Texas Instruments MSP430FG47x User Manual

MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
D Low Supply-Voltage Range: 1.8 V to 3.6 V D Ultra-Low Power Consumption:
Active Mode: 262 Aat1MHz,2.2V Standby Mode: 1.1 A Off Mode (RAM Retention): 0.1 A
D Five Power-Saving Modes D Wake-Up From Standby Mode in
Less Than 6 s
D 16-Bit RISC Architecture,
125-ns Instruction Cycle Time
D 16-Bit Sigma-Delta Analog-to-Digital (A/D)
Converter With Internal Reference and Five Differential Analog Inputs
D Dual 12-Bit Digital-to-Analog (D/A)
Converter
D Dual Configurable Operational Amplifiers D 16-Bit Timer_A With Three
Capture/Compare Registers
D 16-Bit Timer_B With Three
Capture/Compare-With-Shadow Registers
D Two Universal Serial Communication
Interfaces (USCI) USCI_A0
-- Enhanced UART Supporting Auto-Baudrate Detection
-- IrDA Encoder and Decoder
-- Synchronous SPI
USCI_B0
2
C
-- I
-- Synchronous SPI
D Integrated LCD Driver With Contrast
Control for Up to 128 Segments
D Brownout Detector D Basic Timer With Real-Time Clock Feature D Supply Voltage Supervisor/Monitor With
Programmable Level Detection
D On-Chip Comparator D Serial Onboard Programming,
No External Programming Voltage Needed Programmable Code Protection by Security Fuse
D Bootstrap Loader D On-Chip Emulation Module D MSP430FG47x Family Members Include
MSP430FG477: 32KB+256B Flash Memory
2KB RAM
MSP430FG478: 48KB+256B Flash Memory
2KB RAM
MSP430FG479: 60KB+256B Flash Memory
2KB RAM
D Available in 113-Ball BGA (ZQW) and
80-Pin QFP (PN) Packages (see Available Options)
D For Complete Module Descriptions, See the
MSP430x4xx Family User’s Guide, Literature Number SLAU056
description
The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 s.
The MSP430FG47x is a microcontroller configuration with two 16-bit timers, a basic timer with a real-time clock, a high performance 16-bit sigma-delta A/D converter, dual 12-bit D/A converters, two configurable operational amplifiers, two universal serial communication interface, 48 I/O pins, and a liquid crystal display driver.
Typical applications for this device include analog and digital sensor systems, digital motor control, remote controls, thermostats, digital timers, hand-held meters, etc.
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Copyright 2011, Texas Instruments Incorporated
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
1
MSP430FG47x MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
AVAILABLE OPTIONS
T
A
-- 4 0 Cto85C
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
PLASTIC 113-BALL BGA (ZQW) PLASTIC 80-PIN QFP (PN)
MSP430FG477IZQW MSP430FG478IZQW MSP430FG479IZQW
PACKAGED DEVICES
DEVELOPMENT TOOL SUPPORT
All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging and programming through easy to use development tools. Recommended hardware options include the following:
D Debugging and Programming Interface
-- MSP--FET430UIF (USB)
-- MSP--FET430PIF (Parallel Port)
D Debugging and Programming Interface with Target Board
MSP430FG477IPN MSP430FG478IPN MSP430FG479IPN
-- MSP--FET430U80 (PN package)
D Production Programmer
-- MSP--GANG430
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
pin designation, MSP430FG47xIZQW
A1
A2
A3 A4 A5 A6 A7 A8 A9 A10
B1
B2
B3 B4 B5 B6 B7 B8 B9 B10
C1
C2
C3
D1
D2
E1
E2
F1
F2
G1
G2
MIXED SIGNAL MICROCONTROLLER
D4 D5 D6 D7 D8 D9
E5
E4
F4
F5
G4
G5
E7
E6
E8
F8
G8
MSP430FG47x
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
A11
A12
B11
B12
C11
C12
D11
D12
E11
F11
G11
E12
F12
G12
E9
F9
G9
H1
H2
J1
J2
K1
K2
L1
L2
L3 L4 L5 L6 L7 L8 L9 L10
M1
M2
H5 H6 H7 H8
H4
J4 J5 J6 J7 J8 J9
H9
H11
J11
K11
L11
M11
H12
J12
K12
L12
M12M3 M4 M5 M6 M7 M8 M9 M10
Note: For terminal assignments, see the MSP430xG47x Terminal Functions table.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
MSP430FG47x MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
pin designation, MSP430FG47xIPN
SS2
CC2DVSS1
DV
DV
P2.3/TB2
RST/NMI
TCK
P2.5/UCA0RXD/UCA0SOMI
P2.4/UCA0TXD/UCA0SIMO
TMS
TDI/TCLK
XT2OUT
XT2IN
TDO/TDI
P6.0/A0+/OA0O
P6.2/OA0I1 (SW0A)
P6.1/A0-/OA0FB
P6.3/A1+/OA1O
P6.4/A1-/OA1FB
P6.5/OA0I2 (SW0B)
P6.6/OA1I1 (SW1A)
DV
CC1
P2.2/TB1
P2.1/TB0/S0
P2.0/TA2/S1
P2.6/CAOUT/S2
P2.7/S3
GND
XIN
XOUT
GND
P4.7/S4
P4.6/S5
P4.5/S6
P4.4/S7
P4.3/S8
P4.2/S9
P4.1/S10
P4.0/S11
S12
S13
80 79
78 77 76 75 74 73 72 71 70 69 68 67 66 65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
S16
S14
S15
S17
S18
S19
80-pin
IPN PACKAGE
(TOP VIEW)
S22
S23
P5.0/S20
P5.1/S21
S24
S25
64
63 62 61
60
V
REF
P6.7/OA1I2/SVSIN (SW1B)
59
P1.0/TA0/OA0RFB
58
P1.1/TA0/MCLK/OA1RFB
57
P1.2/TA1/A4-/OA0I3 (SW0C)
56
P1.3/TBOUTH/SVSOUT/A4+/OA1I3 (SW1C)
55
P1.4/TBCLK/SMCLK/A3-/OA1I0/DAC1
54
AV
53
52
51
50
49
48
47
46
45
44
43
42
41
37
38 39 40
COM0
P5.2/COM1
P5.3/COM2
P5.5/R23
P5.4/COM3
LCDCAP/R33
P5.7/R03
P5.6/LCDREF/R13
SS
AV
CC
P1.5/TACLK/ACLK/A3+
P1.6/CA0/A2-/OA0I0/DAC0
P1.7/CA1/A2+
P3.7/S31
P3.6/S30
P3.5/S29
P3.4/S28
P3.3/UCB0CLK/UCA0STE
P3.2/UCB0SOMI/UCB0SCL/S27
P3.1/UCB0SIMO/UCB0SDA/S26
P3.0/UCB0STE/UCA0CLK
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
functional block diagram
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
XIN/
XT2IN
Oscillators
FLL+
CPU
64kB
incl. 16
Registers
EEM
JTAG
Interface
XOUT/
XT2OUT
22
MCLK
ACLK
SMCLK
DVCC1/2 DVSS1/2
Flash
60kB 48kB 32kB
MAB
MDB
Brownout
Protection
SVS, SVM
RST/NMI
RAM
2kB 2kB 2kB
LCD_A
128
Segments
1,2,3,4
Mux
AVCC AVSS P1.x/P2.x
SD16_A
with
Buffer
1 Channel
Sigma­Delta A/D Converter
DAC12
12-Bit
2
Channels
Voltage
Out
Watchdog
WDT+
15-Bit
OA0, OA1
2 OpAmps
Timer_A3
3 CC
Registers
Comparator
_A
Timer_B3
3 CC
Registers,
Shadow
Reg
capability
Timer &
2x8
Ports
P1/P2
2x8 I/O
Interrupt
Basic
Real-
Time
Clock
P3.x/P4.x P5.x/P6.x
Ports P3/P4 P5/P6
4x8 I/O
USCI A0
UART/
LIN,
IrDA, SPI
USCI B0 SPI, I2C
4x8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
5
MSP430FG47x
I/ODESCRIPTIO
N
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
TERMINAL
NO.
NAME
AV
CC
AV
SS
DV
CC1
DV
SS1
DV
CC2
DV
SS2
P1.0/TA0/ OA0RFB
P1.1/TA0/MCLK/ OA1RFB
P1.2/TA1/A4--/ OA0I3 (SW0C)
P1.3/TBOUTH/ SVSOUT/A4+/ OA1I3 (SW1C)
P1.4/TBCLK/ SMCLK/A3--/ OA1I0/DAC1
P1.5/TACLK/ ACLK/A3+
P1.6/CA0/A2--/ OA0I0/DAC0
P1.7/CA1/A2+ 49 G11 I/O
P2.0/TA2/S1 4
P2.1/TB0/S0 3 C1 I/O
80
113
PIN
PIN
52 F12 Analog supply voltage, positive terminal.
53 E12 Analog supply voltage, negative terminal.
1 A1 Digital supply voltage, positive terminal. Supplies all digital parts.
79 A3 Digital supply voltage, negative terminal. Supplies all digital parts.
80 A2 Digital supply voltage, positive terminal. Supplies all digital parts.
B2
78
B3
58 C11 I/O
57 C12 I/O
56 D11 I/O
55 D12 I/O
54 E11 I/O
51 F11 I/O
50 G12 I/O
C2 C3
Digital supply voltage, negative terminal. Supplies all digital parts.
General-purpose digital I/O pin Timer_A, capture: CCI0A input, compare: Out0 output Range switch to OA0 output BSL transmit
General-purpose digital I/O pin Timer_A, capture: CCI0B input, compare: Out0 output MCLK signal output Range switch to OA1 output BSL receive
General-purpose digital I/O pin Timer_A, capture: CCI1A input, compare: Out1 output SD16 negative analog input A4 OA0, analog input I3
General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output switch all PWM digital output ports to high impedance -- Timer_B TB0 to TB2 SVS comparator output SD16 positive analog input A4 OA1, analog input I3
General-purpose digital I/O pin/ Timer_B, clock signal TBCLK input SMCLK signal output SD16 negative analog input A3 OA1, analog input I0 DAC12.1 output
General-purpose digital I/O pin Timer_A, clock signal TACLK input ACLK signal output SD16 positive analog input A3
General-purpose digital I/O pin Comparator_A input 0 SD16 negative analog input A2 OA0, analog input I0 DAC12.0 output
General-purpose digital I/O pin Comparator_A input 1 SD16 positive analog input A2
General-purpose digital I/O pin Timer_A, capture: CCI2A/B input, compare: Out2 output
I/O
LCD segment output 1
General-purpose digital I/O pin Timer_B, capture: CCI0A/B input, compare: Out0 output LCD segment output 0
Terminal Functions
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TERMINAL
I/ODESCRIPTIO
N
NO.
NAME
P2.2/TB1 2 B1 I/O
P2.3/TB2 77 B4 I/O
P2.4/UCA0TXD/ UCA0SIMO
P2.5/UCA0RXD/ UCA0SOMI
P2.6/CAOUT/S2 5 D1 I/O
P2.7/S3 6 D2 I/O
P3.0/UCB0STE/ UCA0CLK
P3.1/UCB0SIMO/ UCB0SDA/S26
P3.2/UCB0SOMI/ UCB0SCL/S27
P3.3/UCB0CLK/ UCA0STE
P3.4/S28 45 J11 I/O
P3.5/S29 46 J12 I/O
P3.6/S30 47 H11 I/O
P3.7/S31 48 H12 I/O
P4.0/S11 18 K2 I/O
P4.1/S10 17 K1 I/O
P4.2/S9 16 J2 I/O
P4.3/S8 15 J1 I/O
P4.4/S7 14 H2 I/O
P4.5/S6 13 H1 I/O
P4.6/S5 12 G2 I/O
P4.7/S4 11 G1 I/O
80
113
PIN
PIN
76 A4 I/O
75 D4 I/O
41 M12 I/O
42 L12 I/O
43 K11 I/O
44 K12 I/O
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
Terminal Functions (continued)
General-purpose digital I/O pin Timer_B, capture: CCI1A/B input, compare: Out1 output
General-purpose digital I/O pin Timer_B, capture: CCI2A/B input, compare: Out2 output
General-purpose digital I/O pin USCIA transmit data output in UART mode, slave data in/master out in SPI mode
General-purpose digital I/O pin USCI A0 receive data input in UART mode, slave data out/master in in SPI mode
General-purpose digital I/O pin Comparator_A output LCD segment output 2
General-purpose digital I/O pin LCD segment output 3
General-purpose digital I/O pin USCI B0 slave transmit enable/USCI A0 clock input/output
General-purpose digital I/O pin USCI B0 slave in/master out in SPI mode, SDA I LCD segment output 26
General-purpose digital I/O pin USCI B0 slave out/master in in SPI mode, SCL I LCD segment output 27
General-purpose digital I/O USCI B0 clock i nput/output, USCI A0 slave transmit enable
General-purpose digital I/O pin LCD segment output 28
General-purpose digital I/O pin LCD segment output 29
General-purpose digital I/O pin LCD segment output 30
General-purpose digital I/O pin LCD segment output 31
General-purpose digital I/O pin LCD segment output 11
General-purpose digital I/O pin LCD segment output 10
General-purpose digital I/O pin LCD segment output 9
General-purpose digital I/O pin LCD segment output 8
General-purpose digital I/O pin LCD segment output 7
General-purpose digital I/O pin LCD segment output 6
General-purpose digital I/O pin LCD segment output 5
General-purpose digital I/O pin LCD segment output 4
2
CdatainI2C mode
2
C clock in I2C mode
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
7
MSP430FG47x
I/ODESCRIPTIO
N
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
Terminal Functions (continued)
TERMINAL
NO.
NAME
COM0 33 L8 O Common output, COM0--3 are used for LCD backplanes
P5.0/S20 27 L5 I/O
P5.1/S21 28 M5 I/O
P5.2/COM1 34 M8 I/O
P5.3/COM2 35 L9 I/O
P5.4/COM3 36 M9 I/O
LCDCAP/R33 37 J9 I/O
P5.5/R23 38 M10 I/O
80
PIN
113 PIN
General-purpose digital I/O pin LCD segment output 20
General-purpose digital I/O pin LCD segment output 21
General-purpose digital I/O pin common output, COM0--3 are used for LCD backplanes
General-purpose digital I/O pin common output, COM0--3 are used for LCD backplanes
General-purpose digital I/O pin common output, COM0--3 are used for LCD backplanes
Capacitor connection for LCD charge pump input port of most positive analog LCD level (V4)
General-purpose digital I/O pin input port of the second most positive analog LCD level (V3)
P5.6/LCDREF/ R13
P5.7/R03 40 M11 I/O
P6.0/A0+/OA0O 67 B8 I/O
P6.1/A0--/OA0FB 66 B9 I/O
P6.2/OA0I1 (SW0A)
P6.3/A1+/OA1O 64 D9 I/O
P6.4/A1--/OA1FB 63 A10 I/O
P6.5/OA0I2 (SW0B)
P6.6/OA1I1 (SW1A)
P6.7/OA1I2/ SVSIN (SW1B)
S12 19 L1 O LCD segment output 12
S13 20 M1 O LCD segment output 13
S14 21 M2 O LCD segment output 14
S15 22 M3 O LCD segment output 15
S16 23 L3 O LCD segment output 16
39 L10 I/O
65 A9 I/O
62 B10 I/O
61 A11 I/O
59 B12 I/O
General-purpose digital I/O pin External LCD reference voltage input input port of the third most positive analog LCD level (V3 or V2)
General-purpose digital I/O pin input port of the fourth most positive analog LCD level (V1)
General-purpose digital I/O pin SD16 positive analog input A0 OA0, output
General-purpose digital I/O pin SD16 positive negative input A0 OA0, analog input feedback
General-purpose digital I/O pin OA0, analog input I1
General-purpose digital I/O pin SD16 positive analog input A1 OA1, output
General-purpose digital I/O pin SD16 positive negative input A1 OA1, analog input feedback
General-purpose digital I/O pin OA0, analog input I2
General-purpose digital I/O pin OA1, analog input I1
General-purpose digital I/O pin OA1, analog input I2 SVS input
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
I/ODESCRIPTIO
N
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
Terminal Functions (continued)
TERMINAL
NO.
NAME
S17 24 L4 O LCD segment output 17
S18 25 M4 O LCD segment output 18
S19 26 J4 O LCD segment output 19
S22 29 L6 O LCD segment output 22
S23 30 M6 O LCD segment output 23
S24 31 L7 O LCD segment output 24
S25 32 M7 O LCD segment output 25
GND 7 E2 Ground. It is used to shield the oscillator. See Note 1.
XIN 8 E1 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT 9 F1 O Output port for crystal oscillator XT1. Standard or watch crystals can be connected.
GND 10 F2 Ground. It is used to shield the oscillator. See Note NO TAG.
V
REF
RST/NMI 74 B5 I Reset input, nonmaskable interrupt input port, or bootstrap loader start (in flash devices).
TCK 73 A5 I
TDI/TCLK 71 A6 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.
TDO/TDI 70 B7 I/O Test data output port. TDO/TDI data output or programming data input terminal.
TMS 72 B6 I Test mode select. TMS is used as an input port for device programming and test.
XT2OUT 68 A8 O Output terminal of crystal oscillator XT2
XT2IN 69 A7 I Input port for crystal oscillator XT2
Reserved NA B11,
NOTE 1: It is recommended to connect GND externally to DVss.
80
PIN
113 PIN
60 A12 O Input for an external reference voltage/internal reference voltage output
Test clock (JTAG). TCK is the clock input port for device programming test and bootstrap loader start.
