
PULL
POWER
(2)
GROUP
(3)
DESCRIPTION
GP0
ACLKR / PRU0_R30[20] / GP0[15] / PRU0_R31[22] A1 I/O CP[0] A ACLKX / PRU0_R30[19] / GP0[14] / PRU0_R31[21] B1 I/O CP[0] A AFSR / GP0[13] / PRU0_R31[20] C2 I/O CP[0] A AFSX / GP0[12] / PRU0_R31[19] B2 I/O CP[0] A AHCLKR / PRU0_R30[18] / UART1_RTS / GP0[11] /
PRU0_R31[18] AHCLKX / USB_REFCLKIN / UART1_CTS / GP0[10] /
PRU0_R31[17]
A2 I/O CP[0] A
A3 I/O CP[0] A
AMUTE / PRU0_R30[16] / UART2_RTS / GP0[9] / PRU0_R31[16] D5 I/O CP[0] A RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEP F4 I/O CP[0] A
GPIO Bank 0
AXR15 / EPWM0TZ[0] / ECAP2_APWM2 / GP0[7] A4 I/O CP[1] A AXR14 / CLKR1 / GP0[6] B4 I/O CP[2] A AXR13 / CLKX1 / GP0[5] B3 I/O CP[2] A AXR12 / FSR1 / GP0[4] C4 I/O CP[2] A AXR11 / FSX1 / GP0[3] C5 I/O CP[2] A AXR10 / DR1 / GP0[2] D4 I/O CP[2] A AXR9 / DX1 / GP0[1] C3 I/O CP[2] A AXR8 / CLKS1 / ECAP1_APWM1 /GP0[0] / PRU0_R31[8] E4 I/O CP[3] A
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up, an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power supply DVDD3318_C.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
61
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-29. General Purpose Input Output Terminal Functions (continued)
SIGNAL
NAME NO.
TYPE
(1)
PULL
GP1
AXR7 / EPWM1TZ[0] / PRU0_R30[17] / GP1[15] / PRU0_R31[7] D2 I/O CP[4] A AXR6 / CLKR0 / GP1[14] / MII_TXEN / PRU0_R31[6] C1 I/O CP[5] A AXR5 / CLKX0 / GP1[13] / MII_TXCLK D3 I/O CP[5] A AXR4 / FSR0 / GP1[12] / MII_COL D1 I/O CP[5] A AXR3 / FSX0 / GP1[11] / MII_TXD[3] E3 I/O CP[5] A AXR2 / DR0 / GP1[10] / MII_TXD[2] E2 I/O CP[5] A AXR1 / DX0 / GP1[9] / MII_TXD[1] E1 I/O CP[5] A SPI0_CLK / EPWM0A / GP1[8] / MII_RXCLK D19 I/O CP[7] A SPI0_SCS[1] / TM64P0_OUT12 / GP1[7] / MDCLK / TM64P0_IN12 E16 I/O CP[10] A SPI0_SCS[0] / TM64P1_OUT12 / GP1[6] / MDIO / TM64P1_IN12 D17 I/O CP[10] A SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5] G16 I/O CP[11] A SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4] G18 I/O CP[11] A SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3] F17 I/O CP[12] A SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2] F16 I/O CP[12] A SPI1_SCS[3] / UART1_RXD / SATA_LED / GP1[1] E18 I/O CP[13] A SPI1_SCS[2] / UART1_TXD / SATA_CP_POD / GP1[0] F19 I/O CP[13] A
POWER
(2)
GROUP
(3)
GPIO Bank 1
www.ti.com
DESCRIPTION
62
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-29. General Purpose Input Output Terminal Functions (continued)
SIGNAL
NAME NO.
TYPE
(1)
PULL
GP2
SPI1_SCS[1] / EPWM1A / PRU0_R30[8] / GP2[15] / TM64P2_IN12 F18 I/O CP[14] A SPI1_SCS[0] / EPWM1B / PRU0_R30[7] / GP2[14] / TM64P3_IN12 E19 I/O CP[14] A SPI1_CLK / GP2[13] G19 I/O CP[15] A SPI1_ENA / GP2[12] H16 I/O CP[15] A SPI1_SOMI / GP2[11] H17 I/O CP[15] A SPI1_SIMO / GP2[10] G17 I/O CP[15] A EMA_BA[1] / GP2[9] A15 I/O CP[16] B EMA_BA[0] / GP2[8] C15 I/O CP[16] B EMA_CLK / PRU0_R30[5] / GP2[7] / PRU0_R31[5] B7 I/O CP[16] B EMA_SDCKE / PRU0_R30[4] / GP2[6] / PRU0_R31[4] D8 I/O CP[16] B EMA_RAS / PRU0_R30[3] / GP2[5] / PRU0_R31[3] A16 I/O CP[16] B EMA_CAS / PRU0_R30[2] / GP2[4] / PRU0_R31[2] A9 I/O CP[16] B EMA_WEN_DQM[0] / GP2[3] C8 I/O CP[16] B EMA_WEN_DQM[1] / GP2[2] A5 I/O CP[16] B EMA_WAIT[1] / PRU0_R30[1] / GP2[1] / PRU0_R31[1] B19 I/O CP[16] B EMA_CS[0] / GP2[0] A18 I/O CP[16] B
GP3
EMA_CS[2] / GP3[15] B17 I/O CP[16] B EMA_CS[3] / GP3[14] A17 I/O CP[16] B EMA_CS[4] / GP3[13] F9 I/O CP[16] B EMA_CS[5] / GP3[12] B16 I/O CP[16] B EMA_WE / GP3[11] B9 I/O CP[16] B EMA_OE / GP3[10] B15 I/O CP[16] B EMA_A_RW / GP3[9] D10 I/O CP[16] B EMA_WAIT[0] / PRU0_R30[0] / GP3[8] / PRU0_R31[0] B18 I/O CP[16] B EMA_D[15] / GP3[7] E6 I/O CP[17] B EMA_D[14] / GP3[6] C7 I/O CP[17] B EMA_D[13] / GP3[5] B6 I/O CP[17] B EMA_D[12] / GP3[4] A6 I/O CP[17] B EMA_D[11] / GP3[3] D6 I/O CP[17] B EMA_D[10] / GP3[2] A7 I/O CP[17] B EMA_D[9] / GP3[1] D9 I/O CP[17] B EMA_D[8] / GP3[0] E10 I/O CP[17] B
POWER
(2)
GROUP
(3)
GPIO Bank 2
GPIO Bank 3
TMS320C6748
DESCRIPTION
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
63
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-29. General Purpose Input Output Terminal Functions (continued)
SIGNAL
NAME NO.
TYPE
(1)
PULL
GP4
EMA_D[7] / GP4[15] D7 I/O CP[17] B EMA_D[6] / GP4[14] C6 I/O CP[17] B EMA_D[5] / GP4[13] E7 I/O CP[17] B EMA_D[4] / GP4[12] B5 I/O CP[17] B EMA_D[3] / GP4[11] E8 I/O CP[17] B EMA_D[2] / GP4[10] B8 I/O CP[17] B EMA_D[1] / GP4[9] A8 I/O CP[17] B EMA_D[0] / GP4[8] C9 I/O CP[17] B MMCSD0_CLK / PRU1_R30[31] / GP4[7] E9 I/O CP[18] B EMA_A[22] / MMCSD0_CMD / PRU1_R30[30] / GP4[6] A10 I/O CP[18] B EMA_A[21] / MMCSD0_DAT[0] / PRU1_R30[29] / GP4[5] B10 I/O CP[18] B EMA_A[20] / MMCSD0_DAT[1] / PRU1_R30[28] / GP4[4] A11 I/O CP[18] B EMA_A[19] / MMCSD0_DAT[2] / PRU1_R30[27] / GP4[3] C10 I/O CP[18] B EMA_A[18] / MMCSD0_DAT[3] / PRU1_R30[26] / GP4[2] E11 I/O CP[18] B EMA_A[17] / MMCSD0_DAT[4] / PRU1_R30[25] / GP4[1] B11 I/O CP[18] B EMA_A[16] / MMCSD0_DAT[5] / PRU1_R30[24] / GP4[0] E12 I/O CP[18] B
GP5
EMA_A[15] / MMCSD0_DAT[6] / PRU1_R30[23] / GP5[15] / PRU1_R31[23]
EMA_A[14] / MMCSD0_DAT[7] / PRU1_R30[22] / GP5[14] / PRU1_R31[22]
EMA_A[13] / PRU0_R30[21] / PRU1_R30[21] / GP5[13] / PRU1_R31[21]
C11 I/O CP[19] B
A12 I/O CP[19] B
D11 I/O CP[19] B
EMA_A[12] / PRU1_R30[20] / GP5[12] / PRU1_R31[20] D13 I/O CP[19] B EMA_A[11] / PRU1_R30[19] / GP5[11] / PRU1_R31[19] B12 I/O CP[19] B EMA_A[10] / PRU1_R30[18] / GP5[10] / PRU1_R31[18] C12 I/O CP[19] B EMA_A[9] / PRU1_R30[17] / GP5[9] D12 I/O CP[19] B EMA_A[8] / PRU1_R30[16] / GP5[8] A13 I/O CP[19] B EMA_A[7] / PRU1_R30[15] / GP5[7] B13 I/O CP[20] B EMA_A[6] / GP5[6] E13 I/O CP[20] B EMA_A[5] / GP5[5] C13 I/O CP[20] B EMA_A[4] / GP5[4] A14 I/O CP[20] B EMA_A[3] / GP5[3] D14 I/O CP[20] B EMA_A[2] / GP5[2] B14 I/O CP[20] B EMA_A[1] / GP5[1] D15 I/O CP[20] B EMA_A[0] / GP5[0] C14 I/O CP[20] B
POWER
(2)
GROUP
(3)
GPIO Bank 4
GPIO Bank 5
www.ti.com
DESCRIPTION
64
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 3-29. General Purpose Input Output Terminal Functions (continued)
SIGNAL
NAME NO.
