– Enhanced Direct-Memory-Access Controller• C674x Two Level Cache Memory Architecture
3 (EDMA3)
– 128K-Byte RAM Shared Memory
– Two External Memory Interfaces
– Three Configurable 16550 type UART
Modules
– LCD Controller
– Two Serial Peripheral Interfaces (SPI)
– Multimedia Card (MMC)/Secure Digital (SD)
– Two Master/Slave Inter-Integrated Circuit
– One Host-Port Interface (HPI)
– USB 1.1 OHCI (Host) With Integrated PHY
(USB1)
• Applications
– Industrial DiagnosticsSupport
– Test and measurement– 64 General-Purpose Registers (32 Bit)
– Military Sonar/ Radar– Six ALU (32-/40-Bit) Functional Units
– Medical measurement•Supports 32-Bit Integer, SP (IEEE Single
– Professional Audio
• Software Support
– TI DSP/BIOS™
– Chip Support Library and DSP Library
• ARM926EJ-S Core
– 32-Bit and 16-Bit (Thumb®) Instructions
– DSP Instruction Extensions
– Single Cycle MAC
– ARM®Jazelle®Technology
– EmbeddedICE-RT™ for Real-Time Debug
• ARM9 Memory Architecture
• C674x Instruction Set Features
– Superset of the C67x+™ and C64x+™ ISAs
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2DSP/BIOS, C67x+, TMS320C6000, C6000 are trademarks of Texas Instruments.
3ARM926EJ-S, EmbeddedICE-RT, ETM9, CoreSight are trademarks of ARM Limited.
4ARM, Jazelle are registered trademarks of ARM Limited.
ADVANCE INFORMATION concerns new products in the sampling
or preproduction phaseof development. Characteristic dataand other
specifications are subjectto change without notice.
32-Bit Multiplies, Four 16 x 16-Bit– Dedicated switched central resource
Multiplies, or Eight 8 x 8-Bit Multiplies per
Clock Cycle, and Complex Multiples
– Instruction Packing Reduces Code Size
– All Instructions Conditional
– Hardware Support for Modulo Loop
Operation
– Protected Mode Operation
– Exceptions Support for Error Detection and
Program Redirection
• 128K-Byte RAM Shared Memory
• 3.3V LVCMOS IOs (except for USB interfaces)
• Two External Memory Interfaces:
– EMIFA
•NOR (8-/16-Bit-Wide Data)
•NAND (8-/16-Bit-Wide Data)
•16-Bit SDRAM With 128MB Address
Space
– EMIFB
•32-Bit or 16-Bit SDRAM With 256MB
Address Space
• Three Configurable 16550 type UART Modules:
– UART0 With Modem Control Signals
– Autoflow control signals (CTS, RTS) on
UART0 only
– 16-byte FIFO
• USB 1.1 OHCI (Host) With Integrated PHY
(USB1)
• USB 2.0 OTG Port With Integrated PHY (USB0)
– USB 2.0 High-/Full-Speed Client
– USB 2.0 High-/Full-/Low-Speed Host
– End Point 0 (Control)
– End Points 1,2,3,4 (Control, Bulk, Interrupt or
ISOC) Rx and Tx
• Three Multichannel Audio Serial Ports:
– Six Clock Zones and 28 Serial Data Pins
– Supports TDM, I2S, and Similar Formats
– DIT-Capable (McASP2)
– FIFO buffers for Transmit and Receive
• 10/100 Mb/s Ethernet MAC (EMAC):
– IEEE 802.3 Compliant (3.3-V I/O Only)
– RMII Media Independent Interface
– Management Data I/O (MDIO) Module
• Real-Time Clock With 32 KHz Oscillator and
Separate Power Rail
• One 64-Bit General-Purpose Timer
(Configurable as Two 32-Bit Timers)
• One 64-bit General-Purpose/Watchdog Timer
(Configurable as Two 32-bit General-Purpose
Timers)
• Three Enhanced Pulse Width Modulators
– 16x or 13x Oversampling Option(eHRPWM):
• LCD Controller– Dedicated 16-Bit Time-Base Counter With
• Two Serial Peripheral Interfaces (SPI) Each
Period And Frequency Control
With One Chip-Select– 6 Single Edge, 6 Dual Edge Symmetric or 3
• Multimedia Card (MMC)/Secure Digital (SD)
Dual Edge Asymmetric Outputs
Card Interface with Secure Data I/O (SDIO)– Dead-Band Generation
• Two Master/Slave Inter-Integrated Circuit (I2C– PWM Chopping by High-Frequency Carrier
Bus™)
• One Host-Port Interface (HPI) With 16-Bit-Wide
Muxed Address/Data Bus For High Bandwidth
• Programmable Real-Time Unit Subsystem
(PRUSS)
– Trip Zone Input
• Three 32-Bit Enhanced Capture Modules
(eCAP):
– Configurable as 3 Capture Inputs or 3
Auxiliary Pulse Width Modulator (APWM)
– Two Independent Programmable Realtimeoutputs
Unit (PRU) Cores
– Single Shot Capture of up to Four Event
•32-Bit Load/Store RISC architectureTime-Stamps
•4K Byte instruction RAM per core• Two 32-Bit Enhanced Quadrature Encoder
•512 Bytes data RAM per core
•PRU Subsystem (PRUSS) can be disabled
via software to save power