BGA package unused balls. Connection to DVSS/AVSSrecommended. D6, D7, D8, E4, E5, E6, E7, E8, E9, F4, F5, F8, F9, G4, G5,G8,
G9, H4,
H5, H6, H7, H8, H9, J5,
J6, J7, J8, L2,
L11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
9
MSP430FG47x MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
short-form description
CPU
The MSP430 CPU has a 16--bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.
instruction set
The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats, and Table 2 lists the address modes.
Program Counter
Stack Pointer
Status Register
Constant Generator
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
General-Purpose Register
PC/R0
SP/R1
SR/CG1/R2
CG2/R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
Table 1. Instruction Word Formats
Dual operands, source-destination e.g., ADD R4,R5 R4 + R5 ------> R5
Single operands, destination only e.g., CALL R8 PC ---->(TOS), R8----> PC
Relative jump, un/conditional e.g., JNE Jump-on-equal bit = 0
Table 2. Address Mode Descriptions
ADDRESS MODE S D SYNTAX EXAMPLE OPERATION
Register F
Indexed F F MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5)—> M(6+R6)
Symbolic (PC relative) F F MOV EDE,TONI M(EDE) —> M(TONI)
Absolute F F MOV&MEM,&TCDAT M(MEM) —> M(TCDAT)
Indirect F MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) —> M(Tab+R6)
Indirect
autoincrement
Immediate F MOV #X,TONI MOV #45,TONI #45 —> M(TONI)
NOTE: S = source D = destination
F
F MOV @Rn+,Rm MOV @R10+,R11
MOV Rs,Rd MOV R10,R11 R10 —> R11
M(R10) —> R11 R10 + 2—> R10
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
operating modes
The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
D Active mode (AM)
-- All clocks are active
D Low-power mode 0 (LPM0)
-- CPU is disabled
-- ACLK and SMCLK remain active
-- FLL+ loop control remains active
D Low-power mode 1 (LPM1)
-- CPU is disabled
-- ACLK and SMCLK remain active
-- FLL+ loop control is disabled
D Low-power mode 2 (LPM2)
-- CPU is disabled
-- MCLK, FLL+ loop control, and DCOCLK are disabled
-- DCO’s dc generator remains enabled
-- ACLK remains active
D Low-power mode 3 (LPM3)
-- CPU is disabled
-- MCLK, FLL+ loop control, and DCOCLK are disabled
-- DCO’s dc generator is disabled
-- ACLK remains active
D Low-power mode 4 (LPM4)
-- CPU is disabled
-- ACLK is disabled
-- MCLK, FLL+ loop control, and DCOCLK are disabled
-- DCO’s dc generator is disabled
-- Crystal oscillator is stopped
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
11
MSP430FG47x MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
interrupt vector addresses
The interrupt vectors and the power-up starting address are located in the address range 0xFFFF to 0xFFC0. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
If the reset vector (located at address 0xFFFE) contains 0xFFFF (e.g., flash is not programmed) the CPU goes into LPM4 immediately after power--up.
INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT
Power-Up
External Reset
Watchdog
PC Out--of--Range (see Note 4)
Flash Memory Access Violation
NOTES: 1. Multiple source flags
Flash Memory
NMI
Oscillator Fault
Timer_B3 TBCCR0 CCIFG0 (see Note 2) Maskable 0xFFFA 13
Timer_B3
Comparator_A CAIFG Maskable 0xFFF6 11
Watchdog Timer+ WDTIFG Maskable 0xFFF4 10
USCI_A0/USCI_B0 receive
USCI_B0 I2C status
USCI_A0/USCI_B0 transmit
USCI_B0 I2C receive/transmit
SD16_A SD16CCTLx SD16OVIFG, SD16CCTLx SD16IFG
Timer_A3 TACCR0 CCIFG0 (see Note 2) Maskable 0xFFEC 6
Timer_A3
I/O Port P1 (Eight Flags) P1IFG.0 to P1IFG.7 (see Notes 1 and 2) Maskable 0xFFE8 4
DAC12 DAC12_0IFG, DAC12_1IFG Maskable 0xFFE6 3
I/O Port P2 (Eight Flags) P2IFG.0 to P2IFG.7 (see Notes 1 and 2) Maskable 0xFFE2 1
Basic Timer1/RTC BTIFG Maskable 0xFFE0 0, lowest
2. Interrupt flags are located in the module.
3. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh). (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.
4. Access and key violations, KEYV and ACCVIFG.
5. In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.
6. In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.
NMIIFG (see Notes 1 and 3)
OFIFG (see Notes 1 and 3)
ACCVIFG (see Notes 1, 2 and 4)
TBCCR1 CCIFG1 ... TBCCR3 CCIFG3,
TBIFG (see Notes 1 and 2)
UCA0RXIFG, UCB0RXIFG
UCA0TXIFG, UCB0TXIFG
TACCR1 CCIFG1 and TACCR2 CCIFG2,
TAIFG (see Notes 1 and 2)
PORIFG RSTIFG WDTIFG
KEYV
(see Note 1)
(see Notes 1 and 5)
(see Note 1 and 6)
(see Notes 1 and 2)
Reset 0xFFFE 15, highest
(Non)maskable (Non)maskable (Non)maskable
Maskable 0xFFF8 12
Maskable 0xFFF2 9
Maskable 0xFFF0 8
Maskable 0xFFEE 7
Maskable 0xFFEA 5
Maskable 0xFFE4 2
WORD
ADDRESS
0xFFFC 14
PRIORITY
12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
special function registers
Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access.
interrupt enable 1 and 2
Address76543210
00h
WDTIE Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog
timer is configured in interval timer mode.
OFIE Oscillator fault enable NMIIE (Non)maskable interrupt enable ACCVIE Flash access violation interrupt enable
Address76543210
01h
BTIE
rw--0 rw--0 rw--0 rw--0 rw--0
ACCVIE NMIIE OFIE WDTIE
rw--0 rw--0 rw--0 rw--0
UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE
UCA0RXIE USCI_A0 receive interrupt enable UCA0TXIE USCI_A0 transmit interrupt enable UCB0RXIE USCI_B0 receive interrupt enable UCB0TXIE USCI_B0 transmit interrupt enable BTIE Basic timer interrupt enable
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
13
MSP430FG47x MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
interrupt flag register 1 and 2
Address76543210
02h
WDTIFG Set on watchdog timer overflow (in watchdog mode) or security key violation.
Reset on V
power-up or a reset condition at RST/NMI pin in reset mode.
CC
OFIFG Flag set on oscillator fault. RSTIFG External reset interrupt flag. Set on a reset condition at RST
on V
power-up.
CC
PORIFG Power-on interrupt flag. Set on V NMIIFG Set via RST
Address76543210
03h
BTIFG
rw--0 rw--1 rw--0 rw--1 rw--0
/NMI pin.
NMIIFG RSTIFG PORIFG OFIFG WDTIFG
rw--0 rw--(0) rw--(1) rw-- 1 rw--(0)
/NMI pin in reset mode. Reset
power-up.
CC
UCB0
TXIFG
UCB0
RXIFG
UCA0 TXIFG
UCA0
RXIFG
UCA0RXIFG USCI_A0 receive interrupt flag UCA0TXIFG USCI_A0 transmit interrupt flag UCB0RXIFG USCI_B0 receive interrupt flag UCB0TXIFG USCI_B0 transmit interrupt flag BTIFG Basic Timer1 interrupt flag
Legend rw:
rw-0,1: rw-(0,1):
Bit can be read and written. Bit can be read and written. It is Reset or Set by PUC. Bit can be read and written. It is Reset or Set by POR.
SFR bit is not present in device
14
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
memory organization
MSP430FG477 MSP430FG478 MSP430FG479
Memory Main: interrupt vector Main: code memory
Information memory Size
Boot memory Size
RAM Size 2KB
Peripherals 16-bit
bootstrap loader (BSL)
The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the application report Features of the MSP430 Bootstrap Loader, literature number SLAA089.
Size Flash Flash
Flash
ROM
8-bit
8-bit SFR
32KB
0FFFFh to 0FFE0h
0FFFFh to 08000h
256 Byte
010FFh to 01000h
1KB
0FFFh to 0C00h
09FFh to 0200h
01FFh to 0100h
0FFh to 010h
0Fh to 00h
48KB 0FFFFh to 0FFE0h 0FFFFh to 04000h
256 Byte
010FFh to 01000h
1KB
0FFFh to 0C00h
2KB
09FFh to 0200h
01FFh to 0100h
0FFh to 010h
0Fh to 00h
60KB
0FFFFh to 0FFE0h
0FFFFh to 01100h
256 Byte
010FFh to 01000h
1KB
0FFFh to 0C00h
2KB
09FFh to 0200h
01FFh to 0100h
0FFh to 010h
0Fh to 00h
BSL FUNCTION PN PACKAGE PINS ZQW PACKAGE PINS
Data Transmit 58 - P1.0 C11 - P1.0
Data Receive 57 - P1.1 C12 - P1.1
flash memory (Flash)
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:
D Flash memory has n segments of main memory and four segments of information memory (A to D) of
64 bytes each. Each segment in main memory is 512 bytes in size.
D Segments 0 to n may be erased in one step, or each segment may be individually erased.
D Segments A to D can be erased individually, or as a group with segments 0 to n.
Segments A to D are also called information memory.
D Segment A might contain calibration data. After reset, segment A is protected against programming or
erasing. It can be unlocked, but care should be taken not to erase this segment if this calibration data is required.
D Flash content integrity check with marginal read modes.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
15
MSP430FG47x MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
peripherals
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide, literature number SLAU056.
oscillator and system clock
The clock system in the MSP430FG47x is supported by the FLL+ module, which includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO), and a 8-MHz high-frequency crystal oscillator (XT1), plus a 8-MHz high-frequency crystal oscillator (XT2). The FLL+ clock module is designed to meet the requirements of both low system cost and low power consumption. The FLL+ features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 s. The FLL+ module provides the following clock signals:
D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high-frequency crystal D Main clock (MCLK), the system clock used by the CPU D Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules D ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8
brownout, supply voltage supervisor
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset).
The CPU begins code execution after the brownout circuit releases the device reset. However, V have ramped to V reaches V
CC(min)
CC(min)
. If desired, the SVS circuit can be used to determine when VCCreaches V
at that time. The user must ensure the default FLL+ settings are not changed until V
CC(min)
digital I/O
There are six 8-bit I/O ports implemented, ports P1 through P6.
D All individual I/O bits are independently programmable. D Any combination of input, output, and interrupt conditions is possible. D Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. D Read/write access to port-control registers is supported by all instructions.
CC
.
may not
CC
16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
DEVICEINPUT
MODULEINPUT
MODUL
E
A
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
watchdog timer (WDT+)
The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.
Basic Timer1 and Real-Time Clock
The Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. The Basic Timer1 is extended to provide an integrated real-time clock (RTC). An internal calendar compensates for month with less than 31 days and includes leap year correction.
LCD_A driver with regulated charge pump
The LCD_A driver generates the segment and common signals required to drive an LCD display. The LCD_A controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral. The module can provide a LCD voltage independent of the supply voltage via an integrated charge pump. Furthermore, it is possible to control the level of the LCD v oltage and, thus, contrast in software.
Timer_A3
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.
TIMER_A3 SIGNAL CONNECTIONS
INPUT PIN NUMBER
PN ZQW
P1.5 -- 51 F11 TAC L K TAC L K
P1.5 -- 51 F11 TAINCLK INCLK
P1.0 -- 58 C11 TA0 CCI0A
P1.1 -- 57 C12 TA0 CCI0B
P1.2 -- 56 D11 TA1 CCI1A
P2.0 -- 4 C2 TA 2 CCI2A
DEVICE INPUT MODULE INPUT MODULE
SIGNAL
ACLK ACLK
SMCLK SMCLK
DV
SS
DV
CC
CAOUT (internal) CCI1B
DV
SS
DV
CC
ACLK (internal) CCI2B
DV
SS
DV
CC
NAME
GND
V
CC
GND
V
CC
GND
V
CC
BLOCK
Timer N
CCR0 TA0
CCR1 TA1
CCR2 TA2
MODULE
OUTPUT
SIGNAL
OUTPUT PIN NUMBER
PN ZQW
P1.0 -- 58 C11
P1.1 -- 57 C12
P1.2 -- 56 D11
P2.0 -- 4 C2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
17
MSP430FG47x
DEVICEINPUT
MODULEINPUT
MODUL
E
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
Timer_B3
Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.
TIMER_B3 SIGNAL CONNECTIONS
INPUT PIN NUMBER
PN ZQW
P1.4 -- 54 E11 TBCLK TBCLK
P1.4 -- 54 E11 TBCLK
P2.1 -- 3 C1 TB0 CCI0A
P2.1 -- 3 C1 TB0 CCI0B
P2.2 -- 2 B1 TB1 CCI1A
P2.2 -- 2 B1 TB1 CCI1B
P2.3 -- 77 B4 TB2 CCI2A
NOTE 1: The inversion of TBCLK is done inside the module.
DEVICE INPUT MODULE INPUT MODULE
SIGNAL
ACLK ACLK
SMCLK SMCLK
(See Note 1)
V
SS
V
CC
V
SS
V
CC
ACLK (internal) CCI2B
V
SS
V
CC
NAME
INCLK
GND
V
CC
GND
V
CC
GND
V
CC
BLOCK
Timer NA
CCR0 TB0
CCR1 TB1
CCR2 TB2
MODULE OUTPUT
SIGNAL
OUTPUT PIN NUMBER
PN ZQW
P2.1 -- 3 C1
P2.2 -- 2 B1
P2.3 -- 77 B4
universal serial communication interfaces (USCIs) (USCI_A0, USCI_B0)
The USCI module is used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3 pin or 4 pin), I2C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA.
USCI_A0 provides support for SPI (3 pin or 4 pin), UART, enhanced UART and IrDA.
USCI_B0 provides support for SPI (3 pin or 4 pin) and I2C.
Comparator_A
The primary function of the comparator_A module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals.
18
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
MODUL
E
MODUL
E
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
SD16_A
The SD16_A module supports 16-bit analog-to-digital conversions. The module implements a 16-bit sigma-delta core and a reference generator. In addition to external analog inputs, an internal V temperature sensor are also available.
DAC12
The DAC12 module is a 12-bit R-ladder voltage-output DAC. The DAC12 may be used in 8-bit or 12-bit mode. When multiple DAC12 modules are present, they may be grouped together for synchronous operation.
OA
The MSP430FG47x has two configurable low-current general-purpose operational amplifiers. Each OA input and output terminal is software-selectable and offer a flexible choice of connections for various applications. The OA op amps primarily support front-end analog signal conditioning prior to analog-to-digital conversion.