TYPE
(1)
PULL
GP6
RESETOUT / UHPI_HAS / PRU1_R30[14] / GP6[15] T17 I/O CP[21] C CLKOUT / UHPI_HDS2 / PRU1_R30[13] / GP6[14] T18 I/O CP[22] C PRU0_R30[31] / UHPI_HRDY / PRU1_R30[12] / GP6[13] R17 I/O CP[23] C PRU0_R30[30] / UHPI_HINT / PRU1_R30[11] / GP6[12] R16 I/O CP[23] C PRU0_R30[29] / UHPI_HCNTL0 / UPP_CHA_CLOCK / GP6[11] U17 I/O CP[24] C PRU0_R30[28] / UHPI_HCNTL1 / UPP_CHA_START / GP6[10] W15 I/O CP[24] C PRU0_R30[27] / UHPI_HHWIL / UPP_CHA_ENABLE / GP6[9] U16 I/O CP[24] C PRU0_R30[26] / UHPI_HRW / UPP_CHA_WAIT/GP6[8] /
PRU1_R31[17]
T15 I/O CP[24] C
VP_CLKIN0 / UHPI_HCS / PRU1_R30[10] GP6[7] / UPP_2xTXCLK W14 I/O CP[25] C VP_CLKIN1 / UHPI_HDS1 / PRU1_R30[9] / GP6[6] /
PRU1_R31[16]
V15 I/O CP[25] C
VP_DIN[8] / UHPI_HD[0] / UPP_D[0] / GP6[5] / PRU1_R31[0] P17 I/O CP[27] C VP_CLKIN2 / MMCSD1_DAT[3] / PRU1_R30[3] / GP6[4] /
PRU1_R31[4] VP_CLKOUT2 / MMCSD1_DAT[2] / PRU1_R30[2] / GP6[3] /
PRU1_R31[3] VP_CLKIN3 / MMCSD1_DAT[1] / PRU1_R30[1] / GP6[2] /
PRU1_R31[2]
H3 I/O CP[30] C
K3 I/O CP[30] C
J3 I/O CP[30] C
VP_CLKOUT3 / PRU1_R30[0] / GP6[1] / PRU1_R31[1] K4 I/O CP[30] C LCD_AC_ENB_CS / GP6[0] / PRU1_R31[28] R5 I/O CP[31] C
GP7
VP_DOUT[7] / LCD_D[7] / UPP_XD[15] / GP7[15] / PRU1_R31[15] U2 I/O CP[28] C VP_DOUT[6] / LCD_D[6] / UPP_XD[14] / GP7[14] / PRU1_R31[14] U1 I/O CP[28] C VP_DOUT[5] / LCD_D[5] / UPP_XD[13] / GP7[13] / PRU1_R31[13] V3 I/O CP[28] C VP_DOUT[4] / LCD_D[4] / UPP_XD[12] / GP7[12] / PRU1_R31[12] V2 I/O CP[28] C VP_DOUT[3] / LCD_D[3] / UPP_XD[11] / GP7[11] / PRU1_R31[11] V1 I/O CP[28] C VP_DOUT[2] / LCD_D[2] / UPP_XD[10] / GP7[10] / PRU1_R31[10] W3 I/O CP[28] C VP_DOUT[1] / LCD_D[1] / UPP_XD[9] / GP7[9] / PRU1_R31[9] W2 I/O CP[28] C VP_DOUT[0] / LCD_D[0] / UPP_XD[8] / GP7[8] / PRU1_R31[8] W1 I/O CP[28] C VP_DOUT[15] / LCD_D[15] / UPP_XD[7] / GP7[7] / BOOT[7] P4 I/O CP[29] C VP_DOUT[14] / LCD_D[14] / UPP_XD[6] / GP7[6] / BOOT[6] R3 I/O CP[29] C VP_DOUT[13] / LCD_D[13] / UPP_XD[5] / GP7[5]/ BOOT[5] R2 I/O CP[29] C VP_DOUT[12] / LCD_D[12] / UPP_XD[4] / GP7[4] / BOOT[4] R1 I/O CP[29] C VP_DOUT[11] / LCD_D[11] / UPP_XD[3] / GP7[3] / BOOT[3] T3 I/O CP[29] C VP_DOUT[10] / LCD_D[10] / UPP_XD[2] / GP7[2] / BOOT[2] T2 I/O CP[29] C VP_DOUT[9] / LCD_D[9] / UPP_XD[1] / GP7[1] / BOOT[1] T1 I/O CP[29] C VP_DOUT[8] / LCD_D[8] / UPP_XD[0] / GP7[0] / BOOT[0] U3 I/O CP[29] C
POWER
(2)
GROUP
(3)
GPIO Bank 6
GPIO Bank 7
TMS320C6748
DESCRIPTION
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
65
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
Table 3-29. General Purpose Input Output Terminal Functions (continued)
SIGNAL
NAME NO.
TYPE
(1)
PULL
GP8
PRU0_R30[25] / MMCSD1_DAT[0] / UPP_CHB_CLOCK / GP8[15] / PRU1_R31[27]
PRU0_R30[24] / MMCSD1_CLK / UPP_CHB_START / GP8[14] / PRU1_R31[26]
PRU0_R30[23] / MMCSD1_CMD / UPP_CHB_ENABLE / GP8[13] / PRU1_R31[25]
PRU0_R30[22] / PRU1_R30[8] / UPP_CHB_WAIT / GP8[12] / PRU1_R31[24]
G1 I/O CP30] C
G2 I/O CP[30] C
J4 I/O CP[30] C
G3 I/O CP[30] C
MMCSD1_DAT[7] / LCD_PCLK / PRU1_R30[7] / GP8[11] F1 I/O CP[31] C MMCSD1_DAT[6] / LCD_MCLK / PRU1_R30[6] / GP8[10] /
PRU1_R31[7] MMCSD1_DAT[5] / LCD_HSYNC / PRU1_R30[5] / GP8[9] /
PRU1_R31[6] MMCSD1_DAT[4] / LCD_VSYNC / PRU1_R30[4] / GP8[8] /
PRU1_R31[5]
F2 I/O CP[31] C
H4 I/O CP[31] C
G4 I/O CP[31] C
AXR0 / ECAP0_APWM0 / GP8[7] / MII_TXD[0] / CLKS0 F3 I/O CP[6] A SPI0_SOMI / EPWMSYNCI / GP8[6] / MII_RXER C16 I/O CP[7] A SPI0_SIMO / EPWMSYNCO / GP8[5] / MII_CRS C18 I/O CP[7] A SPI0_SCS[5] / UART0_RXD / GP8[4] / MII_RXD[3] C19 I/O CP[8] A SPI0_SCS[4] / UART0_TXD / GP8[3] / MII_RXD[2] D18 I/O CP[8] A SPI0_SCS[3] / UART0_CTS / GP8[2] / MII_RXD[1] /
SATA_MP_SWITCH SPI0_SCS[2] / UART0_RTS / GP8[1] / MII_RXD[0] /
SATA_CP_DET
(4)
GP8[0]
E17 I/O CP[9] A
D16 I/O CP[9] A K17 I/O IPD B
(4) GP8[0] is initially configured as a reserved function after reset and will not be in a predictable state. This signal will only be stable after
the GPIO configuration for this pin has been completed. Users should carefully consider the system implications of this pin being in an unknown state after reset.
POWER
(2)
GROUP
(3)
DESCRIPTION
GPIO Bank 8
66
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.7.26 Reserved and No Connect
Table 3-30. Reserved and No Connect Terminal Functions
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL
NAME NO.
RSV2 T19 PWR
NC M3, M14, N16
(1) PWR = Supply voltage.
TYPE
(1)
Reserved. For proper device operation, this pin must be tied either directly to CVDD or left unconnected (do not connect to ground).
Pin M3 should be left unconnected (do not connect to power or ground) Pins M14 and N16 may be left unconnected or connected to ground (VSS)
DESCRIPTION
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
67
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
3.7.27 Supply and Ground
Table 3-31. Supply and Ground Terminal Functions
www.ti.com
SIGNAL
NAME NO.
E15, G7, G8, G13, H6, H7,
CVDD (Core supply)
RVDD (Internal RAM supply) E5, H14, N7 PWR
DVDD18 (I/O supply)
DVDD3318_A (I/O supply)
DVDD3318_B (I/O supply)
DVDD3318_C (I/O supply)
VSS (Ground)
USB0_VDDA33 N18 PWR USB0 PHY 3.3-V supply USB0_VDDA18 N14 PWR USB0 PHY 1.8-V supply input USB0_VDDA12 N17 A USB0 PHY 1.2-V LDO output for bypass cap USB_CVDD M12 PWR USB0 core logic 1.2-V supply input USB1_VDDA33 P15 PWR USB1 PHY 3.3-V supply USB1_VDDA18 P14 PWR USB1 PHY 1.8-V supply
SATA_VDD
SATA_VSS
DDR_DVDD18
(1) PWR = Supply voltage, GND - Ground.
H10, H11, H12, H13, J6, J12, K6, K12, L12, M8, M9, N8
F14, G6, G10, G11, G12, J13, K5, L6, P13, R13
F5, F15, G5, G14, G15, H5
E14, F6, F7, F8, F10, F11, F12, F13, G9, J14, K15
J5, K13, L4, L13, M13, N13, P5, P6, P12, R4
A19, H8, H9, H15, J7, J8, J9, J10, J11, K7, K8, K9, K10, K11, L5, L7, L8, L9, L10, L11, M4, M5, M6, M7, M10, M11, N5, N11, N12, P11
M2, N4, P1, P2
H1, H2, K1, K2, L3, M1
N6, N9, N10, P7, P8, P9, P10, R7, R8, R9
(1)
TYPE
PWR Variable (1.3V - 1.0V) core supply voltage pins
1.3V internal ram supply voltage pins (for 456 MHz versions)
1.2V internal ram supply voltage pins (for 375 MHz versions)
PWR
PWR 1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group A
PWR 1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group B
PWR 1.8V or 3.3-V dual-voltage LVCMOS I/O supply voltage pins, Group C
GND Ground pins.
PWR SATA PHY 1.2V logic supply
GND SATA PHY ground reference
PWR DDR PHY 1.8V power supply pins
1.8V I/O supply voltage pins. DVDD18 must be powered even if all of the DVDD3318_x supplies are operated at 3.3V.
DESCRIPTION
68
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
3.8 Unused Pin Configurations
All signals multiplexed with multiple functions may be used as an alternate function if a given peripheral is not used. Unused non-multiplexed signals and some other specific signals should be handled as specified in the tables below.
If NMI is unused, it should be pulled-high externally through a 10k-ohm resistor to supply DVDD3318_B.
Table 3-32. Unused USB0 and USB1 Signal Configurations
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
SIGNAL NAME
USB0_DM No Connect Use as USB0 function VSS or No Connect USB0_DP No Connect Use as USB0 function VSS or No Connect
USB0_ID No Connect Use as USB0 function No Connect
USB0_VBUS No Connect Use as USB0 function No Connect
USB0_DRVVBU
S USB0_VDDA33 No Connect 3.3V 3.3V USB0_VDDA18 No Connect 1.8V 1.8V USB0_VDDA12 Internal USB PHY output connected to an external 0.22-μF filter capacitor
USB1_DM No Connect VSS or No Connect Use as USB1 function
USB1_DP No Connect VSS or No Connect Use as USB1 function USB1_VDDA33 No Connect No Connect Use as USB1 function USB1_VDDA18 No Connect No Connect Use as USB1 function
USB_REFCLKIN
USB_CVDD 1.2V 1.2V 1.2V
Configuration (When USB0 and
USB1 are not used)
No Connect Use as USB0 function No Connect
No Connect or other peripheral
function
Configuration (When only USB1 is
not used)
Use for USB0 or other peripheral
function
Configuration (When USB1 is used
and USB0 is not used)
Ext Ref Clk / USB0 PHY PLL output
(see SPRUH77 Device Clocking)
Table 3-33. Unused SATA Signal Configuration
SIGNAL NAME Configuration
SATA_RXP No Connect SATA_RXN No Connect
SATA_TXP No Connect
SATA_TXN No Connect SATA_REFCLKP No Connect SATA_REFCLKN No Connect
SATA_MP_SWITCH May be used as GPIO or other peripheral function
SATA_CP_DET May be used as GPIO or other peripheral function SATA_CP_POD May be used as GPIO or other peripheral function
SATA_LED May be used as GPIO or other peripheral function
SATA_REG No Connect
SATA_VDDR No Connect
SATA_VDD
SATA_VSS VSS
Prior to silicon revision 2.0, this supply must be connected to a static 1.2V nominal supply.
For silicon revision 2.0 and later, this supply may be left unconnected for additional power
conservation.
