Texas instruments OMAP-L137 ADVANCE INFORMATION

ADVANCEINFORMATION
OMAP-L137
www.ti.com
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
OMAP-L137 Low-Power Applications Processor
Check for Samples: OMAP-L137

1 OMAP-L137 Low-Power Applications Processor

1234
• Highlights – Dual Core SoC
375/456-MHz ARM926EJ-S™ RISC MPU
375/456-MHz C674x VLIW DSP
– TMS320C674x Fixed/Floating-Point VLIW
DSP Core – Compact 16-Bit Instructions
– Enhanced Direct-Memory-Access Controller • C674x Two Level Cache Memory Architecture
3 (EDMA3) – 128K-Byte RAM Shared Memory – Two External Memory Interfaces – Three Configurable 16550 type UART
Modules – LCD Controller – Two Serial Peripheral Interfaces (SPI) – Multimedia Card (MMC)/Secure Digital (SD) – Two Master/Slave Inter-Integrated Circuit – One Host-Port Interface (HPI) – USB 1.1 OHCI (Host) With Integrated PHY
(USB1)
• Applications – Industrial Diagnostics Support – Test and measurement – 64 General-Purpose Registers (32 Bit) – Military Sonar/ Radar – Six ALU (32-/40-Bit) Functional Units – Medical measurement Supports 32-Bit Integer, SP (IEEE Single – Professional Audio
• Software Support – TI DSP/BIOS™ – Chip Support Library and DSP Library
• Dual Core SoC – 375/456-MHz ARM926EJ-S™ RISC MPU – 375/456-MHz C674x VLIW DSP
• ARM926EJ-S Core – 32-Bit and 16-Bit (Thumb®) Instructions – DSP Instruction Extensions – Single Cycle MAC – ARM®Jazelle®Technology – EmbeddedICE-RT™ for Real-Time Debug
• ARM9 Memory Architecture
• C674x Instruction Set Features – Superset of the C67x+™ and C64x+™ ISAs
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2DSP/BIOS, C67x+, TMS320C6000, C6000 are trademarks of Texas Instruments. 3ARM926EJ-S, EmbeddedICE-RT, ETM9, CoreSight are trademarks of ARM Limited. 4ARM, Jazelle are registered trademarks of ARM Limited.
ADVANCE INFORMATION concerns new products in the sampling or preproduction phaseof development. Characteristic dataand other specifications are subjectto change without notice.
– Up to 3648/2736 C674x MIPS/MFLOPS – Byte-Addressable (8-/16-/32-/64-Bit Data) – 8-Bit Overflow Protection – Bit-Field Extract, Set, Clear – Normalization, Saturation, Bit-Counting
– 32K-Byte L1P Program RAM/Cache – 32K-Byte L1D Data RAM/Cache – 256K-Byte L2 Unified Mapped RAM/Cache – Flexible RAM/Cache Partition (L1 and L2)
• Enhanced Direct-Memory-Access Controller 3 (EDMA3):
– 2 Transfer Controllers – 32 Independent DMA Channels – 8 Quick DMA Channels – Programmable Transfer Burst Size
• TMS320C674x Fixed/Floating-Point VLIW DSP Core
– Load-Store Architecture With Non-Aligned
Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point
Supports up to Four SP Additions Per Clock, Four DP Additions Every 2 Clocks
Supports up to Two Floating Point (SP or DP) Reciprocal Approximation (RCPxP) and Square-Root Reciprocal Approximation (RSQRxP) Operations Per Cycle
– Two Multiply Functional Units
Mixed-Precision IEEE Floating Point Multiply Supported up to:
– 2 SP x SP -> SP Per Clock – 2 SP x SP -> DP Every Two Clocks – 2 SP x DP -> DP Every Three Clocks – 2 DP x DP -> DP Every Four Clocks
Fixed Point Multiply Supports Two 32 x
Copyright © 2008–2010, Texas Instruments Incorporated
ADVANCEINFORMATION
OMAP-L137
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
www.ti.com
32-Bit Multiplies, Four 16 x 16-Bit – Dedicated switched central resource Multiplies, or Eight 8 x 8-Bit Multiplies per
Clock Cycle, and Complex Multiples – Instruction Packing Reduces Code Size – All Instructions Conditional – Hardware Support for Modulo Loop
Operation – Protected Mode Operation – Exceptions Support for Error Detection and
Program Redirection
• 128K-Byte RAM Shared Memory
• 3.3V LVCMOS IOs (except for USB interfaces)
• Two External Memory Interfaces: – EMIFA
NOR (8-/16-Bit-Wide Data)
NAND (8-/16-Bit-Wide Data)
16-Bit SDRAM With 128MB Address Space
– EMIFB
32-Bit or 16-Bit SDRAM With 256MB Address Space
• Three Configurable 16550 type UART Modules: – UART0 With Modem Control Signals – Autoflow control signals (CTS, RTS) on
UART0 only
– 16-byte FIFO
• USB 1.1 OHCI (Host) With Integrated PHY (USB1)
• USB 2.0 OTG Port With Integrated PHY (USB0) – USB 2.0 High-/Full-Speed Client – USB 2.0 High-/Full-/Low-Speed Host – End Point 0 (Control) – End Points 1,2,3,4 (Control, Bulk, Interrupt or
ISOC) Rx and Tx
• Three Multichannel Audio Serial Ports: – Six Clock Zones and 28 Serial Data Pins – Supports TDM, I2S, and Similar Formats – DIT-Capable (McASP2) – FIFO buffers for Transmit and Receive
• 10/100 Mb/s Ethernet MAC (EMAC): – IEEE 802.3 Compliant (3.3-V I/O Only) – RMII Media Independent Interface – Management Data I/O (MDIO) Module
• Real-Time Clock With 32 KHz Oscillator and Separate Power Rail
• One 64-Bit General-Purpose Timer (Configurable as Two 32-Bit Timers)
• One 64-bit General-Purpose/Watchdog Timer (Configurable as Two 32-bit General-Purpose Timers)
• Three Enhanced Pulse Width Modulators
– 16x or 13x Oversampling Option (eHRPWM):
• LCD Controller – Dedicated 16-Bit Time-Base Counter With
• Two Serial Peripheral Interfaces (SPI) Each
Period And Frequency Control
With One Chip-Select – 6 Single Edge, 6 Dual Edge Symmetric or 3
• Multimedia Card (MMC)/Secure Digital (SD)
Dual Edge Asymmetric Outputs
Card Interface with Secure Data I/O (SDIO) – Dead-Band Generation
• Two Master/Slave Inter-Integrated Circuit (I2C – PWM Chopping by High-Frequency Carrier Bus™)
• One Host-Port Interface (HPI) With 16-Bit-Wide Muxed Address/Data Bus For High Bandwidth
• Programmable Real-Time Unit Subsystem (PRUSS)
– Trip Zone Input
• Three 32-Bit Enhanced Capture Modules (eCAP):
– Configurable as 3 Capture Inputs or 3
Auxiliary Pulse Width Modulator (APWM)
– Two Independent Programmable Realtime outputs
Unit (PRU) Cores
– Single Shot Capture of up to Four Event
32-Bit Load/Store RISC architecture Time-Stamps
4K Byte instruction RAM per core • Two 32-Bit Enhanced Quadrature Encoder
512 Bytes data RAM per core
PRU Subsystem (PRUSS) can be disabled via software to save power
– Standard power management mechanism
Clock gating
Entire subsystem under a single PSC clock gating domain
– Dedicated interrupt controller
Pulse Modules (eQEP)
• 256-Ball Pb-Free Plastic Ball Grid Array (PBGA) [ZKB Suffix], 1.0-mm Ball Pitch
• Commercial, Industrial, Extended, or Automotive Temperature
• Community Resources – TI E2E CommunityTI Embedded Processors Wiki
2 OMAP-L137 Low-Power Applications Processor Copyright © 2008–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
www.ti.com

1.2 Trademarks

DSP/BIOS, TMS320C6000, C6000, TMS320, TMS320C62x, and TMS320C67x are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
Copyright © 2008–2010, Texas Instruments Incorporated OMAP-L137 Low-Power Applications Processor 3
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010

1.3 Description

The OMAP-L137 is a low-power applications processor based on an ARM926EJ-S™ and a C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs.
The OMAP-L137 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution.
The dual-core architecture of the OMAP-L137 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an ARM926EJ-S core.
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.
The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and 16K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core also has a 8KB RAM (Vector Table) and 64KB ROM.
The OMAP-L137 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB RAM shared memory is available for use by other hosts without affecting DSP performance.
www.ti.com
The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; two inter-integrated circuit (I2C) bus interfaces; 3 multichannel audio serial ports (McASP) with 16/12/4 serializers and FIFO buffers; 2 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host port interface (HPI) ; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with RTS and CTS); 3 enhanced high-resolution pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; 2 32-bit enhanced quadrature pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM.
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the OMAP-L137 and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is available for PHY configuration.
The HPI, I2C, SPI, USB1.1 and USB2.0 ports allow the OMAP-L137 to easily control peripheral devices and/or communicate with host processors.
The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.
The OMAP-L137 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.
4 OMAP-L137 Low-Power Applications Processor Copyright © 2008–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
Switched Central Resource (SCR)
BOOT ROM
256 KB L2 RAM
32 KB
L1 RAM
32 KB
L1 Pgm
16 KB
I-Cache
16 KB
D-Cache
AET
4 KB ETB
C674x™
DSP CPU
ARM926EJ-S CPU
With MMU
DSP Subsystem
ARM Subsystem
JTAG Interface
System Control
Input
Clock(s)
64 KB ROM
8 KB RAM
(Vector Table)
Power/Sleep
Controller
Pin
Multiplexing
RTC/
32-KHz
OSC
PLL/Clock Generator
w/OSC
General­Purpose
Timer
General­Purpose
Timer
(Watchdog)
Serial Interfaces
I C
(2)
2
SPI
(2)
UART
(3)
Audio Ports
McASP w/FIFO
(3)
DMA
Peripherals
Display
Internal Memory
LCD
Ctlr
128 KB
RAM
External Memory Interfaces
Connectivity
EDMA3
Control Timers
eHRPWM
(3)
eCAP
(3)
eQEP
(2)
(10/100)
EMAC (RMII)
MDIO
USB1.1
OHCI Ctlr
PHY
USB2.0
OTG Ctlr
PHY
HPI
MMC/SD
(8b)
EMIFA(8b/16B)
NAND/Flash 16b SDRAM
EMIFB
SDRAM Only
(16b/32b)
GPIO
PRU
Subsystem
OMAP-L137
www.ti.com