OA0 SIGNAL CONNECTIONS
INPUT PIN NUMBER
PN ZQW
P1.6 -- 50 G12 OA0I0 OAxI0
P6.2 -- 65 A9 OA0I1 OAxI1
P6.5 -- 62 B10 OA0I2 OAxIA
P1.2 -- 56 D11 OA0I3 OAxIB
P1.4 -- 54 E11 OA1I0 OAxI0
P6.6 -- 61 A11 OA1I1 OAxI1
P6.7 -- 59 B12 OA1I2 OAxIA
P1.3 -- 55 D12 OA1I3 OAxIB
DEVICE
INPUT
SIGNAL
MODULE MODULE
INPUT NAME
BLOCK
OA0 OA0OUT OA0O
OA1 OA1OUT OA1O
MODULE
OUTPUT
SIGNAL
CC
OUTPUT PIN NUMBER
PN ZQW
P6.0 -- 67 B8
P6.4 -- 64 A10
sense and
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
19
MSP430FG47x
Timer_B3Capture/compareregister
2
TBCCR
2
0196h
Capture/compareregister
1
TBCCR
1
0194h
p/p
g
_
g
p
p
Timer_A3Capture/compareregister
2
TACCR
2
0176h
Capture/compareregister
1
TACCR
1
0174h
p/p
g
_
g
p
p
F
lash
l
2
FCTL2
012Ah
DAC12DAC12_1dat
a
DAC12_1DA
T
01CAh
DAC12_1contro
l
DAC12_1CT
L
01C2h
_
_
SD16_
A
Generalcontro
l
SD16CTL
0100h
Channel0control
SD16CCTL0
0102h
B
)
y
ppg
ppg
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
peripheral file map
PERIPHERALS WITH WORD ACCESS
Watchdog Watchdog timer control WDTCTL 0120h
Timer_B3 Capture/compare register 2 TBCCR2 0196h
Capture/compare register 1 Capture/compare register 0 Timer_B register TBR 0190h Capture/compare control 2 TBCCTL2 0186h Capture/compare control 1 TBCCTL1 0184h Capture/compare control 0 TBCCTL0 0182h Timer_B control TBCTL 0180h Timer_B interrupt vector TBIV 011Eh
Timer_A3 Capture/compare register 2 TACCR2 0176h
Capture/compare register 1 Capture/compare register 0 Timer_A register TAR 0170h Capture/compare control 2 TACCTL2 0166h Capture/compare control 1 TACCTL1 0164h Capture/compare control 0 TACCTL0 0162h Timer_A control TACTL 0160h Timer_A interrupt vector TAI V 012Eh
Flash Flash c ontrol 4
Flash control 3
contro
Flash control 1
DAC12 DAC12_1 data DAC12_1DAT 01CAh
DAC12_1 control DAC12_0 data DAC12_0 control
SD16_A General control SD16CTL 0100h (see also: Peripherals with
yteAccess
OA switches Switch control register 1 SWCTL_1 00CEh
OA switches Switch control register
OA1 Operational amplifier 1 control register 1 OA1CTL1 00C3h
OA0 Operational amplifier 0 control register 1 OA0CTL1 00C1h
SD16_A (see also: Peripherals with Word Access)
Channel 0 control Channel 0 conversion memory Interrupt vector word register SD16IV 0110h
PERIPHERALS WITH BYTE ACCESS
Switch control register 1
Operational amplifier 1 control register 0 OA1CTL0 00C2h
Operational amplifier 0 control register 0 OA0CTL0 00C0h
Channel 0 input control Analog enable
TBCCR1 TBCCR0
TACCR1 TACCR0
FCTL4 FCTL3
FCTL1
DAC12_1CTL DAC12_0DAT DAC12_0CTL 01C0h
SD16CCTL0 SD16MEM0
SWCTL SWCTL1
SD16INCTL0 SD16AE
0194h 0192h
0174h 0172h
01BEh 012Ch
0128h
01C2h 01C8h
0102h 0112h
00CFh 00CEh
0B0h 0B7h
20
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripheral file map (continued)
/
p
_
LCD_A LCD voltage control 1
USCI A0/B0
Comparator_A
Brownout, SVS SVS control register (reset by brownout signal) SVSCTL 056h
FLL+ Clock FLL+ control 1 FLL_CTL1 054h
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
LCDAVCTL1 LCD voltage control 0 LCD voltage port control 1 LCD voltage port control 0 LCD memory 20 : LCD memory 16 LCD memory 15 : LCD memory 1 LCD control and mode
USCI A0 auto baud rate control UCA0ABCTL 0x005D
USCI A0 transmit buffer UCA0TXBUF 0x0067
USCI A0 receive buffer UCA0RXBUF 0x0066
USCI A0 status UCA0STAT 0x0065
USCI A0 modulation c ontrol UCA0MCTL 0x0064
USCI A0 baud rate control 1 UCA0BR1 0x0063
USCI A0 baud rate control 0 UCA0BR0 0x0062
USCI A0 control 1 UCA0CTL1 0x0061
USCI A0 control 0 UCA0CTL0 0x0060
USCI A0 IrDA receive control UCA0IRRCTL 0x005F
USCI A0 IrDA transmit control UCA0IRTCTL 0x005E
USCI B0 transmit buffer UCB0TXBUF 0x006F
USCI B0 receive buffer UCB0RXBUF 0x006E
USCI B0 status UCB0STAT 0x006D
USCI B0 I2C Interrupt enable UCB0CIE 0x006C
USCI B0 baud rate control 1 UCB0BR1 0x006B
USCI B0 baud rate control 0 UCB0BR0 0x006A
USCI B0 control 1 UCB0CTL1 0x0069
USCI B0 control 0 UCB0CTL0 0x0068
USCI B0 I2C slave address UCB0SA 0x011A
USCI B0 I2C own address UCB0OA 0x0118
Comparator_A port disable CAPD 05Bh
Comparator_A control2 CACTL2 05Ah
Comparator_A control1 CACTL1 059h
FLL+ control 0 FLL_CTL0 053h
System clock frequency control SCFQCTL 052h
System clock frequency integrator SCFI1 051h
System clock frequency integrator SCFI0 050h
LCDAVCTL0
LCDAPCTL1
LCDAPCTL0
LCDM20
:
LCDM16
LCDM15
:
LCDM1
LCDACTL
0AFh 0AEh 0ADh 0ACh 0A4h : 0A0h 09Fh : 091h 090h
MSP430FG47x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
21
MSP430FG47x MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
peripheral file map (continued)
PERIPHERALS WITH BYTE ACCESS
RTC (Basic Timer1)
Port P6
Port P5
Port P4
Port P3
Port P2
Real-time clock year high byte Real-time clock year low byte Real-time clock month Real-time clock day of month Basic Timer1 counter Basic Timer1 counter Real-time counter 4 (Real-time clock day of week) Real-time counter 3 (Real-time clock hour) Real-time counter 2 (Real-time clock minute) Real-time counter 1 (Real-time clock second) Real-time clock control Basic Timer1 control
Port P6 selection P6SEL 037h
Port P6 direction P6DIR 036h
Port P6 output P6OUT 035h
Port P6 input P6IN 034h
Port P5 selection P5SEL 033h
Port P5 direction P5DIR 032h
Port P5 output P5OUT 031h
Port P5 input P5IN 030h
Port P4 selection P4SEL 01Fh
Port P4 direction P4DIR 01Eh
Port P4 output P4OUT 01Dh
Port P4 input P4IN 01Ch
Port P3 selection P3SEL 01Bh
Port P3 direction P3DIR 01Ah
Port P3 output P3OUT 019h
Port P3 input P3IN 018h
Port P2 selection P2SEL 02Eh
Port P2 interrupt enable P2IE 02Dh
Port P2 interrupt-edge select P2IES 02Ch
Port P2 interrupt flag P2IFG 02Bh
Port P2 direction P2DIR 02Ah
Port P2 output P2OUT 029h
Port P2 input P2IN 028h
RTCYEARH RTCYEARL RTCMON RTCDAY BTCNT2 BTCNT1 RTCNT4 (RTCDOW) RTCNT3 (RTCHOUR) RTCNT2 (RTCMIN) RTCNT1 (RTCSEC) RTCCTL BTCTL
04Fh 04Eh 04Dh 04Ch 047h 046h 045h
044h
043h
042h
041h 040h
22
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
peripheral file map (continued)
S
l
f
t
i
SFR
int
tflag2IFG2003h
p
g
SFRinterruptenable2IE2001hS
PERIPHERALS WITH BYTE ACCESS (CONTINUED)
Port P1
pecia
unc
ons
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
Port P1 selection 2 register Port P1 selection
Port P1 interrupt enable P1IE 025h
Port P1 interrupt-edge select P1IES 024h
Port P1 interrupt flag P1IFG 023h
Port P1 direction P1DIR 022h
Port P1 output P1OUT 021h
Port P1 input P1IN 020h
errup SFR interrupt flag 1 IFG1 002h SFR interrupt enable 2 IE2 001h
FR interrupt enable 1 IE1 000h
P1SEL2 P1SEL
057h 026h
MSP430FG47x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
23
MSP430FG47x
(seeNote1
)
f
f
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
absolute maximum ratings over operating free-air temperature (see Note 1)
Voltage applied at VCCto V
SS
Voltage applied to any pin (see Note 2) --0.3 V to V
Diode current at any device terminal . 2mA......................................................
Storage temperature, T
: (unprogrammed device, see Note 3) --55C to 150C.......................
stg
(programmed device, see Note 3) --40Cto85C..........................
NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. All voltages referenced to V is applied to the TDI/TCLK pin when blowing the JTAG fuse.
3. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.
. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage
SS
recommended operating conditions
MIN NOM MAX UNITS
Supply voltage during program execution, V
(AVCC=DVCC=VCC)
CC
Supply voltage during flash memory programming, V
(AVCC=DVCC=VCC)
CC
Supply voltage, VSS(AVSS=DVSS=VSS) 0 0 V
Operating free-air temperature range, T
LFXT1 crystal frequency, f (see Note 1)
XT2 crystalfrequency,
Systemfrequency, MCLK,ACLK, SMCLK ,
NOTES: 1. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal.
(LFXT1)
(XT2)
A
LF selected, XTS_FLL = 0
XT1 selected, XTS_FLL = 1
XT1 selected, XTS_FLL = 1
(System)
Watch crystal 32.768 kHz
Ceramic resonator 0.45 6 MHz
Crystal 1 6 MHz
Ceramic resonator 0.45 8
Crystal 1 8
VCC=1.8V dc 4.15
VCC=2.5V dc 8
1.8 3.6 V
2.2 3.6 V
-- 4 0 85 C
--0.3 V to 4.1 V......................................................
+0.3V.......................................
CC
MHz
MHz
f
System
8 MHz
4.15 MHz
Figure 1. Frequency vs Supply Voltage, Typical Characteristics
24
(MHz)
Supply voltage range, MSP430FG47x, during program execution
1.8 Supply Voltage - V
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
2.2 2.5 3.6
Supply voltage range , MSP430FG47x, during flash memory programming
MSP430FG47x
f=f
f
(MCLK
)
=
f
(SMCLK)
=1MHz
A
)
Lowpowermode(LPM0
)
A
f
A
Low-powermode(LPM3)
V
f
(MCLK
)f(SMCLK)
0MHz,
A
ALCD_Aenabled,LCDCPEN=0
:
(
,
LCD(ACLK)
/
)
V
Low-powermode(LPM3)
f
(MCLK
)f(SMCLK)
0MHz,
2.2
V
A
ALCD_Aenabled,LCDCPEN=0
:
(
,
LCD(ACLK)
/
)
3
V
V
f
f
A
f
0Hz,SCG
0=1(seeNote2)
V
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
supply current into AVCC+DVCCexcluding external current
PARAMETER TEST CONDITIONS V
Active mode (see Note 1)
I
(AM)
f
(ACLK)
= 32,768 Hz
=1MHz,
XTS = 0, SELM = (0,1)
I
(LPM0)
Low-power mode(LPM0 (see Note 1)
Low-power mode (LPM2),
I
(LPM2)
(MCLK) =f(SMCLK) = 0 MHz,
f(ACLK) = 32,768 Hz, SCG0 = 0 (see Note 2)
-
I
(LPM3)
f
(MCLK)=f(SMCLK)
f
= 32,768 Hz, SCG0 = 1
(ACLK)
Basic Timer1 enabled ,ACLK selected LCD
enabled,LCDCPEN = 0:
(static mode , f
=0MHz,
LCD=f(ACLK)
(see Note 2 and Note 3)
-
I
(LPM3)
f
(MCLK)=f(SMCLK)
f
= 32,768 Hz, SCG0 = 1
(ACLK)
Basic Timer1 enabled ,ACLK selected LCD
enabled,LCDCPEN = 0:
(4-mux mode, f
=0MHz,
LCD=f(ACLK)
(see Note 2 and Note 3)
Low-power mode (LPM4)
I
(LPM4)
(MCLK) (ACLK)
=0MHz,
=
=
(SMCLK)
=
NOTES: 1. Timer_Aisclockedbyf
2. All inputs are tied to 0 V or to V
3. The LPM3 currents are characterized with a Micro Crystal CC4V--T1A (9pF) crystal and OSCCAPx = 01h.
,
/32)
/32)
=0MHz,
(DCOCLK)
CC
2.2 V 262 295
=--40Cto85C
T
A
3V 420 460
=--40Cto85C
T
A
2.2 V 32 62
3V 51 77
2.2 V 5 9
T
=--40Cto85C
A
3V 7 13
TA=--40C 1.0 1.8
TA=25C
T
A
=60C
2.2
TA=85C 2.3 4.0
=--40C 1.2 2.0
T
A
=25C
T
A
T
A
=60C
3
TA=85C 2.7 4.5
TA=--40C 1.0 3.0
T
=25C
A
2.2 V
TA=85C
=--40C 1.8 3.3
T
A
=25C
T
A
T
A
=85C
3V
TA=--40C 0.1 0.5
TA=25C
TA=60C
2.2
TA=85C 1.7 3.0
TA=--40C 0.1 0.8
TA=25C
TA=60C
3
TA=85C 1.5 3.5
= 1 MHz. All i nputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
. Outputs do not source or sink any current.
CC
MIN TYP MAX UNIT
1.0 1.8
1.1 2.0
1.2 2.0
1.4 2.2
1.1 3.2
3.5 6.0
2.0 4.0
4.2 7.5
0.1 0.5
0.7 1.1
0.1 0.8
0.8 1.2
Current consumption of active mode versus system frequency
I
(AM)=I(AM)
[1 MHz]  f
Current consumption of active mode versus supply voltage
I
(AM)=I(AM) [3 V]
+ 200 A/V (VCC–2.2V)
(System)
[MHz]
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
25
MSP430FG47x MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
typical characteristics -- LPM4 current
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
-- Low-Power Mode 4 Current -- A
0.4
LPM4
I
0.2
0.0
--40.0 --20.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0
Vcc=3.6V
Vcc=3.0V
Vcc=2.2V
Vcc=1.8V
TA-- Temperature -- C
TA-- Temperature -- C
Figure 2. I
-- LPM4 Current vs Temperature
LPM4
26
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
V
V
V
PortP1,P2:P1.xtoP2.x,externaltriggersigna
l
_
A
_
A
y
f
Timer_Aclockfrequencyexternally
f
_
A
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
Schmitt-trigger inputs -- Ports P1, P2, P3, P4, P5, and P6, RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI)
PARAMETER TEST CONDITIONS MIN MAX UNIT
V
IT+
V
IT--
V
hys
Positive-going input threshold voltage
Negative-going input threshold voltage
Input voltage hysteresis (V
IT+
-- V
IT--
)
inputs Px.y, TAx
PARAMETER TEST CONDITIONS V
t
(int)
t
(cap)
(TAext)
(TAint)
External interrupt timing
Timer
Timer
capture timing TA0, TA1, TA2
clockfrequencyexternall
applied to pin
Timer
,clockfrequency SMCLK orACLK signal selected
NOTES: 1. The external signal sets the interrupt flag every time the minimum t
shorter than t
(int)
.
Port P1, P2: P1.x to P2.x, external trigger signal for the interrupt flag (see Note 1)
TACLK, INCLK: t
(H)=t(L)
(int)
leakage current -- Ports P1, P2, P3, P4, P5, and P6 (see Note 1)
PARAMETER TEST CONDITIONS MIN MAX UNIT
I
lkg(Px.y)
NOTES: 1. The leakage current is measured with VSSor VCCapplied to the corresponding pin(s), unless otherwise noted.
Leakage current Port Px V
2. The port pin must be selected as input.
(see Note 2) VCC=2.2V/3V 50 nA
(Px.y)
VCC=2.2V 1.1 1.55
V
=3V 1.5 1.98
CC
VCC=2.2V 0.4 0.9
V
=3V 0.9 1.3
CC
VCC=2.2V 0.3 1.1
VCC=3V 0.5 1
CC
2.2 V 62
3V 50
2.2 V 62
3V 50
2.2 V 8
3V 10
2.2 V 8
3V 10
MIN MAX UNIT
ns
ns
MHz
MHz
parameters are met. It may be set even with trigger signals
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
27
MSP430FG47x
V
V
,
P
1.1/TA0/MCL
K
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
outputs -- Ports P1, P2, P3, P4, P5, and P6
PARAMETER TEST CONDITIONS MIN MAX UNIT
V
High-level output voltage
OH
V
Low-level output voltage
OL
NOTES: 1. The maximum total current, I
specified voltage drop.
2. The maximum total current, I specified voltage drop.
output frequency
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f
(Px.y)
f
(MCLK)
t
(Xdc)
(x=1,2,3,4,5,6,0y 7)
P1.1/TA0/MCLK CL=20pF f
Duty cycle of output frequency
I
OH(max) =
I
OH(max) =
I
OH(max) =
I
OH(max) =
I
OL(max) =
I
OL(max) =
I
OL(max) =
I
OL(max) =
and I
OH(max)
and I
OH(max)
CL=20pF, I
= 1.5 mA
L
P1.1/TA0/MCLK C
=20pF,
L
V
CC
=2.2V/3V
-- 1 . 5 m A , V
-- 6 m A , V
-- 1 . 5 m A , V
-- 6 m A , V
1.5 mA, V
6mA, V
1.5 mA, V
6mA, V
for all outputs combined, should not exceed 12 mA to satisfy the maximum
OL(max),
for all outputs combined, should not exceed 48 mA to satisfy the maximum
OL(max),
V
f
,
f
2.2 V, SeeNote1 VCC--0.25 V
CC =
2.2 V, SeeNote2 VCC-- 0 . 6 V
CC =
3V, SeeNote1 VCC--0.25 V
CC =
3V, SeeNote2 VCC-- 0 . 6 V
CC =
2.2 V, SeeNote1 V
CC =
2.2 V, SeeNote2 V
CC =
3V, SeeNote1 V
CC =
3V, SeeNote2 V
CC =
2.2 V / 3 V DC f
CC =
(MCLK)=f(XT1)
(MCLK)=f(DCOCLK)
40% 60%
50%-­15 ns
SSVSS
SS
SSVSS
SS
50%
VSS+0.6
VSS+0.6
CC
CC
CC
CC
+0.25
+0.25
System
System
50%+
15 ns
MHz
MHz
28
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
A
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
outputs -- Ports P1, P2, P3, P4, P5, and P6 (continued)
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
30
VCC=2.2V P1.0
25
20
15
10
5
-- Typical Low-level Output Current -- mA
OL
I
0
0.0 0.5 1.0 1.5 2.0 2.5
VOL-- Low-Level Output Voltage -- V
TA=--40C
TA=25C
TA=85C
Figure 3
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
50
VCC=3V
45
P1.0
40
35
30
25
20
15
10
-- Typical Low-level Output Current -- mA 5
OL
I
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VOL-- Low-Level Output Voltage -- V
TA=--40C
TA=25C
TA=85C
Figure 4
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0.0 VCC=2.2V P1.0
-- 5 . 0
--10.0
--15.0
-- Typical High-level Output Current -- m
OH
I
--20.0
--25.0
--30.0
TA=85C
TA=--40C
0.0 0.5 1.0 1.5 2.0 2.5
VOH-- High-Level Output Voltage -- V
TA=25C
Figure 5
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0.0
VCC=3V P1.0
TA=25CTA=85C
TA=--40C
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
VOH-- High-Level Output Voltage -- V
-- Typical High-level Output Current -- mA
OH
I
-- 5 . 0
--10.0
--15.0
--20.0
--25.0
--30.0
--35.0
--40.0
--45.0
--50.0
--55.0
Figure 6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
29
MSP430FG47x
)
t
d(LPM3)
Delaytime
V
CC=
2.2V/3V
s
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
wake-up LPM3
PARAMETER TEST CONDITIONS MIN MAX UNIT
f=1MHz 6
t
d(LPM3
Delay time
f=2MHz
V
CC =
2.2 V/3 V
f=3MHz
POR/brownout reset (BOR) (see Note 1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t
d(BOR)
V
CC(start)
V
(B_IT--)
V
hys(B_IT--)
t
(reset)
Brownout (see Note 2)
dVCC/dt 3 V/s (see Figure 7) 0.7  V
(B_IT--)
dVCC/dt 3 V/s (see Figure 7 through Figure 9) 1.71 V
dVCC/dt 3 V/s (see Figure 7) mV
Pulse length needed at RST/NMI pin to accepted reset internally, V
=2.2V/3V
CC
2 s
NOTES: 1. The current consumption of the brownout module is already included in the ICCcurrent consumption data. The voltage level V
+V
hys(B_IT--)
2. During power up, the CPU begins code execution following a period of t FLL+ settings must not be changed until V
is 1.8V.