Table 3-34. Unused RTC Signal Configuration
SIGNAL NAME Configuration
RTC_XI May be held high (CVDD) or low
RTC_XO No Connect
RTC_ALARM May be used as GPIO or other peripheral function
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ComparisonCopyright © 2009–2017, Texas Instruments Incorporated
69
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
www.ti.com
Table 3-34. Unused RTC Signal Configuration (continued)
SIGNAL NAME Configuration
RTC_CVDD Connect to CVDD
RTC_VSS VSS
Table 3-35. Unused DDR2/mDDR Memory Controller Signal Configuration
SIGNAL NAME Configuration
DDR_D[15:0] No Connect DDR_A[13:0] No Connect
DDR_CLKP No Connect DDR_CLKN No Connect
DDR_CKE No Connect
DDR_WE No Connect DDR_RAS No Connect DDR_CAS No Connect
DDS_CS No Connect
DDR_DQM[1:0] No Connect DDR_DQS[1:0] No Connect
DDR_BA[2:0] No Connect DDR_DQGATE0 No Connect DDR_DQGATE1 No Connect
DDR_ZP No Connect
DDR_VREF No Connect
DDR_DVDD18 No Connect
(1) The DDR2/mDDR input buffers are enabled by default on device power up and a maximum current draw of 25mA can result on the 1.8V
supply. To minimize power consumption, the DDR2/mDDR controller input receivers should be placed in power-down mode by setting VTPIO[14] = 1.
(1)
70
Device Comparison Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
4 Device Configuration
4.1 Boot Modes
This device supports a variety of boot modes through an internal DSP ROM bootloader. This device does not support dedicated hardware boot modes; therefore, all boot modes utilize the internal DSP ROM. The input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is determined by the values of the BOOT pins.
See Using the TMS320C6748/C6746/C6742 Bootloader (SPRAAT2) for more details on the ROM Boot Loader.
The following boot modes are supported:
NAND Flash boot – 8-bit NAND – 16-bit NAND (supported on ROM revisions after d800k002 -- see the bootloader documents
mentioned above to determine the ROM revision)
NOR Flash boot – NOR Direct boot (8-bit or 16-bit) – NOR Legacy boot (8-bit or 16-bit) – NOR AIS boot (8-bit or 16-bit)
HPI Boot
I2C0/I2C1 Boot – EEPROM (Master Mode) – External Host (Slave Mode)
SPI0/SPI1 Boot – Serial Flash (Master Mode) – SERIAL EEPROM (Master Mode) – External Host (Slave Mode)
UART0/UART1/UART2 Boot – External Host
MMC/SD0 Boot
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
4.2 SYSCFG Module
The following system level features of the chip are controlled by the SYSCFG peripheral:
Readable Device, Die, and Chip Revision ID
Control of Pin Multiplexing
Priority of bus accesses different bus masters in the system
Capture at power on reset the chip BOOT pin values and make them available to software
Control of the DeepSleep power management function
Enable and selection of the programmable pin pullups and pulldowns
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ConfigurationCopyright © 2009–2017, Texas Instruments Incorporated
71
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Special case settings for peripherals: – Locking of PLL controller settings – Default burst sizes for EDMA3 transfer controllers – Selection of the source for the eCAP module input capture (including on chip sources) – McASP AMUTEIN selection and clearing of AMUTE status for the McASP – Control of the reference clock source and other side-band signals for both of the integrated USB
PHYs – Clock source selection for EMIFA – DDR2 Controller PHY settings – SATA PHY power management controls
Selects the source of emulation suspend signal (from DSP) of peripherals supporting this function. Many registers are accessible only by a host (DSP) when it is operating in its privileged mode. (ex. from
the kernel, but not from user space code).
Table 4-1. System Configuration (SYSCFG) Module Register Access
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION REGISTER ACCESS
0x01C1 4000 REVID Revision Identification Register — 0x01C1 4008 DIEIDR0 Device Identification Register 0
0x01C1 400C DIEIDR1 Device Identification Register 1
0x01C1 4010 DIEIDR2 Device Identification Register 2 — 0x01C1 4014 DIEIDR3 Device Identification Register 3 — 0x01C1 4020 BOOTCFG Boot Configuration Register Privileged mode 0x01C1 4038 KICK0R Kick 0 Register Privileged mode
0x01C1 403C KICK1R Kick 1 Register Privileged mode
0x01C1 4044 HOST1CFG Host 1 Configuration Register — 0x01C1 40E0 IRAWSTAT Interrupt Raw Status/Set Register Privileged mode 0x01C1 40E4 IENSTAT Interrupt Enable Status/Clear Register Privileged mode 0x01C1 40E8 IENSET Interrupt Enable Register Privileged mode 0x01C1 40EC IENCLR Interrupt Enable Clear Register Privileged mode
0x01C1 40F0 EOI End of Interrupt Register Privileged mode
0x01C1 40F4 FLTADDRR Fault Address Register Privileged mode
0x01C1 40F8 FLTSTAT Fault Status Register
0x01C1 4110 MSTPRI0 Master Priority 0 Registers Privileged mode
0x01C1 4114 MSTPRI1 Master Priority 1 Registers Privileged mode
0x01C1 4118 MSTPRI2 Master Priority 2 Registers Privileged mode
0x01C1 4120 PINMUX0 Pin Multiplexing Control 0 Register Privileged mode
0x01C1 4124 PINMUX1 Pin Multiplexing Control 1 Register Privileged mode
0x01C1 4128 PINMUX2 Pin Multiplexing Control 2 Register Privileged mode 0x01C1 412C PINMUX3 Pin Multiplexing Control 3 Register Privileged mode
0x01C1 4130 PINMUX4 Pin Multiplexing Control 4 Register Privileged mode
0x01C1 4134 PINMUX5 Pin Multiplexing Control 5 Register Privileged mode
0x01C1 4138 PINMUX6 Pin Multiplexing Control 6 Register Privileged mode 0x01C1 413C PINMUX7 Pin Multiplexing Control 7 Register Privileged mode
0x01C1 4140 PINMUX8 Pin Multiplexing Control 8 Register Privileged mode
0x01C1 4144 PINMUX9 Pin Multiplexing Control 9 Register Privileged mode
0x01C1 4148 PINMUX10 Pin Multiplexing Control 10 Register Privileged mode 0x01C1 414C PINMUX11 Pin Multiplexing Control 11 Register Privileged mode
0x01C1 4150 PINMUX12 Pin Multiplexing Control 12 Register Privileged mode
0x01C1 4154 PINMUX13 Pin Multiplexing Control 13 Register Privileged mode
www.ti.com
72
Device Configuration Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 4-1. System Configuration (SYSCFG) Module Register Access (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION REGISTER ACCESS
0x01C1 4158 PINMUX14 Pin Multiplexing Control 14 Register Privileged mode 0x01C1 415C PINMUX15 Pin Multiplexing Control 15 Register Privileged mode
0x01C1 4160 PINMUX16 Pin Multiplexing Control 16 Register Privileged mode
0x01C1 4164 PINMUX17 Pin Multiplexing Control 17 Register Privileged mode
0x01C1 4168 PINMUX18 Pin Multiplexing Control 18 Register Privileged mode 0x01C1 416C PINMUX19 Pin Multiplexing Control 19 Register Privileged mode
0x01C1 4170 SUSPSRC Suspend Source Register Privileged mode
0x01C1 4174 CHIPSIG Chip Signal Register
0x01C1 4178 CHIPSIG_CLR Chip Signal Clear Register — 0x01C1 417C CFGCHIP0 Chip Configuration 0 Register Privileged mode
0x01C1 4180 CFGCHIP1 Chip Configuration 1 Register Privileged mode
0x01C1 4184 CFGCHIP2 Chip Configuration 2 Register Privileged mode
0x01C1 4188 CFGCHIP3 Chip Configuration 3 Register Privileged mode 0x01C1 418C CFGCHIP4 Chip Configuration 4 Register Privileged mode 0x01E2 C000 VTPIO_CTL VTPIO COntrol Register Privileged mode
0x01E2 C004 DDR_SLEW DDR Slew Register Privileged mode
0x01E2 C008 DeepSleep DeepSleep Register Privileged mode 0x01E2 C00C PUPD_ENA Pullup / Pulldown Enable Register Privileged mode 0x01E2 C010 PUPD_SEL Pullup / Pulldown Selection Register Privileged mode 0x01E2 C014 RXACTIVE RXACTIVE Control Register Privileged mode 0x01E2 C018 PWRDN PWRDN Control Register Privileged mode
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Device ConfigurationCopyright © 2009–2017, Texas Instruments Incorporated
73
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
4.3 Pullup/Pulldown Resistors
Proper board design should ensure that input pins to the device always be at a valid logic level and not floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external pullup/pulldown resistors.
An external pullup/pulldown resistor needs to be used in the following situations:
Boot and Configuration Pins: If the pin is both routed out and 3-stated (not driven), an external pullup/pulldown resistor is strongly recommended, even if the IPU/IPD matches the desired value/state.
Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external pullup/pulldown resistor to pull the signal to the opposite rail.
For the boot and configuration pins, if they are both routed out and 3-stated (not driven), it is strongly recommended that an external pullup/pulldown resistor be implemented. Although, internal pullup/pulldown resistors exist on these pins and they may match the desired configuration value, providing external connectivity can help ensure that valid logic levels are latched on these device boot and configuration pins. In addition, applying external pullup/pulldown resistors on the boot and configuration pins adds convenience to the user in debugging and flexibility in switching operating modes.
Tips for choosing an external pullup/pulldown resistor:
Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure to include the leakage currents of all the devices connected to the net, as well as any internal pullup or pulldown resistors.
Decide a target value for the net. For a pulldown resistor, this should be below the lowest VILlevel of all inputs connected to the net. For a pullup resistor, this should be above the highest VIHlevel of all inputs on the net. A reasonable choice would be to target the VOLor VOHlevels for the logic family of the limiting device; which, by definition, have margin to the VILand VIHlevels.
Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the net will reach the target pulled value when maximum current from all devices on the net is flowing through the resistor. The current to be considered includes leakage current plus, any other internal and external pullup/pulldown resistors on the net.
For bidirectional nets, there is an additional consideration which sets a lower limit on the resistance value of the external resistor. Verify that the resistance is small enough that the weakest output buffer can drive the net to the opposite logic level (including margin).
Remember to include tolerances when selecting the resistor value.
For pullup resistors, also remember to include tolerances on the IO supply rail.
For most systems, a 1-kresistor can be used to oppose the IPU/IPD while meeting the above criteria. Users should confirm this resistor value is correct for their specific application.
For most systems, a 20-kresistor can be used to compliment the IPU/IPD on the boot and configuration pins while meeting the above criteria. Users should confirm this resistor value is correct for their specific application.
For more detailed information on input current (II), and the low-/high-level input voltages (VILand VIH) for the device, see Section 5.3, Recommended Operating Conditions.