1.4 Functional Block Diagram

SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
Note: Not all peripherals are available at the same time due to multiplexing.
Copyright © 2008–2010, Texas Instruments Incorporated OMAP-L137 Low-Power Applications Processor 5
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
www.ti.com
1 OMAP-L137 Low-Power Applications Processor 6.9 General-Purpose Input/Output (GPIO) ............. 77
............................................................... 1
1.1 Features .............................................. 1
1.2 Trademarks .......................................... 3
1.3 Description ........................................... 4
1.4 Functional Block Diagram ............................ 5
2 Revision History ......................................... 7
3 Device Overview ........................................ 8
3.1 Device Characteristics ............................... 8
3.2 Device Compatibility ................................. 9
3.3 ARM Subsystem ..................................... 9
3.4 DSP Subsystem .................................... 12
3.5 Memory Map Summary ............................. 23 ..................................................... 148
3.6 Pin Assignments .................................... 26
3.7 Terminal Functions ................................. 27
4 Device Configuration ................................. 48
4.1 Boot Modes ......................................... 48
4.2 SYSCFG Module ................................... 49
4.3 Pullup/Pulldown Resistors .......................... 51
5 Device Operating Conditions ....................... 52
5.1 Absolute Maximum Ratings Over Operating Case Temperature Range
(Unless Otherwise Noted) ................................. 52
5.2 Recommended Operating Conditions .............. 53
5.3 Notes on Recommended Power-On Hours (POH)
...................................................... 54
5.4 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case
Temperature (Unless Otherwise Noted) ............ 55
6 Peripheral Information and Electrical
Specifications .......................................... 56
6.1 Parameter Information .............................. 56
6.2 Recommended Clock and Control Signal Transition
Behavior ............................................ 57
6.3 Power Supplies ..................................... 57
6.4 Unused USB0 (USB2.0) and USB1 (USB1.1) Pin
Configurations ...................................... 58
6.5 Reset ............................................... 59
6.6 Crystal Oscillator or External Clock Input .......... 62
6.7 Clock PLLs ......................................... 64
6.8 Interrupts ............................................ 68
6.10 EDMA ............................................... 80
6.11 External Memory Interface A (EMIFA) ............. 85
6.12 External Memory Interface B (EMIFB) ............. 94
6.13 Memory Protection Units .......................... 101
6.14 MMC / SD / SDIO (MMCSD) ...................... 104
6.15 Ethernet Media Access Controller (EMAC) ....... 107
6.16 Management Data Input/Output (MDIO) .......... 112
6.17 Multichannel Audio Serial Ports (McASP0, McASP1,
and McASP2) ..................................... 114
6.18 Serial Peripheral Interface Ports (SPI0, SPI1) .... 127
6.19 Enhanced Capture (eCAP) Peripheral ............ 145
6.20 Enhanced Quadrature Encoder (eQEP) Peripheral
6.21 Enhanced High-Resolution Pulse-Width Modulator
(eHRPWM) ........................................ 150
6.22 LCD Controller .................................... 154
6.23 Timers ............................................. 169
6.24 Inter-Integrated Circuit Serial Ports (I2C0, I2C1)
..................................................... 171
6.25 Universal Asynchronous Receiver/Transmitter
(UART) ............................................ 176
6.26 USB1 Host Controller Registers (USB1.1 OHCI)
..................................................... 178
6.27 USB0 OTG (USB2.0 OTG) ........................ 179
6.28 Host-Port Interface (UHPI) ........................ 187
6.29 Power and Sleep Controller (PSC) ................ 194
6.30 Programmable Real-Time Unit Subsystem (PRUSS)
..................................................... 197
6.31 Emulation Logic ................................... 200
6.32 IEEE 1149.1 JTAG ................................ 207
6.33 Real Time Clock (RTC) ........................... 209
7 Device and Documentation Support ............. 212
7.1 Device Support .................................... 212
7.2 Documentation Support ........................... 212
8 Mechanical Packaging and Orderable
Information ............................................ 214
8.1 Device and Development-Support Tool
Nomenclature ..................................... 214
8.2 Packaging Materials Information .................. 215
8.3 Thermal Data for ZKB ............................. 215
8.4 Mechanical Drawings ............................. 215
6 Contents Copyright © 2008–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
www.ti.com
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010

2 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version. This data manual revision history highlights the changes made to the SPRS563C device-specific data
manual to make it an SPRS563D revision.
Table 2-1. Revision History
ADDITIONS/MODIFICATIONS/DELETIONS
Global - Replaced all "CLKIN" references with "OSCIN" Global - Updated td(SCSL_SPC)S min from P to 2P Global - Made changes in the document to reflect the following detail.
"The DSP L2 ROM is used for boot purposes and cannot be programmed with application code". Global - Updated the pin map graphics to fix typos. Global - Added PRUSS content Global - Updated SPI Electrical parameters
Section 1.1, Features - Updated "One 64-bit General-Purpose Timer (Watch Dog)" to "One 64-bit General-Purpose/Watchdog Timer
(Configurable as Two 32-bit General-Purpose Timers)"
Section 5.1, Absolute Maximum Ratings - Removed the references to USB0_VDDA12
Added Section 5.3 Updated the EMIFA Asynchronous Memory Timing Diagrams in Section 6.11.5. Added "During emulation, the emulator will maintain TRST high so only warm reset (not POR) is available during emulation debug and
development" in Section 6.5.2. Updated Figure 6-9
Section 8.1, Updated the nomenclature diagram
Copyright © 2008–2010, Texas Instruments Incorporated Revision History 7
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010

3 Device Overview

3.1 Device Characteristics

Table 3-1 provides an overview of the OMAP-L137 low power applications processor. The table shows
significant features of the device, including the capacity of on-chip RAM, peripherals, and the package type with pin count.
Table 3-1. Characteristics of the OMAP-L137 Processor
HARDWARE FEATURES OMAP-L137
EMIFB 16/32bit, up to 512Mb SDRAM EMIFA Asynchronous (8/16-bit bus width) RAM, Flash, 16bit upto 128Mb SDRAM, NOR, NAND Flash Card Interface MMC and SD cards supported. EDMA3 32 independent channels, 8 QDMA channels, 2 Transfer controllers
Timers UART 3 (one with RTS and CTS flow control)
SPI 2 (each with one hardware chip select) I2C 2 (both Master/Slave)
Peripherals Not all peripherals pins
are available at the same time (for more detail, see the Device Configurations section).
On-Chip Memory
C674x CPU ID + CPU Control Status Register Rev ID (CSR.[31:16])
C674x Megamodule Revision ID Register Revision (MM_REVID[15:0])
JTAG BSDL_ID DEVIDR0 register 0x8B7D F02F (Silicon Revision 1.1)
Multichannel Audio Serial Port [McASP]
10/100 Ethernet MAC with Management Data 1 (RMII Interface) I/O
eHRPWM 6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs eCAP 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs eQEP 2 32-bit QEP channels with 4 inputs/channel UHPI 1 (16-bit multiplexed address/data) USB 2.0 (USB0) High-Speed OTG Controller with on-chip OTG PHY USB 1.1 (USB1) Full-Speed OHCI (as host) with on-chip PHY General-Purpose
Input/Output Port LCD Controller 1 PRU Subsystem
(PRUSS) Size (Bytes) 488KB RAM
Organization
2 64-Bit General Purpose (each configurable as 2 separate 32-bit timers, 1 configurable
as Watch Dog)
3 (each with transmit/receive, FIFO buffer, 16/12/4 serializers)
8 banks of 16-bit
2 Programmable PRU Cores
DSP
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB) 256KB Unified Mapped RAM/Cache (L2)
DSP Memories can be made accessible to ARM, EDMA3, and other peripherals.
ARM
16KB I-Cache
16KB D-Cache
8KB RAM (Vector Table)
64KB ROM
ADDITIONAL SHARED MEMORY
128KB RAM
0x1400
0x0000 0x0B7D F02F (Silicon Revision 1.0) 0x9B7D F02F (Silicon Revision 2.0)
www.ti.com
8 Device Overview Copyright © 2008–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
www.ti.com
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
Table 3-1. Characteristics of the OMAP-L137 Processor (continued)
HARDWARE FEATURES OMAP-L137
CPU Frequency MHz
Voltage
Package 17 mm x 17 mm, 256-Ball 1 mm pitch, PBGA (ZKB)
Product Status
(1) ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and
other specifications are subject to change without notice. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
(1)
Core (V) 1.2V / 1.3V I/O (V) 3.3 V / 1.8 V (1.8 V for USB only)
Product Preview (PP), Advance Information (AI), or Production Data (PD)
674x DSP at 375 MHz(1.2V) or 456 MHz (1.3V)
ARM926 at 375 MHz(1.2V) or 456 MHz (1.3V)
375 MHz Versions -PD
456 MHz Version - AI

3.2 Device Compatibility

The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc. The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of both
the C64x+ and C67x+ DSP families.

3.3 ARM Subsystem

The ARM Subsystem includes the following features:
ARM926EJ-S RISC processor
ARMv5TEJ (32/16-bit) instruction set
Little endian
System Control Co-Processor 15 (CP15)
MMU
16KB Instruction cache
16KB Data cache
Write Buffer
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
ARM Interrupt controller

3.3.1 ARM926EJ-S RISC CPU

The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications where full memory management, high performance, low die size, and low power are all important. The ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to trade off between high performance and high code density. Specifically, the ARM926EJ-S processor supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes, providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code overhead.
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a complete high performance subsystem, including:
ARM926EJ -S integer core
CP15 system control coprocessor
Memory Management Unit (MMU)
Copyright © 2008–2010, Texas Instruments Incorporated Device Overview 9
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
Separate instruction and data caches
Write buffer
Separate instruction and data (internal RAM) interfaces
Separate instruction and data AHB bus interfaces
Embedded Trace Module and Embedded Trace Buffer (ETM/ETB) For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available
at http://www.arm.com

3.3.2 CP15

The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as supervisor or system mode.