CC
V
CC(min)
, where V
after VCC=V
d(BOR)
is the minimum supply v oltage for the desired
CC(min)
(B_IT--)+Vhys(B_IT--)
operating frequency. See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout.
typical characteristics
6
s
6
2000 s
. The default
V
(B_IT--)
V
CC(start)
V
CC
V
(B_IT--)
1
0
V
hys(B_IT--)
t
d(BOR)
Figure 7. POR/Brownout Reset (BOR) vs Supply Voltage
30
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
typical characteristics (continued)
V
2
1.5
-- V
1
=3V
V
CC
Typical Conditions
CC
3V
t
pw
CC(min)
V
0.5
0
0.001 1 1000
tpw-- Pulse Width -- s
Figure 8. V
2
V
Typical Conditions
1.5
-- V
1
CC(min)
V
0.5
0
0.001 1 1000
Figure 9. V
CC
(CC)min
=3V
t
CC(min)
Level With a Square Voltage Drop to Generate a POR/Brownout Signal
-- Pulse Width -- s
pw
Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal
V
V
CC(min)
CC(min)
V
CC
3V
1ns 1ns
tpw-- Pulse Width -- s
t
pw
tf=t
r
t
f
tpw-- Pulse Width -- s
t
r
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
31
MSP430FG47x
)
V
hys(SVS_I
T--)
/
V
V
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
SVS (supply voltage supervisor/monitor)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t
(SVSR)
t
d(SVSon)
t
settle
V
(SVSstart)
V
hys(SVSIT--
(SVS_IT--)
I
CC(SVS)
(see Note 1)
The recommended operating voltage range is limited to 3.6 V.
t
is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD 0 to a different VLD value somewhere
settle
between 2 and 15. The overdrive is assumed to be > 50 mV.
NOTE 1: The current consumption of the SVS module is not included in the I
dVCC/dt > 30 V/ms (see Figure 10) 5 150 s
dVCC/dt 30 V/ms 2000 s SVSON, switch from VLD = 0 to VLD 0, VCC=3V 150 300 s
VLD  0
12 s
VLD 0, VCC/dt 3 V/s (see Figure 10) 1.55 1.7 V
VLD = 1 70 120 210 mV
VCC/dt 3 V/s (see Figure 10)
VCC/dt 3 V/s (see Figure 10), External voltage applied on A7
VLD = 2 .. 14
VLD = 15 4.4 20 mV
V
(SVS_IT--)
x 0.001
V
(SVS_IT--)
x 0.016
VLD = 1 1.8 1.9 2.05
VLD = 2 1.94 2.1 2.25
VLD = 3 2.05 2.2 2.37
VLD = 4 2.14 2.3 2.48
VLD = 5 2.24 2.4 2.6
VLD = 6 2.33 2.5 2.71
V
dt 3V/s (see Figure 10 and Figure 11)
CC
VLD = 7 2.46 2.65 2.86
VLD = 8 2.58 2.8 3
VLD = 9 2.69 2.9 3.13
VLD = 10 2.83 3.05 3.29
VLD = 11 2.94 3.2 3.42
3.99
VCC/dt 3 V/s (see Figure 10 and Figure 11), External voltage applied on A7
VLD = 12 3.11 3.35 3.61
VLD = 13 3.24 3.5 3.76
VLD = 14 3.43 3.7
VLD = 15 1.1 1.2 1.3
VLD 0, VCC=2.2V/3V 10 15 A
current consumption data.
CC
32
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
typical characteristics
AV
V
(SVS_IT--)
V
(SVSstart)
V
(B_IT--)
V
CC(start)
Brownout
SVS out
CC
1
0
1
V
hys(SVS_IT--)
V
hys(B_IT--)
Brownout
Region
t
d(BOR)
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
Software sets VLD >0:
SVS is active
SVS Circuit is Active From VLD > to VCC<V(
B_IT-- )
MSP430FG47x
Brown-
out
Region
t
d(BOR)
Set POR
1.5
-- V
CC(min)
V
0.5
0
1
undefined
0
t
d(SVSon)
Figure 10. SVS Reset (SVSR) vs Supply Voltage
2
Rectangular Drop
Triangular Drop
1
0
1 10 1000
-- Pulse Width -- s
t
pw
100
V
CC(min)
V
CC(min)
V
3V
V
3V
CC
CC
t
d(SVSR)
t
pw
1ns 1ns
t
pw
Figure 11. V
CC(min)
: Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1)
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
tf=t
r
t
f
t -- Pulse Width -- s
t
r
33
MSP430FG47x
f
f
f
f
f
f
f
f
f
f
StepsizebetweenadjacentDCOtaps:
Temperaturedrif
t,N
(DCO)
=01E0
h,FN_8=FN_4=FN_3=FN_2=0
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
DCO
PARAMETER TEST CONDITIONS V
N
= 01E0h, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2,
f
(DCOCLK)
(DCO2)
(DCO27)
(DCO2)
(DCO27)
(DCO2)
(DCO27)
(DCO2)
(DCO27)
(DCO2)
(DCO27)
S
n
D
t
D
V
(DCO)
DCOPLUS = 0
FN_8=FN_4=FN_3=FN_2 = 0 , DCOPLUS = 1
FN_8=FN_4=FN_3=FN_2 = 0, DCOPLUS = 1 (see Note 1)
FN_8=FN_4=FN_3=0,FN_2 = 1, DCOPLUS = 1
FN_8=FN_4=FN_3=0,FN_2 = 1, DCOPLUS = 1 (see Note 1)
FN_8=FN_4=0, FN_3= 1,FN_2 = x, DCOPLUS = 1
FN_8=FN_4=0, FN_3= 1,FN_2 = x, DCOPLUS = 1 (see Note 1)
FN_8=0,FN_4= 1,FN_3= FN_2 = x, DCOPLUS = 1
FN_8=0,FN_4=1,FN_3= FN_2 = x, DCOPLUS = 1 (see Note 1)
FN_8=1,FN_4=FN_3=FN_2 = x, DCOPLUS = 1
FN_8=1,FN_4=FN_3=FN_2 = x, DCOPLUS = 1 (see Note 1)
Stepsize between adjacent DCO taps: Sn=f
DCO(Tap n+1)/fDCO(Tap n)
Temperature drift, N
(see Figure 13 for taps 21 to 27)
= 01E0h, FN_8=FN_4=FN_3=FN_2=0
D = 2, DCOPLUS = 0 (see Note 2)
Drift with VCCvariation, N
= 01E0h, FN_8 = FN_4 = FN_3 =
(DCO)
FN_2 = 0, D = 2, DCOPLUS = 0 (see Note 2)
1<TAP20 1.06 1.11
NOTES: 1. Do not exceed the maximum system frequency.
2. This parameter is not production tested.
CC
2.2 V/3 V 1 MHz
2.2 V 0.3 0.65 1.25
3V 0.3 0.7 1.3
2.2 V 2.5 5.6 10.5
3V 2.7 6.1 11.3
2.2 V 0.7 1.3 2.3
3V 0.8 1.5 2.5
2.2 V 5.7 10.8 18
3V 6.5 12.1 20
2.2 V 1.2 2 3
3V 1.3 2.2 3.5
2.2 V 9 15.5 25
3V 10.3 17.9 28.5
2.2 V 1.8 2.8 4.2
3V 2.1 3.4 5.2
2.2 V 13.5 21.5 33
3V 16 26.6 41
2.2 V 2.8 4.2 6.2
3V 4.2 6.3 9.2
2.2 V 21 32 46
3V 30 46 70
TAP = 27 1.07 1.17
2.2 V –0.2 –0.3 –0.4
3V –0.2 –0.3 –0.4
MIN TYP MAX UNIT
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
%_C
0 5 15 %/V
34
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
f
(DCO)
f
(DCO3V)
1.0
f
(DCO)
f
(DCO20C)
1.0
1.8 3.02.4 3.6
20 6040 85
0-- 2 0-- 4 00
Figure 12. DCO Frequency vs Supply Voltage VCCand vs Ambient Temperature
TA-- CVCC-- V
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
35
MSP430FG47x MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
1.17
(DCO)
f
- Stepsize Ratio between DCO Taps
n
S
1.11
1.07
1.06
Max
Min
12720
DCO Tap
Figure 13. DCO Tap Step Size
Legend
Tolerance at Tap 27
DCO Frequency Adjusted by Bits
9
2
to 25in SCFI1 {N
Tol e r ance a t Tap 2
{DCO}
}
FN_2=0 FN_3=0 FN_4=0 FN_8=0
FN_2=1 FN_3=0 FN_4=0 FN_8=0
Figure 14. Five Overlapping DCO Ranges Controlled by FN_x Bits
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
36
FN_2=x FN_3=1 FN_4=0 FN_8=0
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
FN_2=x FN_3=x FN_4=1 FN_8=0
Overlapping DCO Ranges: Uninterrupted Frequency Range
FN_2=x FN_3=x FN_4=x
FN_8=1
MSP430FG47x
ALFOscillationallowancefor
(seeNote1
)
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
crystal oscillator, LFXT1, low frequency modes (see Note 4)
PARAMETER TEST CONDITIONS V
f
LFXT1,LF
O
C
L,eff
f
Fault,LF
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).
LFXT1 oscillator crystal frequency, LF mode 0, 1
Oscillation allowancefor LF crystals
Integrated effective load capacitance, LF mode
Duty cycle, LF mode
Oscillator fault frequency, LF mode (see Note 3)
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal.
2. Measured with logic level input frequency but also applies to operation with crystals.
3. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag.
4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.
XTS = 0, LFXT1Sx = 0 or 1 1.8 V to 3.6 V 32,768 Hz
XTS = 0, LFXT1Sx = 0, f
LFXT1,LF
C
XTS = 0, LFXT1Sx = 0, f
LFXT1,LF
C
XTS = 0, XCAPx = 0 1
XTS = 0, XCAPx = 1 5.5
XTS = 0, XCAPx = 2 8.5
XTS = 0, XCAPx = 3 11
XTS = 0, Measured at P1.5/ACLK, f
LFXT1,LF
XTS = 0, XCAPx = 0. LFXT1Sx = 3 (see Note 2)
L,eff
L,eff
= 32,768 kHz,
=6pF
= 32,768 kHz,
=12pF
2.2 V/3 V 30 50 70 %
= 32,768Hz
2.2 V/3 V 10 10,000 Hz
-- Keep the trace between the device and the crystal as short as possible.
-- Design a good ground plane around the oscillator pins.
-- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
-- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
-- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
-- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
-- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other
documentation. This signal is no longer required for the serial programming adapter.
CC
MIN TYP MAX UNIT
500
kΩ
200
pF
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
37
MSP430FG47x MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
crystal oscillator, LFXT1, high frequency modes
PARAMETER TEST CONDITIONS V
f
LFXT1
f
LFXT1
C
L,eff
Duty cycle Measured at P1.5/ACLK, 2.2 V/3 V 40 50 60 %
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).
LFXT1 oscillator c rystal frequency Ceramic resonator 1.8 V to 3.6 V 0.45 8 MHz
LFXT1 oscillator c rystal frequency Crystal resonator 1.8 V to 3.6 V 1 8 MHz
Integrated effective load capacitance, HF mode (see Note 1)
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal.
2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
(see Note 2) 1 pF
CC
crystal oscillator, XT2, high frequency modes
PARAMETER TEST CONDITIONS V
f
XT2
f
XT2
C
L,eff
Duty cycle Measured at P1.4/SMCLK, 2.2 V/3 V 40 50 60 %
NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin).
XT2 oscillator c rystal frequency Ceramic resonator 1.8 V to 3.6 V 0.45 8 MHz
XT2 oscillator c rystal frequency Crystal resonator 1.8 V to 3.6 V 1 8 MHz
Integrated effective load capacitance, HF mode (see Note 1)
Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal.
2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
(see Note 2) 1 pF
CC
MIN TYP MAX UNIT
MIN TYP MAX UNIT
38
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
RAM
PARAMETER TEST CONDITIONS MIN MAX UNIT
VRAMh CPUhalted(seeNote1) 1.6 V
NOTE 1: This parameter defines the minimum supply voltage when the data i n program memory RAM remain unchanged. No program execution
LCD_A
V
C
I
CC(LCD)
f
LCD
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
R
NOTES: 1. Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device.
should take place during this supply voltage condition.
PARAMETER TEST CONDITIONS V
CC(LCD)
LCD
Supply Voltage Range
Capacitor on LCDCAP (see Note 1)
Average Supply Current (see Note 2)
Charge pump enabled (LCDCPEN = 1, VLCDx > 0000)
Charge pump enabled (LCDCPEN = 1, VLCDx > 0000)
V VLCDx = 1000, All segments on, f
LCD
(see Note 3), TA=25C
=3V,LCDCPEN=1,
LCD(typ)
=f
ACLK
/32, No LCD connected
LCD frequency 1.1 kHz
LCD
LCD
LCD
LCD
LCD
LCD
LCD
LCD
LCD
LCD
LCD
LCD
LCD
LCD
LCD
LCD
LCD
LCD voltage VLCDx = 0000 V
LCD voltage VLCDx = 0001 2.60 V
LCD voltage VLCDx = 0010 2.66 V
LCD voltage VLCDx = 0011 2.72 V
LCD voltage VLCDx = 0100 2.78 V
LCD voltage VLCDx = 0101 2.84 V
LCD voltage VLCDx = 0110 2.90 V
LCD voltage VLCDx = 0111 2.96 V
LCD voltage VLCDx = 1000 3.02 V
LCD voltage VLCDx = 1001 3.08 V
LCD voltage VLCDx = 1010 3.14 V
LCD voltage VLCDx = 1011 3.20 V
LCD voltage VLCDx = 1100 3.26 V
LCD voltage VLCDx = 1101 3.32 V
LCD voltage VLCDx = 1110 3.38 V
LCD voltage VLCDx = 1111 3.44 3.60 V
V
3 V, LCDCPEN = 1,
LCD Driver Output impedance
2. Refer to the supply current specifications I
LCD =
VLCDx = 1000, I
for additional current specificat ions with the LCD_A module active.
(LPM3)
LOAD =
10 A
3. Connecting an actual display will increase the current consumption depending on the size of the LCD.
CC
MIN TYP MAX UNIT
2.2 3.6 V
4.7 F
2.2 V 3.8 A
CC
V
2.2 V 10 k
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
39
MSP430FG47x
A
A
SeeFigure15an
d
/CA
V
TA=25
C
TA=25
C
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
Comparator_A (see Note 1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
I
(CC)
I
(Refladder/RefDiode)
V
(Ref025)
V
(Ref050)
V
(RefVT)
V
IC
Vp-- V
V
hys
t
(response LH and HL)
NOTES: 1. The leakage current for the Comparator_A terminals is identical to I
Voltage @ 0.25 VCCnode
V
CC
Voltage @ 0.5 VCCnode
V
CC
See Figure 15 and Figure 16
Common-mode input voltage range
Offset voltage SeeNote2 VCC = 2.2 V / 3 V -- 3 0 30 mV
S
Input hysteresis CAON = 1 VCC=2.2V/3V 0 0.7 1.4 mV
,seeNote3
2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together.
3. The response time is measured at P1.6/CA0 with an input voltage step and the Comparator_A already enabled (CAON = 1). If CAON is set at the same time, a settling time of up to 300ns is added to the response time.