For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminal functions table.
www.ti.com
74
Specifications Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
5 Specifications
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
5.1 Absolute Maximum Ratings Over Operating Junction Temperature Range (Unless Otherwise Noted)
Supply voltage ranges
(1)
Core Logic, Variable and Fixed (CVDD, RVDD, RTC_CVDD, PLL0_VDDA , PLL1_VDDA , SATA_VDD, USB_CVDD)
(2)
I/O, 1.8V (USB0_VDDA18, USB1_VDDA18, SATA_VDDR, DDR_DVDD18)
I/O, 3.3V (DVDD3318_A, DVDD3318_B, DVDD3318_C, USB0_VDDA33, USB1_VDDA33)
(2)
-0.5 V to 1.4 V
(2)
-0.5 V to 2 V
-0.5 V to 3.8V
Oscillator inputs (OSCIN, RTC_XI), 1.2V -0.3 V to CVDD + 0.3V Dual-voltage LVCMOS inputs, 3.3V or 1.8V (Steady State) -0.3V to DVDD + 0.3V Dual-voltage LVCMOS inputs, operated at 3.3V
(Transient Overshoot/Undershoot)
DVDD + 20%
up to 20% of Signal
Period
Input voltage (VI) ranges
Dual-voltage LVCMOS inputs, operated at 1.8V (Transient Overshoot/Undershoot)
DVDD + 30%
up to 30% of Signal
Period
USB 5V Tolerant IOs:
5.25V
(USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP) USB0 VBUS Pin 5.50V Dual-voltage LVCMOS outputs, 3.3V or 1.8V
-0.3 V to DVDD + 0.3V
(Steady State)
Output voltage (VO) ranges
Dual-voltage LVCMOS outputs, operated at 3.3V (Transient Overshoot/Undershoot)
Dual-voltage LVCMOS outputs, operated at 1.8V (Transient Overshoot/Undershoot)
DVDD + 20%
up to 20% of Signal
Period
DVDD + 30%
up to 30% of Signal
Period
Clamp Current
Input or Output Voltages 0.3V above or below their respective power rails. Limit clamp current that flows through the I/O's internal diode
±20mA
protection cells.
Commercial (default) 0°C to 90°C Operating Junction Temperature ranges, T
J
Industrial (D suffix) -40°C to 90°C
Extended (A suffix) -40°C to 105°C
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) All voltage values are with respect to VSS, USB0_VSSA33, USB0_VSSA, PLL0_VSSA, OSCVSS, RTC_VSS (3) Up to a maximum of 24 hours.
(3)
(3)
5.2 Handling Ratings
Storage temperature range, T
ESD Stress Voltage, V
ESD
(1)
(1) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device. (2) Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP 155 states that 500V HBM allows
safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary
precautions are taken. Pins listed as 1000V may actually have higher performance. (3) Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP 157 states that 250V CDM allows safe
manufacturing with a standard ESD control process. Pins listed as 250V may actually have higher performance.
(default) -55 150 °C
stg
Human Body Model (HBM) Charged Device Model (CDM)
(2)
(3)
Submit Documentation Feedback
Product Folder Links: TMS320C6748
MIN MAX UNIT
>1 >1 kV
>500 >500 V
SpecificationsCopyright © 2009–2017, Texas Instruments Incorporated
75
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
5.3 Recommended Operating Conditions
NAME DESCRIPTION CONDITION MIN NOM MAX UNIT
CVDD Core Logic Supply Voltage (variable)
RVDD Internal RAM Supply Voltage
(1)
RTC Core Logic Supply Voltage 0.9 1.2 1.32 V
(2)
1.8V Logic Supply 1.71 1.8 1.89 V
(
DDR2 PHY Supply Voltage 1.71 1.8 1.89 V
DDR2/mDDR impedance control, connected via 50resistor to Vss
Power Group A Dual-voltage IO Supply Voltage
Power Group B Dual-voltage IO Supply Voltage
Power Group C Dual-voltage IO Supply Voltage
(3)
Oscillator Ground
(3)
RTC Oscillator Ground
High-level input voltage, Dual-voltage I/O, 3.3V High-level input voltage, Dual-voltage I/O, 1.8V High-level input voltage, RTC_XI 0.8*RTC_CVDD V High-level input voltage, OSCIN 0.8*CVDD V Low-level input voltage, Dual-voltage I/O, 3.3V Low-level input voltage, Dual-voltage I/O, 1.8V Low-level input voltage, RTC_XI 0.2*RTC_CVDD V Low-level input voltage, OSCIN 0.2*CVDD V
Supply Voltage
Supply Ground
Voltage Input High
Voltage Input Low
RTC_CVDD PLL0_VDDA PLL0 Supply Voltage 1.14 1.2 1.32 V PLL1_VDDA PLL1 Supply Voltage 1.14 1.2 1.32 V SATA_VDD SATA Core Logic Supply Voltage 1.14 1.2 1.32 V USB_CVDD USB0, USB1 Core Logic Supply Voltage 1.14 1.2 1.32 V USB0_VDDA18 USB0 PHY Supply Voltage 1.71 1.8 1.89 V USB0_VDDA33 USB0 PHY Supply Voltage 3.15 3.3 3.45 V USB1_VDDA18 USB1 PHY Supply Voltage 1.71 1.8 1.89 V USB1_VDDA33 USB1 PHY Supply Voltage 3.15 3.3 3.45 V DVDD18 SATA_VDDR SATA PHY Internal Regulator Supply Voltage 1.71 1.8 1.89 V DDR_DVDD18
2)
DDR_VREF DDR2/mDDR reference voltage
DDR_ZP
DVDD3318_A
DVDD3318_B
DVDD3318_C
VSS Core Logic Digital Ground PLL0_VSSA PLL0 Ground PLL1_VSSA PLL1 Ground SATA_VSS SATA PHY Ground OSCVSS RTC_VSS USB0_VSSA USB0 PHY Ground USB0_VSSA33 USB0 PHY Ground
V
IH
V
IL
www.ti.com
1.3V operating point 1.25 1.3 1.35
1.2V operating point 1.14 1.2 1.32
1.1V operating point 1.05 1.1 1.16
1.0V operating point 0.95 1.0 1.05 456 MHz versions 1.25 1.3 1.35 375 MHz versions 1.14 1.2 1.32
0.49*
DDR_DVDD18
0.5*
DDR_DVDD18
0.51*
DDR_DVDD18
Vss V
1.8V operating point 1.71 1.8 1.89 V
3.3V operating point 3.15 3.3 3.45 V
1.8V operating point 1.71 1.8 1.89 V
3.3V operating point 3.15 3.3 3.45 V
1.8V operating point 1.71 1.8 1.89 V
3.3V operating point 3.15 3.3 3.45 V
0 0 0 V
(4)
(4)
(4)
(4)
2 V
0.65*DVDD V
0.8 V
0.35*DVDD V
V
V
V
(1) The RTC provides an option for isolating the RTC_CVDD from the CVDD to reduce current leakage when the RTC is powered
independently. If these power supplies are not isolated (CTRL.SPLITPOWER=0), RTC_CVDD must be equal to or greater than CVDD.
If these power supplies are isolated (CTRL.SPLITPOWER=1), RTC_CVDD may be lower than CVDD. (2) DVDD18 must be powered even if all of the DVDD3318_x supplies are operated at 3.3V. (3) When an external crystal is used oscillator (OSC_VSS, RTC_VSS) ground must be kept separate from other grounds and connected
directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on
the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground. (4) These IO specifications apply to the dual-voltage IOs only and do not apply to DDR2/mDDR or SATA interfaces. DDR2/mDDR IOs are
1.8V IOs and adhere to the JESD79-2A standard.
76
Specifications Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Recommended Operating Conditions (continued)
NAME DESCRIPTION CONDITION MIN NOM MAX UNIT
USB USB0_VBUS USB external charge pump input 0 5.25 V Differential
Clock Input Voltage
Transition Time
Operating Frequency
t
t
F
PLL0_SYSCLK1,6
(5) Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve
noise immunity on input signals. (6) This operating point is not supported on revision 1.x silicon. (7) This operating point is 300 MHz on revision 1.x silicon.
Differential input voltage, SATA_REFCLKP and SATA_REFCLKN
Transition time, 10%-90%, All Inputs (unless otherwise specified in the electrical data sections)
CVDD = 1.3V operating point
CVDD = 1.2V
Commercial temperature grade (default)
operating point CVDD = 1.1V
operating point CVDD = 1.0V
operating point CVDD = 1.3V
operating point CVDD = 1.2V
Industrial temperature grade (D suffix)
operating point CVDD = 1.1V
operating point CVDD = 1.0V
operating point CVDD = 1.2V
operating point
Extended temperature grade (A suffix)
CVDD = 1.1V operating point
CVDD = 1.0V operating point
250 2000 mV
0.25P or 10
0 456
0 375
0 200
0 100
0 456
0 375
0 200
0 100
0 375
0 200
0 100
(5)
ns
(6)
(7)
(6)
(6)
(6)
(7)
(6)
(6)
(7)
(6)
(6)
MHz
MHz
MHz
Submit Documentation Feedback
Product Folder Links: TMS320C6748
SpecificationsCopyright © 2009–2017, Texas Instruments Incorporated
77
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
5.4 Notes on Recommended Power-On Hours (POH)
The information in the section below is provided solely for your convenience and does not extend or modify the warranty provided under TI’s standard terms and conditions for TI semiconductor products.
To avoid significant degradation, the device power-on hours (POH) must be limited to the following:
Table 5-1. Recommended Power-On Hours
www.ti.com
Silicon
Revision
A 300 MHz 0 to 90 °C 1.2V 100,000 B/E 300 MHz 0 to 90 °C 1.2V 100,000 B/E 375 MHz 0 to 90 °C 1.2V 100,000 B/E 375 MHz -40 to 105 °C 1.2V 75,000 B/E 456 MHz 0 to 90 °C 1.3V 100,000 B/E 456 MHz -40 to 90 °C 1.3V 100,000
(1) 100,000 POH can be achieved at this temperature condition if the device operation is limited to 345 MHz
Speed Grade
Operating Junction
Temperature (Tj)
Nominal CVDD Voltage (V)
Power-On Hours [POH]
Note: Logic functions and parameter values are not assured out of the range specified in the
recommended operating conditions.
The above notations cannot be deemed a warranty or deemed to extend or modify the warranty under TI’s standard terms and conditions for TI semiconductor products.
(hours)
(1)
78
Specifications Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
5.5 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Junction Temperature (Unless Otherwise Noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DVDD= 3.15V, IOH= -4 mA 2.4 V DVDD= 3.15V, IOH= -100 μA 2.95 V
DVDD= 1.71V, IOH= -2 mA DVDD-0.45 V DVDD= 3.15V, IOL= 4mA 0.4 V
DVDD= 3.15V, IOL= 100 μA 0.2 V DVDD= 1.71V, IOL= 2mA 0.45 V VI= VSS to DVDD without
opposing internal resistor VI= VSS to DVDD with
opposing internal pullup
(3)
resistor
70 310 μA
VI= VSS to DVDD with opposing internal pulldown
(3)
resistor
-75 -270 μA
VI= VSS to DVDD with opposing internal pulldown
(3)
resistor
-77 -286 μA
V
OH
V
OL
(2)
I
I
I
OH
I
OL
Capacitance
High-level output voltage (dual-voltage LVCMOS IOs at 3.3V)
High-level output voltage (dual-voltage LVCMOS IOs at 1.8V)
(1)
(1)
Low-level output voltage (dual-voltage LVCMOS I/Os at 3.3V)
Low-level output voltage (dual-voltage LVCMOS I/Os at 1.8V)
Input current
(1)
(dual-voltage LVCMOS I/Os)
Input current (DDR2/mDDR I/Os)
High-level output current
(1)
(dual-voltage LVCMOS I/Os) Low-level output current
(1)
(dual-voltage LVCMOS I/Os) Input capacitance (dual-voltage LVCMOS) 3 pF Output capacitance (dual-voltage LVCMOS) 3 pF
TMS320C6748
±9 μA
-6 mA
6 mA
(1) These IO specifications apply to the dual-voltage IOs only and do not apply to DDR2/mDDR or SATA interfaces. DDR2/mDDR IOs are
1.8V IOs and adhere to the JESD79-2A standard. USB0 I/Os adhere to the USB2.0 standard. USB1 I/Os adhere to the USB1.1 standard. SATA I/Os adhere to the SATA-I and SATA-II standards.