3.3.3 MMU

A single set of two level page tables stored in main memory is used to control the address translation, permission checks and memory region attributes for both data and instruction accesses. The MMU uses a single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The MMU features are:
Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.
Mapping sizes are: – 1MB (sections) – 64KB (large pages) – 4KB (small pages) – 1KB (tiny pages)
Access permissions for large pages and small pages can be specified separately for each quarter of the page (subpage permissions)
Hardware page table walks
Invalidate entire TLB, using CP15 register 8
Invalidate TLB entry, selected by MVA, using CP15 register 8
Lockdown of TLB entries, using CP15 register 10
www.ti.com

3.3.4 Caches and Write Buffer

The size of the Instruction cache is 16KB, Data cache is 16KB. Additionally, the caches have the following features:
Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)
Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with two dirty bits in the Dcache
Dcache supports write-through and write-back (or copy back) cache operation, selected by memory region using the C and B bits in the MMU translation tables
Critical-word first cache refilling
Cache lockdown registers enable control over which cache ways are used for allocation on a line fill, providing a mechanism for both lockdown, and controlling cache corruption
Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the possibility of TLB misses related to the write-back address.
Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of the Dcache or Icache, and regions of virtual memory.
10 Device Overview Copyright © 2008–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
www.ti.com
The write buffer is used for all writes to a noncachable bufferable region, write-through region and write misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a four-address buffer. The Dcache write-back has eight data word entries and a single address entry.
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010

3.3.5 Advanced High-Performance Bus (AHB)

The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the Config Bus and the external memories bus.

3.3.6 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)

To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an Embedded Trace Macrocell (ETM). The ARM926EJ-S Subsystem in the OMAP-L137 also includes the Embedded Trace Buffer (ETB). The ETM consists of two parts:
Trace Port provides real-time trace capability for the ARM9.
Triggering facilities provide trigger resources, which include address and data comparators, counter, and sequencers.
The OMAP-L137 trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace data.
This device uses ETM9™ version r2p2 and ETB version r0p1. Documentation on the ETM and ETB is available from ARM Ltd. Reference the ' CoreSight™ ETM9™ Technical Reference Manual, revision r0p1' and the 'ETM9 Technical Reference Manual, revision r2p2'.

3.3.7 ARM Memory Mapping

By default the ARM has access to most on and off chip memory areas, including the DSP Internal memories, EMIFA, EMIFB, and the additional 128K byte on chip shared SRAM. Likewise almost all of the on chip peripherals are accessible to the ARM by default.
See Table 3-4 for a detailed top level OMAP-L137 memory map that includes the ARM memory space.
Copyright © 2008–2010, Texas Instruments Incorporated Device Overview 11
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
Instruction Fetch
C674x
Fixed/Floating Point CPU
Register
File A
Register
File B
Cache Control
Memory Protect
Bandwidth Mgmt
L1P
256
Cache Control
Memory Protect
Bandwidth Mgmt
L1D
64 64
8 x 32
32K Bytes L1D RAM/
Cache
32K Bytes
L1P RAM/
Cache
256
Cache Control
Memory Protect
Bandwidth Mgmt
L2
256K Bytes
L2 RAM
256
Boot ROM
256
CFG
MDMA SDMA
EMC
Power Down
Interrupt
Controller
IDMA
256
256
256
256
256
64
High
Performance
Switch Fabric
64
64 64
Configuration
Peripherals
Bus
32
OMAP-L137
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010

3.4 DSP Subsystem

The DSP Subsystem includes the following features:
C674x DSP CPU
32KB L1 Program (L1P)/Cache (up to 32KB)
32KB L1 Data (L1D)/Cache (up to 32KB)
256KB Unified Mapped RAM/Cache (L2)
Boot ROM (cannot be used for application code)
Little endian
www.ti.com
Figure 3-1. C674x Megamodule Block Diagram
12 Device Overview Copyright © 2008–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
www.ti.com

3.4.1 C674x DSP CPU Description

The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two data paths as shown in Figure 3-2. The two general-purpose register files (A and B) each contain 32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register).
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory.
The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the C67x+ core.
Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x 32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four 16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended precision necessary for high-precision algorithms on a variety of signed and unsigned 32-bit data types.
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
The .L Unit (or Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.
The C674x core enhances the .S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2 comparisons were only available on the .L units. On the C674x core they are also available on the .S unit which increases the performance of algorithms that do searching and sorting. Finally, to increase data packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack instructions return parallel results to output precision including saturation support.
Other new features include:
SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.
Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x compiler can restrict the code to use certain registers in the register file. This compression is performed by the code generation tools.
Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field multiplication.
Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and from system events (such as a watchdog time expiration).
Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with read, write, and execute permissions.
Copyright © 2008–2010, Texas Instruments Incorporated Device Overview 13
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a free-running time-stamp counter is implemented in the CPU which is not sensitive to system stalls.
For more details on the C674x CPU and its enhancements over the C64x architecture, see the following documents:
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732)
TMS320C64x Technical Overview (literature number SPRU395)
www.ti.com
14 Device Overview Copyright © 2008–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
src2
src2
.D1
.M1
.S1
.L1
long src
odd dst
src2
src1
src1
src1
src1
even dst
even dst
odd dst
dst1
dst
src2
src2
src2
long src
DA1
ST1b
LD1b LD1a
ST1a
Data path A
Odd
register
file A
(A1, A3,
A5...A31)
Odd
register
file B
(B1, B3,
B5...B31)
.D2
src1
dst
src2
DA2
LD2a LD2b
src2
.M2
src1
dst1
.S2
src1
even dst
long src
odd dst
ST2a ST2b
long src
.L2
even dst
odd dst
src1
Data path B
Control Register
32 MSB 32 LSB
dst2
(A)
32 MSB
32 LSB
2x
1x
32 LSB
32 MSB
32 LSB
32 MSB
dst2
(B)
(B) (A)
8
8
8
8
32
32
32
32
(C)
(C)
Even
register
file A
(A0, A2,
A4...A30)
Even
register
file B
(B0, B2,
B4...B30)
(D)
(D)
(D)
(D)
A. On .M unit, dst2 is 32 MSB. B. On .M unit, dst1 is 32 LSB. C. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits. D. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.
OMAP-L137
www.ti.com
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
Figure 3-2. TMS320C674x CPU (DSP Core) Data Paths
Copyright © 2008–2010, Texas Instruments Incorporated Device Overview 15
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010