CAON = 1, CARSEL = 0, CAREF = 0
CAON = 1, CARSEL = 0, CAREF = 1/2/3, No load at P1.6/CA0 and P1.7/CA1
PCA0 = 1, CARSEL = 1, CAREF = 1, No load at P1.6/CA0 and P1.7/CA1
PCA0 = 1, CARSEL = 1, CAREF = 2, No load at P1.6/CA0 and P1.7/CA1
PCA0 = 1, CARSEL = 1, CAREF = 3, No load at P1.6 T
85C
A=
CAON = 1 VCC=2.2V/3V 0 VCC-- 1 V
T
=25C,
Overdrive 10 mV, without filter: CAF = 0
T Overdrive 10 m V, with filter: CAF = 1
,
=25C
0 and P1.7/CA1,
VCC=2.2V 25 40
VCC=3V 45 60
VCC=2.2V 30 50
VCC=3V 45 80
VCC=2.2V/3V 0.23 0.24 0.25
VCC=2.2V/3V 0.47 0.48 0.5
VCC=2.2V 390 480 540
VCC=3V 400 490 550
VCC=2.2V 80 165 300
VCC=3V 70 120 240
VCC=2.2V 1.4 1.9 2.8
VCC=3V 0.9 1.5 2.2
specification.
lkg(Px.x)
m
ns
s
40
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
(
)
(
)
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
typical characteristics
REFERENCE VOLTAGE
vs
FREE-AIR TEMPERATURE
650
VCC=3V
600
Typical
550
500
-- Reference Voltage -- mV
REF
450
V
400
-- 4 5 -- 2 5 -- 5 1 5 3 5 5 5 7 5 9 5
TA-- Free-Air Temperature -- C
Figure 15. V
V+
V--
vs Temperature
RefVT
V
0V
0
+ _
CC
1
CAON
REFERENCE VOLTAGE
vs
FREE-AIR TEMPERATURE
650
VCC=2.2V
600
Typical
550
500
-- Reference Voltage -- mV
REF
450
V
400
-- 4 5 -- 2 5 -- 5 1 5 3 5 5 5 7 5 9 5
TA-- Free-Air Temperature -- C
Figure 16. V
CAF
Low-Pass Filter
0
1
0
1
vs Temperature
RefVT
To I n ternal Modules
CAOUT
Figure 17. Block Diagram of Comparator_A Module
Overdrive
V--
400 mV
V+
t
(response)
Figure 18. Overdrive Definition
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
2 s
V
CAOUT
Set CAIFG Flag
41
MSP430FG47x
SD16L
P=0
f
SD1
6
1MHz,
f
A
SD16OSR=256
f
A
Absoluteinput
V
Commonmod
e
V
Differentialinput
V
performance
(seeNote1
)
f
SD1
6
1MHz,
f
SD1
6
1MHz,
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
SD16_A, power supply and recommended operating conditions
AV
I
SD16
SD16
PARAMETER TEST CONDITIONS V
CC
Analog supply voltage
Analog supply current including internal reference
AVCC=DV
CC
AVSS=DVSS=0V
=
f
SD16
,
=1MHz,
SD16OSR = 256
SD16LP = 1,
=0.5MHz,
SD16
SD16OSR = 256
SD16BUFx = 00, GAIN: 1,2 3V 750 1050
SD16BUFx = 00, GAIN: 4,8,16 3V 830 1150
SD16BUFx = 00, GAIN: 32 3V 1150 1700
SD16BUFx = 00, GAIN: 1 3V 730 1030
SD16BUFx = 00, GAIN: 32 3V 830 1150
SD16BUFx = 01, GAIN: 1 3V 850
SD16LP = 0,
SD16BUFx = 10, GAIN: 1 3V 1000
SD16BUFx = 11, GAIN: 1 3V 1130
Analog front-end
SD16LP = 0 (Low power mode disabled) 3V 0.03 1 1.1
input clock frequency
SD16LP = 1 (Low power mode enabled) 3V 0.03 0.5
CC
MIN TYP MAX UNIT
2.5 3.6 V
MHz
SD16_A, input range
PARAMETER TEST CONDITIONS V
V
I
V
IC
bsolute input
voltage range
Common-mode input voltage range
Differential full
V
ID,FSR
scale input voltage range
Differential input voltage range for
V
ID
specified
(see Note 1)
Input impedance
Z
I
(one input pin to AV
)
SS
Differential input
Z
ID
impedance (IN+ to IN--)
NOTES: 1. The analog input range depends on the reference voltage applied to V
by V
FSR+
=+(V
SD16BUFx = 00 AV
SD16BUFx > 00
SD16BUFx = 00 AV
SD16BUFx > 00
Bipolar mode, SD16UNI = 0 -- V
Unipolar mode, SD16UNI = 1
SD16GAINx = 1 500
SD16GAINx = 2 250
SD16REFON = 1
SD16GAINx = 4 125
SD16GAINx = 8 62
SD16GAINx = 16 31
SD16GAINx = 32 15
f
SD16
SD16BUFx = 00
f
SD16
SD16BUFx = 01
f
SD16
SD16BUFx = 00
f
SD16
SD16BUFx > 00
/2)/GAIN and V
REF
=1MHz,
=1MHz,
=1MHz,
=1MHz,
SD16GAINx = 1 3V 200
SD16GAINx = 32 3V 75
SD16GAINx = 1 3V 10 M
SD16GAINx = 1 3V 300 400
SD16GAINx = 32 3V 100 150
SD16GAINx = 1 3V 10 M
FSR--
=--(V
/2)/GAIN. The analog input range should not exceed 80% of V
REF
CC
REF
MIN TYP MAX UNIT
-0.1V AV
SS
AVSS+0.2V AVCC-- 1 . 2 V
-0.1V AV
SS
AVSS+0.2V AVCC-- 1 . 2 V
/2GAIN +V
REF
0 +V
.IfV
is sourced externally,the full-scale range is defined
REF
/2GAIN mV
REF
/2GAIN mV
REF
FSR+
CC
CC
or V
m
k
k
FSR--
.
42
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
distortionratio
f
Signaltonoise
+
f
I
N
=50Hz
f
f
p
p
/
ppm
Commonmod
e
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
SD16_A, performance (f
PARAMETER TEST CONDITIONS V
SINAD
dG/dT
dG/dV
CC
NOTES: 1. Calculated using the box method: (MAX(--40...85_C) -- MIN(--40...85_C))/MIN(--40...85_C)/(85C -- (--40_C))
Signal-to-noise + distortion ratio
Nominal gain SD16GAINx = 1, SD16OSRx = 1024 3V 0.97 1.00 1.02
Gain temperature drift
Gain supply voltage drift
2. Calculated using the box method: (MAX(2.5...3.6V) -- MIN(2.5...3.6V))/MIN(2.5...3.6V)/(3.6V -- 2.5 V)
SD16_A, performance (f
PARAMETER TEST CONDITIONS V
SINAD
G
E
OS
dE
dT
OS
CMRR
PSRR
NOTES: 1. Calculated using the box method: (MAX(--40...85_C) -- MIN(--40...85_C)) / MIN(--40...85_C) / (85_C--(--40_C))
Signal-to-noise + distortion ratio
Nominal gain
O
set error
Offset error temperature coefficient
Common-mode rejection ratio
Power supply rejection ratio
2. Calculated using the ADC output code and the box method: (MAX-code(2.5...3.6V) -- MIN-code(2.5...3.6V)) / MIN-code(2.5...3.6V) / (3.6V -- 2.5 V)
= 30kHz, SD16REFON = 1, SD16BUFx = 01)
SD16
MIN TYP MAX UNIT
CC
SD16GAINx = 1,Signal Amplitude = 500mV SD16OSRx = 256
SD16GAINx = 1,Signal Amplitude = 500mV SD16OSRx = 512
SD16GAINx = 1,Signal Amplitude = 500mV SD16OSRx = 1024
SD16GAINx = 1, SD16OSRx = 1024 (see Note 1) 3V 15 ppm/_C
SD16GAINx = 1, SD16OSRx = 1024, VCC= 2.5 V to 3.6 V (see Note 2)
= 1MHz, SD16OSRx = 256, SD16REFON = 1, SD16BUFx = 00)
SD16
SD16GAINx = 1,Signal Amplitude = 500mV 3V 83.5 85
SD16GAINx = 2,Signal Amplitude = 250mV 3V 81.5 84
SD16GAINx = 4,Signal Amplitude = 125mV
SD16GAINx = 8,Signal Amplitude = 62mV
SD16GAINx = 16,Signal Amplitude = 31mV 3V 69 73
SD16GAINx = 32,Signal Amplitude = 15mV 3V 62 69
SD16GAINx = 1 3V 0.97 1.00 1.02
SD16GAINx = 2 3V 1.90 1.96 2.02
SD16GAINx = 4 3V 3.76 3.86 3.96
SD16GAINx = 8
SD16GAINx = 16 3V 14.56 15.04 15.52
SD16GAINx = 32 3V 27.20 28.35 29.76
SD16GAINx = 1 3V 0.2
SD16GAINx = 32
SD16GAINx = 1 3V 4 20
SD16GAINx = 32
SD16GAINx = 1, Common-mode input signal: V
= 500 mV, fIN= 50 Hz, 100 Hz
ID
SD16GAINx = 32, Common-mode input signal: V
=16mV,fIN= 50 Hz, 100 Hz
ID
SD16GAINx = 1 3V 80 dB
fIN=2.8Hz
= 50Hz,
100Hz
3V 84
3V 84
3V 84
0.35 %/V
MIN TYP MAX UNIT
CC
3V 76 79.5
,
3V 73 76.5
3V 7.36 7.62 7.84
3V 1.5
3V 20 100
3V 90
3V 75
dB
dB
%FSR
m
FSR/_C
dB
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
43
MSP430FG47x
V
Senso
r
(
3
)
m
V
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
SD16_A, linearity (f
PARAMETER TEST CONDITIONS V
INL Integral non-linearity
= 1MHz, SD16REFON = 1, SD16BUFx = 00)
SD16
SD16OSR = 256, SD16GAINx = 000b, Signal Amplitude = 500 mV
SD16OSR = 256, SD16GAINx = 101b, Signal Amplitude = 15 mV
SD16OSR = 1024, SD16GAINx = 000b, Signal Amplitude = 500 mV
SD16OSR = 1024, SD16GAINx = 101b, Signal Amplitude = 15 mV
typical characteristics -- SD16_A SINAD performance over OSR
100.0
95.0
90.0
85.0
80.0
75.0
70.0
SINAD -- dB
65.0
MIN TYP MAX UNIT
CC
3V 1.5
3V 6
3V 0.8
3V 3.5
LSB
LSB
60.0
55.0
50.0
10.00 100.00 1000.00
Figure 19. SINAD performance over OSR, f
SD16_A, temperature sensor and built-in V
PARAMETER TEST CONDITIONS V
TC
Sensor
V
Offset,sensor
V
Sensor
V
CC,Sense
NOTES: 1. Not production tested, limits characterized.
Sensor temperature coefficient
Sensor offset voltage SeeNote1 --100 100 mV
Sensor output voltage
seeNote
VCCdivider at input 5 f
2. The following formula can be used to calculate the temperature sensor output voltage: V
Sensor,typ
3. Results based on characterization and/or production test, not TC
=TC
Sensor
SeeNote1 1.18 1.32 1.46 mV/K
Temperature sensor voltage at TA=85C 3V 435 475 515
Temperature sensor voltage at TA=25C 3V 355 395 435
Temperature sensor voltage at TA=0C(seeNote1) 3V 320 360 400
= 32kHz, SD16OSRx = 256, SD16REFON = 1 0.08 1/11 0.1 V
SD16
( 273 + T [C] ) + V
sense
CC
Offset,sensor
OSR
= 1MHz, SD16REFON = 1, SD16GAINx = 1
SD16
MIN TYP MAX UNIT
CC
[mV]
Sensor
or V
Offset,sensor
.
mV
44
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
SD16_A, built -in voltage reference
PARAMETER TEST CONDITIONS V
V
I
REF
REF
Internal reference voltage
Reference supply current
SD16REFON = 1, SD16VMIDON = 0 3V 1.14 1.20 1.26 V
SD16REFON = 1, SD16VMIDON = 0 3V 175 260 A
TC Temperature coefficient SD16REFON = 1, SD16VMIDON = 0 (see Note 1) 3V 18 50 ppm/K
C
REF
I
LOAD
t
ON
V
load capacitance SD16REFON = 1, SD16VMIDON = 0 (see Note 2) 100 nF
REF
V
maximum load
REF(I)
current
Turn on time
SD16REFON = 1, SD16VMIDON = 0 3V 200 nA
SD16REFON = 0-->1, SD16VMIDON = 0, C
= 100nF
REF
3V 5 ms
PSRR Line regulation SD16REFON = 1, SD16VMIDON = 0 3V 100 uV/V
NOTES: 1. Calculated using the box method: (MAX(--40...85_C) -- MIN(--40...85_C))/MIN(--40...85_C)/(85C -- (--40_C))
2. There is no capacitance required on V
. However, a capacitance of at l east 100nF is recommended to reduce any reference
REF
voltage noise.
MIN TYP MAX UNIT
CC
SD16_A, reference output buffer
PARAMETER TEST CONDITIONS V
V
REF,BUF
Reference buffer output voltage
Reference Supply +
I
REF,BUF
Reference output buffer quiescent current
C
REF(O)
I
LOAD,Max
Required load capacitance on V
REF
Maximum load current on V
REF
Maximum voltage variation vs load current
t
ON
Turn on time
SD16_A, external reference input
PARAMETER TEST CONDITIONS V
V
REF(I)
I
REF(I)
Input voltage range SD16REFON = 0 3V 1.0 1.25 1.5 V
Input current SD16REFON = 0 3V 50 nA
MIN TYP MAX UNIT
CC
SD16REFON = 1, SD16VMIDON = 1 3V 1.2 V
SD16REFON = 1, SD16VMIDON = 1 3V 385 600 A
SD16REFON = 1, SD16VMIDON = 1 470 nF
SD16REFON = 1, SD16VMIDON = 1 3V 1 mA
|I
|=0to1mA 3V -- 1 5 +15 mV
LOAD
SD16REFON = 0-->1, SD16VMIDON = 1, C
= 470nF
REF
3V 100 s
MIN TYP MAX UNIT
CC
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
45
MSP430FG47x
Supplycurrent
A
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
12-bit DAC, supply specifications
AV
CC
I
DD
PSRR
PARAMETER TEST CONDITIONS V
Analog supply voltage
AV
CC =DVCC
AV
SS
,
=DVSS=0V
DAC12AMPx = 2, DAC12IR = 0, DAC12_xDAT = 0800h
DAC12AMPx = 2, DAC12IR = 1,
Supply current (see Notes 1 and 2)
DAC12_xDAT = 0800h, V
REF,DAC12 =AVCC
DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0800h, V
REF,DAC12 =AVCC
DAC12AMPx = 7, DAC12IR = 1,
Power supply rejection ratio (see Notes 3 and 4)
DAC12_xDAT = 0800h, V
DAC12_xDAT = 800h, V AV
= 100 mV
CC
REF,DAC12 =AVCC
REF,DAC12
=1.2V,
CC
2.2 V/3 V 50 110
2.2 V/3 V 50 110
2.2 V/3 V 200 440
2.2 V/3 V 700 1500
2.7 V 70 dB
NOTES: 1. No load at the output pin assuming that the control bits for the shared pins are set properly.
2. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications.
3. PSRR = 20*logAV
4. V
is applied externally. The internal reference is not used.
REF
CC
/V
DAC12_xOUT
}.
MIN TYP MAX UNIT
2.20 3.60 V
46
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
Differentialnonlinearit
y
V
f
f
t
Offset_Ca
l
m
s
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
12-bit DAC, linearity specifications (see Figure 20)
INL
DNL
DNL
E
O
d
E(O)/dT
E
G
d
E(G)/dT
t
Offset Cal
PARAMETER TEST CONDITIONS V
Integral nonlinearity (see Note 1)
Differential nonlinearity
(see Note 1)
V
REF,DAC12
=1.2VorV
REF,ext
DAC12AMPx = 7, DAC12IR = 1
V
REF,ext
=1.2V
DAC12AMPx = 7, DAC12IR = 1
V
REF,ext
=2.5V
=2.5V
DAC12AMPx = 7, DAC12IR = 1
Differential nonlinearity (see Note 1)
Offset voltage without calibration (see Notes 1, 2)
Offset voltage with calibration (see Notes 1, 2)
V
REF,DAC12
=1.2V
DAC12AMPx = 7, DAC12IR = 1
V
REF,DAC12
=1.2V
DAC12AMPx = 7, DAC12IR = 1
V
REF,DAC12
=1.2V
DAC12AMPx = 7, DAC12IR = 1
Offset error temperature coefficient (see Note 1)
Gainerror(seeNote1) V
REF,DAC12
=1.2V 2.7 V 3.50 %FSR
Gain temperature coefficient (see Note 1)
Timefor o (see Note 3)
set calibration
DAC12AMPx = 2 2.7 V 100
DAC12AMPx = 3,5 2.7 V 32
DAC12AMPx = 4,6,7 2.7 V 6
CC
2.7 V 2.0 8.0 LSB
2.7 V -- 1 0.4 +1.3 LSB
2.7 V 0.4 1.0 LSB
2.7 V 0.4 1.0 LSB
2.7 V 20
2.7 V 2.5
2.7 V 30 V/C
2.7 V 10
NOTES: 1. Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and
“b” of the first order equation: y = a + b*x. V
DAC12_xOUT=EO
+(1+EG)*(V
REF,DAC12
/4095) * DAC12_xDAT, DAC12IR = 1.
2. The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON
3. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx = {0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during calibration may effect accuracy and is not recommended.