– Standard power management mechanism
•Clock gating
•Entire subsystem under a single PSC
clock gating domain
The OMAP-L137 is a low-power applications processor based on an ARM926EJ-S™ and a C674x DSP
core. It consumes significantly lower power than other members of the TMS320C6000™ platform of
DSPs.
The OMAP-L137 enables OEMs and ODMs to quickly bring to market devices featuring robust operating
systems support, rich user interfaces, and high processing performance life through the maximum
flexibility of a fully integrated mixed processor solution.
The dual-core architecture of the OMAP-L137 provides benefits of both DSP and Reduced Instruction Set
Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an
ARM926EJ-S core.
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and
processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and
memory system can operate continuously.
The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory
Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and
16K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core
also has a 8KB RAM (Vector Table) and 64KB ROM.
The OMAP-L137 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P)
is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache.
The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program
and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.
Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB RAM
shared memory is available for use by other hosts without affecting DSP performance.
www.ti.com
The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output
(MDIO) module; two inter-integrated circuit (I2C) bus interfaces; 3 multichannel audio serial ports (McASP)
with 16/12/4 serializers and FIFO buffers; 2 64-bit general-purpose timers each configurable (one
configurable as watchdog); a configurable 16-bit host port interface (HPI) ; up to 8 banks of 16 pins of
general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed
with other peripherals; 3 UART interfaces (one with RTS and CTS); 3 enhanced high-resolution pulse
width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can
be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; 2 32-bit enhanced
quadrature pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM
external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory
interface (EMIFB) for SDRAM.
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the OMAP-L137
and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and
100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO)
interface is available for PHY configuration.
The HPI, I2C, SPI, USB1.1 and USB2.0 ports allow the OMAP-L137 to easily control peripheral devices
and/or communicate with host processors.
The rich peripheral set provides the ability to control external peripheral devices and communicate with
external processors. For details on each of the peripherals, see the related sections later in this document
and the associated peripheral reference guides.
The OMAP-L137 has a complete set of development tools for both the ARM and DSP. These include C
compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™
debugger interface for visibility into source code execution.
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
This data manual revision history highlights the changes made to the SPRS563C device-specific data
manual to make it an SPRS563D revision.
Table 2-1. Revision History
ADDITIONS/MODIFICATIONS/DELETIONS
Global - Replaced all "CLKIN" references with "OSCIN"
Global - Updated td(SCSL_SPC)S min from P to 2P
Global - Made changes in the document to reflect the following detail.
"The DSP L2 ROM is used for boot purposes and cannot be programmed with application code".
Global - Updated the pin map graphics to fix typos.
Global - Added PRUSS content
Global - Updated SPI Electrical parameters
Section 1.1, Features - Updated "One 64-bit General-Purpose Timer (Watch Dog)" to "One 64-bit General-Purpose/Watchdog Timer
(Configurable as Two 32-bit General-Purpose Timers)"
Section 5.1, Absolute Maximum Ratings - Removed the references to USB0_VDDA12
Added Section 5.3
Updated the EMIFA Asynchronous Memory Timing Diagrams in Section 6.11.5.