3.4.2 DSP Memory Mapping

The DSP memory map is shown in Section 3.5. By default the DSP also has access to most on and off chip memory areas, with the exception of the ARM
RAM, ROM, and AINTC interrupt controller. The DSP also boots first, and must release the ARM from reset before the ARM can execute any code.
Additionally, the DSP megamodule includes the capability to limit access to its internal memories through its SDMA port; without needing an external MPU unit.
3.4.2.1 ARM Internal Memories
The DSP does not have access to the ARM internal memory.
3.4.2.2 External Memories
The DSP has access to the following External memories:
Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA)
SDRAM (EMIFB)
3.4.2.3 DSP Internal Memories
The DSP has access to the following DSP memories:
L2 RAM
L1P RAM
L1D RAM
www.ti.com
3.4.2.4 C674x CPU
The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2 memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both.
Table 3-2 shows a memory map of the C674x CPU cache registers for the device.
Table 3-2. C674x Cache Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x0184 0000 L2CFG
0x0184 0020 L1PCFG 0x0184 0024 L1PCC L1P Freeze Mode Cache configuration register 0x0184 0040 L1DCFG 0x0184 0044 L1DCC L1D Freeze Mode Cache configuration register
0x0184 0048 - 0x0184 0FFC - Reserved
0x0184 1000 EDMAWEIGHT L2 EDMA access control register
0x0184 1004 - 0x0184 1FFC - Reserved
0x0184 2000 L2ALLOC0 L2 allocation register 0 0x0184 2004 L2ALLOC1 L2 allocation register 1 0x0184 2008 L2ALLOC2 L2 allocation register 2
0x0184 200C L2ALLOC3 L2 allocation register 3
0x0184 2010 - 0x0184 3FFF - Reserved
0x0184 4000 L2WBAR L2 writeback base address register 0x0184 4004 L2WWC L2 writeback word count register
L2 Cache configuration register (See the System reference Guide for the reset configuration)
L1P Size Cache configuration register (See the System reference Guide for the reset configuration)
L1D Size Cache configuration register (See the System reference Guide for the reset configuration)
16 Device Overview Copyright © 2008–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
www.ti.com
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
Table 3-2. C674x Cache Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x0184 4010 L2WIBAR L2 writeback invalidate base address register 0x0184 4014 L2WIWC L2 writeback invalidate word count register 0x0184 4018 L2IBAR L2 invalidate base address register
0x0184 401C L2IWC L2 invalidate word count register
0x0184 4020 L1PIBAR L1P invalidate base address register 0x0184 4024 L1PIWC L1P invalidate word count register 0x0184 4030 L1DWIBAR L1D writeback invalidate base address register 0x0184 4034 L1DWIWC L1D writeback invalidate word count register 0x0184 4038 - Reserved 0x0184 4040 L1DWBAR L1D writeback base address register 0x0184 4044 L1DWWC L1D writeback word count register 0x0184 4048 L1DIBAR L1D invalidate base address register
0x0184 404C L1DIWC L1D invalidate word count register
0x0184 4050 - 0x0184 4FFF - Reserved
0x0184 5000 L2WB L2 writeback all register 0x0184 5004 L2WBINV L2 writeback invalidate all register 0x0184 5008 L2INV L2 Global Invalidate without writeback
0x0184 500C - 0x0184 5027 - Reserved
0x0184 5028 L1PINV L1P Global Invalidate
0x0184 502C - 0x0184 5039 - Reserved
0x0184 5040 L1DWB L1D Global Writeback 0x0184 5044 L1DWBINV L1D Global Writeback with Invalidate 0x0184 5048 L1DINV L1D Global Invalidate without writeback
0x0184 8000 – 0x0184 80FF MAR0 - MAR63 Reserved 0x0000 0000 – 0x3FFF FFFF 0x0184 8100 – 0x0184 817F MAR64 – MAR95
0x0184 8180 – 0x0184 8187 MAR96 - MAR97
0x0184 8188 – 0x0184 818F MAR98 – MAR99
0x0184 8190 – 0x0184 8197 MAR100 – MAR101
0x0184 8198 – 0x0184 819F MAR102 – MAR103 0x0184 81A0 – 0x0184 81FF MAR104 – MAR127 Reserved 0x6800 0000 – 0x7FFF FFFF
0x0184 8200 MAR128
0x0184 8204 – 0x0184 82FF MAR129 – MAR191 Reserved 0x8200 0000 – 0xBFFF FFFF 0x0184 8300 – 0x0184 837F MAR192 – MAR223 0x0184 8380 – 0x0184 83FF MAR224 – MAR255 Reserved 0xE000 0000 – 0xFFFF FFFF
Memory Attribute Registers for EMIFA SDRAM Data (CS0) 0x4000 0000 – 0x5FFF FFFF
Memory Attribute Registers for EMIFA Async Data (CS2) 0x6000 0000 – 0x61FF FFFF
Memory Attribute Registers for EMIFA Async Data (CS3) 0x6200 0000 – 0x63FF FFFF
Memory Attribute Registers for EMIFA Async Data (CS4) 0x6400 0000 – 0x65FF FFFF
Memory Attribute Registers for EMIFA Async Data (CS5) 0x6600 0000 – 0x67FF FFFF
Memory Attribute Register for Shared RAM 0x8000 0000 – 0x8001 FFFF Reserved 0x8002 0000 – 0x81FF FFFF
Memory Attribute Registers for EMIFB SDRAM Data (CS0) 0xC000 0000 – 0xDFFF FFFF
Table 3-3. C674x L1/L2 Memory Protection Registers
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x0184 A000 L2MPFAR L2 memory protection fault address register 0x0184 A004 L2MPFSR L2 memory protection fault status register 0x0184 A008 L2MPFCR L2 memory protection fault command register
0x0184 A00C - 0x0184 A0FF - Reserved
0x0184 A100 L2MPLK0 L2 memory protection lock key bits [31:0]
Copyright © 2008–2010, Texas Instruments Incorporated Device Overview 17
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x0184 A104 L2MPLK1 L2 memory protection lock key bits [63:32] 0x0184 A108 L2MPLK2 L2 memory protection lock key bits [95:64] 0x0184 A10C L2MPLK3 L2 memory protection lock key bits [127:96] 0x0184 A110 L2MPLKCMD L2 memory protection lock key command register 0x0184 A114 L2MPLKSTAT L2 memory protection lock key status register
0x0184 A118 - 0x0184 A1FF - Reserved
0x0184 A200 L2MPPA0
0x0184 A204 L2MPPA1
0x0184 A208 L2MPPA2
0x0184 A20C L2MPPA3
0x0184 A210 L2MPPA4
0x0184 A214 L2MPPA5
0x0184 A218 L2MPPA6
0x0184 A21C L2MPPA7
0x0184 A220 L2MPPA8
0x0184 A224 L2MPPA9
0x0184 A228 L2MPPA10
0x0184 A22C L2MPPA11
0x0184 A230 L2MPPA12
0x0184 A234 L2MPPA13
0x0184 A238 L2MPPA14
0x0184 A23C L2MPPA15
0x0184 A240 L2MPPA16
0x0184 A244 L2MPPA17
0x0184 A248 L2MPPA18
0x0184 A24C L2MPPA19
0x0184 A250 L2MPPA20
0x0184 A254 L2MPPA21
0x0184 A258 L2MPPA22
0x0184 A25C L2MPPA23
L2 memory protection page attribute register 0 (controls memory address 0x0080 0000 - 0x0080 1FFF)
L2 memory protection page attribute register 1 (controls memory address 0x0080 2000 - 0x0080 3FFF)
L2 memory protection page attribute register 2 (controls memory address 0x0080 4000 - 0x0080 5FFF)
L2 memory protection page attribute register 3 (controls memory address 0x0080 6000 - 0x0080 7FFF)
L2 memory protection page attribute register 4 (controls memory address 0x0080 8000 - 0x0080 9FFF)
L2 memory protection page attribute register 5 (controls memory address 0x0080 A000 - 0x0080 BFFF)
L2 memory protection page attribute register 6 (controls memory address 0x0080 C000 - 0x0080 DFFF)
L2 memory protection page attribute register 7 (controls memory address 0x0080 E000 - 0x0080 FFFF)
L2 memory protection page attribute register 8 (controls memory address 0x0081 0000 - 0x0081 1FFF)
L2 memory protection page attribute register 9 (controls memory address 0x0081 2000 - 0x0081 3FFF)
L2 memory protection page attribute register 10 (controls memory address 0x0081 4000 - 0x0081 5FFF)
L2 memory protection page attribute register 11 (controls memory address 0x0081 6000 - 0x0081 7FFF)
L2 memory protection page attribute register 12 (controls memory address 0x0081 8000 - 0x0081 9FFF)
L2 memory protection page attribute register 13 (controls memory address 0x0081 A000 - 0x0081 BFFF)
L2 memory protection page attribute register 14 (controls memory address 0x0081 C000 - 0x0081 DFFF)
L2 memory protection page attribute register 15 (controls memory address 0x0081 E000 - 0x0081 FFFF)
L2 memory protection page attribute register 16 (controls memory address 0x0082 0000 - 0x0082 1FFF)
L2 memory protection page attribute register 17 (controls memory address 0x0082 2000 - 0x0082 3FFF)
L2 memory protection page attribute register 18 (controls memory address 0x0082 4000 - 0x0082 5FFF)
L2 memory protection page attribute register 19 (controls memory address 0x0082 6000 - 0x0082 7FFF)
L2 memory protection page attribute register 20 (controls memory address 0x0082 8000 - 0x0082 9FFF)
L2 memory protection page attribute register 21 (controls memory address 0x0082 A000 - 0x0082 BFFF)
L2 memory protection page attribute register 22 (controls memory address 0x0082 C000 - 0x0082 DFFF)
L2 memory protection page attribute register 23 (controls memory address 0x0082 E000 - 0x0082 FFFF)
www.ti.com
18 Device Overview Copyright © 2008–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
www.ti.com
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x0184 A260 L2MPPA24
0x0184 A264 L2MPPA25
0x0184 A268 L2MPPA26
0x0184 A26C L2MPPA27
0x0184 A270 L2MPPA28
0x0184 A274 L2MPPA29
0x0184 A278 L2MPPA30
0x0184 A27C L2MPPA31
0x0184 A280 L2MPPA32
0x0184 A284 L2MPPA33
0x0184 A288 L2MPPA34
0x0184 A28C L2MPPA35
0x0184 A290 L2MPPA36
0x0184 A294 L2MPPA37
0x0184 A298 L2MPPA38
0x0184 A29C L2MPPA39
0x0184 A2A0 L2MPPA40
0x0184 A2A4 L2MPPA41
0x0184 A2A8 L2MPPA42
0x0184 A2AC L2MPPA43
0x0184 A2B0 L2MPPA44
0x0184 A2B4 L2MPPA45
0x0184 A2B8 L2MPPA46
0x0184 A2BC L2MPPA47
0x0184 A2C0 L2MPPA48
0x0184 A2C4 L2MPPA49
0x0184 A2C8 L2MPPA50
0x0184 A2CC L2MPPA51
L2 memory protection page attribute register 24 (controls memory address 0x0083 0000 - 0x0083 1FFF)
L2 memory protection page attribute register 25 (controls memory address 0x0083 2000 - 0x0083 3FFF)
L2 memory protection page attribute register 26 (controls memory address 0x0083 4000 - 0x0083 5FFF)
L2 memory protection page attribute register 27 (controls memory address 0x0083 6000 - 0x0083 7FFF)
L2 memory protection page attribute register 28 (controls memory address 0x0083 8000 - 0x0083 9FFF)
L2 memory protection page attribute register 29 (controls memory address 0x0083 A000 - 0x0083 BFFF)
L2 memory protection page attribute register 30 (controls memory address 0x0083 C000 - 0x0083 DFFF)
L2 memory protection page attribute register 31 (controls memory address 0x0083 E000 - 0x0083 FFFF)
L2 memory protection page attribute register 32 (controls memory address 0x0070 0000 - 0x0070 7FFF)