MIN TYP MAX UNIT
m
ppm of
FSR/C
ms
DAC Output
R
Load
C
Load
Figure 20. Linearity Test Load Conditions and Gain/Offset Definition
=
= 100pF
DAC V
OUT
V
R+
AV
CC
2
Offset Error
Positive
Negative
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Ideal transfer function
Gain Error
DAC Code
47
MSP430FG47x MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
12-bit DAC, linearity specifications (continued)
TYPICAL INL ERROR
vs
DIGITAL INPUT DATA
4
VCC=2.2V,V DAC12AMPx = 7
3
DAC12IR = 1
2
1
0
-- 1
REF
=1.2V
-- 2
INL -- Integral Nonlinearity Error -- LSB
-- 3
-- 4 0 512 1024 1536 2048 2560 3072 3584
DAC12_xDAT -- Digital Code
TYPICAL DNL ERROR
vs
DIGITAL INPUT DATA
2.0
1.5
1.0
0.5
0.0
-- 0 . 5
-- 1 . 0
VCC=2.2V,V DAC12AMPx = 7 DAC12IR = 1
REF
=1.2V
4095
-- 1 . 5
DNL -- Differential Nonlinearity Error -- LSB
-- 2 . 0 0 512 1024 1536 2048 2560 3072 3584
48
4095
DAC12_xDAT -- Digital Code
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
V
MaxDAC12loa
d
A
(seeFigure23)
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
12-bit DAC, output specifications
PARAMETER TEST CONDITIONS V
No Load, V
REF,DAC12
=AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7
No Load, V
Output voltage
V
O
range (see Note 1, Figure 23)
DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7
R
Load
DAC12_xDAT = 0h, DAC12IR = 1,
REF,DAC12
=3k,V
=AVCC,
REF,DAC12
=AVCC,
DAC12AMPx = 7
R
Load
=3k,V
REF,DAC12
=AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7
C
L(DAC12)
I
L(DAC12)
Max DAC12 load capacitance
Max DAC12 load current
R
Load
=3k,V
O/P(DAC12)
0.3 V,
DAC12AMPx = 2, DAC12_xDAT = 0h
R
O/P(DAC12)
Output resistance (see Figure 23)
=3k,V
Load
O/P(DAC12)
DAC12_xDAT = 0FFFh
R
=3k,
Load
0.3V  V
O/P(DAC12)
AVCC-- 0 . 3 V
AVCC-- 0.3V
R
NOTES: 1. Data is valid after the offset calibration of the output amplifier.
R
C
Load
Load
= 100pF
AV
CC
2
DAC12
I
Load
O/P(DAC12_x)
Figure 23. DAC12_x Output Resistance Tests
CC
2.2 V/3 V 0 0.005
2.2 V/3 V AVCC--0.05 AV
2.2 V/3 V 0 0.1
2.2 V/3 V AVCC--0.13 AV
2.2 V/3 V 100 pF
2.2V -- 0 . 5 +0.5
3V -- 1 . 0 +1.0
2.2 V/3 V 150 250
2.2 V/3 V 150 250
2.2 V/3 V 1 4
R
O/P(DAC12_x)
Max
Min
MIN TYP MAX UNIT
CC
CC
0.3
AVCC--0.3V
AV
CC
m
V
OUT
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
49
MSP430FG47x
Referenceinpu
t
V
(
V
)
R
i
(VREF
)
DAC12_xDAT=800h
V
t
O
N
Error
V(O
)
<0.5LS
B
s
)
t
S(FS)
s
)
DAC12_xDAT=
t
S(C-C
)
3F8h408h3F8
h
s
A
SRSlewRat
e
V
/s
Glitchenergy:fullscal
e
nVs
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
12-bit DAC, reference input specifications
V
Ri
REF
PARAMETER TEST CONDITIONS V
DAC12IR = 0 (see Notes 1 and 2) 2.2 V/3 V AVCC/3 AVCC+0.2
DAC12IR = 1 (see Notes 3 and 4)
DAC12IR = 0, SD16VMIDON = 1 (see Note 5)
DAC12IR = 1, SD16VMIDON = 1 2.2 V/3 V 40 48 56 k
REF
Reference input voltage range
Reference input resistance
CC
2.2 V/3 V AVCCAVCC+0.2
2.2 V/3 V 20 M
NOTES: 1. For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).
2. The maximum voltage applied at reference input voltage terminal V
=[AVCC-- V
REF
3. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AV
4. The maximum voltage applied at reference input voltage terminal V
=[AVCC-- V
REF
5. Characterized, not production tested
MIN TYP MAX UNIT
]/[3*(1+EG)].
E(O)
]/(1+EG).
E(O)
CC
).
12-bit DAC, dynamic specifications (V
REF,DAC12
=AVCC, DAC12IR = 1) (see Figure 24 and Figure 25)
PARAMETER TEST CONDITIONS V
t
ON
t
S(FS
t
S(C-C
DAC12 on-time
Settling time,full-scale 80hF7Fh80h
Settling time, code to code
SR Slew Rate
Glitch energy: full-scale
NOTES: 1. R
Load
DAC12_xDAT = 800h, Error
(O)
(see Note 1, Figure 24)
DAC12_xDAT=
DAC12_xDAT= 3F8h408h3F8h BF8hC08hBF8h
C12_xDAT=
D 80hF7Fh80h
DAC12_xDAT= 80hF7Fh80h
and C
connected to AVSS(not AVCC/2) in Figure 24.
Load
,
< 0.5 LSB
DAC12AMPx = 0 {2,3,4} 2.2 V/3 V 60 120
DAC12AMPx = 0 {5, 6} 2.2 V/3 V 15 30
DAC12AMPx = 0  7 2.2 V/3 V 6 12
DAC12AMPx = 2 2.2 V/3 V 100 200
DAC12AMPx = 3,5 2.2 V/3 V 40 80
DAC12AMPx = 4,6,7 2.2 V/3 V 15 30
DAC12AMPx = 2 2.2 V/3 V 5
DAC12AMPx = 3,5 2.2 V/3 V 2
DAC12AMPx = 4,6,7 2.2 V/3 V 1
DAC12AMPx = 2 2.2 V/3 V 0.05 0.12
DAC12AMPx = 3,5 2.2 V/3 V 0.35 0.7
DAC12AMPx = 4,6,7 2.2 V/3 V 1.5 2.7
DAC12AMPx = 2 2.2 V/3 V 600
DAC12AMPx = 3,5 2.2 V/3 V 150
DAC12AMPx = 4,6,7 2.2 V/3 V 30
2. Slew rate applies to output voltage steps > = 200 mV.
Conversion 1 Conversion 2
CC
V
OUT
Glitch
Energy
DAC Output
I
Load
R
Load
=3k
AV
2
C
= 100pF
R
O/P(DAC12.x)
Load
CC
+/-- 1/2 LSB
MIN TYP MAX UNIT
s
s
s
V/s
nV-s
Conversion 3
+/-- 1/2 LSB
Figure 24. Settling Time and Glitch Energy Testing
50
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
t
settleLH
t
settleHL
MSP430FG47x
3dBbandwidt
h
ACP
P
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
Conversion 1 Conversion 2
V
OUT
90%
10%
t
Figure 25. Slew Rate Testing
12-bit DAC, dynamic specifications continued (T
PARAMETER TEST CONDITIONS V
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h
DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h
DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h
= 100 pF
BW
--3dB
NOTES: 1. R
3-dB bandwidth, V
=1.5V,
DC
V
=0.1V
AC
(see Figure 26)
LOAD
PP
=3k,C
,
LOAD
Conversion 3
90%
10%
SRLH
=25C unless otherwise noted)
A
t
SRHL
CC
2.2 V/3 V 40
2.2 V/3 V 180
2.2 V/3 V 550
MIN MAX UNIT
kHz
R
=3k
Load
I
Load
DACx
C
Load
= 100pF
AV
CC
2
AC
DC
Ve
REF+
DAC12_x
Figure 26. Test Conditions for 3-dB Bandwidth Specification
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
51
MSP430FG47x
I
C
C
Supplycurrent(seeNote1)
2.2V/3V
A
Inputleakagecurrent
V
/3V
A
V
(I/P)
f
V(I/P
)
1kH
z
V
/
V
(I/P)
f
V(I/P
)
10kHz
V
/3V
V
V
/3V
V
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
operational amplifier OA, supply specifications
PARAMETER TEST CONDITIONS V
V
CC
Supply voltage range 2.2 3.6 V
CC
Fast Mode 180 290
I
CC
Supply current (see Note 1)
Medium Mode
2.2 V/3 V
Slow Mode
PSRR Power supply rejection ratio Non-inverting 2.2 V/3 V 70 dB
NOTES: 1. Corresponding pins configured as OA inputs and outputs respectively.
operational amplifier OA, input/output specification
PARAMETER TEST CONDITIONS V
V
I/P
I
Ikg
Input voltage range -- 0 . 1 VCC-- 1 . 2 V
Input leakage current (see Notes 1 and 2)
TA=--40to+55_C
T
=+55to+85_C
A
Fast Mode 50
Medium Mode
V
n
Voltage noise density, I/P
Slow Mode
Fast Mode
Medium Mode
f
f
=1kHz
=10kHz
Slow Mode
V
IO
Offset voltage, I/P 2.2 V/3 V 10 mV
Offset temperature drift, I/P seeNote3 2.2 V/3 V 10 V/C
Offset voltage drift with supply, I/P
V
OH
V
OL
High-level output voltage, O/P
Low-level output voltage, O/P
0.3 V  VIN VCC-- 1 . 0 V
V
10%, TA=25C
CC
Fast Mode, I
Slow Mode, I
Fast Mode, I
Slow Mode, I
SOURCE
SOURCE
SOURCE
SOURCE
--500 A
+500 A
--150 A
+150 A
CMRR Common-mode rejection ratio Noninverting 2.2 V/3 V 70 dB
NOTES: 1. ESD damage can degrade input current leakage.
2. The input bias current is overridden by the input leakage current.
3. Calculated using the box method
4. Specification valid for voltage-follower OAx configuration
CC
2.2
2.2 V/3 V 1.5 mV/V
2.2
2.2
MIN TYP MAX UNIT
110 190
50 80
MIN TYP MAX UNIT
-- 5 0.5 5
-- 2 0 5 20
80
140
30
50
65
VCC-- 0 . 2 V
VCC-- 0 . 1 V
V
SS
V
SS
CC
CC
0.2
0.1
A
n
n
Hz
52
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
SRSlewrat
e
V
/s
(seeFigure27andFigure28
)
Y
Y
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
operational amplifier OA, dynamic specifications
PARAMETER TEST CONDITIONS V
SR Slew rate
Open-loop voltage gain 100 dB
m
GBW
t
en(on)
t
en(off)
Phase margin CL=50pF 60 deg
Gain margin CL=50pF 20 dB
Gain-bandwidth product (see Figure 27 and Figure 28)
Enable time on ton, Noninverting, Gain = 1 2.2 V/3 V 10 20 s
Enable time off 2.2 V/3 V 1 s
CC
Fast Mode 1.2
Medium Mode
Slow Mode 0.3
Noninverting, Fast Mode, R
=47k,CL=50pF
L
Noninverting, Medium Mode, R
= 300 k,CL= 50pF
L
Non-inverting, Slow Mode, R
= 300 k,CL= 50pF
L
2.2 V/3 V
MIN TYP MAX UNIT
0.8
2.2
1.4
0.5
V/s
MHz
TYPICAL OPEN-LOOP GAIN vs FREQUENC
140
120
100
Gain -- dB
80
60
40
20
0
-- 2 0
-- 4 0
-- 6 0
-- 8 0
Fast Mode
Medium Mode
Slow Mode
1 10 100 1000 10000 100000
Input Frequency -- kHz
Figure 27
TYPICALPHASE vs FREQUENC
0
-- 5 0
Fast Mode
--100
Medium Mode
--150
Phase -- degrees
Slow Mode
--200
--250 1 10 100 1000 10000 100000
Input Frequency -- kHz
Figure 28
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
53
MSP430FG47x
Inputleakagecurrent
A
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)
switches between OA terminals and pins
PARAMETER TEST CONDITIONS V
V
CC
I
lkg
I
IN
R
ON
NOTES: 1. ESD damage can degrade input current leakage.
Supply voltage range -- 2.2 3.6 V
Input leakage current (see Note 1)
Input current Input switched to ON 0 100 A
On resistance IIN= 100 A 1 k
TA=--40Cto55C 1 10
T
=55Cto85C 50
A
typical characteristics
CC
MIN TYP MAX UNIT
n
RONvs V
3000.0
2750.0
2500.0
2250.0
2000.0
1750.0
1500.0
1250.0
1000.0
750.0
500.0
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6
Typical
V
-- Common Mode Input Voltage (V)
COM
COM
TA=25C
VCC=2.2V
VCC=2.7V
VCC=3V
Figure 29
VCC=3.6V
RONvs V
1700.0
1600.0
1500.0
1400.0
1300.0
1200.0
1100.0
1000.0
900.0
800.0
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6
Typical
TA=85C
TA=25C
TA=--40C
-- Common Mode Input Voltage (V)
V
COM
COM
VCC=3V
Figure 30
54
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
f
_
A
x
f
x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended operating free-air temperature (unless otherwise noted)
Timer_A
TA
t
TA, cap
Timer_B
TB
t
TB,cap
PARAMETER TEST CONDITIONS V
Timer
Timer_A, capture timing TA0, TA1, TA 2 2.2 V/3 V 20 ns
Timer_Bclockfrequency
Timer_B, capture timing TB0, TB1, TB2 2.2 V/3 V 20 ns
clockfrequency
PARAMETER TEST CONDITIONS V
Internal: SMCLK, ACLK, E
ternal: TACLK, INCLK,
Duty cycle = 50% 10%
Internal: SMCLK, ACLK, E
ternal: TBCLK,
Duty cycle = 50% 10%
CC
2.2 V 8
3V 10
CC
2.2 V 8
3V 10
MIN MAX UNIT
MHz
MIN MAX UNIT
MHz
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
55
MSP430FG47x
UARTreceivedeglitchtime
UCLKedgetoSOMIvalid
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
USCI (UART mode)
PARAMETER TEST CONDITIONS V
Internal: SMCLK, ACLK
f
USCI
USCI input clock frequency
External: UCLK Duty cycle = 50% 10%
Maximum BITCLK clock frequency
fmax,
BITCLK
(equals baudrate in MBaud) (see Note 1)
t
UART receive deglitch time (see Note NO TAG)
NOTES: 1. The DCO wake-up time must be considered in LPM3/4 for baudrates above 1 MHz.
2. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed.
USCI (SPI master mode) (see Figure 31 and Figure 32)
PARAMETER TEST CONDITIONS V
f
USCI
t
SU,MI
t
HD,MI
t
VAL ID, MO
NOTE: f
USCI input clock frequency
SOMI input data s etup time
SOMI input data hold time
SIMO output data valid time UCLK edge to SIMO valid, CL=20pF
UCxCLK
=
2t
with t
LOHI
1
For the slave’s parameters t
max(t
LOHI
SU,SI(Slave)
and t
SMCLK, ACLKm Duty cycle = 50% 10%
VALID,MO(USCI)
VALID,SO(Slave)
+ t
SU,SI(Slave),tSU,MI(USCI)
+ t
refer to the SPI parameters of the attached slave.
CC
2.2V /3 V 2 MHz
2.2 V 50 150 ns
3V 50 100 ns
VALID,SO(Slave)
MIN TYP MAX UNIT
CC
f
SYSTEM
MIN MAX UNIT
f
SYSTEM
MHz
MHz
2.2 V 110 ns
3V 75 ns
2.2 V 0 ns
3V 0 ns
2.2 V 30 ns
3V 20 ns
).
USCI (SPI slave mode) (see Figure 33 and Figure 34)
PARAMETER TEST CONDITIONS V
t
STE,LEAD
t
STE,LAG
t
STE,ACC
t
STE,DIS
t
SU,SI
t
HD,SI
t
VAL ID, SO
NOTE: f
For the master’s parameters t
STE lead time STE low to clock
STE lag time Last clock to STE high
STE access time STE low to SOMI data out
STE disable time STE high to SOMI high impedance
SIMO input data setup time
SIMO input data hold time
SOMI output data valid time
1
UCxCLK
=
2t
LOHI
with t
LOHI
max(t
SU,MI(Master)
UCLK edgetoSOMIvalid, C
=20pF
L
VALID,MO(Master)
and t
VALID,MO(Master)
+ t
CC
MIN TYP MAX UNIT
2.2 V/3 V 50 ns
2.2 V/3 V 10 ns
2.2 V/3 V 50 ns
2.2 V/3 V 50 ns
2.2 V 20 ns
3V 15 ns
2.2 V 10 ns
3V 10 ns
,
2.2 V 75 110 ns
3V 50 75 ns
SU,SI(USCI),tSU,MI(Master)
+ t
VALID,SO(USCI)
).
refer to the SPI parameters of the attached master.
56
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
1/f
UCxCLK
CKPL=0
UCLK
CKPL=1
SOMI
SIMO
UCLK
SOMI
CKPL=0
CKPL=1
t
LO/HItLO/HI
t
t
VAL I D,MO
SU,MI
t
HD,MI
Figure 31. SPI Master Mode, CKPH = 0
1/f
UCxCLK
t
LO/HItLO/HI
t
SU,MI
t
VAL I D,MO
t
HD,MI
SIMO
Figure 32. SPI Master Mode, CKPH = 1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
57
MSP430FG47x MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
STE
UCLK
SIMO
SOMI
STE
CKPL=0
CKPL=1
t
STE,ACC
t
STE,LEAD
1/f
UCxCLK
t
LO/HItLO/HI
t
VAL I D,SO
Figure 33. SPI Slave Mode, CKPH = 0
t
STE,LEAD
t
SU,SI
t
HD,SI
t
STE,LAG
t
STE,LAG
t
STE,DIS
UCLK
SIMO
SOMI
CKPL=0
CKPL=1
t
STE,ACC
1/f
UCxCLK
t
LO/HItLO/HI
t
SU,SI
t
VAL I D,SO
Figure 34. SPI Slave Mode, CKPH = 1
t
HD,SI
t
STE,DIS
58
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MSP430FG47x
p
p
y
Pulsewidthofspikessuppressedb
y
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
USCI (I2C mode) (see Figure 35)
f
USCI
f
SCL
t
HD,STA
t
SU,STA
t
HD,DAT
t
SU,DAT
t
SU,STO
t
SP
PARAMETER TEST CONDITIONS V
CC
Internal: SMCLK, ACLK
USCI input clock frequency
External: UCLK Duty cycle = 50% 10%
SCL clock frequency 2.2 V/3 V 0 400 kHz
f
100kHz 2.2 V/3 V 4.0 s
Hold time (repeated) START
Setup timefor a repeated START
SCL
f
> 100kHz 2.2 V/3 V 0.6 s
SCL
f
100kHz 2.2 V/3 V 4.7 s
SCL
f
> 100kHz 2.2 V/3 V 0.6 s
SCL
Data hold time 2.2 V/3 V 0 ns
Data setup time 2.2 V/3 V 250 ns
SetuptimeforSTOP 2.2 V/3 V 4.0 s
Pulse width ofspikes su input filter
ressed b
2.2 V 50 150 600 ns
3V 50 100 600 ns
MIN TYP MAX UNIT
f
SYSTEM
MHz
SDA
SCL
t
HD,STA
1/f
SCL
t
HD,DAT
t
SU,STAtHD,STA
t
SU,DAT
Figure 35. I2C Mode Timing
t
SP
t
SU,STO
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
59
MSP430FG47x
f
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
flash memory
PARAMETER
V
CC(PGM/
ERASE)
f
FTG
I
PGM
I
ERASE
t
CPT
t
CMErase
Program and Erase s upply v oltage 2.2 3.6 V
Flash Timing Generator frequency 257 476 kHz
Supply current from DVCCduring program 2.5 V/3.6V 3 5 mA
Supply current from DVCCduring erase 2.5 V/3.6V 3 7 mA
Cumulative program time seeNote1 2.5 V/3.6V 10 ms
Cumulative mass erase time seeNote2 2.5 V/3.6V 200 ms
Program/Erase endurance 10
t
Retention
t
Word
t
Block, 0
t
Block, 1-63
t
Block, End
t
Mass Erase
t
Seg Erase
Data retention duration TJ=25C 100 years
Word or byte program time 35
Block program time for 1stbyte or word 30
Block program time for each additional byte or word
Block program end-sequence wait time
Mass erase time 5297
Segment erase time 4819
NOTES: 1. The cumulative program time must not be exceeded when writing to a 64--byte flash block. This parameter applies to all programming
methods: individual word/byte write and block write modes.
2. The mass erase duration generated by the flash timing generator is at least 11.1ms ( = 5297x1/f achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met. (A worst case minimum of 19 cycles are required).
3. These values are hardwired into the Flash Controller’s state machine (t
TEST
CONDITIONS
seeNote3
FTG
=1/f
FTG
V
CC
MIN TYP MAX UNIT
4
FTG
5
10
21
6
cycles
t
FTG
,max = 5297x1/476kHz). To
).
JTAG interface
TEST
CONDITIONS
V
CC
MIN TYP MAX UNIT
2.2 V 0 5 MHz
3V 0 10 MHz
TCK
R
Internal
NOTES: 1. f
2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions.
PARAMETER
TCK inputfrequency See Note 1
Internal pull-up resistance on TMS, TCK, TDI/TCLK SeeNote2 2.2 V/ 3 V 25 60 90 k
may be restricted to meet the timing requirements of the module selected.
TCK
JTAG fuse (see Note 1)
PARAMETER
V
CC(FB)
V
FB
I
FB
t
FB
Supply voltage during fuse-blow condition TA=25C 2.5 V
Voltage level on TDI/TCLK for fuse-blow: F versions 6 7 V
Supply current into TDI/TCLK during fuse blow 100 mA
Time to blow fuse 1 ms
NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched
to bypass mode.
TEST
CONDITIONS
V
CC
MIN MAX UNIT
60
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
X
/
/
Port P1 pin schematic: P1.0, input/output with Schmitt trigger
CAPD.0
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
P1DIR.0
P1SEL2.0
Module X OUT
P1OUT.0
P1SEL.0
P1IN.0
Module X IN
P1IRQ.0
P1IFG.0
P1SEL.0
P1IES.0
0
1
EN
D
P1IE.0
0
1
1
0
EN
Q
Set
Interrupt
Edge Select
Direction 0: Input 1: Output
Bus
Keeper
Pad Logic
P1.0/TA0/OA0RFB
EN
SWCTL1.SWCTL8
OA0
Port P1 (P1.0) pin functions
PIN NAME (P1.X)
P1.0/TA0/OA0RFB 0
P1.x (I/O) 0 I: 0, O: 1 0 0
Timer_A3.CCI0A 0 0 1 0
Timer_A3.TA0 0 1 1 0
OA0RFB x x 1 1
FUNCTION
CONTROL BITS / SIGNALS
CAPD.x P1DIR.x P1SEL.x P1SEL2.x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
61
MSP430FG47x
X
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P1 pin schematic: P1.1, input/output with Schmitt trigger
CAPD.1
P1DIR.1
P1SEL2.1
Module X OUT
MCLK
P1OUT.1
P1SEL.1
P1IN.1
Module X IN
P1IRQ.1
P1SEL.1
P1IES.1
0
1
EN
D
P1IE.1
P1IFG.1
0
1
1
0
EN
Q
Set
Interrupt
Edge Select
Direction 0: Input 1: Output
Bus
Keeper
EN
Pad Logic
P1.1/TA0/MCLK/ OA1RFB
SWCTL1.SWCTL12
OA1
Port P1 (P1.1) pin functions
PIN NAME (P1.X)
P1.1/TA0/MCLK 1 OA1RFB
P1.x (I/O) 0 I: 0, O: 1 0 0
Timer_A3.CCI0A 0 0 1 0
Timer_A3.TA0 0 1 1 0
OA1RFB x 0 1 1
MCLK 0 1 1 1
FUNCTION
CONTROL BITS / SIGNALS
CAPD.x P1DIR.x P1SEL.x P1SEL2.x
62
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
///
Port P1 pin schematic: P1.2 input/output with Schmitt trigger
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
INCH
A4-
SD16AE.2
CAPD.2
P1DIR.2
P1OUT.2
Module X OUT
P1SEL.2
P1IN.2
Module X IN
P1IRQ.2
Pad Logic
1
0
0
1
0
1
EN
D
P1IE.2
P1IFG.2
DV
Direction 0: Input 1: Output
EN
Q
Set
SS
P1.2/TA1/A4-/OA0I3
Bus
Keeper
EN
OA0
P1SEL.2
P1IES.2
Port P1 (P1.2) pin functions
PIN NAME (P1.X)
P1.2/TA1/A4--/OA0I3 2
NOTES: 1. x: Don’t care.
X FUNCTION
P1.x (I/O) 0 I: 0, O: 1 0 xx 0
Timer_A3.CCI1A 0 0 1 xx 0
Timer_A3.TA1 0 1 1 xx 0
A4-- x x x xx 1
OA0I3 x x x 10 1
Interrupt
Edge Select
CONTROL BITS / SIGNALS
CAPD.x P1DIR.x P1SEL.x
P1SEL2.x = 0
OAN (OA0)
P1SEL2.x = 0
SD16AE.x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
63
MSP430FG47x
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P1 pin schematic: P1.3, input/output with Schmitt trigger
INCH =4
A4+
SD16AE.3
CAPD.3
P1DIR.3
P1OUT.3
Module X OUT
P1SEL.3
P1IN.3
Module X IN
P1IRQ.3
Pad Logic
0
1
0
1
EN
D
P1IE.3
P1IFG.3
EN
Q
Set
Direction 0: Input 1: Output
Bus
Keeper
EN
P1.3/TBOUTH/ SVSOUT/A4+/OA1I3
OA1
P1SEL.3
P1IES.3
Port P1 (P1.3) pin functions
PIN NAME (P1.X)
P1.3/TBOUTH/ 3 SVSOUT/A4+/OA1I3
NOTES: 1. x: Don’t care.
X FUNCTION
P1.x (I/O) 0 I: 0, O: 1 0 xx 0
TBOUTH 0 0 1 xx 0
SVSOUT 0 1 1 xx 0
A4+ x x x xx 1
OA1I3 x x x 10 1
Interrupt
Edge Select
CONTROL BITS / SIGNALS
CAPD.x P1DIR.x P1SEL.x
P1SEL2.x = 0
OAN (OA1)
P1SEL2.x = 0
SD16AE.x
64
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
/
/
Port P1 pin schematic: P1.4, input/output with Schmitt trigger
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
DAC12_1OUT
DAC12OPS
INCH=3
A3-
SD16AE.4
CAPD.4
P1DIR.4
P1OUT.4
Module X OUT
P1SEL.4
P1IN.4
Module X IN
P1IRQ.4
Pad Logic
01DV
0
1
0
1
Direction 0: Input 1: Output
EN
D
P1IE.4
P1IFG.4
SS
P1.4/TBCLK/
Bus
Keeper
EN
EN
Q
Set
OA1
SMCLK/A3-/ OA1I0/DAC1
P1SEL.4
P1IES.4
Port P1 (P1.4) pin functions
PIN NAME (P1.X)
P1.4TBCLK/SMCLK/ 4 A3--/OA1I0/DAC1
NOTES: 1. x: Don’t care.
X FUNCTION
P1.x (I/O) I: 0, O: 1 0 0 xx 0
TBCLK 0 1 0 xx 0
SMCLK 1 1 0 xx 0
A3-- x x 1 xx 0
OA1I0 x x 1 00 0
DAC1 x x x xx 1
Interrupt
Edge Select
CONTROL BITS / SIGNALS
CAPD.x P1DIR.x P1SEL.x
P1SEL2.x = 0
SD16AE.x
P1SEL2.x = 0
OAP (OA1)
P1SEL2.x = 0
DAC12OPS
(DAC12_1)
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
65
MSP430FG47x
///
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P1 pin schematic: P1.5, input/output with Schmitt trigger
INCH =3
Ax+
SD16AE.5
CAPD.5
P1DIR.5
P1OUT.5
Module X OUT
P1SEL.5
P1IN.5
Module X IN
P1IRQ.5
0
1
0
1
P1SEL.5
P1IES.5
EN
D
P1IE.5
P1IFG.5
Pad Logic
Direction 0: Input 1: Output
P1.5/TACLK/ACLK/A3+
Bus
Keeper
EN
EN
Q
Set
Interrupt
Edge Select
Port P1 (P1.5) pin functions
PIN NAME (P1.X)
P1.5/TACLK/ACLK/ 5 A3+
NOTES: 1. x: Don’t care.
66
X FUNCTION
P1.x (I/O) 0 I: 0, O: 1 0 0
TAC L K 0 0 1 0
ACLK 0 1 1 0
A3+ x x x 1
CAPD.x P1DIR.x P1SEL.x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
CONTROL BITS / SIGNALS
P1SEL2.x = 0
SD16AE.x
APPLICATION INFORMATION
Port P1 pin schematic: P1.6, input/output with Schmitt trigger
To Comparator_A
From Comparator_A
CAPD.6
DAC12_0OUT
DAC12OPS
A2-
INCH=2
SD16AE.6
P1DIR.6
0
1
1
0
Direction 0: Input 1: Output
DV
SS
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
Pad Logic
P1OUT.6
0/1
P1SEL.6
P1IN.6
Module X IN
P1IRQ.6
0
1
P1SEL.6
P1IES.6
EN
D
P1IE.6
P1IFG.6
EN
Q
Set
Interrupt
Edge Select
Bus
Keeper
EN
P1.6/CA0/A2-/ OA0I0/DAC0
OA0
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
67
MSP430FG47x
///
/
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
Port P1 (P1.6) pin functions
PIN NAME (P1.X)
P1.6/CA0/A2--/OA0I0/ 6 DAC0
NOTES: 1. x: Don’t care.
X FUNCTION
P1.x (I/O) I: 0, O: 1 0 0 0 xx 0
CA0 x x 1 or selected x xx x
A2-- x x x 1 xx x
OA0I0 x x x x 00 x
DAC0 x x x x xx 1
P1DIR.x P1SEL.x
CONTROL BITS / SIGNALS
P1SEL2.x = 0
CAPD.x
P1SEL2.x = 0
SD16AE.x
P1SEL2.x = 0
OAP (OA0)
P1SEL2.x = 0
DAC12OPS
(DAC12_0)
68
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
/
/
Port P1 pin schematic: P1.7, input/output with Schmitt trigger
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
To Comparator_A
From Comparator_A
CAPD.7
SD16AE.7
INCH=2
A2+
P1DIR.7
P1OUT.7
0/1
P1SEL.7
P1IN.7
Module X IN
Pad Logic
0
1
0
1
Direction 0: Input 1: Output
P1.7/CA1/A2+
Bus
Keeper
EN
EN
D
P1IRQ.7
P1IFG.7
P1SEL.7
P1IES.7
Port P1 (P1.7) pin functions
PIN NAME (P1.X)
P1.7/CA1/A2+ 7
NOTES: 1. x: Don’t care.
X FUNCTION
P1.x (I/O) I: 0, O: 1 0 0 0
CA1 x x 1 or selected x
A2+ x x x 1
P1IE.7
EN
Q
Set
Interrupt
Edge Select
CONTROL BITS / SIGNALS
P1DIR.x P1SEL.x
P1SEL2.x = 0
CAPD.x
P1SEL2.x = 0
SD16AE.x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
69
MSP430FG47x
X
/
/
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P2 pin schematic: P2.0 to P2.1, input/output with Schmitt trigger
LCDS0
Segment Sx
P2DIR.x
P2OUT.x
Module X OUT
P2SEL.x
P2IN.x
Module X IN
P2IRQ.x
P2IFG.x
P2SEL.x
P2IES.x
EN
D
P2IE.x
0
1
0
1
EN
Q
Set
Interrupt
Edge Select
Direction 0: Input 1: Output
Bus
Keeper
EN
Pad Logic
P2.0/TA2/S1 P2.1/TB0/S0
Port P2 (P2.0 to P2.1) pin functions
PIN NAME (P2.X)
P2.0/TA2/S1 0
P2.1/TB0/S0 1
NOTES: 1. x: Don’t care.
P2.x (I/O) I: 0, O: 1 0 0
Timer_A3.CCI2A 0 1 0
Timer_A3.TA2 1 1 0
S1 x x 1
P2.x (I/O) I: 0, O: 1 0 0
Timer_B3.CCI0A 0 1 0
Timer_B3.TB0 1 1 0
S0 x x 1
FUNCTION
CONTROL BITS / SIGNALS
P2DIR.x P2SEL.x LCDS0
70
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MIXED SIGNAL MICROCONTROLLER
X
/
/
APPLICATION INFORMATION
Port P2 pin schematic: P2.2 to P2.3, input/output with Schmitt trigger
MSP430FG47x
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
P2DIR.x
Module X OUT
P2OUT.x
P2SEL.x
P2IN.x
Module X IN
P2IRQ.x
P2IFG.x
P2SEL.x
P2IES.x
EN
D
P2IE.x
0
1
0
1
EN
Q
Set
Interrupt
Edge Select
Direction 0: Input 1: Output
Pad Logic
P2.2/TB1 P2.3/TB2
Port P2 (P2.2 to P2.3) pin functions
PIN NAME (P2.X)
P2.2/TB1 2
P2.3/TB2 3
P2.x (I/O) I: 0, O: 1 0
Timer_B3.CCI1A 0 1
Timer_B3.TB1 1 1
P2.x (I/O) I: 0, O: 1 0
Timer_B3.CCI2A 0 1
TimerB3.TB2 1 1
FUNCTION
CONTROL BITS / SIGNALS
P2DIR.x P2SEL.x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
71
MSP430FG47x
X
/
/
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P2 pin schematic: P2.4 and P2.5, input/output with Schmitt trigger
P2DIR.x
Module
direction
P2OUT.x
Module X OUT
P2SEL.x
P2IN.x
Module X IN
P2IRQ.x
0
1
0
1
P2SEL.x
P2IES.x
EN
D
P2IE.x
P2IFG.x
Direction 0: Input 1: Output
EN
Q
Set
Interrupt
Edge Select
Port P2 (P2.4 and P2.5) pin functions
PIN NAME (P2.X)
P2.4/UCA0TXD/ 4 UCA0SIMO
P2.5/UCA0RXD/ 5 UCA0SOMI
NOTES: 1. x: Don’t care.
2. The pin direction is controlled by the USCI module.
P2.x (I/O) I: 0, O: 1 0
UCA0TXD/UCA0SIMO (see Notes 2) x 1
P2.x (I/O) I: 0, O: 1 0
UCA0RXD/UCA0SOMI (see Notes 2) x 1
FUNCTION
Pad Logic
P2.4/UCA0TXD/UCA0SIMO P2.5/UCA0RXD/UCA0SOMI
CONTROL BITS / SIGNALS
P2DIR.x P2SEL.x
72
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MIXED SIGNAL MICROCONTROLLER
X
/
/
/
APPLICATION INFORMATION
Port P2 pin schematic: P2.6 and P2.7, inpututput with Schmitt trigger
MSP430FG47x
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
LCDS0
Segment Sy
P2DIR.x
P2OUT.x
0/1
P2SEL.x
P2IN.x
P2IRQ.x
0
1
0
1
P2SEL.x
P2IES.x
P2IE.x
P2IFG.x
Direction 0: Input 1: Output
Q
Interrupt
Edge Select
EN
Set
Bus
Keeper
EN
Pad Logic
P2.6/CAOUT/S2 P2.7/S3
Port P2 (P2.6 and P2.7) pin functions
PIN NAME (P2.X)
P2.6/CAOUT/S2 6
P2.7/S3 7
NOTES: 1. x: Don’t care.
P2.x (I/O) I: 0, O: 1 0 0
CAOUT 1 1 0
S2 x x 1
P2.x (I/O) I: 0, O: 1 0 0
V
ss
S3 x x 1
FUNCTION
CONTROL BITS / SIGNALS
P2DIR.x P2SEL.x LCDS0
1 1 0
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
73
MSP430FG47x
X
/
/
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P3 pin schematic: P3.0 and P3.3, input/output with Schmitt trigger
P3DIR.x
Module
direction
P3OUT.x
Module X OUT
P3SEL.x
P3IN.x
Module X IN
0
1
0
1
Direction 0: Input 1: Output
EN
D
Port P3 (P3.0 and P3.3) pin functions
PIN NAME (P3.X)
P3.0/UCB0STE/ 0 UCA0CLK
P3.3/UCB0CLK/ 3 UCA0STE
NOTES: 1. x: Don’t care.
2. The pin direction is controlled by the USCI module.
P3.x (I/O) I: 0, O: 1 0
UCB0STE/UCA0CLK (see Note 2) x 1
P3.x (I/O) I: 0, O: 1 0
UCB0CLK/UCA0STE (see Note 2) x 1
FUNCTION
Pad Logic
P3.0/UCB0STE/UCA0CLK P3.3/UCB0CLK/UCA0STE
CONTROL BITS / SIGNALS
P3DIR.x P3SEL.x
74
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MIXED SIGNAL MICROCONTROLLER
X
/
/
/
/
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P3 pin schematic: P3.1 and P3.2, input/output with Schmitt trigger
MSP430FG47x
LCDS24
Segment Sy
P3DIR.x
Module
direction
P3OUT.x
Module X OUT
P3SEL.x
P3IN.x
Module X IN
0
1
0
1
Direction 0: Input 1: Output
EN
D
Port P3 (P3.1 and P3.2) pin functions
PIN NAME (P3.X)
P3.1/UCB0SIMO/ 1 UCB0SDA/S26
P3.2/UCB00SOMI/ 2 UCB0SCL/S27
NOTES: 1. x: Don’t care.
2. The pin direction is controlled by the USCI module.
3. In case the I2C functionality is selected the output drives only the logical 0 to V
P3.x (I/O) I: 0, O: 1 0 0
UCB0SIMO/UCB0SDA (see Notes 2 and 3) x 1 0
S26 x x 1
P3.x (I/O) I: 0, O: 1 0 0
UCB0SOMI/UCB0SCL (see Notes 2 and 3) x 1 0
S27 x x 1
FUNCTION
Bus
Keeper
EN
Pad Logic
P3.1/UCB0SIMO/UCB0SDA/S26 P3.2/UCB0SOMI/UCB0SCL/S27
CONTROL BITS / SIGNALS
P3DIR.x P3SEL.x LCDS24
level.
SS
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
75
MSP430FG47x
X
/
/
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P3 pin schematic: P3.4 to P3.7, input/output with Schmitt trigger
LCDS28
Segment Sy
P3DIR.x
P3OUT.x
Module X Out
P3SEL.x
P3IN.x
0
1
0
1
Direction 0: Input 1: Output
Port P3 (P3.4 to P3.7) pin functions
PIN NAME (P3.X)
P3.4/S28 4
P3.5/S29 5
P3.6/S30 6
P3.7/S31 7
NOTES: 1. x: Don’t care.
P3.x (I/O) I: 0, O: 1 0 0
S28 x x 1
P3.x (I/O) I: 0, O: 1 0 0
S29 x x 1
P3.x (I/O) I: 0, O: 1 0 0
S30 x x 1
P3.x (I/O) I: 0, O: 1 0 0
S31 x x 1
FUNCTION
Bus
Keeper
EN
Pad Logic
P3.4/S28 P3.5/S29 P3.6/S30 P3.7/S31
CONTROL BITS / SIGNALS
P3DIR.x P3SEL.x LCDS28
76
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MIXED SIGNAL MICROCONTROLLER
X
/
/
/
/
/
/
/
/
APPLICATION INFORMATION
Port P4 pin schematic: P4.0 to P4.7, input/output with Schmitt trigger
MSP430FG47x
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
LCDS4/8
Segment Sy
P4DIR.x
P4OUT.x
0/1
P4SEL.x
P4IN .x
0
1
0
1
Direction 0: Input 1: Output
Port P4 (P4.0 and P4.7) pin functions
PIN NAME (P4.X)
P4.0/S11 0
P4.1/S10 1
P4.2/S9 2
P4.3/S8 3
P4.4/S7 4
P4.5/S6 5
P4.6/S5 6
P4.7/S4 7
NOTES: 1. x: Don’t care.
P4.x (I/O) I: 0, O: 1 0 0 (LCDS8)
S11 x x 1 (LCDS8)
P4.x (I/O) I: 0, O: 1 0 0 (LCDS8)
S10 x x 1 (LCDS8)
P4.x (I/O) I: 0, O: 1 0 0 (LCDS8)
S9 x x 1 (LCDS8)
P4.x (I/O) I: 0, O: 1 0 0 (LCDS8)
S8 x x 1 (LCDS8)
P4.x (I/O) I: 0, O: 1 0 0 (LCDS4)
S7 x x 1 (LCDS4)
P4.x (I/O) I: 0, O: 1 0 0 (LCDS4)
S6 x x 1 (LCDS4)
P4.x (I/O) I: 0, O: 1 0 0 (LCDS4)
S5 x x 1 (LCDS4)
P4.x (I/O) I: 0, O: 1 0 0 (LCDS4)
S4 x x 1 (LCDS4)
FUNCTION
Bus
Keeper
EN
Pad Logic
P4.0/S11 P4.1/S10 P4.2/S9 P4.3/S8 P4.4/S7 P4.5/S6 P4.6/S5 P4.7/S4
CONTROL BITS / SIGNALS
P4DIR.x P4SEL.x LCDS4/8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
77
MSP430FG47x
X
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P5 pin schematic: P5.0 and P5.1, input/output with Schmitt trigger
LCDS20
Segment Sy
P5DIR.x
P5OUT.x
0/1
P5SEL.x
P5IN.x
0
1
0
1
Direction 0: Input 1: Output
Port P5 (P5.0 and P5.1) pin functions
PIN NAME (P5.X)
P5.0/S20 0
P5.1/S21 1
NOTES: 1. x: Don’t care.
P5.x (I/O) I: 0, O: 1 0 0
S20 x x 1
P5.x (I/O) I: 0, O: 1 0 0
S21 x x 1
FUNCTION
Bus
Keeper
EN
Pad Logic
P5.0/S20 P5.1/S21
CONTROL BITS / SIGNALS
P5DIR.x P5SEL.x LCDS20
78
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MIXED SIGNAL MICROCONTROLLER
X
/
/
/
/
/
/
/
APPLICATION INFORMATION
Port P5 pin schematic: P5.2 to P5.7, input/output with Schmitt trigger
MSP430FG47x
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
LCD Signal
P5DIR.x
P5OUT.x
0/1
P5SEL.x
P5IN.x
0
1
0
1
Direction 0: Input 1: Output
Port P5 (P5.2 to P5.7) pin functions
PIN NAME (P5.X)
P5.2/COM1 2
P5.3/COM2 3
P5.4/COM3 4
P5.5/R23 5
P5.6/LCDREF/R13 6
P5.7/R03 7
NOTES: 1. x: Don’t care.
P5.x (I/O) I: 0, O: 1 0
COM1 x 1
P5.x (I/O) I: 0, O: 1 0
COM2 x 1
P5.x (I/O) I: 0, O: 1 0
COM3 x 1
P5.x (I/O) I: 0, O: 1 0
R23 x 1
P5.x (I/O) I: 0, O: 1 0
R13 or LCDREF x 1
P5.x (I/O) I: 0, O: 1 0
R03 x 1
FUNCTION
Bus
Keeper
EN
Pad Logic
P5.2/COM1 P5.3/COM2 P5.4/COM3 P5.5/R23 P5.6/LCDREF/R13 P5.7/R03
CONTROL BITS / SIGNALS
P5DIR.x P5SEL.x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
79
MSP430FG47x
X
/
/
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P6 pin schematic: P6.0 and P6.3, input/output with Schmitt trigger
INCH=y
Ay+
P6DIR.x
P6OUT.x
Module X OUT
P6SEL.x
P6IN.x
0
1
0
1
Direction 0: Input 1: Output
Port P6 (P6.0 and P6.3) pin functions
PIN NAME (P6.X)
P6.0/A0+/OA0O 0
P6.3/A1+/OA1O 3
NOTES: 1. x: Don’t care.
P6.x (I/O) I: 0, O: 1 0
A0+ x 1
OA0O x 1
P6.x (I/O) I: 0, O: 1 0
A1+ x 1
OA1O x 1
FUNCTION
Bus
Keeper
EN
Pad Logic
P6.0/A0+/OA0O P6.3/A1+/OA1O
OAx
CONTROL BITS / SIGNALS
P6DIR.x P6SEL.x
80
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MIXED SIGNAL MICROCONTROLLER
X
/
/
/
/
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P6 pin schematic: P6.1 and P6.4, input/output with Schmitt trigger
MSP430FG47x
Ay-
INCH=y
P6DIR.x
P6OUT.x
0/1
P6SEL.x
P6IN .x
Pad Logic
0
1
0
1
Direction 0: Input 1: Output
Bus
Keeper
EN
P6.1/A0-/O A0FB P6.4/A1-/O A1FB
OAx
Port P6 (P6.1 and P6.4) pin functions
PIN NAME (P6.X)
P6.1/A0--/OA0FB 1
P6.4/A1--/OA1FB 4
NOTES: 1. x: Don’t care.
P6.x (I/O) I: 0, O: 1 0
A0-- x 1
OA0FB x 1
P6.x (I/O) I: 0, O: 1 0
A1-- x 1
OA1FB x 1
FUNCTION
CONTROL BITS / SIGNALS
P6DIR.x P6SEL.x
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
81
MSP430FG47x
X
/
/
/
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
APPLICATION INFORMATION
Port P6 pin schematic: P6.2, P6.5 and P6.6, input/output with Schmitt trigger
P6DIR.x
P6OUT.x
0/1
P6SEL.x
P6IN.x
0
1
0
1
Direction 0: Input 1: Output
Port P6 (P6.2, P6.5 and P6.6) pin functions
PIN NAME (P6.X)
P6.2/OA0I1 2
P6.5/OA0I2 5
P6.6/OA1I1 6
NOTES: 1. x: Don’t care.
P6.x (I/O) I: 0, O: 1 0
OA0I1 x 1
P6.x (I/O) I: 0, O: 1 0
OA0I2 x 1
P6.x (I/O) I: 0, O: 1 0
OA1I1 x 1
FUNCTION
Pad Logic
P6.2/OA0I1 (SW0A) P6.5/OA0I2 (SW0B) P6.6/OA1I1 (SW1A)
Bus
Keeper
EN
OAx
CONTROL BITS / SIGNALS
P6DIR.x P6SEL.x
82
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
X
/
/
Port P6 pin schematic: P6.7, input/output with Schmitt trigger
VLDx = 1111
To SVS Mux
MSP430FG47x
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
P6DIR.7
P6OUT.7
Module X OUT
P6SEL.7
P6IN.7
0
1
0
1
Port P6 (P6.7) pin functions
PIN NAME (P6.X)
P6.7/OA1I2/SVSIN 7
NOTES: 1. x: Don’t care.
P6.x (I/O) I: 0, O: 1 0 x
OA1I2 x 1 x
SVSIN x 1 1111
Direction 0: Input 1: Output
FUNCTION
Pad Logic
P6.7/OA1I2/SVSIN (SW1B)
Bus
Keeper
EN
OAx
CONTROL BITS / SIGNALS
P6DIR.x P6SEL.x VLDx
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
83
MSP430FG47x
X
PINNAMEXFUNCTIO
N
X
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
APPLICATION INFORMATION
Segment pin schematic: Sx, dedicated Segment Pins
LCDS12/16/20/24
Segment Sx
Sx pin functions
PIN NAME
Sx 12
Sx 13
Sx 14
Sx 15
Sx 16
Sx 17
Sx 18
Sx 19
Sx 22
Sx 23
Sx 24
Sx 25
Pad Logic
Sx
CONTROL BITS /
FUNCTION
Sx 1 (LCDS12)
3-state 0 (LCDS12)
Sx 1 (LCDS12)
3-state 0 (LCDS12)
Sx 1 (LCDS12)
3-state 0 (LCDS12)
Sx 1 (LCDS12)
3-state 0 (LCDS12)
Sx 1 (LCD16)
3-state 0 (LCD16)
Sx 1 (LCD16)
3-state 0 (LCD16)
Sx 1 (LCD16)
3-state 0 (LCD16)
Sx 1 (LCDS16)
3-state 0 (LCDS16)
Sx 1 (LCDS20)
3-state 0 (LCDS20)
Sx 1 (LCDS20)
3-state 0 (LCDS20)
Sx 1 (LCDS24)
3-state 0 (LCDS24)
Sx 1 (LCDS24)
3-state 0 (LCDS24)
SIGNALS
LCDSy
Segment pin schematic: COM0, dedicated COM0 pin
COM0
Sx pin functions
PIN NAME
COM0 -- COM0
84
Pad Logic
COM0
FUNCTION
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
APPLICATION INFORMATION
JTAG pins: TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger
TDO
Controlled by JTAG
Controlled by JTAG
MSP430FG47x
JTAG
Test
and
Emulation
Module
Controlled by JTAG
TDI
TMS
TCK
DV
CC
DV
CC
Fuse
Burn & Test
Fuse
DV
DV
CC
CC
TDO/TDI
TDI/TCLK
TMS
During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry
TCK
JTAG fuse check mode
For details on the JTAG fuse check mode, see the MSP430 Memory Programming User’s Guide (SLAU265) chapter ”Fuse Check and Reset of the JTAG State Machine (TAP Controller)”.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
85
MSP430FG47x MIXED SIGNAL MICROCONTROLLER
SLAS580D -- OCTOBER 2008 -- REVISED MARCH 2011
Data Sheet Revision History
LITERATURE
NUMBER
SLAS580 Product Preview release SLAS580A Changes throughout to update Product Preview SLAS580B Production Data release
SLAS580C
SLAS580D
In recommended operating c onditions table, changed maximum LFXT1 crystal frequency, f from 8 MHz to 6 MHz (page 24)
Changed limits on t Corrected measurement pin name for “Duty cycle, LF mode” parameter (page 37)
d(SVSon)
parameter (page 32)
SUMMARY
,
with XT1 selected
(LFXT1)
86
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
28-Apr-2015
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing
Pins Package
Qty
Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
MSP430FG477IPN ACTIVE LQFP PN 80 119 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG477
MSP430FG477IPNR ACTIVE LQFP PN 80 1000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG477
MSP430FG477IZQWR ACTIVE BGA
MICROSTAR
JUNIOR
ZQW 113 2500 Green (RoHS
& no Sb/Br)
SNAGCU Level-3-260C-168 HR -40 to 85 M430FG477
MSP430FG478IPNR ACTIVE LQFP PN 80 1000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG478
MSP430FG478IZQW ACTIVE BGA
MICROSTAR
JUNIOR
ZQW 113 250 Green (RoHS
& no Sb/Br)
SNAGCU Level-3-260C-168 HR -40 to 85 M430FG478
MSP430FG478IZQWR ACTIVE BGA
MICROSTAR
JUNIOR
ZQW 113 2500 Green (RoHS
& no Sb/Br)
SNAGCU Level-3-260C-168 HR -40 to 85 M430FG478
MSP430FG479IPN ACTIVE LQFP PN 80 119 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG479
MSP430FG479IPNR ACTIVE LQFP PN 80 1000 Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR -40 to 85 M430FG479
MSP430FG479IZQW ACTIVE BGA
MICROSTAR
JUNIOR
ZQW 113 250 Green (RoHS
& no Sb/Br)
SNAGCU Level-3-260C-168 HR -40 to 85 M430FG479
MSP430FG479IZQWR ACTIVE BGA
MICROSTAR
JUNIOR
ZQW 113 2500 Green (RoHS
& no Sb/Br)
SNAGCU Level-3-260C-168 HR -40 to 85 M430FG479
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.
PACKAGE OPTION ADDENDUM
www.ti.com
28-Apr-2015
Addendum-Page 2
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
PACKAGE MATERIALS INFORMATION
www.ti.com 11-Sep-2014
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type
MSP430FG477IZQWR BGA MI
CROSTA
R JUNI
MSP430FG478IZQWR BGA MI
CROSTA
R JUNI
MSP430FG479IZQWR BGA MI
CROSTA
R JUNI
OR
OR
OR
Package
Drawing
ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1
ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1
ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1
Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm)B0(mm)K0(mm)P1(mm)W(mm)
Quadrant
Pin1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com 11-Sep-2014
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
MSP430FG477IZQWR BGA MICROSTAR
JUNIOR
MSP430FG478IZQWR BGA MICROSTAR
JUNIOR
MSP430FG479IZQWR BGA MICROSTAR
JUNIOR
ZQW 113 2500 336.6 336.6 28.6
ZQW 113 2500 336.6 336.6 28.6
ZQW 113 2500 336.6 336.6 28.6
Pack Materials-Page 2
MECHANICAL DATA
MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996
PN (S-PQFP-G80) PLASTIC QUAD FLATPACK
80
61
1,45 1,35
0,50
60
1
9,50 TYP 12,20
SQ
11,80 14,20
SQ
13,80
0,27 0,17
20
41
0,08
M
40
21
0,05 MIN
0,13 NOM
Gage Plane
0,25
0°–7°
0,75 0,45
1,60 MAX
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Seating Plane
0,08
4040135 /B 11/96
1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated
Loading...