Added "During emulation, the emulator will maintain TRST high so only warm reset (not POR) is available during emulation debug and
Table 3-1. Characteristics of the OMAP-L137 Processor (continued)
HARDWARE FEATURESOMAP-L137
CPU FrequencyMHz
Voltage
Package17 mm x 17 mm, 256-Ball 1 mm pitch, PBGA (ZKB)
Product Status
(1) ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and
other specifications are subject to change without notice.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
(1)
Core (V)1.2V / 1.3V
I/O (V)3.3 V / 1.8 V (1.8 V for USB only)
Product Preview (PP),
Advance Information
(AI),
or Production Data
(PD)
674x DSP at 375 MHz(1.2V) or 456 MHz (1.3V)
ARM926 at 375 MHz(1.2V) or 456 MHz (1.3V)
375 MHz Versions -PD
456 MHz Version - AI
3.2Device Compatibility
The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc.
The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of both
the C64x+ and C67x+ DSP families.
3.3ARM Subsystem
The ARM Subsystem includes the following features:
•ARM926EJ-S RISC processor
•ARMv5TEJ (32/16-bit) instruction set
•Little endian
•System Control Co-Processor 15 (CP15)
•MMU
•16KB Instruction cache
•16KB Data cache
•Write Buffer
•Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
•ARM Interrupt controller
3.3.1ARM926EJ-S RISC CPU
The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of
ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications
where full memory management, high performance, low die size, and low power are all important. The
ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to
trade off between high performance and high code density. Specifically, the ARM926EJ-S processor
supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes,
providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code
overhead.
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both
hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a
complete high performance subsystem, including:
•Separate instruction and data (internal RAM) interfaces
•Separate instruction and data AHB bus interfaces
•Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available
at http://www.arm.com
3.3.2CP15
The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and
data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers
are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as
supervisor or system mode.
3.3.3MMU
A single set of two level page tables stored in main memory is used to control the address translation,
permission checks and memory region attributes for both data and instruction accesses. The MMU uses a
single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The
MMU features are:
•Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.
•Access permissions for large pages and small pages can be specified separately for each quarter of
the page (subpage permissions)
•Hardware page table walks
•Invalidate entire TLB, using CP15 register 8
•Invalidate TLB entry, selected by MVA, using CP15 register 8
•Lockdown of TLB entries, using CP15 register 10
www.ti.com
3.3.4Caches and Write Buffer
The size of the Instruction cache is 16KB, Data cache is 16KB. Additionally, the caches have the following
features:
•Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)
•Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with
two dirty bits in the Dcache
•Dcache supports write-through and write-back (or copy back) cache operation, selected by memory
region using the C and B bits in the MMU translation tables
•Critical-word first cache refilling
•Cache lockdown registers enable control over which cache ways are used for allocation on a line fill,
providing a mechanism for both lockdown, and controlling cache corruption
•Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG
RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the
TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the
possibility of TLB misses related to the write-back address.
•Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of
the Dcache or Icache, and regions of virtual memory.
The write buffer is used for all writes to a noncachable bufferable region, write-through region and write
misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for
cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a
four-address buffer. The Dcache write-back has eight data word entries and a single address entry.
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
3.3.5Advanced High-Performance Bus (AHB)
The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and
the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the
Config Bus and the external memories bus.
3.3.6Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)
To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an
Embedded Trace Macrocell (ETM). The ARM926EJ-S Subsystem in the OMAP-L137 also includes the
Embedded Trace Buffer (ETB). The ETM consists of two parts:
•Trace Port provides real-time trace capability for the ARM9.
•Triggering facilities provide trigger resources, which include address and data comparators, counter,
and sequencers.
The OMAP-L137 trace port is not pinned out and is instead only connected to the Embedded Trace Buffer.
The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured
trace data.
This device uses ETM9™ version r2p2 and ETB version r0p1. Documentation on the ETM and ETB is
available from ARM Ltd. Reference the ' CoreSight™ ETM9™ Technical Reference Manual, revision r0p1'
and the 'ETM9 Technical Reference Manual, revision r2p2'.
3.3.7ARM Memory Mapping
By default the ARM has access to most on and off chip memory areas, including the DSP Internal
memories, EMIFA, EMIFB, and the additional 128K byte on chip shared SRAM. Likewise almost all of the
on chip peripherals are accessible to the ARM by default.