(2) IIapplies to input-only pins and bi-directional pins. For input-only pins, IIindicates the input leakage current. For bi-directional pins, I
indicates the input leakage current and off-state (Hi-Z) output leakage current.
I
(3) Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor. The pull-up and pull-down strengths shown represent the
minimum and maximum strength across process variation.
Submit Documentation Feedback
Product Folder Links: TMS320C6748
SpecificationsCopyright © 2009–2017, Texas Instruments Incorporated
79
V
ref
=VILMAX(orVOLMAX)
V
ref
=VIHMIN(orVOHMIN)
V
ref
TransmissionLine
4.0pF 1.85pF
Z0=50 (seenote)
Tester PinElectronics
Data SheetTimingReferencePoint
Output Under Test
42 3.5nH
DevicePin (seenote)
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
6 Peripheral Information and Electrical Specifications
6.1 Parameter Information
6.1.1 Parameter Information Device-Specific Information
A. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its
transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timings. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin and the input signals are driven between 0V and the appropriate IO supply rail for the signal.
Figure 6-1. Test Load Circuit for AC Timing Measurements
www.ti.com
The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving.
6.1.1.1 Signal Transition Levels
All input and output timing parameters are referenced to V For 3.3 V I/O, V For 1.8 V I/O, V For 1.2 V I/O, V
= 1.65 V.
ref
= 0.9 V.
ref
= 0.6 V.
ref
Figure 6-2. Input and Output Voltage Reference Levels for AC Timing Measurements
All rise and fall transition timing parameters are referenced to VILMAX and VIHMIN for input clocks, VOLMAX and VOHMIN for output clocks
for both "0" and "1" logic levels.
ref
Figure 6-3. Rise and Fall Transition Time Voltage Reference Levels
80
Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
6.2 Recommended Clock and Control Signal Transition Behavior
All clocks and control signals must transition between VIHand VIL(or between VILand VIH) in a monotonic manner.
6.3 Power Supplies
6.3.1 Power-On Sequence
The device should be powered-on in the following order:
1. RTC (RTC_CVDD) may be powered from an external device (such as a battery) prior to all other
supplies being applied or powered-up at the same time as CVDD. If the RTC is not used, RTC_CVDD should be connected to CVDD. RTC_CVDD should not be left unpowered while CVDD is powered.
2. Core logic supplies:
(a) All variable 1.3V - 1.0V core logic supplies (CVDD) (b) All static core logic supplies (RVDD, PLL0_VDDA, PLL1_VDDA, USB_CVDD, SATA_VDD). If
voltage scaling is not used on the device, groups 2a) and 2b) can be controlled from the same power supply and powered up together.
3. All static 1.8V IO supplies (DVDD18, DDR_DVDD18, USB0_VDDA18, USB1_VDDA18 and
SATA_VDDR) and any of the LVCMOS IO supply groups used at 1.8V nominal (DVDD3318_A, DVDD3318_B, or DVDD3318_C).
4. All analog 3.3V PHY supplies (USB0_VDDA33 and USB1_VDDA33; these are not required if both
USB0 and USB1 are not used) and any of the LVCMOS IO supply groups used at 3.3V nominal (DVDD3318_A, DVDD3318_B, or DVDD3318_C).
TMS320C6748
There is no specific required voltage ramp rate for any of the supplies as long as the LVCMOS supplies operated at 3.3V (DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed the STATIC 1.8V supplies by more than 2 volts.
RESET must be maintained active until all power supplies have reached their nominal values.
6.3.2 Power-Off Sequence
The power supplies can be powered-off in any order as long as LVCMOS supplies operated at 3.3V (DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed static 1.8V supplies by more than 2 volts. There is no specific required voltage ramp down rate for any of the supplies (except as required to meet the above mentioned voltage condition).
Peripheral Information and Electrical SpecificationsCopyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
81
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
6.4 Reset
6.4.1 Power-On Reset (POR)
A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal logic to its default state. All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence, and RTCK/GP8[0]. During reset, GP8[0] is configured as a reserved function, and its behavior is not deterministic; the user should be aware that this pin will drive a level, and fact may toggle, during reset. RESETOUT in an output for use by other controllers in the system that indicates the device is currently in reset.
While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface and device's emulation logic in the reset state.
TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted.
RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For maximum reliability, the device includes an internal pulldown on the TRST pin to ensure that TRST will always be asserted upon power up and the device's internal emulation logic will always be properly initialized.
www.ti.com
JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type of JTAG controller, assert TRST to intialize the device after powerup and externally drive TRST high before attempting any emulation or boundary scan operations.
A summary of the effects of Power-On Reset is given below:
All internal logic (including emulation logic and the PLL logic) is reset to its default state
Internal memory is not maintained through a POR
RESETOUT goes active
All device pins go to a high-impedance state
The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC
CAUTION: A watchdog reset triggers a POR.
6.4.2 Warm Reset
A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low (TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence, and RTCK/GP8[0]. During reset, GP8[0] is configured as a reserved function, and its behavior is not deterministic; the user should be aware that this pin will drive a level, and fact may toggle, during reset. RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset.
During an emulation, the emulator will maintain TRST high and hence only warm reset (not POR) is available during emulation debug and development.
A summary of the effects of Warm Reset is given below:
All internal logic (except for the emulation logic and the PLL logic) is reset to its default state
Internal memory is maintained through a warm reset
RESETOUT goes active
All device pins go to a high-impedance state
82
Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
RTC
Peripheral Information and Electrical SpecificationsCopyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
83
OSCIN
RESET
RESETOUT
Boot Pins
Config
Power
Supplies
Ramping
Power Supplies Stable
Clock Source Stable
1
2
3
4
TRST
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
6.4.3 Reset Electrical Data Timings
Table 6-1 assumes testing over the recommended operating conditions.
www.ti.com
(1),(2)
)
1.3V, 1.2V 1.1V 1.0V
MIN MAX MIN MAX MIN MAX
UNIT
NO.
1 t
w(RSTL)
2 t
su(BPV-RSTH)
3 t
h(RSTH-BPV)
t
d(RSTH-
4
RESETOUTH)
5 t
d(RSTL-RESETOUTL)
Table 6-1. Reset Timing Requirements (
Pulse width, RESET/TRST low 100 100 100 ns Setup time, boot pins valid before RESET/TRST high 20 20 20 ns Hold time, boot pins valid after RESET/TRST high 20 20 20 ns RESET high to RESETOUT high; Warm reset 4096 4096 4096 cycles RESET high to RESETOUT high; Power-on Reset 6169 6169 6169 Delay time, RESET/TRST low to RESETOUT low 14 16 20 ns
(1) RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 3-5 for details. (2) For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this
table refer to RESET only (TRST is held high).
(3) OSCIN cycles.
(3)
Figure 6-4. Power-On Reset (RESET and TRST active) Timing
84
Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
OSCIN
TRST
RESET
RESETOUT
BootPins
Config
PowerSuppliesStable
1
2
3
4
DrivenorHi-Z
5
www.ti.com
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Figure 6-5. Warm Reset (RESET active, TRST high) Timing
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Peripheral Information and Electrical SpecificationsCopyright © 2009–2017, Texas Instruments Incorporated
85
C
2
C
1
X
1
OSCOUT
OSCIN
OSCV
SS
ClockInput toPLL
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
6.5 Crystal Oscillator or External Clock Input
The device includes two choices to provide an external clock input, which is fed to the on-chip PLLs to generate
high-frequency system clocks. These options are illustrated in Figure 6-6 and Figure 6-7. For input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For input clock frequencies between 20 and 30 MHz, a crystal with 60 ohm max ESR is recommended. Typical load capacitance values are 10-20 pF, where the load capacitance is the series combination of C1 and C2.
The CLKMODE bit in the PLLCTL register must be 0 to use the on-chip oscillator. If CLKMODE is set to 1, the internal oscillator is disabled.
Figure 6-6 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit. Figure 6-7
illustrates the option that uses an external 1.2V clock input.
www.ti.com
Figure 6-6. On-Chip Oscillator
Table 6-2. Oscillator Timing Requirements
PARAMETER MIN MAX UNIT
f
osc
Oscillator frequency range (OSCIN/OSCOUT) 12 30 MHz
86
Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
OSCOUT
OSCIN
OSCV
SS
Clock Input toPLL
NC
TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Figure 6-7. External 1.2V Clock Source
Table 6-3. OSCIN Timing Requirements for an Externally Driven Clock
PARAMETER MIN MAX UNIT
f
OSCIN
t
c(OSCIN)
t
w(OSCINH)
t
w(OSCINL)
t
t(OSCIN)
t
j(OSCIN)
(1) Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve
noise immunity on input signals.
OSCIN frequency range 12 50 MHz Cycle time, external clock driven on OSCIN 20 ns Pulse width high, external clock on OSCIN 0.4 t Pulse width low, external clock on OSCIN 0.4 t Transition time, OSCIN 0.25P or 10 Period jitter, OSCIN 0.02P ns
c(OSCIN) c(OSCIN)
ns ns
(1)
ns
6.6 Clock PLLs
The device has two PLL controllers that provide clocks to different parts of the system. PLL0 provides clocks (though various dividers) to most of the components of the device. PLL1 provides clocks to the DDR2/mDDR Controller and provides an alternate clock source for the ASYNC3 clock domain. This allows the peripherals on the ASYNC3 clock domain to be immune to frequency scaling operation on PLL0.
The PLL controller provides the following:
Glitch-Free Transitions (on changing clock settings)
Domain Clocks Alignment
Clock Gating
PLL power down The various clock outputs given by the controller are as follows:
Domain Clocks: SYSCLK [1:n]
Auxiliary Clock from reference clock source: AUXCLK Various dividers that can be used are as follows:
Post-PLL Divider: POSTDIV
SYSCLK Divider: D1, ¼, Dn Various other controls supported are as follows:
PLL Multiplier Control: PLLM
Software programmable PLL Bypass: PLLEN
Peripheral Information and Electrical SpecificationsCopyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
87
0.1 µF
0.01 µF
50R
1.14V - 1.32V
50RV
SS
PLL1_VDDA
PLL1_VSSA
Ferrite Bead: Murata BLM31PG500SN1L or Equivalent
0.1 µF
0.01 µF
50R
1.14V - 1.32V
50RV
SS
PLL0_VDDA
PLL0_VSSA
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
6.6.1 PLL Device-Specific Information
The device DSP generates the high-frequency internal clocks it requires through an on-chip PLL. The PLL requires some external filtering components to reduce power supply noise as shown in Figure 6-
8.
Figure 6-8. PLL External Filtering Components
www.ti.com
The external filtering components shown above provide noise immunity for the PLLs. PLL0_VDDA and PLL1_VDDA should not be connected together to provide noise immunity between the two PLLs. Likewise, PLL0_VSSA and PLL1_VSSA should not be connected together.
The input to the PLL is either from the on-chip oscillator or from an external clock on the OSCIN pin. PLL0 outputs seven clocks that have programmable divider options. PLL1 outputs three clocks that have programmable divider options. Figure 6-9 illustrates the high-level view of the PLL Topology.
The PLLs are disabled by default after a device reset. They must be configured by software according to the allowable operating conditions listed in Table 6-4 before enabling the device to run from the PLL by setting PLLEN = 1.
88
Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
PLLDIV1 (/1)
SYSCLK1
PLLDIV2 (/2)
SYSCLK2
PLLDIV4 (/4)
SYSCLK4
PLLDIV5 (/3)
SYSCLK5
PLLDIV6 (/1)
SYSCLK6
PLLDIV7 (/6)
SYSCLK7
DIV4.5
1
0
EMIFA
Internal
Clock
Source
CFGCHIP3[EMA_CLKSRC]
1
0
PREDIV
PLLM
1
0
Square
Wave
Crystal
PLL1_SYSCLK3
PLLCTL[EXTCLKSRC]
AUXCLK
PLL
PLLDIV3 (/3)
SYSCLK3
DDR2/mDDR
Internal
Clock
Source
PLLDIV2 (/2)
PLLDIV3 (/3)
PLLDIV1 (/1)
0
1
PLLCTL[PLLEN]
POSTDIV
PLLM
PLL
0
1
PLLCTL[PLLEN]
PLLCTL[CLKMODE]
POSTDIV
PLLC0 OBSCLK (CLKOUT Pin)
DIV4.5
OSCDIV
PLL Controller 0
PLL Controller 1
SYSCLK2
SYSCLK3
SYSCLK1
OSCIN
14h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh
SYSCLK1 SYSCLK2 SYSCLK3
SYSCLK4 SYSCLK5 SYSCLK6 SYSCLK7
PLLC1 OBSCLK
OCSEL[OCSRC]
14h 17h 18h 19h
SYSCLK1 SYSCLK2 SYSCLK3
OCSEL[OCSRC]
OSCDIV PLLC1 OBSCLK
www.ti.com
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Figure 6-9. PLL Topology
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Peripheral Information and Electrical SpecificationsCopyright © 2009–2017, Texas Instruments Incorporated
89
2000 N
Max PLL Lock Time =
m
where N = Pre-Divider Ratio
M =PLL Multiplier
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 6-4. Allowed PLL Operating Conditions (PLL0 and PLL1)
www.ti.com
NO. PARAMETER
1 PLLRST: Assertion time during initialization N/A 1000 N/A ns
Lock time: The time that the application has to wait for
2
the PLL to acquire lock before setting PLLEN, after changing PREDIV, PLLM, or OSCIN
3 PREDIV: Pre-divider value /1 /1 /32 ­4 PLLREF: PLL input frequency 12 5 PLLM: PLL multiplier values x20 x4 x32
6 PLLOUT: PLL output frequency N/A 300 600 MHz 7 POSTDIV: Post-divider value /1 /1 /32 -
(1) The multiplier values must be chosen such that the PLL output frequency (at PLLOUT) is between 300 and 600 MHz, but the frequency
going into the SYSCLK dividers (after the post divider) cannot exceed the maximum clock frequency defined for the device at a given voltage operating point.
Default
Value
N/A N/A
MIN MAX UNIT
OSCIN
cycles
(1)
30 (if internal oscillator is used)
50 (if external clock is used)
MHz
6.6.2 Device Clock Generation
PLL0 is controlled by PLL Controller 0 and PLL1 is controlled by PLL Controller 1. PLLC0 and PLLC1 manage the clock ratios, alignment, and gating for the system clocks to the chip. The PLLCs are responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock inputs (PLLC0 only), multiply factors within the PLLs, and post-division for each of the chip-level clocks from the PLLs outputs. PLLC0 also controls reset propagation through the chip, clock alignment, and test points.
PLLC0 provides clocks for the majority of the system but PLLC1 provides clocks to the DDR2/mDDR Controller and the ASYNC3 clock domain to provide frequency scaling immunity to a defined set or peripherals. The ASYNC3 clock domain can either derive its clock from PLL1_SYSCLK2 (for frequency scaling immunity from PLL0) or from PLL0_SYSCLK2 (for synchronous timing with PLL0) depending on the application requirements. In addition, some peripherals have specific clock options independent of the ASYNC clock domain.
6.6.3 Dynamic Voltage and Frequency Scaling (DVFS)
The processor supports multiple operating points by scaling voltage and frequency to minimize power consumption for a given level of processor performance.
Frequency scaling is achieved by modifying the setting of the PLL controllers’ multipliers, post-dividers (POSTDIV), and system clock dividers (SYSCLKn). Modification of the POSTDIV and SYSCLK values does not require relocking the PLL and provides lower latency to switch between operating points, but at the expense of the frequencies being limited by the integer divide values (only the divide values are altered the PLL multiplier is left unmodified). Non integer divide frequency values can be achieved by changing both the multiplier and the divide values, but when the PLL multiplier is changed the PLL must relock, incurring additional latency to change between operating points. Detailed information on modifying the PLL Controller settings can be found in the TMS320C6748 DSP System Reference Guide (SPRUGJ7).
90
Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
Voltage scaling is enabled from outside the device by controlling an external voltage regulator. The processor may communicate with the regulator using GPIOs, I2C or some other interface. When switching between voltage-frequency operating points, the voltage must always support the desired frequency. When moving from a high-performance operating point to a lower performance operating point, the frequency should be lowered first followed by the voltage. When moving from a low-performance operating point to a higher performance operating point, the voltage should be raised first followed by the frequency. Voltage operating points refer to the CVdd voltage at that point. Other static supplies must be maintained at their nominal voltages at all operating points.
The maximum voltage slew rate for CVdd supply changes is 1 mV/us. For additional information on power management solutions from TI for this processor, follow the Power
Management link in the Product Folder on www.ti.com for this processor. The processor supports multiple clock domains some of which have clock ratio requirements to each
other. SYSCLK1:SYSCLK2:SYSCLK4:SYSCLK6 are synchronous to each other and the SYSCLKn dividers must always be configured such that the ratio between these domains is 1:2:4:1. The ASYNC and ASYNC3 clock domains are asynchronous to the other clock domains and have no specific ratio requirement.
Table 6-5 summarizes the maximum internal clock frequencies at each of the voltage operating points.
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 6-5. Maximum Internal Clock Frequencies at Each Voltage Operating Point
CLOCK
SOURCE
PLL0_SYSCLK1 DSP subsystem 456 MHz 375 MHz 200 MHz 100 MHz PLL0_SYSCLK2
PLL0_SYSCLK3 PLL0_SYSCLK4 SYSCLK4 domain peripherals 114 MHz 93.75 MHz 50 MHz 25 MHz
PLL0_SYSCLK5 Not used on this processor - - - ­PLL0_SYSCLK6 Not used on this processor - - - ­PLL0_SYSCLK7 Optional 50 MHz clock source for EMAC RMII interface 50 MHz 50 MHz - -
PLL1_SYSCLK1
PLL1_SYSCLK2 PLL1_SYSCLK3 Alternate clock source input to PLL Controller 0 75 MHz 75 MHz 75 MHz 75 MHz
McASP AUXCLK Bypass clock source for the McASP 50 MHz 50 MHz 50 MHz 50 MHz
PLL0_AUXCLK Bypass clock source for the USB0 and USB1 48 MHz 48 MHz 48 MHz 48 MHz
ASYNC1 ASYNC Clock Domain (EMIFA)
ASYNC2 ASYNC2 Clock Domain (multiple peripherals) 50 MHz 50 MHz 50 MHz 50 MHz
SYSCLK2 clock domain peripherals and optional clock source for ASYNC3 clock domain peripherals
Optional clock for ASYNC1 clock domain (See ASYNC1 row)
DDR2/mDDR Interface clock source (memory interface clock is one-half of the value shown)
Optional clock source for ASYNC3 clock domain peripherals
CLOCK DOMAIN 1.3V NOM 1.2V NOM 1.1V NOM 1.0V NOM
228 MHz 187.5 MHz 100 MHz 50 MHz
312 MHz 312 MHz 300 MHz 266 MHz
152 MHz 150 MHz 100 MHz 75 MHz
Async Mode 148 MHz 148 MHz 75 MHz 50 MHz SDRAM Mode 100 MHz 100 MHz 66.6 MHz 50 MHz
Some interfaces have specific limitations on supported modes/speeds at each operating point. See the corresponding peripheral sections of this document for more information.
TI provides software components (called the Power Manager) to perform DVFS and abstract the task from the user. The Power Manager controls changing operating points (both frequency and voltage) and handles the related tasks involved such as informing/controlling peripherals to provide graceful transitions between operating points. The Power Manager is bundled as a component of DSP/BIOS.
Peripheral Information and Electrical SpecificationsCopyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
91
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
6.7 Interrupts
The device has a large number of interrupts to service the needs of its many peripherals and subsystems.
6.7.1 DSP Interrupts
The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source for each of the 12 CPU interrupts is user programmable and is listed in Table 6-6. Also, the interrupt controller controls the generation of the CPU exceptions, NMI, and emulation interrupts. Table 6-7 summarizes the C674x interrupt controller registers and memory locations.
Refer to the C674x DSP MegaModule Reference Guide (SPRUFK5) and the TMS320C674x DSP CPU and Instruction Set Reference Guide (SPRUFE8) for details of the C674x interrupts.
Table 6-6. C6748 DSP Interrupts
EVT# Interrupt Name Source
0 EVT0 C674x Int Ctl 0 1 EVT1 C674x Int Ctl 1 2 EVT2 C674x Int Ctl 2 3 EVT3 C674x Int Ctl 3 4 T64P0_TINT12 Timer64P0 - TINT12 5 SYSCFG_CHIPINT2 SYSCFG CHIPSIG Register 6 PRU_EVTOUT0 PRUSS Interrupt 7 EHRPWM0 HiResTimer/PWM0 Interrupt 8 EDMA3_0_CC0_INT1 EDMA3_0 Channel Controller 0 Shadow Region 1 Transfer
Completion Interrupt
9 EMU_DTDMA C674x-ECM 10 EHRPWM0TZ HiResTimer/PWM0 Trip Zone Interrupt 11 EMU_RTDXRX C674x-RTDX 12 EMU_RTDXTX C674x-RTDX 13 IDMAINT0 C674x-EMC 14 IDMAINT1 C674x-EMC 15 MMCSD0_INT0 MMCSD0 MMC/SD Interrupt 16 MMCSD0_INT1 MMCSD0 SDIO Interrupt 17 PRU_EVTOUT1 PRUSS Interrupt 18 EHRPWM1 HiResTimer/PWM1 Interrupt 19 USB0_INT USB0 Interrupt 20 USB1_HCINT USB1 OHCI Host Controller Interrupt 21 USB1_RWAKEUP USB1 Remote Wakeup Interrupt 22 PRU_EVTOUT2 PRUSS Interrupt 23 EHRPWM1TZ HiResTimer/PWM1 Trip Zone Interrupt 24 SATA_INT SATA Controller 25 T64P2_TINTALL Timer64P2 Combined TINT12 and TINT 34 Interrupt 26 EMAC_C0RXTHRESH EMAC - Core 0 Receive Threshold Interrupt 27 EMAC_C0RX EMAC - Core 0 Receive Interrupt 28 EMAC_C0TX EMAC - Core 0 Transmit Interrupt 29 EMAC_C0MISC EMAC - Core 0 Miscellaneous Interrupt 30 EMAC_C1RXTHRESH EMAC - Core 1 Receive Threshold Interrupt 31 EMAC_C1RX EMAC - Core 1 Receive Interrupt 32 EMAC_C1TX EMAC - Core 1 Transmit Interrupt 33 EMAC_C1MISC EMAC - Core 1 Miscellaneous Interrupt 34 UHPI_DSPINT UHPI DSP Interrupt
www.ti.com
92
Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 6-6. C6748 DSP Interrupts (continued)
EVT# Interrupt Name Source
35 PRU_EVTOUT3 PRUSS Interrupt 36 IIC0_INT I2C0 37 SP0_INT SPI0 38 UART0_INT UART0 39 PRU_EVTOUT5 PRUSS Interrupt 40 T64P1_TINT12 Timer64P1 Interrupt 12 41 GPIO_B1INT GPIO Bank 1 Interrupt 42 IIC1_INT I2C1 43 SPI1_INT SPI1 44 PRU_EVTOUT6 PRUSS Interrupt 45 ECAP0 ECAP0 46 UART_INT1 UART1 47 ECAP1 ECAP1 48 T64P1_TINT34 Timer64P1 Interrupt 34 49 GPIO_B2INT GPIO Bank 2 Interrupt 50 PRU_EVTOUT7 PRUSS Interrupt 51 ECAP2 ECAP2 52 GPIO_B3INT GPIO Bank 3 Interrupt 53 MMCSD1_INT1 MMCSD1 SDIO Interrupt 54 GPIO_B4INT GPIO Bank 4 Interrupt 55 EMIFA_INT EMIFA 56 EDMA3_0_CC0_ERRINT EDMA3_0 Channel Controller 0 Error Interrupt 57 EDMA3_0_TC0_ERRINT EDMA3_0 Transfer Controller 0 Error Interrupt 58 EDMA3_0_TC1_ERRINT EDMA3_0 Transfer Controller 1 Error Interrupt 59 GPIO_B5INT GPIO Bank 5 Interrupt 60 DDR2_MEMERR DDR2 Memory Error Interrupt 61 MCASP0_INT McASP0 Combined RX/TX Interrupts 62 GPIO_B6INT GPIO Bank 6 Interrupt 63 RTC_IRQS RTC Combined 64 T64P0_TINT34 Timer64P0 Interrupt 34 65 GPIO_B0INT GPIO Bank 0 Interrupt 66 PRU_EVTOUT4 PRUSS Interrupt 67 SYSCFG_CHIPINT3 SYSCFG_CHIPSIG Register 68 MMCSD1_INT0 MMCSD1 MMC/SD Interrupt 69 UART2_INT UART2 70 PSC0_ALLINT PSC0 71 PSC1_ALLINT PSC1 72 GPIO_B7INT GPIO Bank 7 Interrupt 73 LCDC_INT LDC Controller 74 PROTERR SYSCFG Protection Shared Interrupt 75 GPIO_B8INT GPIO Bank 8 Interrupt
76 - 77 - Reserved
78 T64P2_CMPINT0 Timer64P2 - Compare Interrupt 0 79 T64P2_CMPINT1 Timer64P2 - Compare Interrupt 1 80 T64P2_CMPINT2 Timer64P2 - Compare Interrupt 2 81 T64P2_CMPINT3 Timer64P2 - Compare Interrupt 3 82 T64P2_CMPINT4 Timer64P2 - Compare Interrupt 4
TMS320C6748
Peripheral Information and Electrical SpecificationsCopyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
93
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 6-6. C6748 DSP Interrupts (continued)
EVT# Interrupt Name Source
83 T64P2_CMPINT5 Timer64P2 - Compare Interrupt 5 84 T64P2_CMPINT6 Timer64P2 - Compare Interrupt 6 85 T64P2_CMPINT7 Timer64P2 - Compare Interrupt 7 86 T64P3_TINTALL Timer64P3 Combined TINT12 and TINT 34 Interrupt 87 MCBSP0_RINT McBSP0 Receive Interrupt 88 MCBSP0_XINT McBSP0 Transmit Interrupt 89 MCBSP1_RINT McBSP1 Receive Interrupt 90 MCBSP1_XINT McBSP1 Transmit Interrupt 91 EDMA3_1_CC0_INT1 EDMA3_1 Channel Controller 0 Shadow Region 1 Transfer
Completion Interrupt 92 EDMA3_1_CC0_ERRINT EDMA3_1 Channel Controller 0 Error Interrupt 93 EDMA3_1_TC0_ERRINT EDMA3_1 Transfer Controller 0 Error Interrupt 94 UPP_INT uPP Combined Interrupt 95 VPIF_INT VPIF Combined Interrupt 96 INTERR C674x-Int Ctl 97 EMC_IDMAERR C674x-EMC
98 - 112 - Reserved
113 PMC_ED C674x-PMC
114 - 115 - Reserved
116 UMC_ED1 C674x-UMC 117 UMC_ED2 C674x-UMC 118 PDC_INT C674x-PDC 119 SYS_CMPA C674x-SYS 120 PMC_CMPA C674x-PMC 121 PMC_CMPA C674x-PMC 122 DMC_CMPA C674x-DMC 123 DMC_CMPA C674x-DMC 124 UMC_CMPA C674x-UMC 125 UMC_CMPA C674x-UMC 126 EMC_CMPA C674x-EMC 127 EMC_BUSERR C674x-EMC
www.ti.com
94
Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 6-7. C674x DSP Interrupt Controller Registers
BYTE ADDRESS ACRONYM DESCRIPTION
0x0180 0000 EVTFLAG0 Event flag register 0 0x0180 0004 EVTFLAG1 Event flag register 1 0x0180 0008 EVTFLAG2 Event flag register 2
0x0180 000C EVTFLAG3 Event flag register 3
0x0180 0020 EVTSET0 Event set register 0 0x0180 0024 EVTSET1 Event set register 1 0x0180 0028 EVTSET2 Event set register 2
0x0180 002C EVTSET3 Event set register 3
0x0180 0040 EVTCLR0 Event clear register 0 0x0180 0044 EVTCLR1 Event clear register 1 0x0180 0048 EVTCLR2 Event clear register 2
0x0180 004C EVTCLR3 Event clear register 3
0x0180 0080 EVTMASK0 Event mask register 0 0x0180 0084 EVTMASK1 Event mask register 1
0x0180 0088 EVTMASK2 Event mask register 2 0x0180 008C EVTMASK3 Event mask register 3 0x0180 00A0 MEVTFLAG0 Masked event flag register 0 0x0180 00A4 MEVTFLAG1 Masked event flag register 1 0x0180 00A8 MEVTFLAG2 Masked event flag register 2
0x0180 00AC MEVTFLAG3 Masked event flag register 3
0x0180 00C0 EXPMASK0 Exception mask register 0 0x0180 00C4 EXPMASK1 Exception mask register 1 0x0180 00C8 EXPMASK2 Exception mask register 2
0x0180 00CC EXPMASK3 Exception mask register 3
0x0180 00E0 MEXPFLAG0 Masked exception flag register 0 0x0180 00E4 MEXPFLAG1 Masked exception flag register 1 0x0180 00E8 MEXPFLAG2 Masked exception flag register 2
0x0180 00EC MEXPFLAG3 Masked exception flag register 3
0x0180 0104 INTMUX1 Interrupt mux register 1
0x0180 0108 INTMUX2 Interrupt mux register 2 0x0180 010C INTMUX3 Interrupt mux register 3
0x0180 0140 - 0x0180 0144 - Reserved
0x0180 0180 INTXSTAT Interrupt exception status
0x0180 0184 INTXCLR Interrupt exception clear
0x0180 0188 INTDMASK Dropped interrupt mask register 0x0180 01C0 EVTASRT Event assert register
Peripheral Information and Electrical SpecificationsCopyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
95
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
6.8 Power and Sleep Controller (PSC)
The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off, clock on/off, resets (device level and module level). It is used primarily to provide granular power control for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC and provides clock and reset control.
The PSC includes the following features:
Provides a software interface to: – Control module clock enable/disable – Control module reset – Control CPU local reset
Supports IcePick emulation features: power, clock and reset PSC0 controls 16 local PSCs. PSC1 controls 32 local PSCs.
Table 6-8. Power and Sleep Controller (PSC) Registers
www.ti.com
PSC0 BYTE
ADDRESS
0x01C1 0000 0x01E2 7000 REVID Peripheral Revision and Class Information Register 0x01C1 0018 0x01E2 7018 INTEVAL Interrupt Evaluation Register 0x01C1 0040 0x01E2 7040 MERRPR0 Module Error Pending Register 0 (module 0-15) (PSC0)
0x01C1 0050 0x01E2 7050 MERRCR0 Module Error Clear Register 0 (module 0-15) (PSC0)
0x01C1 0060 0x01E2 7060 PERRPR Power Error Pending Register 0x01C1 0068 0x01E2 7068 PERRCR Power Error Clear Register 0x01C1 0120 0x01E2 7120 PTCMD Power Domain Transition Command Register 0x01C1 0128 0x01E2 7128 PTSTAT Power Domain Transition Status Register 0x01C1 0200 0x01E2 7200 PDSTAT0 Power Domain 0 Status Register 0x01C1 0204 0x01E2 7204 PDSTAT1 Power Domain 1 Status Register 0x01C1 0300 0x01E2 7300 PDCTL0 Power Domain 0 Control Register 0x01C1 0304 0x01E2 7304 PDCTL1 Power Domain 1 Control Register 0x01C1 0400 0x01E2 7400 PDCFG0 Power Domain 0 Configuration Register 0x01C1 0404 0x01E2 7404 PDCFG1 Power Domain 1 Configuration Register 0x01C1 0800 0x01E2 7800 MDSTAT0 Module 0 Status Register 0x01C1 0804 0x01E2 7804 MDSTAT1 Module 1 Status Register 0x01C1 0808 0x01E2 7808 MDSTAT2 Module 2 Status Register 0x01C1 080C 0x01E2 780C MDSTAT3 Module 3 Status Register 0x01C1 0810 0x01E2 7810 MDSTAT4 Module 4 Status Register 0x01C1 0814 0x01E2 7814 MDSTAT5 Module 5 Status Register 0x01C1 0818 0x01E2 7818 MDSTAT6 Module 6 Status Register 0x01C1 081C 0x01E2 781C MDSTAT7 Module 7 Status Register 0x01C1 0820 0x01E2 7820 MDSTAT8 Module 8 Status Register 0x01C1 0824 0x01E2 7824 MDSTAT9 Module 9 Status Register 0x01C1 0828 0x01E2 7828 MDSTAT10 Module 10 Status Register 0x01C1 082C 0x01E2 782C MDSTAT11 Module 11 Status Register 0x01C1 0830 0x01E2 7830 MDSTAT12 Module 12 Status Register 0x01C1 0834 0x01E2 7834 MDSTAT13 Module 13 Status Register
PSC1 BYTE
ADDRESS
ACRONYM REGISTER DESCRIPTION
Module Error Pending Register 0 (module 0-31) (PSC1)
Module Error Clear Register 0 (module 0-31) (PSC1)
96
Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
Table 6-8. Power and Sleep Controller (PSC) Registers (continued)
PSC0 BYTE
ADDRESS
0x01C1 0838 0x01E2 7838 MDSTAT14 Module 14 Status Register 0x01C1 083C 0x01E2 783C MDSTAT15 Module 15 Status Register
- 0x01E2 7840 MDSTAT16 Module 16 Status Register
- 0x01E2 7844 MDSTAT17 Module 17 Status Register
- 0x01E2 7848 MDSTAT18 Module 18 Status Register
- 0x01E2 784C MDSTAT19 Module 19 Status Register
- 0x01E2 7850 MDSTAT20 Module 20 Status Register
- 0x01E2 7854 MDSTAT21 Module 21 Status Register
- 0x01E2 7858 MDSTAT22 Module 22 Status Register
- 0x01E2 785C MDSTAT23 Module 23 Status Register
- 0x01E2 7860 MDSTAT24 Module 24 Status Register
- 0x01E2 7864 MDSTAT25 Module 25 Status Register
- 0x01E2 7868 MDSTAT26 Module 26 Status Register
- 0x01E2 786C MDSTAT27 Module 27 Status Register
- 0x01E2 7870 MDSTAT28 Module 28 Status Register
- 0x01E2 7874 MDSTAT29 Module 29 Status Register
- 0x01E2 7878 MDSTAT30 Module 30 Status Register
- 0x01E2 787C MDSTAT31 Module 31 Status Register 0x01C1 0A00 0x01E2 7A00 MDCTL0 Module 0 Control Register 0x01C1 0A04 0x01E2 7A04 MDCTL1 Module 1 Control Register 0x01C1 0A08 0x01E2 7A08 MDCTL2 Module 2 Control Register
0x01C1 0A0C 0x01E2 7A0C MDCTL3 Module 3 Control Register
0x01C1 0A10 0x01E2 7A10 MDCTL4 Module 4 Control Register 0x01C1 0A14 0x01E2 7A14 MDCTL5 Module 5 Control Register 0x01C1 0A18 0x01E2 7A18 MDCTL6 Module 6 Control Register
0x01C1 0A1C 0x01E2 7A1C MDCTL7 Module 7 Control Register
0x01C1 0A20 0x01E2 7A20 MDCTL8 Module 8 Control Register 0x01C1 0A24 0x01E2 7A24 MDCTL9 Module 9 Control Register 0x01C1 0A28 0x01E2 7A28 MDCTL10 Module 10 Control Register
0x01C1 0A2C 0x01E2 7A2C MDCTL11 Module 11 Control Register
0x01C1 0A30 0x01E2 7A30 MDCTL12 Module 12 Control Register 0x01C1 0A34 0x01E2 7A34 MDCTL13 Module 13 Control Register 0x01C1 0A38 0x01E2 7A38 MDCTL14 Module 14 Control Register
0x01C1 0A3C 0x01E2 7A3C MDCTL15 Module 15 Control Register
- 0x01E2 7A40 MDCTL16 Module 16 Control Register
- 0x01E2 7A44 MDCTL17 Module 17 Control Register
- 0x01E2 7A48 MDCTL18 Module 18 Control Register
- 0x01E2 7A4C MDCTL19 Module 19 Control Register
- 0x01E2 7A50 MDCTL20 Module 20 Control Register
- 0x01E2 7A54 MDCTL21 Module 21 Control Register
- 0x01E2 7A58 MDCTL22 Module 22 Control Register
- 0x01E2 7A5C MDCTL23 Module 23 Control Register
- 0x01E2 7A60 MDCTL24 Module 24 Control Register
- 0x01E2 7A64 MDCTL25 Module 25 Control Register
- 0x01E2 7A68 MDCTL26 Module 26 Control Register
- 0x01E2 7A6C MDCTL27 Module 27 Control Register
- 0x01E2 7A70 MDCTL28 Module 28 Control Register
PSC1 BYTE
ADDRESS
ACRONYM REGISTER DESCRIPTION
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Peripheral Information and Electrical SpecificationsCopyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
97
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 6-8. Power and Sleep Controller (PSC) Registers (continued)
PSC0 BYTE
ADDRESS
- 0x01E2 7A74 MDCTL29 Module 29 Control Register
- 0x01E2 7A78 MDCTL30 Module 30 Control Register
- 0x01E2 7A7C MDCTL31 Module 31 Control Register
PSC1 BYTE
ADDRESS
ACRONYM REGISTER DESCRIPTION
6.8.1 Power Domain and Module Topology
The device includes two PSC modules. Each PSC module controls clock states for several of the on chip modules, controllers and interconnect
components. Table 6-9 and Table 6-10 lists the set of peripherals/modules that are controlled by the PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset) module states. The module states and terminology are defined in Section 6.8.1.2.
Table 6-9. PSC0 Default Module Configuration
www.ti.com
LPSC Number
Module Name Power Domain Default Module State Auto Sleep/Wake Only
0 EDMA3 Channel Controller 0 AlwaysON (PD0) SwRstDisable — 1 EDMA3 Transfer Controller 0 AlwaysON (PD0) SwRstDisable — 2 EDMA3 Transfer Controller 1 AlwaysON (PD0) SwRstDisable — 3 EMIFA (Br7) AlwaysON (PD0) SwRstDisable — 4 SPI 0 AlwaysON (PD0) SwRstDisable — 5 MMC/SD 0 AlwaysON (PD0) SwRstDisable — 6 — 7 — 8
9 UART 0 AlwaysON (PD0) SwRstDisable — 10 SCR0 (Br 0, Br 1, Br 2, Br 8) AlwaysON (PD0) Enable Yes 11 SCR1 (Br 4) AlwaysON (PD0) Enable Yes 12 SCR2 (Br 3, Br 5, Br 6) AlwaysON (PD0) Enable Yes 13 PRUSS AlwaysON (PD0) SwRstDisable — 14 — 15 DSP PD_DSP (PD1) Enable
98
Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
www.ti.com
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
Table 6-10. PSC1 Default Module Configuration
LPSC Number
Module Name Power Domain Default Module State Auto Sleep/Wake Only
0 EDMA3 Channel Controller 1 AlwaysON (PD0) SwRstDisable
1 USB0 (USB2.0) AlwaysON (PD0) SwRstDisable
2 USB1 (USB1.1) AlwaysON (PD0) SwRstDisable
3 GPIO AlwaysON (PD0) SwRstDisable
4 UHPI AlwaysON (PD0) SwRstDisable
5 EMAC AlwaysON (PD0) SwRstDisable
6 DDR2 (and SCR_F3) AlwaysON (PD0) SwRstDisable
7 McASP0 ( + McASP0 FIFO) AlwaysON (PD0) SwRstDisable
8 SATA AlwaysON (PD0) SwRstDisable
9 VPIF AlwaysON (PD0) SwRstDisable — 10 SPI 1 AlwaysON (PD0) SwRstDisable — 11 I2C 1 AlwaysON (PD0) SwRstDisable — 12 UART 1 AlwaysON (PD0) SwRstDisable — 13 UART 2 AlwaysON (PD0) SwRstDisable — 14 McBSP0 ( + McBSP0 FIFO) AlwaysON (PD0) SwRstDisable — 15 McBSP1 ( + McBSP1 FIFO) AlwaysON (PD0) SwRstDisable — 16 LCDC AlwaysON (PD0) SwRstDisable — 17 eHRPWM0/1 AlwaysON (PD0) SwRstDisable — 18 MMCSD1 AlwaysON (PD0) SwRstDisable — 19 uPP AlwaysON (PD0) SwRstDisable — 20 ECAP0/1/2 AlwaysON (PD0) SwRstDisable — 21 EDMA3 Transfer Controller 2 AlwaysON (PD0) SwRstDisable — 22 — 23 — 24 SCR_F0 (and bridge F0) AlwaysON (PD0) Enable Yes 25 SCR_F1 (and bridge F1) AlwaysON (PD0) Enable Yes 26 SCR_F2 (and bridge F2) AlwaysON (PD0) Enable Yes 27 SCR_F6 (and bridge F3) AlwaysON (PD0) Enable Yes 28 SCR_F7 (and bridge F4) AlwaysON (PD0) Enable Yes 29 SCR_F8 (and bridge F5) AlwaysON (PD0) Enable Yes 30 Bridge F7 (DDR Controller path) AlwaysON (PD0) Enable Yes 31 On-chip RAM (including SCR_F4
and bridge F6)
PD_SHRAM Enable
Peripheral Information and Electrical SpecificationsCopyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
99
TMS320C6748
SPRS590G –JUNE 2009–REVISED JANUARY 2017
6.8.1.1 Power Domain States
A power domain can only be in one of the two states: ON or OFF, defined as follows:
ON: power to the domain is on
OFF: power to the domain is off For both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the ON state when
the chip is powered-on. This domain is not programmable to OFF state.
On PSC0 PD1/PD_DSP Domain: Controls the sleep state for DSP L1 and L2 Memories
On PSC1 PD1/PD_SHRAM Domain: Controls the sleep state for the 128K on-chip RAM
6.8.1.2 Module States
The PSC defines several possible states for a module. This states are essentially a combination of the module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are defined in Table 6-11.
www.ti.com
Table 6-11. Module States
Module State Module Reset Module
Clock
Enable De-asserted On A module in the enable state has its module reset de-asserted and it has its clock on.
Disable De-asserted Off A module in the disabled state has its module reset de-asserted and it has its module
SyncReset Asserted On A module state in the SyncReset state has its module reset asserted and it has its
SwRstDisable Asserted Off A module in the SwResetDisable state has its module reset asserted and it has its
Auto Sleep De-asserted Off A module in the Auto Sleep state also has its module reset de-asserted and its module
Auto Wake De-asserted Off A module in the Auto Wake state also has its module reset de-asserted and its module
Module State Definition
This is the normal operational state for a given module
clock off. This state is typically used for disabling a module clock to save power. The device is designed in full static CMOS, so when you stop a module clock, it retains the module’s state. When the clock is restarted, the module resumes operating from the stopping point.
clock on. Generally, software is not expected to initiate this state
clock disabled. After initial power-on, several modules come up in the SwRstDisable state. Generally, software is not expected to initiate this state
clock disabled, similar to the Disable state. However this is a special state, once a module is configured in this state by software, it can “automatically” transition to “Enable” state whenever there is an internal read/write request made to it, and after servicing the request it will “automatically” transition into the sleep state (with module reset re de-asserted and module clock disabled), without any software intervention. The transition from sleep to enabled and back to sleep state has some cycle latency associated with it. It is not envisioned to use this mode when peripherals are fully operational and moving data.
clock disabled, similar to the Disable state. However this is a special state, once a module is configured in this state by software, it will “automatically” transition to “Enable” state whenever there is an internal read/write request made to it, and will remain in the “Enabled” state from then on (with module reset re de-asserted and module clock on), without any software intervention. The transition from sleep to enabled state has some cycle latency associated with it. It is not envisioned to use this mode when peripherals are fully operational and moving data.
100
Peripheral Information and Electrical Specifications Copyright © 2009–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TMS320C6748
Loading...