L2 memory protection page attribute register 33 (controls memory address 0x0070 8000 - 0x0070 FFFF)
L2 memory protection page attribute register 34 (controls memory address 0x0071 0000 - 0x0071 7FFF)
L2 memory protection page attribute register 35 (controls memory address 0x0071 8000 - 0x0071 FFFF)
L2 memory protection page attribute register 36 (controls memory address 0x0072 0000 - 0x0072 7FFF)
L2 memory protection page attribute register 37 (controls memory address 0x0072 8000 - 0x0072 FFFF)
L2 memory protection page attribute register 38 (controls memory address 0x0073 0000 - 0x0073 7FFF)
L2 memory protection page attribute register 39 (controls memory address 0x0073 8000 - 0x0073 FFFF)
L2 memory protection page attribute register 40 (controls memory address 0x0074 0000 - 0x0074 7FFF)
L2 memory protection page attribute register 41 (controls memory address 0x0074 8000 - 0x0074 FFFF)
L2 memory protection page attribute register 42 (controls memory address 0x0075 0000 - 0x0075 7FFF)
L2 memory protection page attribute register 43 (controls memory address 0x0075 8000 - 0x0075 FFFF)
L2 memory protection page attribute register 44 (controls memory address 0x0076 0000 - 0x0076 7FFF)
L2 memory protection page attribute register 45 (controls memory address 0x0076 8000 - 0x0076 FFFF)
L2 memory protection page attribute register 46 (controls memory address 0x0077 0000 - 0x0077 7FFF)
L2 memory protection page attribute register 47 (controls memory address 0x0077 8000 - 0x0077 FFFF)
L2 memory protection page attribute register 48 (controls memory address 0x0078 0000 - 0x0078 7FFF)
L2 memory protection page attribute register 49 (controls memory address 0x0078 8000 - 0x0078 FFFF)
L2 memory protection page attribute register 50 (controls memory address 0x0079 0000 - 0x0079 7FFF)
L2 memory protection page attribute register 51 (controls memory address 0x0079 8000 - 0x0079 FFFF)
Copyright © 2008–2010, Texas Instruments Incorporated Device Overview 19
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x0184 A2D0 L2MPPA52
0x0184 A2D4 L2MPPA53
0x0184 A2D8 L2MPPA54
0x0184 A2DC L2MPPA55
0x0184 A2E0 L2MPPA56
0x0184 A2E4 L2MPPA57
0x0184 A2E8 L2MPPA58
0x0184 A2EC L2MPPA59
0x0184 A2F0 L2MPPA60
0x0184 A2F4 L2MPPA61
0x0184 A2F8 L2MPPA62
0x0184 A2FC L2MPPA63
0x0184 A300 - 0x0184 A3FF - Reserved
0x0184 A400 L1PMPFAR L1P memory protection fault address register 0x0184 A404 L1PMPFSR L1P memory protection fault status register 0x0184 A408 L1PMPFCR L1P memory protection fault command register
0x0184 A40C - 0x0184 A4FF - Reserved
0x0184 A500 L1PMPLK0 L1P memory protection lock key bits [31:0] 0x0184 A504 L1PMPLK1 L1P memory protection lock key bits [63:32] 0x0184 A508 L1PMPLK2 L1P memory protection lock key bits [95:64] 0x0184 A50C L1PMPLK3 L1P memory protection lock key bits [127:96] 0x0184 A510 L1PMPLKCMD L1P memory protection lock key command register 0x0184 A514 L1PMPLKSTAT L1P memory protection lock key status register
0x0184 A518 - 0x0184 A5FF - Reserved
0x0184 A600 - 0x0184 A63F - Reserved
0x0184 A640 L1PMPPA16
0x0184 A644 L1PMPPA17
0x0184 A648 L1PMPPA18
0x0184 A64C L1PMPPA19
0x0184 A650 L1PMPPA20
0x0184 A654 L1PMPPA21
0x0184 A658 L1PMPPA22
L2 memory protection page attribute register 52 (controls memory address 0x007A 0000 - 0x007A 7FFF)
L2 memory protection page attribute register 53 (controls memory address 0x007A 8000 - 0x007A FFFF)
L2 memory protection page attribute register 54 (controls memory address 0x007B 0000 - 0x007B 7FFF)
L2 memory protection page attribute register 55 (controls memory address 0x007B 8000 - 0x007B FFFF)
L2 memory protection page attribute register 56 (controls memory address 0x007C 0000 - 0x007C 7FFF)
L2 memory protection page attribute register 57 (controls memory address 0x007C 8000 - 0x007C FFFF)
L2 memory protection page attribute register 58 (controls memory address 0x007D 0000 - 0x007D 7FFF)
L2 memory protection page attribute register 59 (controls memory address 0x007D 8000 - 0x007D FFFF)
L2 memory protection page attribute register 60 (controls memory address 0x007E 0000 - 0x007E 7FFF)
L2 memory protection page attribute register 61 (controls memory address 0x007E 8000 - 0x007E FFFF)
L2 memory protection page attribute register 62 (controls memory address 0x007F 0000 - 0x007F 7FFF)
L2 memory protection page attribute register 63 (controls memory address 0x007F 8000 - 0x007F FFFF)
(1)
L1P memory protection page attribute register 16 (controls memory address 0x00E0 0000 - 0x00E0 07FF)
L1P memory protection page attribute register 17 (controls memory address 0x00E0 0800 - 0x00E0 0FFF)
L1P memory protection page attribute register 18 (controls memory address 0x00E0 1000 - 0x00E0 17FF)
L1P memory protection page attribute register 19 (controls memory address 0x00E0 1800 - 0x00E0 1FFF)
L1P memory protection page attribute register 20 (controls memory address 0x00E0 2000 - 0x00E0 27FF)
L1P memory protection page attribute register 21 (controls memory address 0x00E0 2800 - 0x00E0 2FFF)
L1P memory protection page attribute register 22 (controls memory address 0x00E0 3000 - 0x00E0 37FF)
www.ti.com
(1) These addresses correspond to the L1P memory protection page attribute registers 0-15 (L1PMPPA0-L1PMPPA15) of the C674x
megamaodule. These registers are not supported for this device.
20 Device Overview Copyright © 2008–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
www.ti.com
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x0184 A65C L1PMPPA23
0x0184 A660 L1PMPPA24
0x0184 A664 L1PMPPA25
0x0184 A668 L1PMPPA26
0x0184 A66C L1PMPPA27
0x0184 A670 L1PMPPA28
0x0184 A674 L1PMPPA29
0x0184 A678 L1PMPPA30
0x0184 A67C L1PMPPA31
0x0184 A67F – 0x0184 ABFF - Reserved
0x0184 AC00 L1DMPFAR L1D memory protection fault address register 0x0184 AC04 L1DMPFSR L1D memory protection fault status register 0x0184 AC08 L1DMPFCR L1D memory protection fault command register
0x0184 AC0C - 0x0184 ACFF - Reserved
0x0184 AD00 L1DMPLK0 L1D memory protection lock key bits [31:0] 0x0184 AD04 L1DMPLK1 L1D memory protection lock key bits [63:32] 0x0184 AD08 L1DMPLK2 L1D memory protection lock key bits [95:64]
0x0184 AD0C L1DMPLK3 L1D memory protection lock key bits [127:96]
0x0184 AD10 L1DMPLKCMD L1D memory protection lock key command register 0x0184 AD14 L1DMPLKSTAT L1D memory protection lock key status register
0x0184 AD18 - 0x0184 ADFF - Reserved
0x0184 AE00 - 0x0184 AE3F - Reserved
0x0184 AE40 L1DMPPA16
0x0184 AE44 L1DMPPA17
0x0184 AE48 L1DMPPA18
0x0184 AE4C L1DMPPA19
0x0184 AE50 L1DMPPA20
0x0184 AE54 L1DMPPA21
0x0184 AE58 L1DMPPA22
0x0184 AE5C L1DMPPA23
0x0184 AE60 L1DMPPA24
0x0184 AE64 L1DMPPA25
L1P memory protection page attribute register 23 (controls memory address 0x00E0 3800 - 0x00E0 3FFF)
L1P memory protection page attribute register 24 (controls memory address 0x00E0 4000 - 0x00E0 47FF)
L1P memory protection page attribute register 25 (controls memory address 0x00E0 4800 - 0x00E0 4FFF)
L1P memory protection page attribute register 26 (controls memory address 0x00E0 5000 - 0x00E0 57FF)
L1P memory protection page attribute register 27 (controls memory address 0x00E0 5800 - 0x00E0 5FFF)
L1P memory protection page attribute register 28 (controls memory address 0x00E0 6000 - 0x00E0 67FF)
L1P memory protection page attribute register 29 (controls memory address 0x00E0 6800 - 0x00E0 6FFF)
L1P memory protection page attribute register 30 (controls memory address 0x00E0 7000 - 0x00E0 77FF)
L1P memory protection page attribute register 31 (controls memory address 0x00E0 7800 - 0x00E0 7FFF)
(2)
L1D memory protection page attribute register 16 (controls memory address 0x00F0 0000 - 0x00F0 07FF)
L1D memory protection page attribute register 17 (controls memory address 0x00F0 0800 - 0x00F0 0FFF)
L1D memory protection page attribute register 18 (controls memory address 0x00F0 1000 - 0x00F0 17FF)
L1D memory protection page attribute register 19 (controls memory address 0x00F0 1800 - 0x00F0 1FFF)
L1D memory protection page attribute register 20 (controls memory address 0x00F0 2000 - 0x00F0 27FF)
L1D memory protection page attribute register 21 (controls memory address 0x00F0 2800 - 0x00F0 2FFF)
L1D memory protection page attribute register 22 (controls memory address 0x00F0 3000 - 0x00F0 37FF)
L1D memory protection page attribute register 23 (controls memory address 0x00F0 3800 - 0x00F0 3FFF)
L1D memory protection page attribute register 24 (controls memory address 0x00F0 4000 - 0x00F0 47FF)
L1D memory protection page attribute register 25 (controls memory address 0x00F0 4800 - 0x00F0 4FFF)
(2) These addresses correspond to the L1D memory protection page attribute registers 0-15 (L1DMPPA0-L1DMPPA15) of the C674x
megamaodule. These registers are not supported for this device.
Copyright © 2008–2010, Texas Instruments Incorporated Device Overview 21
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
Table 3-3. C674x L1/L2 Memory Protection Registers (continued)
BYTE ADDRESS ACRONYM REGISTER DESCRIPTION
0x0184 AE68 L1DMPPA26
0x0184 AE6C L1DMPPA27
0x0184 AE70 L1DMPPA28
0x0184 AE74 L1DMPPA29
0x0184 AE78 L1DMPPA30
0x0184 AE7C L1DMPPA31
0x0184 AE80 – 0x0185 FFFF - Reserved
L1D memory protection page attribute register 26 (controls memory address 0x00F0 5000 - 0x00F0 57FF)
L1D memory protection page attribute register 27 (controls memory address 0x00F0 5800 - 0x00F0 5FFF)
L1D memory protection page attribute register 28 (controls memory address 0x00F0 6000 - 0x00F0 67FF)
L1D memory protection page attribute register 29 (controls memory address 0x00F0 6800 - 0x00F0 6FFF)
L1D memory protection page attribute register 30 (controls memory address 0x00F0 7000 - 0x00F0 77FF)
L1D memory protection page attribute register 31 (controls memory address 0x00F0 7800 - 0x00F0 7FFF)
See Table 3-4 for a detailed top level OMAP-L137 memory map that includes the DSP memory space.
www.ti.com
22 Device Overview Copyright © 2008–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
www.ti.com
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010

3.5 Memory Map Summary

Table 3-4. OMAP-L137 Top Level Memory Map
Start Address End Address Size ARM Mem DSP Mem Map EDMA Mem PRUSS Mem Master LCDC
0x0000 0000 0x006F FFFF - PRUSS Local
0x0070 0000 0x007F FFFF 1024K - DSP L2 ROM 0x0080 0000 0x0083 FFFF 256K - DSP L2 RAM ­0x0084 0000 0x00DF FFFF ­0x00E0 0000 0x00E0 7FFF 32K - DSP L1P RAM ­0x00E0 8000 0x00EF FFFF ­0x00F0 0000 0x00F0 7FFF 32K - DSP L1D RAM ­0x00F0 8000 0x017F FFFF ­0x0180 0000 0x0180 FFFF 64K - DSP Interrupt -
0x0181 0000 0x0181 0FFF 4K - DSP Powerdown -
0x0181 1000 0x0181 1FFF 4K - DSP Security ID ­0x0181 2000 0x0181 2FFF 4K - DSP Revision ID ­0x0181 3000 0x0181 FFFF 52K - - ­0x0182 0000 0x0182 FFFF 64K - DSP EMC ­0x0183 0000 0x0183 FFFF 64K - DSP Internal -
0x0184 0000 0x0184 FFFF 64K - DSP Memory -
0x0185 0000 0x01BB FFFF -
0x01BC 0000 0x01BC 0FFF 4K ARM ETB -
0x01BC 1000 0x01BC 17FF 2K ARM ETB reg ­0x01BC 1800 0x01BC 18FF 256 ARM Ice -
0x01BC 1900 0x01BF FFFF ­0x01C0 0000 0x01C0 7FFF 32K EDMA3 Channel Controller ­0x01C0 8000 0x01C0 83FF 1024 EDMA3 Transfer Controller 0 ­0x01C0 8400 0x01C0 87FF 1024 EDMA3 Transfer Controller 1 ­0x01C0 8800 0x01C0 FFFF ­0x01C1 0000 0x01C1 0FFF 4K PSC 0 ­0x01C1 1000 0x01C1 1FFF 4K PLL Controller ­0x01C1 2000 0x01C1 3FFF ­0x01C1 4000 0x01C1 4FFF 4K SYSCFG ­0x01C1 5000 0x01C1 5FFF ­0x01C1 6000 0x01C1 6FFF ­0x01C1 7000 0x01C1 7FFF ­0x01C1 8000 0x01C1 FFFF ­0x01C2 0000 0x01C2 0FFF 4K Timer64P 0 ­0x01C2 1000 0x01C2 1FFF 4K Timer64P 1 ­0x01C2 2000 0x01C2 2FFF 4K I2C 0 ­0x01C2 3000 0x01C2 3FFF 4K RTC ­0x01C2 4000 0x01C2 4FFF - -
Map Map Map Peripheral Mem
Address
Space
(1)
Controller
Controller
Reserved
System
memory
Crusher
Mem Map Map
-
(1) The DSP L2 ROM is used for boot purposes and cannot be programmed with application code
Copyright © 2008–2010, Texas Instruments Incorporated Device Overview 23
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
www.ti.com
Table 3-4. OMAP-L137 Top Level Memory Map (continued)
Start Address End Address Size ARM Mem DSP Mem Map EDMA Mem PRUSS Mem Master LCDC
0x01C2 5000 0x01C3 FFFF ­0x01C4 0000 0x01C4 0FFF 4K MMC/SD 0 ­0x01C4 1000 0x01C4 1FFF 4K SPI 0 ­0x01C4 2000 0x01C4 2FFF 4K UART 0 ­0x01C4 3000 0x01CF FFFF ­0x01D0 0000 0x01D0 0FFF 4K McASP 0 Control ­0x01D0 1000 0x01D0 1FFF 4K McASP 0 AFIFO Control ­0x01D0 2000 0x01D0 2FFF 4K McASP 0 Data ­0x01D0 3000 0x01D0 3FFF ­0x01D0 4000 0x01D0 4FFF 4K McASP 1 Control ­0x01D0 5000 0x01D0 5FFF 4K McASP 1 AFIFO Control ­0x01D0 6000 0x01D0 6FFF 4K McASP 1 Data ­0x01D0 7000 0x01D0 7FFF ­0x01D0 8000 0x01D0 8FFF 4K McASP 2 Control ­0x01D0 9000 0x01D0 9FFF 4K McASP 2 AFIFO Control ­0x01D0 A000 0x01D0 AFFF 4K McASP 2 Data ­0x01D0 B000 0x01D0 BFFF ­0x01D0 C000 0x01D0 CFFF 4K UART 1 ­0x01D0 D000 0x01D0 DFFF 4K UART 2 ­0x01D0 E000 0x01DF FFFF -
0x01E0 0000 0x01E0 FFFF 64K USB0 ­0x01E1 0000 0x01E1 0FFF 4K UHPI ­0x01E1 1000 0x01E1 1FFF ­0x01E1 2000 0x01E1 2FFF 4K SPI 1 ­0x01E1 3000 0x01E1 3FFF 4K LCD Controller ­0x01E1 4000 0x01E1 4FFF 4K Memory Protection Unit 1 (MPU 1) ­0x01E1 5000 0x01E1 5FFF 4K Memory Protection Unit 2 (MPU 2) ­0x01E1 6000 0x01E1 FFFF ­0x01E2 0000 0x01E2 1FFF 8K EMAC Control Module RAM ­0x01E2 2000 0x01E2 2FFF 4K EMAC Control Module Registers ­0x01E2 3000 0x01E2 3FFF 4K EMAC Control Registers ­0x01E2 4000 0x01E2 4FFF 4K EMAC MDIO port ­0x01E2 5000 0x01E2 5FFF 4K USB1 ­0x01E2 6000 0x01E2 6FFF 4K GPIO ­0x01E2 7000 0x01E2 7FFF 4K PSC 1 ­0x01E2 8000 0x01E2 8FFF 4K I2C 1 ­0x01E2 9000 0x01EF FFFF ­0x01F0 0000 0x01F0 0FFF 4K eHRPWM 0 ­0x01F0 1000 0x01F0 1FFF 4K HRPWM 0 ­0x01F0 2000 0x01F0 2FFF 4K eHRPWM 1 ­0x01F0 3000 0x01F0 3FFF 4K HRPWM 1 ­0x01F0 4000 0x01F0 4FFF 4K eHRPWM 2 ­0x01F0 5000 0x01F0 5FFF 4K HRPWM 2 ­0x01F0 6000 0x01F0 6FFF 4K ECAP 0 ­0x01F0 7000 0x01F0 7FFF 4K ECAP 1 ­0x01F0 8000 0x01F0 8FFF 4K ECAP 2 -
Map Map Map Peripheral Mem
Mem Map Map
24 Device Overview Copyright © 2008–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
www.ti.com
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
Table 3-4. OMAP-L137 Top Level Memory Map (continued)
Start Address End Address Size ARM Mem DSP Mem Map EDMA Mem PRUSS Mem Master LCDC
0x01F0 9000 0x01F0 9FFF 4K EQEP 0 ­0x01F0 A000 0x01F0 AFFF 4K EQEP 1 ­0x01F0 B000 0x116F FFFF -
0x1170 0000 0x117F FFFF 1024K DSP L2 ROM
0x1180 0000 0x1183 FFFF 256K DSP L2 RAM -
0x1184 0000 0x11DF FFFF -
0x11E0 0000 0x11E0 7FFF 32K DSP L1P RAM -
0x11E0 8000 0x11EF FFFF -
0x11F0 0000 0x11F0 7FFF 32K DSP L1D RAM -
0x11F0 8000 0x3FFF FFFF -
0x4000 0000 0x47FF FFFF 128M EMIFA SDRAM data (CS0) -
0x4800 0000 0x5FFF FFFF
0x6000 0000 0x61FF FFFF 32M EMIFA async data (CS2) -
0x6200 0000 0x63FF FFFF 32M EMIFA async data (CS3) -
0x6400 0000 0x65FF FFFF 32M EMIFA async data (CS4) -
0x6600 0000 0x67FF FFFF 32M EMIFA async data (CS5) -
0x6800 0000 0x6800 7FFF 32K EMIFA Control Registers -
0x6800 8000 0x7FFF FFFF -
0x8000 0000 0x8001 FFFF 128K Shared RAM -
0x8002 0000 0xAFFF FFFF -
0xB000 0000 0xB000 7FFF 32K EMIFB Control Registers
0xB000 8000 0xBFFF FFFF ­0xC000 0000 0xCFFF FFFF 256M EMIFB SDRAM Data 0xD000 0000 0xFFFC FFFF ­0xFFFD 0000 0xFFFD FFFF 64K ARM local -
0xFFFE 0000 0xFFFE DFFF ­0xFFFE E000 0xFFFE FFFF 8K ARM Interrupt -
0xFFFF 0000 0xFFFF 1FFF 8K ARM local - ARM Local
0xFFFF 2000 0xFFFF FFFF -
(2) The DSP L2 ROM is used for boot purposes and cannot be programmed with application code
Map Map Map Peripheral Mem
Mem Map Map
(2)
ROM
Controller
RAM RAM (PRU0
only)
-
Copyright © 2008–2010, Texas Instruments Incorporated Device Overview 25
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
V
SS
V
SS
T
AXR1[0]/
GP4[0]
AXR1[11]/
GP5[11]
SPI0_CLK/
EQEP1I/
GP5[2]/
BOOT[2]
SPI1_CLK/
EQEP1S/
GP5[7]/
BOOT[7]
1 2 3 4 5 6
EMA_CS[3]/
AMUTE2/
GP2[6]
7
EMA_CS[0] UHPI_HAS//
GP2[4]
8
EMA_A[0]/
LCD_D[7]/
GP1[0]
9
EMA_A[4]/ LCD_D[3]/
GP1[4]
10
EMA_A[8]/
LCD_PCLK/
GP1[8]
11
EMA_SDCKE/
GP2[0]
12
EMA_D[0]/
MMCSD_DAT[0]/
UHPI_HD[0]/
GP0[0]/
BOOT[12]
13
EMA_D[9]/
UHPI_HD[9]/
LCD_D[9]/
GP0[9]
14
V
SS
V
SS
15 16
DV
DD
R
AXR1[1]/
GP4[1]
UART0_RXD/
I2C0_SDA/
TM64P0_IN12/
GP5[8]/
BOOT[8]
SPI1_ENA/
UART2_RXD/
GP5[12]
SPI0_ENA
UART0_CTS//
EQEP0A/
GP5[3]/
BOOT[3]
SPI0_SOMI[0]/
EQEP0I/
GP5[0]/
BOOT[0]
EMA_OE
UHPI_HDS1//
AXR0[13]/
GP2[7]
EMA_BA[0]/
LCD_D[4]/
GP1[14]
EMA_A[1]/
MMCSD_CLK/
UHPI_HCNTL0/
GP1[1]
EMA_A[5]/ LCD_D[2]/
GP1[5]
EMA_A[9]/
LCD_HSYNC/
GP1[9]
EMA_CLK/
OBSCLK/
AHCLKR2/
GP1[15]
EMA_D[2]/
MMCSD_DAT[2]/
UHPI_HD[2]/
GP0[2]
EMA_D[10]/
UHPI_HD[10]/
LCD_D[10]/
GP0[10]
EMA_D[1]/
MMCSD_DAT[1]/
UHPI_HD[1]/
GP0[1]
DV
DD
P
AXR1[3]/
EQEP1A/
GP4[3]
AXR1[2]/
GP4[2]
UART0_TXD/
I2C0_SCL/
TM64P0_OUT12/
GP5[9]/
BOOT[9]
SPI1_SCS[0]/ UART2_TXD/
GP5[13]
SPI1_SOMI[0]/
I2C1_SCL/
GP5[5]/ BOOT[5]
SPI0_SIMO[0]/
EQEP0S/
GP5[1]/
BOOT[1]
EMA_CS[2] UHPI_HCS//
GP2[5]/
BOOT[15]
EMA_BA[1]/
LCD_D[5]/
UHPI_HHWIL/
GP1[13]
EMA_A[2]/ MMCSD_CMD/ UHPI_HCNTL1/
GP1[2]
EMA_A[6]/ LCD_D[1]/
GP1[6]
EMA_A[11]/
/
GP1[11]
LCD_AC_
ENB_CS
EMA_WE_
DQM[1]
UHPI_HDS2//
AXR0[14]/
GP2[8]
EMA_D[4]/
MMCSD_DAT[4]/
UHPI_HD[4]/
GP0[4]
EMA_D[12]/
UHPI_HD[12]/
LCD_D[12]/
GP0[12]
EMA_D[3]/
MMCSD_DAT[3]/
UHPI_HD[3]/
GP0[3]
EMA_D[11]/
UHPI_HD[11]/
LCD_D[11]
GP0[11]
N
AXR1[5]/
EPWM2B/
GP4[5]
AXR1[4]/ EQEP1B/
GP4[4]
AXR1[10]/
GP5[10]
SPI0_SCS[0] UART0_RTS//
EQEP0B/
GP5[4]/
BOOT[4]
SPI1_SIMO[0]/
I2C1_SDA/
GP5[6]/ BOOT[6]
EMA_WAIT[0]/
/
GP2[10]
UHPI_HRDY
EMA_RAS/
EMA_CS[5]/
GP2[2]
EMA_A[10]/
LCD_VSYNC/
GP1[10]
EMA_A[3]/
LCD_D[6]/
GP1[3]
EMA_A[7]/ LCD_D[0]/
GP1[7]
EMA_A[12]/ LCD_MCLK/
GP1[12]
EMA_D[8]/
UHPI_HD[8]/
LCD_D[8]/
GP0[8]
EMA_D[6]/
MMCSD_DAT[6]/
UHPI_HD[6]/
GP0[6]
EMA_D[14]/
UHPI_HD[14]/
LCD_D[14]/
GP0[14]
EMA_D[5]/
MMCSD_DAT[5]/
UHPI_HD[5]/
GP0[5]
EMA_D[13]/
UHPI_HD[13]/
LCD_D[13]/
GP0[13]
M
AXR1[9]/
GP4[9]
AXR1[8]/
EPWM1A/
GP4[8]
AXR1[7]/
EPWM1B/
GP4[7]
AXR1[6]/
EPWM2A/
GP4[6]
DV
DD
V
SS
V
SS
DV
DD
DV
DD
V
SS
V
SS
DV
DD
EMA_WEW/
UHPI_HR /
AXR0[12]/
GP2[3]/
BOOT[14]]
EMA_WE_
DQM[0]
UHPI_HINT//
AXR0[15]/
GP2[9]
EMA_D[7]/
MMCSD_DAT[7]/
UHPI_HD[7]/
GP0[7]/
BOOT[13]
EMA_D[15]/
UHPI_HD[15]/
LCD_D[15]/
GP0[15]
L
AHCLKR1/
GP4[11]
ACLKR1/
ECAP2/
APWM2/
GP4[12]
AFSR1/ GP4[13]
AMUTE0/
RESETOUT
DV
DD
CV
DD
V
SS
V
SS
V
SS
V
SS
DV
DD
DVDDEMB_CAS EMB_D[22] EMB_D[23]
EMA_CAS
EMA_CS[4]//
GP2[1]
K
RTCK/GP7[14]
AHCLKX1/ EPWM0B/
GP3[14]
ACLKX1/
EPWM0A/
GP3[15]
AFSX1/
EPWMSYNCI/
EPWMSYNCO/
GP4[10]
DV
DD
CV
DD
V
SS
V
SS
CV
DD
CV
DD
DVDDEMB_D[20]
EMB_WE_
DQM[0]/ GP5[15]
EMB_WE EMB_D[21]CV
DD
TMS
J
TDI
TDO TRST
EMU0/GP7[15]
CV
DD
CV
DD
V
SS
V
SS
CV
DD
CV
DD
CV
DD
EMB_D[5]/
GP6[5]
EMB_D[19]
EMB_D[6]/
GP6[6]
EMB_D[7]/
GP6[7]
RTC_XI
H
RTC_XO
TCK
NC
USB0_
VDDA33
CV
DD
V
SS
V
SS
CV
DD
CV
DD
EMB_D[3]/
GP6[3]
EMB_D[17] EMB_D[18]
EMB_D[4]/
GP6[4]
RTC_CV
DD
G
RTC_V
SS
RESET USB0_DM
DV
DD
CV
DD
V
SS
V
SS
CV
DD
CV
DD
DV
DD
CV
DD
EMB_D[1]/
GP6[1]
EMB_D[31] EMB_D[16]
EMB_D[2]/
GP6[2]
OSCOUT
F
OSCIN
NC USB0_DP
DV
DD
CV
DD
RSV1
V
SS
V
SS
V
SS
DV
DD
DV
DD
EMB_D[15]/
GP6[15]
EMB_D[29] EMB_D[30]
EMB_D[0]/
GP6[0]
PLL0_VSSA
E
OSCVSS
USB0_
VDDA18
USB0_
DRVVBUS/
GP4[15]
DV
DD
V
SS
V
SS
DV
DD
V
SS
V
SS
DV
DD
DV
DD
EMB_D[13]/
GP6[13]
EMB_D[27] EMB_D[28]
EMB_D[14]/
GP6[14]
PLL0_VDDA
D
USB0_ID
USB0_VBUS
AMUTE1/
EHRPWMTZ/
GP4[14]
AFSX0/
GP2[13]/
BOOT[10]
UART1_TXD/
AXR0[10]/
GP3[10]
AXR0[6]/
RMII_RXER/
ACLKR2/
GP3[6]
AXR0[2]/
RMII_TXEN/
AXR2[3]/
GP3[2]
EMB_CS[0]
EMB_A[0]/
GP7[2]
EMB_A[4]/
GP7[6]
EMB_A[8]/
GP7[10]
EMB_D[9]/
GP6[9]
EMB_D[10]/
GP6[10]
EMB_D[11]/
GP6[11]
EMB_D[12]/
GP6[12]
USB1_
VDDA33
C
USB1_
VDDA18
USB0_
VDDA12
AFSR0/
GP3[12]
ACLKX0/
ECAP0/ APWM0/ GP2[12]
UART1_RXD/
AXR0[9]/
GP3[9]
AXR0[5]/
RMII_RXD[1]/
AFSX2/ GP3[5]
AXR0[1]/
RMII_TXD[1]/
ACLKX2/
GP3[1]
EMB_BA[0]/
GP7[1]
EMB_A[1]/
GP7[3]
EMB_A[5]/
GP7[7]
EMB_A[9]/
GP7[11]
EMB_SDCKE EMB_CLK
EMB_WE_
DQM[1]/ GP5[14]
EMB_D[8]/
GP6[8]
B
RSV2 VSSUSB1_DM
ACLKR0/
ECAP1/ APWM1/ GP2[15]
AHCLKX0/ AHCLKX2/
USB_
REFCLKIN/
GP2[11]
AXR0[8]/
MDIO_D/
GP3[8]
AXR0[4]/
RMII_RXD[0]/
AXR2[1]/
GP3[4]
AXR0[0]/
RMII_TXD[0]/
AFSR2/
GP3[0]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
EMB_BA[1]/
GP7[0]
EMB_A[2]/
GP7[4]
EMB_A[6]/
GP7[8]
EMB_A[11]/
GP7[13]
EMB_WE_
DQM[2]
EMB_D[25]
EMB_A[12]/
GP3[13]
DV
DD
A
V
SS
VSSUSB1_DP
AHCLKR0/
RMII_MHZ_
50_CLK/ GP2[14]/ BOOT[11]
AXR0[11]/
AXR2[0]/
GP3[11]
AXR0[7]/
MDIO_CLK/
GP3[7]
AXR0[3]/
RMII_CRS_DV/
AXR2[2]/
GP3[3]
EMB_RAS
EMB_A[10]/
GP7[12]
EMB_A[3]/
GP7[5]
EMB_A[7]/
GP7[9]
EMB_WE_
DQM[3]
EMB_D[24] EMB_D[26] V
SS
V
SS
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
RV
DD
RV
DD
OMAP-L137
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010

3.6 Pin Assignments

Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings.

3.6.1 Pin Map (Bottom View)

Figure 3-3 shows the pin assignments for the ZKB package.
www.ti.com
26 Device Overview Copyright © 2008–2010, Texas Instruments Incorporated
Figure 3-3. Pin Map (ZKB)
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
www.ti.com
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010

3.7 Terminal Functions

Table 3-5 to Table 3-25 identify the external signal names, the associated pin/ball numbers along with the
mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin description.

3.7.1 Device Reset and JTAG

Table 3-5. Reset and JTAG Terminal Functions
SIGNAL NAME TYPE
RESET G3 I Device reset input AMUTE0/ RESETOUT L4 O
TMS J1 I IPU JTAG test mode select TDI J2 I IPU JTAG test data input TDO J3 O IPD JTAG test data output TCK H3 I IPU JTAG test clock TRST J4 I IPD JTAG test reset EMU[0]/GP7[15] J5 I/O IPU Emulation Signal RTCK/GP7[14] K1 I/O IPD JTAG Test Clock Return Clock Output
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor (3) Open drain mode for RESETOUT function.
PIN NO
ZKB
(1)
(3)
(2)
PULL
RESET
IPD Reset output. Multiplexed with McASP0 mute output.
JTAG
DESCRIPTION

3.7.2 High-Frequency Oscillator and PLL

Table 3-6. High-Frequency Oscillator and PLL Terminal Functions
SIGNAL NAME TYPE
EMA_CLK/OBSCLK/AHCLKR2/ GP1[15]
OSCIN F2 I Oscillator input OSCOUT F1 O Oscillator output OSCVSS E2 GND Oscillator ground (for filter only)
PLL0_VDDA D1 PWR PLL analog VDD(1.2-V filtered supply) PLL0_VSSA E1 GND PLL analog VSS(for filter)
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
ZKB
R12 O IPU PLL Observation Clock
(1)
PULL
1.2-V OSCILLATOR
(2)
1.2-V PLL
DESCRIPTION
Copyright © 2008–2010, Texas Instruments Incorporated Device Overview 27
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
www.ti.com

3.7.3 Real-Time Clock and 32-kHz Oscillator

Table 3-7. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions
SIGNAL NAME TYPE
RTC_CVDD G1 PWR RTC module core power (isolated from rest of chip CVDD) RTC_XI H1 I Low-frequency (32-kHz) oscillator receiver for real-time clock RTC_XO H2 O Low-frequency (32-kHz) oscillator driver for real-time clock RTC_V
ss
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
PIN NO
ZKB
G2 GND Oscillator ground (for filter)
(1)
PULL
(2)
DESCRIPTION

3.7.4 External Memory Interface A (ASYNC, SDRAM)

Table 3-8. External Memory Interface A (EMIFA) Terminal Functions
PIN
SIGNAL NAME TYPE
EMA_D[15]/UHPI_HD[15]/LCD_D[15]/GP0[15] M16 I/O IPD EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14] N14 I/O IPD EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13] N16 I/O IPD EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12] P14 I/O IPD EMA_D[11]/UHPI_HD[11]/LCD_D[11]/GP0[11] P16 I/O IPD EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10] R14 I/O IPD EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9] T14 I/O IPD EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8] N12 I/O IPD
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] M15 I/O IPU EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] N13 I/O IPU
EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] N15 I/O IPU EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] P13 I/O IPU EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] P15 I/O IPU EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] R13 I/O IPU EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] R15 I/O IPU
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] T13 I/O IPU
NO
ZKB
(1)
PULL
(2)
MUXED DESCRIPTION
UHPI, LCD, GPIO
MMC/SD, UHPI, GPIO, BOOT
MMC/SD, UHPI, GPIO
MMC/SD, UHPI, GPIO, BOOT
EMIFA data bus
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
28 Device Overview Copyright © 2008–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
www.ti.com
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010
Table 3-8. External Memory Interface A (EMIFA) Terminal Functions (continued)
PIN
SIGNAL NAME TYPE
EMA_A[12]/LCD_MCLK/GP1[12] N11 O IPU EMA_A[11]/ LCD_AC_ENB_CS/GP1[11] P11 O IPU EMA_A[10]/LCD_VSYNC/GP1[10] N8 O IPU EMA_A[9]/LCD_HSYNC/GP1[9] R11 O IPU EMA_A[8]/LCD_PCLK/GP1[8] T11 O IPU EMA_A[7]/LCD_D[0]/GP1[7] N10 O IPD EMA_A[6]/LCD_D[1]/GP1[6] P10 O IPD EMA_A[5]/LCD_D[2]/GP1[5] R10 O IPD EMA_A[4]/LCD_D[3]/GP1[4] T10 O IPD EMA_A[3]/LCD_D[6]/GP1[3] N9 O IPD EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] P9 O IPU EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] R9 O IPU EMIFA address bus EMA_A[0]/LCD_D[7]/GP1[0] T9 O IPD LCD, GPIO
EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13] P8 O IPU EMA_BA[0]/LCD_D[4]/GP1[14] R8 O IPU LCD, GPIO EMA_CLK/OBSCLK/AHCLKR2/GP1[15] R12 O IPU EMIFA clock
EMA_SDCKE/GP2[0] T12 O IPU GPIO
EMA_RAS /EMA_CS[5]/GP2[2] N7 O IPU
EMA_CAS /EMA_CS[4]/GP2[1] L16 O IPU
EMA_RAS/ EMA_CS[5] /GP2[2] N7 O IPU EMA_CAS/ EMA_CS[4] /GP2[1] L16 O IPU
EMA_CS[3] /AMUTE2/GP2[6] T7 O IPU McASP2, GPIO EMA_CS[2] /UHPI_HCS/GP2[5]/BOOT[15] P7 O IPU
EMA_CS[0] /UHPI_HAS/GP2[4] T8 O IPU UHPI, GPIO
EMA_WE /UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] M13 O IPU
EMA_WE_DQM[1] /UHPI_HDS2/AXR0[14]/GP2[8] P12 O IPU enable/data mask for
EMA_WE_DQM[0] /UHPI_HINT/AXR0[15]/GP2[9] M14 O IPU enable/data mask for
EMA_OE /UHPI_HDS1/AXR0[13]/GP2[7] R7 O IPU EMIFA output enable
EMA_WAIT[0]/ UHPI_HRDY/GP2[10] N6 I IPU UHPI, GPIO
NO
ZKB
(1)
PULL
(2)
MUXED DESCRIPTION
LCD, GPIO EMIFA address bus
MMCSD, UHPI, GPIO
LCD, UHPI, GPIO
McASP2, GPIO, OBSCLK
EMIF A chip select, GPIO
EMIF A SDRAM, GPIO
UHPI, GPIO, BOOT
UHPI, MCASP0, EMIFA SDRAM write GPIO, BOOT enable
UHPI, McASP, GPIO
UHPI, McASP0, GPIO
EMIFA bank address
EMIFA SDRAM clock enable
EMIFA SDRAM row address strobe
EMIFA SDRAM column address strobe
EMIFA Async Chip Select
EMIFA SDRAM chip select
EMIFA write EMA_D[15:8]
EMIFA write EMA_D[7:0]
EMIFA wait input/interrupt
Copyright © 2008–2010, Texas Instruments Incorporated Device Overview 29
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
ADVANCEINFORMATION
OMAP-L137
SPRS563D–SEPTEMBER 2008–REVISED AUGUST 2010

3.7.5 External Memory Interface B (only SDRAM )

Table 3-9. External Memory Interface B (EMIFB) Terminal Functions
SIGNAL NAME TYPE
EMB_D[31] G14 O IPD EMB_D[30] F15 O IPD EMB_D[29] F14 O IPD EMB_D[28] E15 O IPD EMB_D[27] E14 O IPD EMB_D[26] A14 O IPD EMB_D[25] B14 O IPD EMB_D[24] A13 O IPD EMB_D[23] L15 O IPD EMB_D[22] L14 O IPD EMB_D[21] K16 O IPD EMB_D[20] K13 O IPD EMB_D[19] J14 O IPD EMB_D[18] H15 O IPD EMB_D[17] H14 O IPD EMB_D[16] G15 O IPD EMB_D[15]/GP6[15] F13 I/O IPD EMB_D[14]/GP6[14] E16 I/O IPD EMB_D[13]/GP6[13] E13 I/O IPD EMB_D[12]/GP6[12] D16 I/O IPD EMB_D[11]/GP6[11] D15 I/O IPD EMB_D[10]/GP6[10] D14 I/O IPD EMB_D[9]/GP6[9] D13 I/O IPD EMB_D[8]/GP6[8] C16 I/O IPD EMB_D[7]/GP6[7] J16 I/O IPD EMB_D[6]/GP6[6] J15 I/O IPD EMB_D[5]/GP6[5] J13 I/O IPD EMB_D[4]/GP6[4] H16 I/O IPD EMB_D[3]/GP6[3] H13 I/O IPD EMB_D[2]/GP6[2] G16 I/O IPD EMB_D[1]/GP6[1] G13 I/O IPD EMB_D[0]/GP6[0] F16 I/O IPD EMB_A[12]/GP3[13] B15 O IPD EMB_A[11]/GP7[13] B12 O IPD EMB_A[10]/GP7[12] A9 O IPD EMB_A[9]/GP7[11] C12 O IPD EMB_A[8]/GP7[10] D12 O IPD EMB_A[7]/GP7[9] A11 O IPD EMB_A[6]/GP7[8] B11 O IPD EMB_A[5]/GP7[7] C11 O IPD
PIN NO
ZKB
(1)
PULL
(2)
MUXED DESCRIPTION
EMIFB SDRAM data bus
GPIO
GPIO
EMIFB SDRAM row/column address bus
www.ti.com
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. (2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
30 Device Overview Copyright © 2008–2010, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): OMAP-L137
Loading...
+ 187 hidden pages