See Table 3-4 for a detailed top level OMAP-L137 memory map that includes the ARM memory space.
The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two
data paths as shown in Figure 3-2. The two general-purpose register files (A and B) each contain
32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be
data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit
data, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are
stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or
32 MSBs in the next upper register (which is always an odd-numbered register).
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one
instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units
perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from
memory to the register file and store results from the register file into memory.
The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the
C67x+ core.
Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x
32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with
add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four
16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for
Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and
modems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs
and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding
capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The
32 x 32 bit multiply instructions provide the extended precision necessary for high-precision algorithms on
a variety of signed and unsigned 32-bit data types.
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
The .L Unit (or Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on
a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data
performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.
The C674x core enhances the .S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2
comparisons were only available on the .L units. On the C674x core they are also available on the .S unit
which increases the performance of algorithms that do searching and sorting. Finally, to increase data
packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit
and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack
instructions return parallel results to output precision including saturation support.
Other new features include:
•SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where
multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size
associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.
•Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common
instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x
compiler can restrict the code to use certain registers in the register file. This compression is
performed by the code generation tools.
•Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit
multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field
multiplication.
•Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to
detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and
from system events (such as a watchdog time expiration).
•Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a
basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with
read, write, and execute permissions.
•Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a
free-running time-stamp counter is implemented in the CPU which is not sensitive to system stalls.
For more details on the C674x CPU and its enhancements over the C64x architecture, see the following
documents:
•TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732)
•TMS320C64x Technical Overview (literature number SPRU395)
A. On .M unit, dst2 is 32 MSB.
B. On .M unit, dst1 is 32 LSB.
C. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits.
D. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.
The DSP memory map is shown in Section 3.5.
By default the DSP also has access to most on and off chip memory areas, with the exception of the ARM
RAM, ROM, and AINTC interrupt controller. The DSP also boots first, and must release the ARM from
reset before the ARM can execute any code.
Additionally, the DSP megamodule includes the capability to limit access to its internal memories through
its SDMA port; without needing an external MPU unit.
3.4.2.1ARM Internal Memories
The DSP does not have access to the ARM internal memory.
3.4.2.2External Memories
The DSP has access to the following External memories:
•Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA)
•SDRAM (EMIFB)
3.4.2.3DSP Internal Memories
The DSP has access to the following DSP memories:
•L2 RAM
•L1P RAM
•L1D RAM
www.ti.com
3.4.2.4C674x CPU
The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB
direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2
memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space.
L2 memory can be configured as mapped memory, cache, or a combination of both.
Table 3-2 shows a memory map of the C674x CPU cache registers for the device.
Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in
the smallest possible package. Pin multiplexing is controlled using a combination of hardware
configuration at device reset and software programmable register settings.
3.6.1Pin Map (Bottom View)
Figure 3-3 shows the pin assignments for the ZKB package.
Table 3-5 to Table 3-25 identify the external signal names, the associated pin/ball numbers along with the
mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal
pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin
description.
3.7.1Device Reset and JTAG
Table 3-5. Reset and JTAG Terminal Functions
SIGNAL NAMETYPE
RESETG3IDevice reset inputAMUTE0/ RESETOUTL4O
TMSJ1IIPUJTAG test mode select
TDIJ2IIPUJTAG test data input
TDOJ3OIPDJTAG test data output
TCKH3IIPUJTAG test clock
TRSTJ4IIPDJTAG test reset
EMU[0]/GP7[15]J5I/OIPUEmulation Signal
RTCK/GP7[14]K1I/OIPDJTAG Test Clock Return Clock Output
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
(3) Open drain mode for RESETOUT function.
PIN NO
ZKB
(1)
(3)
(2)
PULL
RESET
IPDReset output. Multiplexed with McASP0 mute output.
JTAG
DESCRIPTION
3.7.2High-Frequency Oscillator and PLL
Table 3-6. High-Frequency Oscillator and PLL Terminal Functions
RTC_CVDDG1PWRRTC module core power (isolated from rest of chip CVDD)
RTC_XIH1ILow-frequency (32-kHz) oscillator receiver for real-time clock
RTC_XOH2OLow-frequency (32-kHz) oscillator driver for real-time clock
RTC_V
ss
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor