ST STM32F302CB, STM32F302CC, STM32F302RB, STM32F302RC, STM32F302VB User Manual

...
STM32F302xx STM32F303xx
LQFP64 (10 × 10 mm)
LQFP100 (14 × 14 mm)
LQFP48 (7 × 7 mm)
ARM™Cortex-M4 32b MCU+FPU, up to 256KB Flash+48KB SRAM
4 ADCs, 2 DAC ch., 7 comp., 4 PGA, timers, 2.0-3.6 V operation
Datasheet preliminary data
ARM 32-bit Cortex®-M4 CPU (72 MHz max),
single-cycle multiplication and HW division, DSP instruction with FPU (floating-point unit) and MPU (memory protection unit).
Operating conditions:
, V
–V
DD
Memories
voltage range: 2.0 V to 3.6 V
DDA
– 128 to 256 Kbytes of Flash memory – Up to 40 Kbytes of SRAM on data bus with
HW parity check
– 8 Kbytes of SRAM on instruction bus with HW
parity check (CCM)
Clock management
– 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x 16 PLL option – Internal 40 kHz oscillator
Calendar RTC
– Alarm, periodic wakeup from Stop/Standby
Reset and supply management
– Power-on/Power down reset (POR/PDR) – Programmable voltage detector (PVD)
Low power Sleep, Stop, and Standby modes
V
Debug mode: serial wire debug (SWD), JTAG
supply for RTC and backup registers
BAT
interfaces, Cortex-M4 ETM
DMA
– 12-channel DMA controller – Peripherals supported: timers, ADCs, SPIs,
2
Cs, USARTs and DACs
I
Up to 4 × ADC 0.20 µS (up to 39 channels) with
selectable resolution of 12/10/8/6 bits, 0 to 3.6 V conversion range, separate analog supply from 2 to 3.6 V
Temperature sensor
7 fast rail-to-rail analog comparators
Up to 2 x 12-bit DAC channels
Up to 4 operational amplifiers that can be used in
PGA mode, all terminal accessible
Support for up to 24 capacitive sensing keys
Up to 87 fast I/O ports, all mappable on external
interrupt vectors, several 5 V-tolerant
Up to 13 timers
– 1 x 32-bit timer and 2 x 16-bit timers with up
to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
– Up to 2 x 16-bit 6-channel advanced-control
timers, with up to 6 PWM channels, deadtime generation and emergency stop
– 1 x 16-bit timer with 2 IC/OCs, 1 OCN/PWM,
deadtime generation and emergency stop
– 2 x 16-bit timers with IC/OC/OCN/PWM,
deadtime generation and emergency stop – 2 x watchdog timers (independent, window) – 1 x SysTick timer: 24-bit downcounter – Up to 2 x 16-bit basic timers to drive the DAC
Communication interfaces
– CAN interface (2.0B Active) – USB 2.0 full speed interface – 2 x I2C with 20 mA current sink to support
Fast mode plus – Up to 5 USART/UARTs (ISO 7816 interface,
LIN, IrDA, modem control) – Up to 3 SPIs, 2 with muxed full-duplex I2S to
achieve audio class accuracy via external
PLL
CRC calculation unit, 96-bit unique ID

Table 1. Device summary

Reference Part number
STM32F302xx
STM32F303xx
STM32F302CB, STM32F302CC, STM32F302RB, STM32F302RC, STM32F302VB, STM32F302VC
STM32F303CB, STM32F303CC, STM32F303RB, STM32F303RC, STM32F303VB, STM32F303VC
June 2012 Doc ID 023353 Rev 1 1/119
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
www.st.com
1
Contents STM32F302xx/STM32F303xx
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 ARM® Cortex™-M4 core with embedded Flash and SRAM . . . . . . . . . . 13
3.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 14
3.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.9 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.10 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.11 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.12 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.13 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 17
3.14 DMA (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.15 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.16 Fast ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.16.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.16.2 Internal voltage reference (V
3.16.3 V
3.16.4 OPAMP reference voltage (VOPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . 19
battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
BAT
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
REFINT
3.17 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.18 Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.19 Fast comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.20 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.20.1 Advanced timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.20.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17) . . 22
3.20.3 Basic timers (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Contents
3.20.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.20.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.20.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.21 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.21.1 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.21.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 23
3.21.3 Universal asynchronous receiver transmitter (UART) . . . . . . . . . . . . . . 24
3.21.4 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I
3.21.5 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.21.6 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2
S) 24
3.22 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.23 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.23.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.23.2 Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 55
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 55
6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Doc ID 023353 Rev 1 3/119
Contents STM32F302xx/STM32F303xx
6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.15 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.17 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.18 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.19 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.20 Operational amplifer charateristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.22 V
6.3.23 USB characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
BAT
7 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 115
8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F30x family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 4. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 5. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 7. Capacitive sensing GPIOs available on STM32F302xx/STM32F303xx
devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 8. No. of capacitive sensing channels available on STM32F302xx/STM32F303xx devices . 26
Table 9. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 10. STM32F302xx/STM32F303xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 11. Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 12. STM32F30x memory map and peripheral register boundary
addresses48
Table 13. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 14. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 15. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 16. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 17. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 18. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 19. Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 20. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 21. Typical and maximum current consumption from V
at V
= 3.6 V58
DD
Table 22. Typical and maximum current consumption from the V Table 23. Typical and maximum V Table 24. Typical and maximum V
consumption in Stop and Standby modes . . . . . . . . . . . . . . . 61
DD
consumption in Stop and Standby modes . . . . . . . . . . . . . . 61
DDA
Table 25. Typical and maximum current consumption from V Table 26. Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 27. Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 64
Table 28. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 29. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 30. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 31. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 32. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 33. LSE oscillator characteristics (f
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
LSE
Table 34. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 35. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 36. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 37. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 38. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 39. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 40. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 41. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 42. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 43. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 44. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
supply
DD
supply . . . . . . . . . . . . . . . . . . 60
DDA
supply. . . . . . . . . . . . . . . . . . . . . . 62
BAT
Doc ID 023353 Rev 1 5/119
List of tables STM32F302xx/STM32F303xx
Table 45. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 46. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 47. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 48. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 49. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 50. IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 51. WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 52. I
2
C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 53. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 54. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 55. I
2
S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 56. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 57. Minimum sampling time to be respected for fast and slow channels . . . . . . . . . . . . . . . . . 98
Table 58. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 59. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 60. Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 61. Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 62. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 63. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
BAT
Table 64. USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 65. USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 66. USB: Full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 67. LQPF100 – 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . 111
Table 68. LQFP64 – 10 x 10 mm, 64-pin low-profile quad flat package mechanical data . . . . . . . . 112
Table 69. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . 113
Table 70. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 71. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 72. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx List of figures
List of figures
Figure 1. STM32F302xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2. STM32F303xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 3. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 4. STM32F302xx/STM32F303xx LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 5. STM32F302xx/STM32F303xx LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 6. STM32F302xx/STM32F303xx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 7. STM32F30x memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 8. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 9. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 10. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 12. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 13. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 14. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 15. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 16. TC and TTa I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 17. TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 18. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . 84
Figure 19. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . 84
Figure 20. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 21. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 22. I
Figure 23. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 24. SPI timing diagram - slave mode and CPHA = 1 Figure 25. SPI timing diagram - master mode Figure 26. I Figure 27. I
Figure 28. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 29. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 30. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 31. USB timings: definition of data signal rise and fall time (to be added) . . . . . . . . . . . . . . . 108
Figure 32. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 111
Figure 33. Recommended footprint
Figure 34. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 112
Figure 35. Recommended footprint Figure 36. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat
Figure 37. Recommended footprint Figure 38. LQFP100 P
2
C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
(1)
(1)
2
S slave timing diagram (Philips protocol)
2
S master timing diagram (Philips protocol)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
D
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Doc ID 023353 Rev 1 7/119
Description STM32F302xx/STM32F303xx

1 Description

The STM32F302xx/STM32F303xx family is based on the high-performance ARM
®
Cortex™-M4 32-bit RISC core operating at a frequency of up to 72 MHz, and embedding a floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The family incorporates high-speed embedded memories (up to 256 Kbytes of Flash memory, up to 48 Kbytes of SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB buses.
The devices offer up to four fast 12-bit ADCs (5 Msps), up to seven comparators, up to four operational amplifiers, up to two DAC channels, a low-power RTC, up to five general­purpose 16-bit timers, one general-purpose 32-bit timer, and two timers dedicated to motor control. They also feature standard and advanced communication interfaces: up to two I
2
Cs, up to three SPIs (two SPIs are with multiplexed full-duplex I2Ss on STM32F303xx devices), three USARTs, up to two UARTs, CAN and USB. To achieve audio class accuracy, the I2S peripherals can be clocked via an external PLL.
The STM32F302xx/STM32F303xx family operates in the –40 to +85 °C and –40 to +105 °C temperature ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.
The STM32F302xx/STM32F303xx family offers devices in three packages ranging from 48 pins to 100 pins.
The set of included peripherals changes with the device chosen.
8/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Description

Table 2. STM32F30x family device features and peripheral counts

Peripheral
STM32F
302Cx
STM32F
302Rx
STM32F
302Vx
STM32F
303Cx
STM32F
303Rx
STM32F
303Vx
Flash (Kbytes) 128 256 128 256 128 256 128 256 128 256 128 256
SRAM (Kbytes) on data bus
24 32 24 32 24 32 32 40 32 40 32 40
SRAM (Kbytes) on instruction bus (CCM:
8
core coupled memory)
Timers
Advanced control
General purpose
1 (16-bit) 2 (16-bit)
5 (16-bit) 1 (32 bit)
Basic 1 (16-bit) 2 (16-bit)
Comm. interfaces
SPI(I2S)
2
I
(1)
C2
USART 3
UART 2
33(2)
CAN 1
USB 1
GPIOs 37 52 87 37 52 87
DMA channels 12
12-bit ADCs 2 4
12-bit DAC channels 1 2
Analog comparator 4 7
Operational amplifiers 2 4
CPU frequency 72 MHz
Operating voltage 2.0 to 3.6 V
Operating temperature
Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C
Junction temperature: - 40 to 125 °C
Packages LQFP48 LQFP64 LQFP100 LQFP48 LQFP64 LQFP100
1. In 128K and 256K Flash STM32F303xx devices the SPI interfaces can work in an exclusive way in either the SPI mode or the I2S audio mode.
Doc ID 023353 Rev 1 9/119
Device overview STM32F302xx/STM32F303xx
MS18959V5
Touch Sensing
Controller
AHB decoder
TIMER 16
2 Channels,1 Comp Channel, BRK as AF
TIMER 17
TIMER 1 / PWM
SPI1
MOSI, MISO, SCK,NSS as AF
USART1
RX, TX, CTS, RTS, SmartCard as AF
WinWATCHDOG
BusMatrix
MPU/FPU
Cortex M4 CPU
F
max
: 72 MHz
NVIC
GP DMA1
7 channels
CCM RAM
8KB
Flash
interface
OBL
FLASH 256 KB
64 bits
JTRST
JTDI
JTCK/SWCLK
JTMS/SWDAT
JTDO As AF
Power
Voltage reg.
3.3 V to 1.8V
V
DD18
Supply
Supervision
POR /PDR
PVD
POR
Reset Int.
V
DDIO
= 2 to 3.6 V
V
SS
NRESET V
DDA
V
SSA
Ind. WDG32K
Standby
interface
PLL
@V
DDIO
@V
DDA
XTAL OSC
4 -32 MHz
Reset &
clock
control
AHBPCLK
APBP1CLK
APBP2CLK
AHB2 APB2
AHB2 APB1
CRC
APB1 F
max
= 36 MHz
APB2 f
max
= 72 MHz
GPIO PORT A
GPIO PORT B
GPIO PORT C
GPIO PORT D
GPIO PORT E
OSC_IN OSC_OUT
SPI3
SCL, SDA, SMBAL as AF
USART2
SCL, SDA, SMBAL as AF
USART3
RC LS
TIMER6
TIMER 4
SPI2
12bit DAC1IF
@V
DDA
TIMER2
(32-bit/PWM)
PA[15:0]
PB[15:0]
PC[15:0]
MOSI, MISO, SCK, NSS as AF
4 Channels, ETR as AF
USBDP, USBDM
DAC1_CH1 as AF
HCLK FCLK
USARTCLK
RC HS 8MHz
SRAM
40 KB
ETM
Trace/Trig
SWJTAG
TPIU
Ibus
TRADECLK
TRACED[0-3]
as AF
Dbus
System
GP DMA2
5 channels
12-bit ADC1
12-bit ADC2
Temp. sensor
V
REF+
V
REF-
TIMER 15
EXT.IT WKUP
XX AF
1 Channel, 1 Comp Channel, BRK as AF
1 Channel, 1 Comp Channel, BRK as AF
4 Channels, 4 Comp channels, ETR, BRK as AF
GPIO PORT F
PD[15:0]
PE[15:0]
USB SRAM 512B
PF[7:0]
IF
I2CCLK ADC SAR 1/2/3/4 CLK
@V
DDIO
@V
DDA
@VSW
XTAL 32kHz
OSC32_IN OSC32_OUT
V
BAT
= 1.65V to 3.6V
RTC
AWU
Backup
Reg
(64Byte)
Backup
interface
ANTI-TAMP
TIMER 3
UART4
UART5
I2C1
I2C2
bx CAN &
512B SRAM
USB 2.0 FS
OpAmp1
OpAmp2
@V
DDA
INxx / OUTxx
INxx / OUTxx
INTERFACE
SYSCFG CTL
GP Comparator 6
GP Comparator 4
GP Comparator 2
CAN TX, CAN RX
4 Channels, ETR as AF
4 Channels, ETR as AF
RX, TX, CTS, RTS, as AF
RX, TX, CTS, RTS, as AF
RX, TX as AF
RX, TX as AF
@V
DDA
Xx Ins, 4 OUTs as AF
XX Groups of
4 channels as AF
MOSI, MISO, SCK, NSS as AF
GP Comparator 1

2 Device overview

Figure 1. STM32F302xx block diagram

1. AF: alternate function on I/O pins.
10/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Device overview
MS18960V4
Touch Sensing
Controller
AHB decoder
TIMER 16
2 Channels,1 Comp Channel, BRK as AF
TIMER 17
TIMER 1 / PWM
TIMER 8 / PWM
4 Channels, 4 Comp channels, ETR, BRK as AF
SPI1
MOSI, MISO, SCK,NSS as AF
USART1
RX, TX, CTS, RTS, SmartCard as AF
WinWATCHDOG
BusMatrix
MPU/FPU
Cortex M4 CPU
F
max
: 72 MHz
NVIC
GP DMA1
7 channels
CCM RAM
8KB
Flash
interface
OBL
FLASH 256 KB
64 bits
JTRST
JTDI
JTCK/SWCLK
JTMS/SWDAT
JTDO As AF
Power
Voltage reg.
3.3 V to 1.8V
V
DD18
Supply
Supervision
POR /PDR
PVD
POR
Reset Int.
V
DDIO
= 2 to 3.6 V
V
SS
NRESET V
DDA
V
SSA
Ind. WDG32K
Standby interface
PLL
@V
DDIO
@V
DDA
XTAL OSC
4 -32 MHz
Reset &
clock
control
AHBPCLK
APBP1CLK
APBP2CLK
AHB2 APB2
AHB2 APB1
CRC
APB1 F
max
= 36 MHz
APB2 f
max
= 72 MHz
GPIO PORT A
GPIO PORT B
GPIO PORT C
GPIO PORT D
GPIO PORT E
OSC_IN OSC_OUT
SPI3/I2S
SCL, SDA, SMBAL as AF
USART2
SCL, SDA, SMBAL as AF
USART3
RC LS
TIMER6
TIMER 4
SPI2/I2S
12bit DAC1IF
@V
DDA
TIMER2
(32-bit/PWM)
PA[15:0]
PB[15:0]
PC[15:0]
MOSI/SD, MISO/ext_SD, SCK/CK, NSS/WS, MCLK as AF
4 Channels, ETR as AF
USBDP, USBDM
DAC1_CH1 as AF
HCLK FCLK
USARTCLK
RC HS 8MHz
SRAM 40 KB
ETM
Trace/Trig
SWJTAG
TPIU
Ibus
TRADECLK
TRACED[0-3]
as AF
Dbus
System
GP DMA2
5 channels
12-bit ADC1
12-bit ADC2
IF
Temp. sensor
V
REF+
V
REF-
TIMER 15
EXT.IT
WKUP
XX AF
1 Channel, 1 Comp Channel, BRK as AF
1 Channel, 1 Comp Channel, BRK as AF
4 Channels, 4 Comp channels, ETR, BRK as AF
GPIO PORT F
PD[15:0]
PE[15:0]
TIMER7
USB SRAM 512B
PF[7:0]
12-bit ADC3
IF
12-bit ADC4
I2CCLK ADC SAR 1/2/3/4 CLK
@V
DDIO
@V
DDA
@VSW
XTAL 32kHz
OSC32_IN OSC32_OUT
V
BAT
= 1.65V to 3.6V
RTC
AWU
Backup
Reg
(64Byte)
Backup
interface
ANTI-TAMP
TIMER 3
UART4
UART5
I2C1
I2C2
bx CAN &
512B SRAM
USB 2.0 FS
DAC1_CH2 as AF
OpAmp1
OpAmp2
OpAmp3
OpAmp4
@V
DDA
INxx / OUTxx
INxx / OUTxx
INxx / OUTxx
INxx / OUTxx
INTERFACE
SYSCFG CTL
GP Comparator 7
p
GP Comparator...
GP Comparator 1
CAN TX, CAN RX
4 Channels, ETR as AF
4 Channels, ETR as AF
MOSI/SD, MISO/ext_SD, SCK/CK, NSS/WS, MCLK as AF
RX, TX, CTS, RTS, as AF
RX, TX, CTS, RTS, as AF
RX, TX as AF
RX, TX as AF
@V
DDA
Xx Ins, 7 OUTs as AF
XX Groups of
4 channels as AF

Figure 2. STM32F303xx block diagram

1. AF: alternate function on I/O pins.
Doc ID 023353 Rev 1 11/119
Device overview STM32F302xx/STM32F303xx

Figure 3. Clock tree

FLITFCLK to Flash programming interface
HSI
to I2Cx (x = 1,2)
I2S_CKIN
SYSCLK
Ext. clock
I2SSRC
SYSCLK
to I2Sx (x = 2,3)
OSC_OUT
OSC_IN
OSC32_IN
OSC32_OUT
MCO
8 MHz
HSI RC
PLLSRC
/2,/3,...
/16
4-32 MHz HSE OSC
LSE OSC
32.768kHz
LSI RC 40kHz
Main clock output
HSI
PLLMUL
PLL
x2,x3,..
x16
/32
LSE
MCO
/2
HSI
PLLCLK
HSE
CSS
RTCCLK
RTCSEL[1:0]
LSI
/2
to IWWDG IWWDGCLK
PLLCLK
HSI LSI
HSE
SYSCLK
SW
AHB
AHB
prescaler /1,2,..512
SYSCLK
to RTC
USB
prescaler
/1,1.5
HCLK
/8
APB1
prescaler
/1,2,4,8,16
APB2
prescaler
/1,2,4,8,16
ADC
Prescaler
/1,2,4
Prescaler
/1,2,4,6,8,10,12,16,
32,64,128,256
PCLK1
If (APB1 prescaler =1) x1 else x2
SYSCLK
PCLK2
If (APB2 prescaler =1) x1 else x2
SYSCLK
ADC
PCLK1
HSI
LSE
PCLK2
HSI
LSE
x2
USBCLK to USB interface
to AHB bus, core, memory and DMA
to cortex System timer FHCLK Cortex free running clock
to APB1 peripherals
to TIM 2,3,4,6,7
to USARTx (x = 2..5)
to APB2 peripherals
to TIM 15,16,17
to USART1
TIM1/8
to ADCxy (xy = 12, 34)
MS19989V2
12/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Functional overview

3 Functional overview

3.1 ARM® Cortex™-M4 core with embedded Flash and SRAM

The ARM Cortex-M4 processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.
The ARM Cortex-M4 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.
With its embedded ARM core, the STM32F302xx/STM32F303xx family is compatible with all ARM tools and software.
Figure 1 and Figure 2 show the general block diagrams of the
STM32F302xx/STM32F303xx family devices.

3.2 Memory protection unit

The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.
The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers significant benefits to developers, including:
Outstanding processing performance combined with fast interrupt handling
Enhanced system debug with extensive breakpoint and trace capabilities
Efficient processor core, system and memories
Ultralow power consumption with integrated sleep modes
Platform security robustness with optional integrated memory protection unit (MPU)
With its embedded ARM core, the STM32F302xx/STM32F303xx devices are compatible with all ARM development tools and software.
Doc ID 023353 Rev 1 13/119
Functional overview STM32F302xx/STM32F303xx

3.3 Nested vectored interrupt controller (NVIC)

The STM32F302xx/STM32F303xx devices embed a nested vectored interrupt controller (NVIC) able to handle up to 66 maskable interrupt channels and 16 priority levels.
The NVIC benefits are the following:
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.4 Embedded Flash memory

All STM32F302xx/STM32F303xx devices feature up to 256 Kbytes of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above).

3.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

3.6 Embedded SRAM

STM32F302xx/STM32F303xx devices feature up to 48 Kbytes of embedded SRAM with hardware parity check. The memory can be accessed in read/write at CPU clock speed with 0 wait states, allowing the CPU to achieve 90 Dhrystone Mips at 72 MHz (when running code from CCM, core coupled memory).
8 Kbytes of SRAM mapped on the instruction bus (Core Coupled Memory (CCM)),
used to execute critical routines or to access data (parity check on all of CCM RAM).
40 Kbytes of SRAM mapped on the data bus (parity check on first 16 Kbytes of SRAM)
14/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Functional overview

3.7 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz.

3.8 Boot modes

At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 or USART2 or USB(DFU).

3.9 Power supply schemes

V
SS
provided externally through V
V
SSA
operational amplifiers, reset blocks, RCs and PLL (minimum voltage to be applied to V
DDA
level must be always greater or equal to the V first.
V
BAT
registers (through power switch) when V
=
, V
2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is
DD
DD
, V
= 2.0 to 3.6 V: external analog power supply for ADC, DACs, comparators
DDA
is 2.4 V when the DACs and operational amplifiers are used). The V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup

3.10 Power supply supervisor

The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage V
POR/PDR, without the need for an external reset circuit.
The POR monitors only the V
that V
The PDR monitors both the V
should arrive first and be greater than or equal to VDD.
DDA
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V equal to V
DD
.
DD
DD
pins.
voltage
voltage level and must be provided
DD
is not present.
DD
is below a specified threshold,
DDA
supply voltage. During the startup phase it is required
and V
supply voltages, however the V
DDA
DDA
power
DDA
is higher than or
Doc ID 023353 Rev 1 15/119
Functional overview STM32F302xx/STM32F303xx
The device features an embedded programmable voltage detector (PVD) that monitors the V
power supply and compares it to the VPVD threshold. An interrupt can be generated
DD
when V
drops below the V
DD
threshold and/or when V
PVD
is higher than the V
DD
PVD
threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.11 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR), and power-down.
The MR mode is used in the nominal regulation mode (Run)
The LPR mode is used in Stop mode.
The power-down mode is used in Standby mode: the regulator output is in high
impedance, and the kernel circuitry is powered down thus inducing zero consumption.
The voltage regulator is always enabled after reset. It is disabled in Standby mode.

3.12 Low-power modes

The STM32F302xx/STM32F303xx supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the USB wakeup on STM32F303xx devices, the RTC alarm, COMPx, I2Cx or U(S)ARTx.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
16/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Functional overview

3.13 Real-time clock (RTC) and backup registers

The RTC and the 16 backup registers are supplied through a switch that takes power from either the V registers used to store 64 bytes of user application data when V
They are not reset by a system or power reset, or when the device wakes up from Standby mode.
The RTC is an independent BCD timer/counter. It supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
Two programmable alarms with wake up from Stop and Standby mode capability.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synbchronize it with a master clock.
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy.
Three anti-tamper detection pins with programmable filter. The MCU can be woken up
from Stop and Standby modes on tamper event detection.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.
17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY
capability.
supply when present or the V
DD
pin. The backup registers are sixteen 32-bit
BAT
power is not present.
DD
The RTC clock sources can be:
A 32.768 kHz external crystal
A resonator or oscillator
The internal low-power RC oscillator (typical frequency of 40 kHz)
The high-speed external clock divided by 32.

3.14 DMA (direct memory access)

The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-to­memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.
Each of the 12 DMA channels is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I
2
C, USART, general-purpose timers,
DAC and ADC.

3.15 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
Doc ID 023353 Rev 1 17/119
Functional overview STM32F302xx/STM32F303xx
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.16 Fast ADC (analog-to-digital converter)

Up to four fast analog-to-digital converters 5 MSPS, with selectable resolution between 12 and 6 bit, are embedded in the STM32F302xx/STM32F303xx family devices. The ADCs have up to 39 external channels. Some of the external channels are shared between ADC1&2 and between ADC3&4, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.
The ADCs have also internal channels: Temperature sensor connected to ADC1 channel 16, V ADCs channel 18, VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to ADC2 channel 17, VOPAMP3 connected to ADC3 channel 17, VOPAMP4 connected to ADC4 channel 17).
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
Single-shunt phase current reading techniques.
connected to ADC1 channel 17, Voltage reference V
BAT/2
connected to the 4
REFINT
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) and the advanced-control timers (TIM1 on all devices and TIM8 on STM32F303xx devices) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

3.16.1 Temperature sensor

The temperature sensor (TS) generates a voltage V temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.
that varies linearly with
SENSE
18/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Functional overview
Table 3. Temperature sensor calibration values
Calibration value name Description Memory address
TS ADC raw data acquired at
TS_CAL1
TS_CAL2
temperature of 30 °C, V
= 3.3 V
DDA
TS ADC raw data acquired at temperature of 110 °C V
= 3.3 V
DDA
0x1FFF F7B8 - 0x1FFF F7B9
0x1FFF F7C2 - 0x1FFF F7C3
3.16.2 Internal voltage reference (V
The internal voltage reference (V ADC and Comparators. V The precise voltage of V
REFINT
REFINT
is internally connected to the ADC_IN18 input channel.
REFINT
is individually measured for each part by ST during
REFINT
)
) provides a stable (bandgap) voltage output for the
production test and stored in the system memory area. It is accessible in read-only mode.
Table 4. Temperature sensor calibration values
Calibration value name Description Memory address
Raw data acquired at
3.16.3 V
VREFINT_CAL
battery voltage monitoring
BAT
temperature of 30 °C V
= 3.3 V
DDA
This embedded hardware feature allows the application to measure the V using the internal ADC channel ADC_IN17. As the V and thus outside the ADC input range, the V
BAT
divider by 2. As a consequence, the converted digital value is half the V

3.16.4 OPAMP reference voltage (VOPAMP)

Every OPAMP reference voltage can be measured using a corresponding ADC internal channel: VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to ADC2 channel 17, VOPAMP3 connected to ADC3 channel 17, VOPAMP4 connected to ADC4 channel 17.
0x1FFF F7BA - 0x1FFF F7BB
battery voltage
voltage may be higher than V
BAT
BAT
pin is internally connected to a bridge
voltage.
BAT
DDA
,

3.17 DAC (digital-to-analog converter)

Up to two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.
Doc ID 023353 Rev 1 19/119
Functional overview STM32F302xx/STM32F303xx
This digital interface supports the following features:
Up to two DAC output channels on STM32F303xx devices
8-bit or 12-bit monotonic output
Left or right data alignment in 12-bit mode
Synchronized update capability on STM32F303xx devices
Noise-wave generation
Triangular-wave generation
Dual DAC channel independent or simultaneous conversions on STM32F303xx
devices
DMA capability (for each channel on STM32F303xx devices)
External triggers for conversion

3.18 Operational amplifier

The STM32F302xx/STM32F303xx embeds up to four operational amplifiers with external or internal follower routing and PGA capability (or even amplifier and filter capability with external components). When an operational amplifier is selected, an external ADC channel is used to enable output measurement.
The operational amplifier features:
8MHz GBP
0.5 mA output capability
Rail-to-rail input/output
In PGA mode, the gain can be programmed to be 2, 4, 8 or 16.

3.19 Fast comparators

The STM32F302xx/STM32F303xx devices embed seven fast rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity.
The reference voltage can be one of the following:
External I/O
DAC output pin
Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 20: Embedded
internal reference voltage on page 57 for the value and precision of the internal
reference voltage.
All comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined per pair into a window comparator

3.20 Timers and watchdogs

The STM32F302xx/STM32F303xx includes up to two advanced control timers, up to 6 general-purpose timers, two basic timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.
20/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Functional overview

Table 5. Timer feature comparison

Timer type Timer
Counter
resolution
TIM1,
TIM8
Advanced
(on
16-bit
STM32F303xx
devices only)
General-
purpose
General-
purpose
General-
purpose
General-
purpose
TIM2 32-bit
TIM3, TIM4 16-bit
TIM15 16-bit Up
TIM16, TIM17 16-bit Up
TIM6,
TIM7
Basic
(on
16-bit Up
STM32F303xx
devices only)
Counter
type
Up, Down,
Up/Down
Up, Down,
Up/Down
Up, Down,
Up/Down
Prescaler
factor
Any integer
between 1
and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
DMA
request
generation
Capture/ compare
Channels
Complementary
Ye s 4 Ye s
Ye s 4 N o
Ye s 4 N o
Ye s 2 1
Ye s 1 1
Ye s 0 N o
outputs

3.20.1 Advanced timers (TIM1, TIM8)

The advanced-control timers (TIM1 on all devices and TIM8 on STM32F303xx devices) can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes) with full modulation capability (0-
100%)
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIM timers (described in
Section 3.20.2 using the same architecture, so the advanced-control timers can work
together with the TIM timers via the Timer Link feature for synchronization or event chaining.
Doc ID 023353 Rev 1 21/119
Functional overview STM32F302xx/STM32F303xx

3.20.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17)

There are up to six synchronizable general-purpose timers embedded in the STM32F302xx/STM32F303xx (see Tab l e 5 for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.
TIM2, 3, and TIM4
These are full-featured general-purpose timers:
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler
TIM3 and 4 have 16-bit auto-reload up/downcounters and 16-bit prescalers.
These timers all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other general­purpose timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoders.
TIM15, 16 and 17
These three timers general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
TIM15 has 2 channels and 1 complementary channel
TIM16 and TIM17 have 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode output.
The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.

3.20.3 Basic timers (TIM6, TIM7)

These timers are mainly used for DAC trigger generation. They can also be used as a generic16-bit time base.

3.20.4 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.20.5 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.
22/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Functional overview

3.20.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source

3.21 Communication interfaces

3.21.1 I2C bus

Up to two I2C bus interfaces can operate in multimaster and slave modes. They can support standard (up to 100 KHz), fast (up to 400 KHz) and fast mode + (up to 1 MHz) modes.
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters.
Table 6. Comparison of I2C analog and digital filters
Analog filter Digital filter
Pulse width of suppressed spikes
Benefits Available in Stop mode
Drawbacks
50 ns
Variations depending on temperature, voltage, process
Programmable length from 1 to 15 I2C peripheral clocks
1. Extra filtering capability vs. standard requirements.
2. Stable length
Disabled when Wakeup from Stop mode is enabled
In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. They also have a clock domain independent from the CPU clock, allowing the I2Cx (x=1,2) to wake up the MCU from Stop mode on address match.
The I2C interfaces can be served by the DMA controller.

3.21.2 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32F302xx/STM32F303xx devices have three embedded universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3).
The USART interfaces are able to communicate at speeds of up to 9Mbits/s.
They provide hardware management of the CTS and RTS signals, they support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller.
Doc ID 023353 Rev 1 23/119
Functional overview STM32F302xx/STM32F303xx

3.21.3 Universal asynchronous receiver transmitter (UART)

The STM32F302xx/STM32F303xx devices have 2 embedded universal asynchronous receiver transmitters (UART4, and UART5). The UART interfaces support IrDA SIR ENDEC, multiprocessor communication mode and single-wire half-duplex communication mode. The UART interfaces can be served by the DMA controller.
3.21.4 Serial peripheral interface (SPI)/Inter-integrated sound interfaces
2
(I
S)
Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio standards can operate as master or slave at simplex and full duplex communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 96 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency.

3.21.5 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

3.21.6 Universal serial bus (USB)

The STM32F302xx/STM32F303xx medium and high density devices embed an USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full­speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

3.22 Touch sensing controller (TSC)

The device has an embedded independent hardware controller (TSC) for controlling touch sensing acquisitions on the I/Os.
Up to 18 touch sensing electrodes can be controlled by the TSC. The touch sensing I/Os are organized in 8 acquisition groups, with up to 4 I/Os in each group.
The STM32F302xx/STM32F303xx devices provide a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect the presence of a finger near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this
24/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Functional overview
acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. The STM32F302xx/STM32F303xx devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.
Table 7. Capacitive sensing GPIOs available on STM32F302xx/STM32F303xx
devices
Pin name
PA0 G1_IO1 PB3 G5_IO1
PA1 G1_IO2 PB4 G5_IO2
PA2 G1_IO3 PB6 G5_IO3
PA3 G1_IO4 PB7 G5_IO4
PA4 G2_IO1 PB11 G6_IO1
PA5 G2_IO2 PB12 G6_IO2
PA6 G2_IO3 PB13 G6_IO3
PA7 G2_IO4 PB14 G6_IO4
PC5 G3_IO1 PE2 G7_IO1
PB0 G3_IO2 PE3 G7_IO2
PB1 G3_IO3 PE4 G7_IO3
PB2 G3_IO4 PE5 G7_IO4
PA9 G4_IO1 PD12 G8_IO1
PA10 G4_IO2 PD13 G8_IO2
PA13 G4_IO3 PD14 G8_IO3
PA14 G4_IO4 PD15 G8_IO4
Capacitive sensing
group name
Pin name
Capacitive sensing
group name
Doc ID 023353 Rev 1 25/119
Functional overview STM32F302xx/STM32F303xx
Table 8. No. of capacitive sensing channels available on
STM32F302xx/STM32F303xx devices
Number of capacitive sensing channels
Analog I/O group
STM32F30xVx STM32F30xRx STM32F30xCx
G1 3 3 3
G2 3 3 3
G3 3 3 2
G4 3 3 3
G5 3 3 3
G6 3 3 3
G7 3 0 0
G8 3 0 0
Number of capacitive
sensing channels
24 18 17

3.23 Development support

3.23.1 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.23.2 Embedded trace macrocell™

The ARM embedded trace macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F302xx/STM32F303xx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using a high­speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.
26/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Pinouts and pin description
MS19819V2
VDD_1
VSS_1
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
48 47 46 45 44 43 42 41 40 39 38 37
VBAT
136
VDD_3
PC13
235
VSS_3
PC14 / OSC32_IN
334
PA13
PC15 OSC32_OUT
433
PA12
PF0 OSC_IN
532
PA11
PF1 OSC_OUT
6
48-pins
31
PA10
NRST
730
PA9
VSSA
829
PA8
VDDA
928
PB15
P
A
0
10 27
PB14
PA1
11 26
PB13
PA2
12 25
PB12
13 14 15 16 17 18 19 20 21 22 23 24
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS_2
VDD_2
/
/
/

4 Pinouts and pin description

Figure 4. STM32F302xx/STM32F303xx LQFP48 pinout

Doc ID 023353 Rev 1 27/119
Pinouts and pin description STM32F302xx/STM32F303xx
ai18484V2
VDD_1
VSS_1
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
VBAT
148
VDD_3
PC13
247
VSS_3
PC14 / OSC32_IN
346
PA13
PC15 / OSC32_OUT
445
PA12
PF0 / OSC_IN
544
PA11
PF1 / OSC_OUT
643
PA10
NRST
742
PA9
PC0
8
64-pins
41
PA8
PC1
940
PC9
PC2
10 39
PC8
PC3
11 38
PC7
VSSA
12 37
PC6
VDDA
13 36
PB15
PA0
14 35
PB14
PA1
15 34
PB13
PA2
16 33
PB12
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
PA3
PF4
VDD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS_2
VDD_2
MS30357V1
VDD_1
VSS_1
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
VBAT
148
VDD_3
PC13
247
VSS_3
PC14 / OSC32_IN
346
PA13
PC15 / OSC32_OUT
445
PA12
PF0 / OSC_IN
544
PA11
PF1 / OSC_OUT
643
PA10
NRST
742
PA9
PC0
8
64-pins
41
PA8
PC1
940
PC9
PC2
10 39
PC8
PC3
11 38
PC7
VSSA
12 37
PC6
VDDA
13 36
PB15
PA0
14 35
PB14
PA1
15 34
PB13
PA2
16 33
PB12
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
PA3
PF4
VDD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
NPOR
PB10
PB11
VSS_2
VDD_2

Figure 5. STM32F302xx/STM32F303xx LQFP64 pinout

28/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Pinouts and pin description
AI6
6$$?
633?
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
                       

0%

6$$?
0%

633?
0%
 0&
0%

0!
0%

0!
6"!4

0!
0#

0!
0#/3#?).

0! 
0#/3#?/54

0! 
0&  
0#
0&  
0#
0&/3#?).
 
0#
0&/3#?/54

PINS

0#
.234
 
0$
0#
 
0$
0#
 
0$
0#
 
0$
0#
 
0$
0&  
0$
633!
 
0$
6$$!
 
0$
62%&
 
0"
 
0"
0! 
 
0"
0! 
 
0"
                        
0! 
0&
6$$?
0! 
0! 
0! 
0! 
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
0"
633?
6$$?
0! 

Figure 6. STM32F302xx/STM32F303xx LQFP100 pinout

Doc ID 023353 Rev 1 29/119
Pinouts and pin description STM32F302xx/STM32F303xx

Table 9. Legend/abbreviations used in the pinout table

Name Abbreviation Definition
Pin name
Pin type
I/O structure
Pin
functions
Notes
Alternate functions
Additional
functions
Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name
S Supply pin
I Input only pin
I/O Input / output pin
FT 5 V tolerant I/O
FTf 5 V tolerant I/O, FM+ capable
TTa 3.3 V tolerant I/O directly connected to ADC
TC Standard 3.3V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Functions selected through GPIOx_AFR registers
Functions directly selected/enabled through peripheral registers
30/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Pinouts and pin description

Table 10. STM32F302xx/STM32F303xx pin definitions

Pin number
Pin name
LQF
P100
LQF
P64
LQF
P48
(function
after reset)
Pin type
1 PE2 I/O FT
2 PE3 I/O FT
3 PE4 I/O FT
4 PE5 I/O FT
PE6_
5
TAMPER3_
I/O FT TRACED3 WKUP3
WKUP3
611 V
722
BAT
PC13_
TAMPER1_
S Backup power supply
I/O TC TIM1_CH1N
PC14 -
833
OSC32_IN
I/O TC OSC32_IN
(PC14)
I/O structure
Notes
(1)
Pin functions
Alternate functions Additional functions
TRACECK, TIM3_CH1,
TSC_G7_IO1
TRACED0, TIM3_CH2,
TSC_G7_IO2
TRACED1,
TIM3_CH3,TSC_G7_IO3
TRACED2,
TIM3_CH4,TSC_G7_IO4
WKUP2,
RTC_TAMPER1,
RTC_TS, RTC_OUT
PC15-
944
OSC32_OUT
I/O TC OSC32_OUT
(PC15)
10 PF9 I/O FT TIM15_CH1, SPI2_SCK
11 PF10 I/O FT TIM15_CH2, SPI2_SCK
12 5 5
PF0-OSC_IN
(PF0)
I/O FTf TIM1_CH3N, I2C2_SDA OSC_IN
PF1-
13 6 6
OSC_OUT
I/O FTf I2C2_SCL OSC_OUT
(PF1)
14 7 7 NRST I/O RST Device reset input / internal reset output (active low)
15 8 PC0 I/O TTa
16 9 PC1 I/O TTa
17 10 PC2 I/O TTa COMP7_OUT
(2)
ADC12_IN6,
COMP7_INM
ADC12_IN7,
COMP7_INP
ADC12_IN8
(2)
(2)
18 11 PC3 I/O TTa TIM1_BKIN2 ADC12_IN9
19 PF2 I/O TTa ADC12_IN10
20 12 8 V
SSA
21 V
, V
REF+
REF-
S
S
Doc ID 023353 Rev 1 31/119
Pinouts and pin description STM32F302xx/STM32F303xx
Table 10. STM32F302xx/STM32F303xx pin definitions (continued)
Pin number
Pin name
LQF
LQF
LQF
P100
P64
P48
22 V
13 9
(function
after reset)
DDA
V
,
DDA
V
REF+
Pin type
S
S
23 14 10 PA0 I/O TTa
24 15 11 PA1 I/O TTa
25 16 12 PA2 I/O TTa
26 17 13 PA3 I/O TTa
I/O structure
Notes
Pin functions
Alternate functions Additional functions
USART2_CTS,
TIM2_CH1_ETR,
TIM8_BKIN
TIM8_ETR
(2)
(2)
,
TSC_G1_IO1,
,
ADC1_IN1,
COMP1_INM,
RTC_ TAMP2,WKUP1,
COMP7_INP
COMP1_OUT
USART2_RTS,
TIM2_CH2,
TSC_G1_IO2,
TIM15_CH1N
(2)
USART2_TX,
TIM2_CH3, TIM15_CH1,
TSC_G1_IO3, COMP2_OUT
ADC1_IN2,
COMP1_INP,
OPAMP1_VINP,
OPAMP3_VINP
ADC1_IN3,
COMP2_INM,
AOP1_OUT
ADC1_IN4,
USART2_RX,
TIM2_CH4, TIM15_CH2,
TSC_G1_IO4,
OPAMP1_VINP,
COMP2_INP,
OPAMP1_VINM
(2)
(2)
27 18 PF4 I/O TTa COMP1_OUT ADC1_IN5
28 19 V
DD_4
29 20 14 PA4 I/O TTa
S
SPI1_NSS,SPI3_NSS,
I2S3_WS
USART2_CK,
TSC_G2_IO1,
(2)
,
ADC2_IN1,
DAC1_OUT1
TIM3_CH2
30 21 15 PA5 I/O TTa
31 22 16 PA6 I/O TTa
SPI1_SCK,
TIM2_CH1_ETR,
TSC_G2_IO2
SPI1_MISO, TIM3_CH1,
TIM8_BKIN
(2)
,
TIM1_BKIN, TIM16_CH1,
COMP1_OUT,
ADC2_IN2, DAC1_OUT2 OPAMP2_VINM
ADC2_IN3,
AOP2_OUT
TSC_G2_IO3
SPI1_MOSI,TIM3_CH2,
32 23 17 PA7 I/O TTa
TIM17_CH1,
TIM1_CH1N,
TSC_G2,_IO4,
COMP2_OUT,
ADC2_IN4,COMP2_INP
,
OPAMP2_VINP,
OPAMP1_VINP
TIM18_CH1
33 24 PC4 I/O TTa USART1_TX ADC2_IN5
(2)
,
32/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Pinouts and pin description
Table 10. STM32F302xx/STM32F303xx pin definitions (continued)
Pin number
Pin functions
Pin name
LQF
P100
LQF
P64
LQF
P48
(function
after reset)
Pin type
Notes
Alternate functions Additional functions
I/O structure
ADC2_IN11,
OPAMP2_VINM,
OPAMP1_VINM
ADC3_IN12
COMP4_INP,
OPAMP3_VINP
OPAMP2_VINP
34 25 PC5 I/O TTa
35 26 18 PB0 I/O TTa
USART1_RX, TSC_G3_IO1
TIM3_CH3, TIM1_CH2N,
TIM8_CH2N
(2)
,
TSC_G3_IO2
TIM3_CH4,
36 27 19 PB1 I/O TTa
TIM1_CH3N,
TIM8_CH3N
COMP4_OUT,
(2)
,
ADC3_IN1
AOP3_OUT
TSC_G3_IO3
ADC2_IN12,
37 28 20 PB2 I/O TTa TSC_G3_IO4
COMP4_INM,OPAMP3_
VINM
38 PE7 I/O TTa TIM1_ETR
39 PE8 I/O TTa TIM1_CH1N
ADC3_IN13
COMP4_INP
COMP4_INM, ADC34_IN6
40 PE9 I/O TTa TIM1_CH1 ADC3_IN2
41 PE10 I/O TTa TIM1_CH2N ADC3_IN14
42 PE11 I/O TTa TIM1_CH2 ADC3_IN15
43 PE12 I/O TTa TIM1_CH3N ADC3_IN16
44 PE13 I/O TTa TIM1_CH3 ADC3_IN3
45 PE14 I/O TTa TIM1_CH4_BKIN2 ADC4_IN1
46 PE15 I/O TTa USART3_RX,TIM1_BKIN ADC4_IN2
COMP5_INM OPAMP4_VINM OPAMP3_VINM
COMP6_INP,
OPAMP4_VINP
,
ADC4_IN3
COMP3_INM,
AOP4_OUT,
47 29 21 PB10 I/O TTa
48 30 22 PB11 I/O TTa
49 31 23 V
50 32 24 V
SS
DD
S Digital ground
S Digital power supply
51 33 25 PB12 I/O TTa
USART3_TX, TIM2_CH3,
SYNC
USART3_RX,
TIM2_CH4, TSC_G6_IO1
SPI2_NSS,I2S2_WS
(2)
I2C2_SMBAL,
USART3_CK,
TIM1_BKIN,
TSC_G6_IO2
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
,
(2)
,
,
,
,
(2)
,
(2)
(2)
,
Doc ID 023353 Rev 1 33/119
Pinouts and pin description STM32F302xx/STM32F303xx
Table 10. STM32F302xx/STM32F303xx pin definitions (continued)
Pin number
Pin functions
Pin name
LQF
P100
LQF
P64
LQF
P48
(function
after reset)
Pin type
Notes
Alternate functions Additional functions
I/O structure
(2)
52 34 26 PB13 I/O TTa
53 35 27 PB14 I/O TTa
SPI2_SCK, I2S2_CK
USART3_CTS,
TIM1_CH1N,
TSC_G6_IO3
SPI2_MISO,
I2S2ext_SD
(2)
,
USART3_RTS,
TIM1_CH2N,
TIM15_CH1,
,
ADC3_IN5
COMP5_INP
OPAMP4_VINP
OPAMP3_VINP
COMP3_INP
ADC4_IN4
OPAMP2_VINP
TSC_G6_IO4
SPI2_MOSI,
(2)
54 36 28 PB15 I/O TTa
I2S2_SD
, TIM1_CH3N,
TIM15_CH1N,
TIM15_CH2
55 PD8 I/O TTa USART3_TX
ADC4_IN5
RTC_REFIN,
COMP6_INM
ADC4_IN12
OPAMP4_VINM
56 PD9 I/O TTa USART3_RX ADC4_IN13
57 PD10 I/O TTa USART3_CK
ADC34_IN7
COMP6_INM
ADC34_IN8
58 PD11 I/O TTa USART3_CTS
COMP6_INP,
OPAMP4_VINP
59 PD12 I/O TTa
60 PD13 I/O TTa
USART3_RTS
TIM4_CH1,
TSC_G8_IO1
TIM4_CH2,
TSC_G8_IO2
ADC34_IN9 COMP5_INP
ADC34_IN10
COMP5_INM
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
,
,
(2)
,
(2)
,
,
,
,
(2)
,
,
(2)
,
,
61 PD14 I/O TTa
62 PD15 I/O TTa
63 37 PC6 I/O FT
SPI2_NSS,TIM4_CH4,
TM8_CH1,TIM3_CH1,
64 38 PC7 I/O FT
65 39 PC8 I/O FT
34/119 Doc ID 023353 Rev 1
TIM4_CH3,
TSC_G8_IO3
TSC_G8_IO4
I2S2_MCK
(2)
COMP6_OUT
I2S3_MCK TIM8_CH2
(2)
(2)
TIM3_CH2,
COMP5_OUT
TIM8_CH3
(2)
TIM3_CH3,
COMP3_OUT
(2)
(2)
COMP3_INP,
ADC34_IN11
(2)
,
OPAMP2_VINP
COMP3_INM
,
, ,
,
STM32F302xx/STM32F303xx Pinouts and pin description
Table 10. STM32F302xx/STM32F303xx pin definitions (continued)
Pin number
Pin name
LQF
P100
LQF
P64
LQF
P48
(function
after reset)
Pin type
66 40 PC9 I/O FT
67 41 29 PA8 I/O FT
68 42 30 PA9 I/O FTf
69 43 31 PA10 I/O FTf
70 44 32 PA11 I/O FT
71 45 33 PA12 I/O FT
72 46 34 PA13 I/O FT
73 PF6 I/O FTf
74 47 35 V
75 48 36 V
SS
DD
S
S
I/O structure
Notes
Pin functions
Alternate functions Additional functions
(2)
(2)
(2)
,
,
TIM8_CH4_BKIN2
TIM3_CH4,
I2S_CKIN
I2C2_SMBAL,
I2S2_MCK USART1_CK,
TIM1_CH1, TIM4_ETR,
MCO
(2)
I2S3_MCK
, COMP3_OUT
I2C2_SCL,
(2)
(2)
,
USART1_TX,
TIM1_CH2, TIM2_CH3,
TIM15_BKIN,
TSC_G4_IO1,
COMP5_OUT
(2)
I2C2_SDA,
USART1_RX,
TIM1_CH3, TIM2_CH4,
TIM8_BKIN
(2)
,
TIM17_BKIN, TSC_G4_IO2, COMP6_OUT
USART1_CTS,
USBDM,
CAN_RX,
TIM1_CH1N,
TIM1_CH4_BKIN2,
TIM4_CH1,
COMP1_OUT
USART1_RTS,USBDP,
CAN_TX,
TIM1_CH2N,
TIM1_ETR,TIM4_CH2,
TIM16_CH1,
COMP2_OUT
USART3_CTS,
TIM4_CH3, TIM16_CH1N, TSC_G4_IO3,
IR_OUT, JTMS-SWDIO
I2C2_SCL,
USART3_RTS,
TIM4_CH4
Doc ID 023353 Rev 1 35/119
Pinouts and pin description STM32F302xx/STM32F303xx
Table 10. STM32F302xx/STM32F303xx pin definitions (continued)
Pin number
Pin name
LQF
P100
LQF
P64
LQF
P48
(function
after reset)
Pin type
76 49 37 PA14 I/O FTf
77 50 38 PA15 I/O FT
78 51 PC10 I/O FT
79 52 PC11 I/O FT
80 53 PC12 I/O FT
I/O structure
Notes
Pin functions
Alternate functions Additional functions
I2C1_SDA,
USART2_TX,
TIM8_CH2, TIM1_BKIN,
TSC_G4_IO4, JTCK-SWCLK
I2C1_SCL, SPI3_NSS,
SPI1_NSS, I2S3_WS,
USART2_RX,
TIM1_BKIN,
TIM2_CH1_ETR,
TIM8_CH1
SPI3_SCK, I2S3_CK,
USART3_TX,
UART4_TX,
TIM8_CH1N
SPI3_MISO,
I2S3ext_SD
(2)
,
USART3_RX,
UART4_RX,
TIM8_CH2N
SPI3_MOSI, I2S3_SD
(2)
(2)
,
USART3_CK,
UART5_TX,
TIM8_CH3N
(2)
81 PD0 I/O FT CAN_RX
82 PD1 I/O FT
83 54 PD2 I/O FT
84 PD3 I/O FT
85 PD4 I/O FT
CAN_TX,
TIM8_CH4_BKIN2
UART5_RX,TIM3_ETR,
TIM8_BKIN
USART2_CTS,
TIM2_CH1_ETR
USART2_RTS,
TIM2_CH2
86 PD5 I/O FT USART2_TX
87 PD6 I/O FT
88 PD7 I/O FT
USART2_RX,
TIM2_CH4
USART2_CK,
TIM2_CH3
36/119 Doc ID 023353 Rev 1
(2)
(2)
STM32F302xx/STM32F303xx Pinouts and pin description
Table 10. STM32F302xx/STM32F303xx pin definitions (continued)
Pin number
Pin name
LQF
P100
LQF
P64
LQF
P48
(function
after reset)
Pin type
89 55 39 PB3 I/O FT
90 56 40 PB4 I/O FT
91 57 41 PB5 I/O FT
92 58 42 PB6 I/O FTf
I/O structure
Notes
Pin functions
Alternate functions Additional functions
SPI3_SCK,SPI1_SCK,
I2S3_CK
(2)
,
USART2_TX,
TIM2_CH2, TIM3_ETR,
TIM4_ETR,
(2)
TIM8_CH1N
, G5_IO1,
JTDO
SPI3_MISO, SPI1_MISO,
I2S3ext_SD
(2)
,
USART2_RX,
TIM3_CH1,
TIM16_CH1,
TIM17_BKIN,
TIM8_CH2N
(2)
,
TSC_G5_IO2, NJTRST
SPI3_MOSI,
SPI1_MOSI, I2S3_SD,
I2C1_SMBAL,
USART2_CK,
TIM16_BKIN, TIM3_CH2,
TIM8_CH3N
(2)
,
TIM17_CH1
I2C1_SCL,
USART1_TX,
TIM16_CH1N,
TIM4_CH1,
TIM8_CH1
TIM8_ETR_BKIN2
(2)
,
(2)
,
TSC_G5_IO3
93 59 43 PB7 I/O FTf
94 60 44 BOOT0 I B
95 61 45 PB8 I/O FTf
Doc ID 023353 Rev 1 37/119
I2C1_SDA,
USART1_RX,TIM3_CH4,
TIM4_CH2, TIM17_CH1N,
TIM8_BKIN,
TSC_G5_IO4
I2C1_SCL, CAN_RX,
TIM16_CH1, TIM4_CH3,
TIM8_CH2
(2)
,
TIM1_BKIN, SYNC,
COMP1_OUT
Pinouts and pin description STM32F302xx/STM32F303xx
Table 10. STM32F302xx/STM32F303xx pin definitions (continued)
Pin number
Pin name
LQF
P100
LQF
P64
LQF
P48
(function
after reset)
Pin type
96 62 46 PB9 I/O FTf
97 PE0 I/O FT
98 PE1 I/O FT
99 63 47 V
100 64 48 V
1. Function availability depends on the chosen device.
2. On STM32F303xx devices only.
SS
DD
S
S
I/O structure
Notes
Pin functions
Alternate functions Additional functions
I2C1_SDA,CAN_TX,
TIM17_CH1,TIM4_CH4,
TIM8_CH3
(2)
,
IR_OUT,
COMP2_OUT
USART1_TX,
TIM4_ETR,TIM16_CH1
USART1_RX,
TIM17_CH1
38/119 Doc ID 023353 Rev 1

Table 11. Alternate functions

Port
AF
&
Pin
Name
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
STM32F302xx/STM32F303xx Pinouts and pin description
Doc ID 023353 Rev 1 39/119
TIM2_
7PA0
5PA1
6PA2
5PA3
6PA4
4PA5
8PA6
8PA7
8PA8 MCO
9 PA9 G4_IO1
CH1_E TR
TIM2_ CH2
TIM2_ CH3
TIM2_ CH4
TIM2_ CH1_E TR
TIM16_ CH1
TIM17_ CH1
TIM3_ CH2
TIM3_ CH1
TIM3_ CH2
G1_IO1
G1_IO2
G1_IO3
G1_IO4
G2_IO1
G2_IO2
G2_IO3
G2_IO4
SPI1_N SS
SPI1_S CK
TIM8_B KIN
TIM8_C H1N
I2C2_S MBAL
I2C2_SCLI2S3_MCKTIM1_
SPI1_M ISO
SPI1_M OSI
I2S2_MCKTIM1_
SPI3_ NSS/I2 S3_WS
TIM1_ BKIN
TIM1_ CH1N
CH1
CH2
USART 2_CTS
USART 2_RTS
USART 2_TX
USART 2_RX
USART 2_CK
USART 1_CK
USART 1_TX
COM P1_ OUT
COM P2_ OUT
COM P1_ OUT
COM P2_ OUT
COM P3_ OUT
COM P5_ OUT
TIM8_B KIN
TIM15_ CH1N
TIM15_ CH1
TIM15_ CH2
TIM15_B KIN
TM8_ ETR
TIM4_ ETR
TIM2_ CH3
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
40/119 Doc ID 023353 Rev 1
Table 11. Alternate functions (continued)
Port
AF
&
Pin
Name
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
Pinouts and pin description STM32F302xx/STM32F303xx
9PA10
9PA11
9PA12
7PA13
7PA14
9PA15JTDI
5 PB0
6 PB1
JTMS­SWDAT
JTCK­SWCLK
TIM17_ BKIN
TIM16_ CH1
TIM16_ CH1N
TIM2_ CH1_E TR
TIM8_ CH1
TIM3_ CH3
TIM3_ CH4
G4_IO2
G4_IO3 IR-Out
G4_IO4
G3_IO2
G3_IO3
I2C2_S DA
I2C1_SDATIM8_CH2TIM1_
I2C1_SCLSPI1_N
SS
TIM8_C H2N
TIM8_C H3N
TIM1_ CH3
TIM1_ CH1N
TIM1_ CH2N
BKIN
SPI3_ NSS/ I2S3_ WS
TIM1_ CH2N
TIM1_ CH3N
USART 1_RX
USART 1_CTS
USART 1_RTS
USART 3_CTS
USART 2_TX
USART 2_RX
COM P6_ OUT
COM P1_ OUT
COM P2_ OUT
COM P4_ OUT
CAN_RX
CAN_TX
TIM1_B KIN
TIM2_ CH4
TIM4_ CH1
TIM4_ CH2
TIM4_ CH3
TIM8_ BKIN
TIM1_ CH4
TIM1_ ETR
TIM1_ BKIN2
USBDM
USBDP
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
2 PB2 G3_IO4
10 PB3
JTDO/T RACES WO
TIM2_ CH2
TIM4_ ETR
G5_IO1
TIM8_C H1N
SPI1_S CK
SPI3_S CK /I2S3_ CK
USART 2_TX
TIM3_ ETR
EVENT OUT
EVENT OUT
Table 11. Alternate functions (continued)
Port
AF
&
Pin
Name
10 PB4 NJTRST
9 PB5
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
TIM16_ CH1
TIM16_ BKIN
TIM3_ CH1
TIM3_ CH2
G5_IO2
TIM8_ CH3N
TIM8_C H2N
I2C1_S MBAL
SPI1_M ISO
SPI1_M OSI
SPI3_ MISO/ I2S3ext _SD
SPI3_ MOSI/ I2S3_S D
USART 2_RX
USART 2_CK
TIM17 _BKIN
TIM17 _CH1
STM32F302xx/STM32F303xx Pinouts and pin description
EVENT OUT
EVENT OUT
Doc ID 023353 Rev 1 41/119
9 PB6
8 PB7
10 PB8
9 PB9
4 PB10
4 PB11
6 PB12 G6_IO2
5 PB13 G6_IO3
TIM16_ CH1N
TIM17_ CH1N
TIM16_ CH1
TIM17_ CH1
TIM2_ CH3
TIM2_ CH4
TIM4_ CH1
TIM4_ CH2
TIM4_ CH3
TIM4_ CH4
G5_IO3
G5_IO4
SYNCH
SYNCH
G6_IO1
I2C1_SCLTIM8_CH1TIM8_
ETR
I2C1_SDATIM8_B
KIN
I2C1_S CL
I2C1_S DA
I2C2_S MBAL
SPI2_N SS/I2S2 _WS
SPI2_S CK/I2S2 _CK
IR­OUT
TIM1_ BKIN
TIM1_ CH1N
USART 1_TX
USART 1_RX
USART 3_TX
USART 3_RX
USART 3_CK
USART 3_CTS
COM P1_ OUT
COM P2_ OUT
CAN_RX
CAN_TX
TIM8_ BKIN2
TIM3_ CH4
TIM8_ CH2
TIM8_ CH3
TIM1_ BKIN
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
42/119 Doc ID 023353 Rev 1
Table 11. Alternate functions (continued)
Port
AF
&
Pin
Name
6 PB14
5 PB15
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
TIM15_ CH1
TIM15_ CH2
TIM15_ CH1N
G6_IO4
TIM1_C H3N
SPI2_M ISO/ I2S2ext _SD
SPI2_M OSI/I2S 2_DOU T
TIM1_ CH2N
USART 3_RTS
Pinouts and pin description STM32F302xx/STM32F303xx
EVENT OUT
EVENT OUT
1PC0
1PC1
2PC2
2PC3
2PC4
3PC5
5PC6
5PC7
4PC8
5PC9
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
TIM3_ CH1
TIM3_ CH2
TIM3_ CH3
TIM3_ CH4
COMP 7_OUT
G3_IO1
TIM8_C H1
TIM8_C H2
TIM8_C H3
TIM8_C H4
CKIN
TIM1_ BKIN2
I2S2_ MCK
I2S3_ MCK
TIM8_ BKIN2
USART 1_TX
USART 1_RX
COMP 6_OUT
COMP 5_OUT
COMP 3_OUT
Table 11. Alternate functions (continued)
Port
AF
&
Pin
Name
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
STM32F302xx/STM32F303xx Pinouts and pin description
Doc ID 023353 Rev 1 43/119
5PC10
5PC11
5PC12
PC13
PC14
PC15
2PD0
4PD1
4PD2
3PD3
3PD4
2PD5
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
TIM3_ ETR
TIM2_ CH1_E TR
TIM2_ CH2
TIM8_C H1N
TIM8_C H2N
TIM8_C H3N
TIM1_C H1N
TIM8_C H4
TIM8_B KIN
UART4 _TX
UART4 _RX
UART5 _TX
UART5 __RX
SPI3_S CK/I2S 3_CK
SPI3_ MISO/I 2S3ext _SD
SPI3_ MOSI/ I2S3_S D
TIM8_ BKIN2
USART 3_TX
USART 3_RX
USART 3_CK
CAN_R X
CAN_T X
USART 2_CTS
USART 2_RTS
USART 2_TX
44/119 Doc ID 023353 Rev 1
Table 11. Alternate functions (continued)
Port
AF
&
Pin
Name
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
Pinouts and pin description STM32F302xx/STM32F303xx
3PD6
3PD7
2PD8
2PD9
2PD10
2PD11
4PD12
3PD13
3PD14
4PD15
4 PE0
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
TIM2_ CH4
TIM2_ CH3
TIM4_ CH1
TIM4_ CH2
TIM4_ CH3
TIM4_ CH4
TIM4_ ETR
G8_IO1
G8_IO2
G8_IO3
G8_IO4
TIM16_ CH1
USART 2_RX
USART 2_CK
USART 3_TX
USART 3_RX
USART 3_CK
USART 3_CTS
USART 3_RTS
SPI2_ NSS
USART 1_TX
3 PE1
4 PE2
EVENT OUT
TRACECKEVENT
OUT
TIM3_ CH1
G7_IO1
TIM17_ CH1
USART 1_RX
Table 11. Alternate functions (continued)
Port
AF
&
Pin
Name
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
STM32F302xx/STM32F303xx Pinouts and pin description
Doc ID 023353 Rev 1 45/119
4 PE3
4 PE4
4 PE5
2 PE6
2 PE7
2 PE8
2 PE9
2 PE10
2 PE11
2 PE12
2 PE13
TRACED0EVENT
OUT
TRACED1EVENT
OUT
TRACED2EVENT
OUT
TRACED3EVENT
OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
TIM3_ CH2
TIM3_ CH3
TIM3_ CH4
TIM1_ ETR
TIM1_ CH1N
TIM1_ CH1
TIM1_ CH2N
TIM1_ CH2
TIM1_ CH3N
TIM1_ CH3
G7_IO2
G7_IO3
G7_IO4
3 PE14
3 PE15
EVENT OUT
EVENT OUT
TIM1_ CH4
TIM1_ BKIN
TIM1_ BKIN2
USART 3_RX
46/119 Doc ID 023353 Rev 1
Table 11. Alternate functions (continued)
Port
AF
&
Pin
Name
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
Pinouts and pin description STM32F302xx/STM32F303xx
2PF0
1PF1
1PF2
2PF4
4PF6
3PF9
3PF10
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
COMP 1_OUT
TIM4_ CH4
TIM15_ CH1
TIM15_ CH2
I2C2_S DA
I2C2_S CL
I2C2_S CL
TIM1_ CH3N
USART 3_RTS
SPI2_S CK
SPI2_S CK
STM32F302xx/STM32F303xx Memory mapping
0xFFFF FFFF
0xE000 0000
0xC000 0000
0xA000 0000
0x8000 0000
0x6000 0000
0x4000 0000
0x2000 0000
0x0000 0000
0
1
2
3
4
5
6
7
Cortex-M4
Internal
Peripherals
Peripherals
SRAM
CODE
Option bytes
System memory
CCM RAM
Flash memory
Flash, system memory
or SRAM, depending
on BOOT configuration
AHB2
AHB1
APB2
APB1
0x5000 0000
0x4800 1800
0x4800 0000
0x4002 43FF
0x4002 0000
0x4001 6C00
0x4001 0000
0x4000 A000
0x4000 0000
0x1FFF FFFF
0x1FFF F800
0x1FFF D800
0x1000 2000
0x0804 0000
0x0800 0000
0x0004 0000
0x0000 0000
0x1000 0000
Reserved
MS30355V1
AHB3
0x5000 07FF
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

5 Memory mapping

Figure 7. STM32F30x memory map

Doc ID 023353 Rev 1 47/119
Memory mapping STM32F302xx/STM32F303xx
Table 12. STM32F30x memory map and peripheral register boundary
addresses
Bus Boundary address
0x5000 0400 - 0x5000 07FF 1 K ADC3 - ADC4
AHB3
0x5000 0000 - 0x5000 03FF 1 K ADC1 - ADC2
0x4800 1800 - 0x4FFF FFFF ~132 M Reserved
0x4800 1400 - 0x4800 17FF 1 K GPIOF
0x4800 1000 - 0x4800 13FF 1 K GPIOE
0x4800 0C00 - 0x4800 0FFF 1 K GPIOD
AHB2
0x4800 0800 - 0x4800 0BFF 1 K GPIOC
0x4800 0400 - 0x4800 07FF 1 K GPIOB
0x4800 0000 - 0x4800 03FF 1 K GPIOA
0x4002 4400 - 0x47FF FFFF ~128 M Reserved
0x4002 4000 - 0x4002 43FF 1 K TSC
0x4002 3400 - 0x4002 3FFF 3 K Reserved
0x4002 3000 - 0x4002 33FF 1 K CRC
0x4002 2400 - 0x4002 2FFF 3 K Reserved
0x4002 2000 - 0x4002 23FF 1 K Flash interface
AHB1
0x4002 1400 - 0x4002 1FFF 3 K Reserved
0x4002 1000 - 0x4002 13FF 1 K RCC
0x4002 0800 - 0x4002 0FFF 2 K Reserved
Size
(bytes)
Peripheral
0x4002 0400 - 0x4002 07FF 1 K DMA2
0x4002 0000 - 0x4002 03FF 1 K DMA1
0x4001 8000 - 0x4001 FFFF 32 K Reserved
0x4001 4C00 - 0x4001 7FFF 13 K Reserved
0x4001 4800 - 0x4001 4BFF 1 K TIM17
0x4001 4400 - 0x4001 47FF 1 K TIM16
0x4001 4000 - 0x4001 43FF 1 K TIM15
0x4001 3C00 - 0x4001 3FFF 1 K Reserved
APB2
48/119 Doc ID 023353 Rev 1
0x4001 3800 - 0x4001 3BFF 1 K USART1
0x4001 3400 - 0x4001 37FF 1 K TIM8
0x4001 3000 - 0x4001 33FF 1 K SPI1
0x4001 2C00 - 0x4001 2FFF 1 K TIM1
0x4001 0800 - 0x4001 2BFF 9 K Reserved
0x4001 0400 - 0x4001 07FF 1 K EXTI
0x4001 0000 - 0x4001 03FF 1 K SYSCFG + COMP + OPAMP
STM32F302xx/STM32F303xx Memory mapping
Table 12. STM32F30x memory map and peripheral register boundary
addresses (continued)
Bus Boundary address
0x4000 8000 - 0x4000 FFFF 32 K Reserved
0x4000 7800 - 0x4000 7FFF 2 K Reserved
0x4000 7400 - 0x4000 77FF 1 K DAC (dual)
0x4000 7000 - 0x4000 73FF 1 K PWR
0x4000 6C00 - 0x4000 6FFF 1 K Reserved
0x4000 6800 - 0x4000 6BFF 1 K Reserved
0x4000 6400 - 0x4000 67FF 1 K bxCAN
0x4000 6000 - 0x4000 63FF 1 K USB SRAM 512 bytes
0x4000 5C00 - 0x4000 5FFF 1 K USB device FS
0x4000 5800 - 0x4000 5BFF 1 K I2C2
0x4000 5400 - 0x4000 57FF 1 K I2C1
0x4000 5000 - 0x4000 53FF 1 K UART5
0x4000 4C00 - 0x4000 4FFF 1 K UART4
0x4000 4800 - 0x4000 4BFF 1 K USART3
0x4000 4400 - 0x4000 47FF 1 K USART2
APB1
0x4000 4000 - 0x4000 43FF 1 K I2S3ext
0x4000 3C00 - 0x4000 3FFF 1 K SPI3/I2S3
Size
(bytes)
Peripheral
0x4000 3800 - 0x4000 3BFF 1 K SPI2/I2S2
0x4000 3400 - 0x4000 37FF 1 K I2S2ext
0x4000 3000 - 0x4000 33FF 1 K IWDG
0x4000 2C00 - 0x4000 2FFF 1 K WWDG
0x4000 2800 - 0x4000 2BFF 1 K RTC
0x4000 1800 - 0x4000 27FF 4 K Reserved
0x4000 1400 - 0x4000 17FF 1 K TIM7
0x4000 1000 - 0x4000 13FF 1 K TIM6
0x4000 0C00 - 0x4000 0FFF 1 K Reserved
0x4000 0800 - 0x4000 0BFF 1 K TIM4
0x4000 0400 - 0x4000 07FF 1 K TIM3
0x4000 0000 - 0x4000 03FF 1 K TIM2
Doc ID 023353 Rev 1 49/119
Electrical characteristics STM32F302xx/STM32F303xx
-36
C = 50 pF
-#5PIN
-36
-#5PIN
6
).

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ).

6.1.2 Typical values

= 25 °C and TA = TAmax (given by
A
Unless otherwise specified, typical data are based on TA = 25 °C, V are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 8.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 9.
Figure 8. Pin loading conditions Figure 9. Pin input voltage
(mean±2Σ).
DD
= V
= 3.3 V. They
DDA
50/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
-36
!NALO G
2#S0,,

0OWERSWITCH
6
"!4
'0)/ S
/54
).
+ERNELLOGIC
#05 $IGITAL
-EMORIES
"ACKUPCIRCUITRY
,3%24#
"ACKUPREGISTERS
7AKEUPLOGIC
 §N&
§&
6
2EGULATOR
6
$$!
6
33!
!$# $!#
,EVELSHIFTER
)/
,OGIC
6
$$
N&
&
6
$$!
6
2%&
6
2%&
6
$$
6
33
§
§
-36
6
"!4
6
$$
6
$$!
)$$?6
"!4
)
$$
)
$$!

6.1.6 Power supply scheme

Figure 10. Power supply scheme

6.1.7 Current consumption measurement

Figure 11. Current consumption measurement scheme
Doc ID 023353 Rev 1 51/119
Electrical characteristics STM32F302xx/STM32F303xx

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 13: Voltage characteristics,
Table 14: Current characteristics, and Table 15: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 13. Voltage characteristics

Symbol Ratings Min Max Unit
(1)(2)
VDD–V
V
DD–VDDA
SS
External main supply voltage (including V VDD)
Allowed voltage difference for VDD > V
Input voltage on FT and FTf pins V
(3)
V
IN
Input voltage on TTa pins V
Input voltage on any other pin V
|ΔV
| Variations between different V
DDx
VSS| Variations between all the different ground pins 50
|V
SSX
V
ESD(HBM)
1. All main power (VDD, V permitted range.
2. The following relationship must be respected between V V
in the power up sequence. V
DD
maximum must always be respected. Refer to Table 14: Current characteristics for the maximum allowed injected
3. V
IN
current values.
Electrostatic discharge voltage (human body model)
) and ground (VSS, V
DDA
can be greater than or equal to VDD.
DDA
power pins 50
DD
) pins must always be connected to the external power supply, in the
SSA
and VDD: V
DDA
and
DDA
0.4
DDA
-0.3 4.0
0.3 V
SS
0.3 V
SS
0.3 4.0
SS
see Section 6.3.11: Electrical
sensitivity characteristics
must power on before or at the same time as
DDA
DD
DDA
+ 4.0
+ 0.3
V
mV
52/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics

Table 14. Current characteristics

(1)
Symbol Ratings Max. Unit
I
VDD
I
VSS
Total current into V
Total current out of V
power lines (source)
DD
ground lines (sink)
SS
(2)
(2)
TBD
TBD
Output current sunk by any I/O and control pin 25
I
IO
INJ(PIN)
ΣI
INJ(PIN)
(3)
I
1. TBD stands for “to be defined”.
2. All main power (V permitted range.
3. A positive injection is induced by V exceeded. Refer also to Table 13: Voltage characteristics for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note 2 below Table 58 on page 99.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
5. When several inputs are submitted to a current injection, the maximum ΣI negative injected currents (instantaneous values).
Output current source by any I/Os and control pin 25
Injected current on FT, FTf, and TTa pins -5/+NA
Injected current on any other pin ± 5
Total injected current (sum of all I/O and control pins)
, V
DD

Table 15. Thermal characteristics

) and ground (VSS, V
DDA
IN>VDD
while a negative injection is induced by VIN<VSS. I
) pins must always be connected to the external power supply, in the
SSA
(5)
is the absolute sum of the positive and
INJ(PIN)
INJ(PIN)
(4)
± 25
must never be
mA
Symbol Ratings Value Unit
T
STG
T
J
Storage temperature range –65 to +150 °C
Maximum junction temperature 150 °C
Doc ID 023353 Rev 1 53/119
Electrical characteristics STM32F302xx/STM32F303xx

6.3 Operating conditions

6.3.1 General operating conditions

Table 16. General operating conditions
(1)
Symbol Parameter Conditions Min Max Unit
f
HCLK
PCLK1
f
PCLK2
V
DD
V
DDA
V
BAT
P
Internal AHB clock frequency 0 72
Internal APB1 clock frequency 0 36
Internal APB2 clock frequency 0 72
Standard operating voltage 2 3.6 V
Analog operating voltage (OPAMP and DAC not used)
Analog operating voltage (OPAMP and DAC used)
Must have a potential equal to or higher than V
DD
23.6
2.4 3.6
Backup operating voltage 1.65 3.6 V
Power dissipation at T 85 °C for suffix 6 or TA =
D
105 °C for suffix 7
Ambient temperature for 6 suffix version
(2)
=
A
LQFP100 TBD
LQFP48 TBD
Maximum power dissipation –40 85
Low power dissipation
(3)
–40 105
TA
Ambient temperature for 7 suffix version
Maximum power dissipation –40 105
Low power dissipation
(3)
–40 125
6 suffix version –40 105
T
J Junction temperature range
7 suffix version –40 125
1. TBD stands for “to be defined”.
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed T
characteristics).
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed T
Table 15: Thermal characteristics).
(see Table 15: Thermal
Jmax
Jmax
MHzf
V
mWLQFP64 TBD
°C
°C
°C
(see
54/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics

6.3.2 Operating conditions at power-up / power-down

The parameters given in Tab l e 17 are derived from tests performed under the ambient temperature condition summarized in Ta bl e 1 6.
Table 17. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
(1)
t
VDD
t
VDDA
1. TBD stands for “to be defined”.
V
fall time rate 20
DD
V
rise time rate 0
DDA
fall time rate 20
V
DDA

6.3.3 Embedded reset and power control block characteristics

The parameters given in Tab l e 18 are derived from tests performed under ambient
VDD rise time rate 0
temperature and V
Table 18. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
Power on/power down
V
POR/PDR
V
PDRhyst
t
RSTTEMPO
1. The PDR detector monitors VDD and also V monitors only VDD.
2. The product behavior is guaranteed by design down to the minimum V
3. Guaranteed by design, not tested in production
(1)
reset threshold
(1)
PDR hysteresis 40 mV
(3)
Reset temporization 1.5 2.5 4.5 ms
supply voltage conditions summarized in Tab l e 16 .
DD
Falling edge
Rising edge 1.84 1.92 2.0 V
(if kept enabled in the option bytes). The POR detector
DDA
POR/PDR
(2)
1.8
value.
µs/V
1.88 1.96 V
Table 19. Programmable voltage detector characteristics
Symbol Parameter Conditions Min
Rising edge 2.1 2.18 2.26 V
V
PVD0
PVD threshold 0
Falling edge 2 2.08 2.16 V
Rising edge 2.19 2.28 2.37 V
V
PVD1
PVD threshold 1
Falling edge 2.09 2.18 2.27 V
Rising edge 2.28 2.38 2.48 V
V
PVD2
PVD threshold 2
Falling edge 2.18 2.28 2.38 V
Rising edge 2.38 2.48 2.58 V
V
PVD3
PVD threshold 3
Falling edge 2.28 2.38 2.48 V
Rising edge 2.47 2.58 2.69 V
V
PVD4
PVD threshold 4
Falling edge 2.37 2.48 2.59 V
Doc ID 023353 Rev 1 55/119
(1)
Typ Ma x
(1)
Unit
Electrical characteristics STM32F302xx/STM32F303xx
Table 19. Programmable voltage detector characteristics (continued)
Symbol Parameter Conditions Min
(1)
Typ Ma x
(1)
Unit
V
PVD5
PVD threshold 5
Falling edge 2.47 2.58 2.69 V
Rising edge 2.66 2.78 2.9 V
Rising edge 2.57 2.68 2.79 V
V
PVD6
PVD threshold 6
Falling edge 2.56 2.68 2.8 V
Rising edge 2.76 2.88 3 V
V
PVD7
V
PVDhyst
IDD(PVD)
1. Data based on characterization results only, not tested in production.
2. Guaranteed by design, not tested in production.
PVD threshold 7
Falling edge 2.66 2.78 2.9 V
(2)
PVD hysteresis 100 mV
PVD current consumption
0.15 0.26 µA
56/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics

6.3.4 Embedded reference voltage

The parameters given in Tab l e 20 are derived from tests performed under ambient temperature and V
Table 20. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
supply voltage conditions summarized in Tab l e 16 .
DD
V
REFINT
Internal reference voltage
ADC sampling time when
T
S_vrefint
reading the internal reference voltage
Internal reference voltage
V
RERINT
spread over the temperature range
T
Coeff
1. Data based on characterization results, not tested in production.
2. Guaranteed by design, not tested in production
Temperature coefficient

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 11: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark x.x code.
–40 °C < T
–40 °C < T
< +105 °C 1.16 1.2 1.25 V
A
< +85 °C 1.16 1.2 1.24
A
VDD = 3 V ±10 mV
(1)
V
2.2 - - µs
(2)
(2)
mV
ppm/°C
10
100
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at V
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted to the f
to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled f
PCLK2
= f
HCLK
The parameters given in Tab l e 21 to Tab l e 25 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Tab le 1 6.
Doc ID 023353 Rev 1 57/119
or VSS (no load)
DD
frequency (0 wait state from 0
HCLK
and f
PCLK1
= f
HCLK/2
Electrical characteristics STM32F302xx/STM32F303xx
Table 21. Typical and maximum current consumption from VDD supply
at V
DD=
3.6 V
All peripherals enabled All peripherals disabled
Symbol Parameter Conditions f
HCLK
Max @ T
Typ
(1)
A
Typ
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
72 MHz
64 MHz
External clock (HSE bypass)
Supply current in
48 MHz
32 MHz
24 MHz
8 MHz
Run mode, executing from Flash
1 MHz
64 MHz
48 MHz Internal clock (HSI)
32 MHz
24 MHz
8 MHz
I
DD
72 MHz
64 MHz
Max @ T
(1)
A
Unit
mA
Supply current in Run mode, executing from RAM
External clock (HSE bypass)
Internal clock (HSI)
48 MHz
32 MHz
24 MHz
8 MHz
1 MHz
64 MHz
48 MHz
32 MHz
24 MHz
8 MHz
58/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
Table 21. Typical and maximum current consumption from VDD supply
at V
3.6 V (continued)
DD=
All peripherals enabled All peripherals disabled
Symbol Parameter Conditions f
HCLK
Max @ T
Typ
(1)
A
Typ
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
72 MHz
64 MHz
48 MHz
32 MHz
24 MHz
8 MHz
1 MHz
64 MHz
I
DD
Supply current in Sleep mode, executing from Flash or RAM
External clock (HSE bypass)
48 MHz Internal clock (HSI)
32 MHz
24 MHz
8 MHz
1. Data based on characterization results, not tested in production unless otherwise specified.
Max @ T
(1)
A
Unit
mA
Doc ID 023353 Rev 1 59/119
Electrical characteristics STM32F302xx/STM32F303xx
Table 22. Typical and maximum current consumption from the V
Symbol Parameter Conditions f
HSE
bypass,
PLL on
Supply
current in
Run mode,
code
HSE
bypass,
PLL off
executing
from Flash
or RAM
HSI clock,
PLL on
HSI clock,
PLL off
I
DDA
HSE
bypass,
PLL on
Supply
current in
Sleep
mode,
HSE
bypass,
PLL off
code
executing
from Flash
or RAM
HSI clock,
PLL on
V
HCLK
Typ
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
72 MHz
64 MHz
48 MHz
32 MHz
24 MHz
8 MHz
1 MHz
72 MHz
64 MHz
48 MHz
32 MHz
24 MHz
8 MHz
72 MHz
64 MHz
48 MHz
32 MHz
24 MHz
8 MHz
1 MHz
72 MHz
64 MHz
48 MHz
32 MHz
2.4 V V
DDA=
Max @ T
(1)
A
DDA
Typ
supply
DDA=
3.6 V
Max @ T
(1)
A
Unit
µA
24 MHz
HSI clock,
PLL off
1. Data based on characterization results, not tested in production.
8 MHz
60/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
Table 23. Typical and maximum VDD consumption in Stop and Standby modes
Symbol Parameter Conditions
Typ @VDD (VDD=V
2.0V 2.4V 2.7V 3.0 V 3.3V 3.6 V
)Max
DDA
T
=
A
25 °C
Regulator in run mode,
Supply
all oscillators OFF
current in
Regulator in low-power mode, all oscillators OFF
LSI ON and IWDG ON
I
DD
Stop mode
Supply current in Standby
LSI OFF and IWDG OFF
mode
Table 24. Typical and maximum V
Symbol Parameter Conditions
consumption in Stop and Standby modes
DDA
(V
= V
Typ @V
DD
DD
)Max
DDA
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V
=
T
A
25 °C
Regulator in run mode,
Supply current in Stop mode
all oscillators OFF
Regulator in low-power mode, all oscillators OFF
I
DDA
Supply current in Standby mode
Supply current in Stop mode
LSI ON and IWDG ON
monitoring ON
DDA
LSI OFF and IWDG
V
OFF
Regulator in run mode, all oscillators OFF
Regulator in low-power mode, all oscillators OFF
Supply current in Standby mode
1. Data based on characterization results, not tested in production.
LSI ON and IWDG ON
monitoring OFF
DDA
LSI OFF and IWDG
V
OFF
TA =
85 °C
TA =
85 °C
(1)
TA =
105 °C
TA =
105 °C
Unit
µA
Unit
µA
Doc ID 023353 Rev 1 61/119
Electrical characteristics STM32F302xx/STM32F303xx
Table 25. Typical and maximum current consumption from V
Typ @V
BAT
Symbol Parameter Conditions
= 1.8 V
= 2.4 V
= 1.65 V
= 2.7 V
LSE & RTC ON; "Xtal mode" lower driving capability; LSEDRV[1:0] = '00'
LSE & RTC ON; "Xtal mode" higher driving
I
DD_VBAT
Backup domain supply current
capability; LSEDRV[1:0] = '11'
1. Data based on characterization results, not tested in production.
Typical current consumption
The MCU is placed under the following conditions:
V
All I/O pins are in analog input configuration
The Flash access time is adjusted to f
Prefetech is ON when the peripherals are enabled, otherwise it is OFF
When the peripherals are enabled, f
AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and
DD
= V
DDA
= 3.3 V
frequency (0 wait states from 0 to 24 MHz,
HCLK
1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz)
= f
APB1
AHB/2
PLL is used for frequencies greater than 8 MHz
500 kHz respectively
BAT
, f
= 3.3 V
APB2
supply
= 3.6 V
= f
AHB
TA =
25 °C
Max
TA =
85 °C
(1)
TA =
105 °C
Unit
µA
A development tool is connected to the board and the parasitic pull-up current is around 30 µA.
62/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
Table 26. Typical current consumption in Run mode, code with data processing
running from Flash
Typ
Symbol Parameter Conditions f
Supply current in
I
DD
Run mode from
supply
V
DD
Running from HSE crystal clock 8 MHz,
500 kHz
code executing from Flash
Supply current in
I
DDA
Run mode from V
supply
DDA
500 kHz
HCLK
72 MHz
64 MHz
48 MHz
36 MHz
32 MHz
24 MHz
16 MHz
8 MHz
4 MHz
2 MHz
1 MHz
72 MHz
64 MHz
48 MHz
36 MHz
32 MHz
24 MHz
16 MHz
8 MHz
4 MHz
2 MHz
1 MHz
Peripherals
enabled
Peripherals
disabled
Unit
mA
µA
Doc ID 023353 Rev 1 63/119
Electrical characteristics STM32F302xx/STM32F303xx
Table 27. Typical current consumption in Sleep mode, code running from Flash or RAM
Typ
Symbol Parameter Conditions f
Supply current in
I
DD
Sleep mode from VDD supply
Running from HSE crystal clock 8 MHz,
500 kHz
125 kHz
code executing from Flash or RAM
Supply current in
I
DDA
Run mode from V
supply
DDA
500 kHz
125 kHz
HCLK
72 MHz
64 MHz
48 MHz
36 MHz
32 MHz
24 MHz
16 MHz
8 MHz
4 MHz
2 MHz
1 MHz
72 MHz
64 MHz
48 MHz
36 MHz
32 MHz
24 MHz
16 MHz
8 MHz
4 MHz
2 MHz
1 MHz
Peripherals
enabled
Peripherals
disabled
Unit
mA
µA
64/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
I
SW
V
DDfSW
C××=
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 45: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 29: Peripheral current consumption), the I/Os used by an application also contribute to
the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:
where
I
is the current sunk by a switching I/O to charge/discharge the capacitive load
SW
V
is the MCU supply voltage
DD
f
is the I/O switching frequency
SW
C is the total capacitance seen by the I/O pin: C = C
INT
+ C
EXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.
Doc ID 023353 Rev 1 65/119
Electrical characteristics STM32F302xx/STM32F303xx
Table 28. Switching output I/O current consumption
Symbol Parameter Conditions
(1)
= 3.3 V
V
DD
C =C
INT
V
= 3.3 V
DD
C
= 0 pF
ext
C = C
INT
+ C
EXT
+ C
S
I/O toggling
frequency (fSW)
Typ U nit
I
SW
I/O current
consumption
C = C
C
ext
INT
= 10 pF
+ C
EXT +CS
mA
VDD = 3.3 V
VDD = 3.3 V
= 22 pF
C
ext
INT
+ C
EXT +CS
C = C
VDD = 3.3 V
= 33 pF
C
ext
C = C
INT
C = C
+ C
EXT
int
+ C
S
VDD = 3.3 V C
= 47 pF
ext
C = C
INT
C = C
+ C
EXT
int
+ C
S
66/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
Table 28. Switching output I/O current consumption (continued)
V
= 2.4 V
C = C
DD
C
ext
INT
C = C
= 47 pF
+ C
EXT
int
+ C
S
mA
I
SW
1. CS = 7 pF (estimated value).
I/O current consumption
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Ta bl e 2 9. The MCU is placed under the following conditions:
all I/O pins are in input mode with a static value at V
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
ambient operating temperature and V
supply voltage conditions summarized in
DD
Ta bl e 1 3
or VSS (no load)
DD
Doc ID 023353 Rev 1 67/119
Electrical characteristics STM32F302xx/STM32F303xx
Table 29. Peripheral current consumption
Typical consumption at 25 °C
Peripheral
I
DD
ADC1
ADC2
ADC3
ADC4
COMP1
COMP2
COMP3
COMP4
COMP5
COMP6
COMP7
DAC CH1
DAC CH2
OPAMP1
OPAMP2
OPAMP3
OPAMP4
DMA
GPIOA
GPIOB
GPIOC
GPIOD
GPIOF
GPIOE
I2C1
I2C2
I2S2
I2S3
IWDG
SPI1
SPI2
SPI3
TIM1
TIM2
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(3)
(4)
(5)
(5)
(5)
(5)
(1)
Unit
I
DDA
mA
68/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
Table 29. Peripheral current consumption
Typical consumption at 25 °C
Peripheral
I
DD
TIM3
TIM4
TIM6
TIM7
TIM8
TIM15
TIM16
TIM17
TSC
USART1
USART2
USART3
USART4
USART5
WWDG
CAN
USB
(1)
(continued)
I
DDA
Unit
mA
1. f
2. COMP IDDA is specified as IDD(COMP)
3. DAC channel 1 enabled
4. DAC channel 2 enabled
5. OPAMP IDDA is specified as IDD(OPAMP)
= 72 MHz, f
HCLK
APB1
= f
HCLK/2
, f
APB2
= f
, default prescaler value for each peripheral.
HCLK
Doc ID 023353 Rev 1 69/119
Electrical characteristics STM32F302xx/STM32F303xx
-36
6
(3%(
T
F(3%


4
(3%
T
T
R(3%
6
(3%,
T
7(3%(
T
7(3%,

6.3.6 External clock source characteristics

High-speed external user clock generated from an external source
The characteristics given in Tab l e 30 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Ta bl e 1 6.
Table 30. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
HSE_ext
V
HSEH
V
HSEL
t
w(HSEH)
t
w(HSEL)
t
r(HSE)
t
f(HSE)
1. Guaranteed by design, not tested in production.
User external clock source frequency
(1)
OSC_IN input pin high level voltage 0.7V
OSC_IN input pin low level voltage V
(1)
(1)
15
OSC_IN high or low time
OSC_IN rise or fall time
1832MHz
DD
SS
Figure 12. High-speed external clock source AC timing diagram
V
0.3V
20
DD
V
DD
ns
70/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
-36
6
,3%(
T
F,3%


4
,3%
T
T
R,3%
6
,3%,
T
7,3%(
T
7,3%,
Low-speed external user clock generated from an external source
The characteristics given in Tab l e 31 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Ta bl e 1 6.
Table 31. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
LSE_ext
V
LSEH
V
LSEL
t
w(LSEH)
t
w(LSEL)
t
r(LSE)
t
f(LSE)
1. Guaranteed by design, not tested in production.
User External clock source frequency
(1)
OSC32_IN input pin high level voltage
OSC32_IN input pin low level voltage
OSC32_IN high or low time
OSC32_IN rise or fall time
(1)
(1)
0.7V
V
450
DD
SS
Figure 13. Low-speed external clock source AC timing diagram
32.768 1000 kHz
V
DD
V
0.3V
DD
ns
50
Doc ID 023353 Rev 1 71/119
Electrical characteristics STM32F302xx/STM32F303xx
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Ta bl e 3 2. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
Table 32. HSE oscillator characteristics
Symbol Parameter Conditions
(1)
Min
(2)
Typ Max
(2)
Unit
f
OSC_IN
R
I
DD
g
t
SU(HSE)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by design, not tested in production.
3. This consumption level occurs during the first 2/3 of the t
4. t
SU(HSE)
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
Oscillator frequency 4 8 32 MHz
Feedback resistor 200 kΩ
F
During startup
V
=3.3 V, Rm= 30Ω,
DD
CL=10 pF@8 MHz
=3.3 V, Rm= 45Ω,
V
DD
CL=10 pF@8 MHz
HSE current consumption
=3.3 V, Rm= 30Ω,
V
DD
CL=10 pF@32 MHz
=3.3 V, Rm= 30Ω,
V
DD
CL=10 pF@32 MHz
V
=3.3 V, Rm= 30Ω,
DD
CL=10 pF@32 MHz
Oscillator transconductance Startup 10 mA/V
m
(4)
Startup time VDD is stabilized 2 ms
SU(HSE)
is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
(3)
0.4
0.5
0.8
1
1.5
startup time
8.5
mA
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 14). C
and C
L1
are usually the
L2
same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C
and CL2. PCB and MCU pin capacitance must be included (10 pF
L1
can be used as a rough estimate of the combined pin and board capacitance) when sizing C
and CL2.
L1
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
72/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
-36
/3#?/54
/3#?).
F
(3%
#
,
2
&
-(Z RESONATOR
2
%84

#
,
2ESONATORWITH INTEGRATEDCAPACITORS
"IAS
CONTROLLED
GAIN
Figure 14. Typical application with an 8 MHz crystal
1. R
value depends on the crystal characteristics.
EXT
Doc ID 023353 Rev 1 73/119
Electrical characteristics STM32F302xx/STM32F303xx
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Ta bl e 3 3. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
Table 33. LSE oscillator characteristics (f
Symbol Parameter Conditions
= 32.768 kHz)
LSE
(1)
Min
(2)
Typ Max
(2)
Unit
LSEDRV[1:0]=00
lower driving capability
LSEDRV[1:0]=01
medium low driving capability
I
DD
LSE current consumption
LSEDRV[1:0]=10
medium high driving capability
LSEDRV[1:0]=11
higher driving capability
LSEDRV[1:0]=00
lower driving capability
LSEDRV[1:0]=01
g
m
Oscillator transconductance
medium low driving capability
LSEDRV[1:0]=10
medium high driving capability
LSEDRV[1:0]=11
higher driving capability
(3)
t
SU(LSE)
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”.
2. Guaranteed by design, not tested in production.
3. t
SU(LSE)
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Startup time VDD is stabilized 2 s
is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
5
8
15
25
0.5 0.9
1
1.3
1.6
µA/V
µA
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
74/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
-36
/3#?/54
/3#?).
F
,3%
#
,
K(Z RESONATOR
#
,
2ESONATORWITH INTEGRATEDCAPACITORS
$RIVE
PROGRAMMABLE
AMPLIFIER
Figure 15. Typical application with a 32.768 kHz crystal

6.3.7 Internal clock source characteristics

The parameters given in Tab l e 34 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Tab le 1 6.
High-speed internal (HSI) RC oscillator
Table 34. HSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
(1)
f
HSI
Frequency 8 MHz
TRIM HSI user trimming step 1
DuCy
(HSI)
ACC
HSI
t
su(HSI)
I
DD(HSI)
1. V
2. Guaranteed by design, not tested in production.
3. Data based on characterization results, not tested in production.
= 3.3 V, TA = –40 to 105 °C unless otherwise specified.
DDA
Duty cycle 45
= –40 to 105 °C –2
T
A
Accuracy of the HSI oscillator (factory calibrated)
= –10 to 85 °C –1.5
T
A
= 0 to 70 °C –1.3
T
A
T
= 25 °C –1.1 1.8 %
A
HSI oscillator startup time
HSI oscillator power consumption
(2)
(3)
(3)
(3)
(2)
1
55
2.5
2.2
2
2
80 100
(2)
(3)
(2)
(2)
(3)
(3)
(2)
%
%
%
%
%
µs
µA
Doc ID 023353 Rev 1 75/119
Electrical characteristics STM32F302xx/STM32F303xx
Low-speed internal (LSI) RC oscillator
Table 35. LSI oscillator characteristics
Symbol Parameter Min Typ Max Unit
(1)
f
LSI
t
su(LSI)
I
DD(LSI)
1.
V
DDA
2. Guaranteed by design, not tested in production.
Frequency 30 40 50 kHz
(2)
LSI oscillator startup time 85 µs
(2)
LSI oscillator power consumption 0.75 1.2 µA
= 3.3 V, T
= –40 to 105 °C unless otherwise specified.
A
Wakeup time from low-power mode
The wakeup times given in Ta bl e 3 6 is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:
Stop or Standby mode: the clock source is the RC oscillator
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under ambient temperature and V voltage conditions summarized in Tab le 1 6 .
Table 36. Low-power mode wakeup timings
Symbol Parameter Conditions
Regulator in run
t
WUSTOP
t
WUSTANDBY
Wakeup from Stop mode
Wakeup from Standby mode
mode
Regulator in low power mode
Typ @VDD
= 2.0 V = 2.4 V = 2.7 V = 3 V = 3.3 V
supply
DD
Max Unit
µs
t
WUSLEEP
Wakeup from Sleep mode

6.3.8 PLL characteristics

The parameters given in Tab l e 37 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Tab le 1 6.
76/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
Table 37. PLL characteristics
Val ue
Symbol Parameter
Unit
Min Typ Max
(1)
f
PLL_IN
f
PLL_OUT
t
LOCK
PLL input clock
PLL input clock duty cycle 40
PLL multiplier output clock 16
PLL lock time 200
Jitter Cycle-to-cycle jitter 300
1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f
2. Guaranteed by design, not tested in production.
PLL_OUT
.
(2)
1
(2)
(2)
(2)
24
60
(2)
MHz
72 MHz
(2)
(2)
%
µs
ps

6.3.9 Memory characteristics

Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Doc ID 023353 Rev 1 77/119
Electrical characteristics STM32F302xx/STM32F303xx
Table 38. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max
(1)
Unit
t
prog
t
ERASE
t
16-bit programming time TA = –40 to +105 °C TBD TBD TBD µs
Page (1 KB) erase time TA = –40 to +105 °C TBD TBD ms
Mass erase time TA = –40 to +105 °C TBD TBD ms
ME
Read mode, VDD = 3.3 V TBD mA
= 3.3 V TBD mA
DD
= 3.3 V TBD mA
DD
I
DD
Supply current
Write mode, V
Erase mode, V
Power-down / Halt mode, V
= 3.0 to 3.6 V
DD
V
1. Guaranteed by design, not tested in production.
Table 39. Flash memory endurance and data retention
Programming voltage 2 3.6 V
prog
Symbol Parameter Conditions
T
= –40 to +85 °C (6 suffix versions)
N
END
t
RET
1. Data based on characterization results, not tested in production.
2. Cycling performed over the whole temperature range.
Endurance
Data retention
A
= –40 to +105 °C (7 suffix versions)
T
A
(2)
1 kcycle
10 kcycles
at TA = 85 °C
(2)
at TA = 105 °C TBD
(2)
at TA = 55 °C TBD
TBD µA
Val ue
Unit
Min
(1)
TBD kcycles
TBD
Ye a r s1 kcycle
78/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is
SS
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Tab l e 40 . They are based on the EMS levels and classes defined in application note AN1709.
Table 40. EMS characteristics
DD
and
Symbol Parameter Conditions
= 3.3 V, LQFP100, TA = +25 °C,
V
V
V
FESD
EFTB
Voltage limits to be applied on any I/O pin to induce a functional disturbance
Fast transient voltage burst limits to be applied through 100 pF on VDD and V pins to induce a functional disturbance
SS
DD
f
= 72 MHz
HCLK
conforms to IEC 61000-4-2
V
= 3.3 V, LQFP100, TA = +25 °C,
DD
f
= 72 MHz
HCLK
conforms to IEC 61000-4-4
Level/
Class
TBD
TBD
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Doc ID 023353 Rev 1 79/119
Electrical characteristics STM32F302xx/STM32F303xx
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.
Table 41. EMI characteristics
Symbol Parameter Conditions
= 3.3 V, TA = 25 °C,
V
DD
S
EMI
Peak level
LQFP100 package compliant with IEC 61967-2

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.
Table 42. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum value
Monitored
frequency band
Max vs. [f
72 MHz
HSE/fHCLK
]
Unit
0.1 to 30 MHz TBD
dBµV30 to 130 MHz TBD
130 MHz to 1GHz TBD
SAE EMI Level TBD -
(1)
(2)
Unit
V
ESD(HBM)
V
ESD(CDM)
1. TBD stands for “to be defined”.
2. Data based on characterization results, not tested in production.
Electrostatic discharge voltage (human body model)
Electrostatic discharge voltage (charge device model)
TA = +25 °C, conforming to JESD22-A114
TA = +25 °C, conforming to JESD22-C101
80/119 Doc ID 023353 Rev 1
2TBD
V
II TBD
STM32F302xx/STM32F303xx Electrical characteristics
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 43. Electrical sensitivities
Symbol Parameter Conditions Class
(1)
LU Static latch-up class T
1. TBD stands for “to be defined”.
= +105 °C conforming to JESD78A TBD
A

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below VSS or above V operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).
The test results are given in Tab l e 44
Table 44. I/O current injection susceptibility
Symbol Description
(for standard, 3 V-capable I/O pins) should be avoided during normal product
DD
(1)
Functional susceptibility
Negative injection
Positive
injection
Unit
Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13
Injected current on all FT pins TBD TBD
I
INJ
1. TBD stands for “to be defined”.
Injected current on all FTf pins TBD TBD
Injected current on all TTa pins TBD TBD
Injected current on any other pin TBD TBD
TBD TBD
mA
Doc ID 023353 Rev 1 81/119
Electrical characteristics STM32F302xx/STM32F303xx

6.3.13 I/O port characteristics

General input/output characteristics
Unless otherwise specified, the parameters given in Ta bl e 4 5 are derived from tests performed under the conditions summarized in Tab l e 16 . All I/Os are CMOS and TTL compliant.
Table 45. I/O static characteristics
Symbol Parameter Conditions Min Typ
Max Unit
Standard I/O input low level voltage
TTa I/O input low level
V
IL
voltage
FT and FTf low level voltage
(1)
I/O input
–0.3 0.3V
–0.3 0.3V
–0.3 0.475V
DD
DD
+0.07
+0.07
-0.2
DD
V
Standard I/O input high level voltage
TTa I/O input high level
V
IH
voltage
FT and FTf high level voltage
(1)
I/O input
0.445V
0.445V
0.5V
+0.398 VDD+0.3
DD
+0.398 VDD+0.3
DD
+0.2 5.5
DD
Standard I/O Schmitt trigger voltage hysteresis
V
TTa I/O Schmitt trigger
hys
voltage hysteresis
(2)
(2)
200
200
mV
FT and FTf I/O Schmitt trigger voltage hysteresis
(2)
V
VIN≤ V
SS
DD
I/O TC, FT and FTf
VIN≤ V
V
VV
SS
DD
V
DDA
DD
3.6 V
I/O TTa used in digital
100
±0.1
±0.1
mode
= 5 V
V
Input leakage current
I
lkg
(3)
IN
I/O FT and FTf
= 3.6 V,
V
IN
VV V
DD
DDA =
V
3.6 V
IN
10
µA
1
I/O TTa used in digital
mode
V
VIN≤ V
VV
SS
DD
V
DDA
DDA
3.6 V
I/O TTa used in analog
mode
82/119 Doc ID 023353 Rev 1
±0.2
STM32F302xx/STM32F303xx Electrical characteristics
MS30255V1
V
DD
(V)
V
IHmin
2.0
V
ILmax
0.7
V
IL
/V
IH
(V)
1.3
2.0 3.6
CMOS standard requirements V
IHmin
= 0.7V
DD
V
ILmax
= 0.3V
DD
+0.07
0.6
2.7 3.0 3.3
CMOS standard requirements V
ILmax
= 0.3V
DD
V
IHmin
= 0.445V
DD
+0.398
Input range not
guaranteed
MS30256V1
V
DD
(V)
V
IHmin
2.0
V
ILmax
0.8
V
IL
/V
IH
(V)
1.3
2.0 3.6
TTL standard requirements V
IHmin
= 2 V
V
ILmax
= 0.3V
DD
+0.07
0.7
2.7 3.0 3.3
TTL standard requirements V
ILmax
= 0.8 V
V
IHmin
= 0.445V
DD
+0.398
Input range not
guaranteed
Table 45. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ
Max Unit
R
R
Weak pull-up equivalent
PU
PD
C
IO
(4)
resistor
Weak pull-down equivalent resistor
(4)
I/O pin capacitance 5 pF
V
= V
IN
SS
V
= V
IN
DD
30 40 50 kΩ
30 40 50 kΩ
1. To sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be disabled.
2. Hysteresis voltage between Schmitt trigger switching levels. Data based on characterization, not tested in production.
3. Leakage could be higher than max. if negative current is injected on adjacent pins.
4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).
All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 16 and Figure 17 for standard I/Os.
Figure 16. TC and TTa I/O input characteristics - CMOS port
Figure 17. TC and TTa I/O input characteristics - TTL port
Doc ID 023353 Rev 1 83/119
Electrical characteristics STM32F302xx/STM32F303xx
MS30257V1
V
DD
(V)
2.0
V
IL
/V
IH
(V)
1.0
2.0 3.6
CMOS standard requirements V
IH min
= 0.7V
DD
V
ILmax
= 0.475V
DD
-0.2
0.5
CMOS standard requirements V
ILmax
= 0.3V
DD
V
IHmin
= 0.5V
DD
+0.2
Input range not
guaranteed
MS30258V1
V
DD
(V)
2.0
V
IL
/V
IH
(V)
1.0
2.0 3.6
V
ILmin
= 0.475V
DD
-0.2
0.5
V
IHmin
= 0.5V
DD
+0.2
Input range not
guaranteed
2.7
TTL standard requirements V
IHmin
= 2 V
TTL standard requirements V
ILmax
= 0.8 V
0.8
Figure 18. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port
Figure 19. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port
84/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V
OL/VOH
).
In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:
The sum of the currents sourced by all the I/Os on V
consumption of the MCU sourced on V I
(see Ta bl e 1 4).
VDD
The sum of the currents sunk by all the I/Os on V
consumption of the MCU sunk on V I
(see Ta bl e 1 4).
VSS
cannot exceed the absolute maximum rating
DD,
cannot exceed the absolute maximum rating
SS
plus the maximum Run
DD,
plus the maximum Run
SS
Output voltage levels
Unless otherwise specified, the parameters given in Ta bl e 4 6 are derived from tests performed under ambient temperature and V
Ta bl e 1 6. All I/Os (FT, TTa and Tc unless otherwise specified) are CMOS and TTL
compliant.
Table 46. Output voltage characteristics
supply voltage conditions summarized in
DD
Symbol Parameter Conditions Min Max Unit
Output low level voltage for an I/O pin
(1)
V
OL
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
(3)
V
OH
V
OL
V
OH
V
OL
V
OH
V
OL
V
OH
V
OLFM+
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 14 and the sum of IIO (I/O ports and control pins) must not exceed I
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 14 and the sum of IIO (I/O ports and control pins) must not exceed I
4. Data based on characterization results, not tested in production.
when 8 pins are sourced at same time
Output low level voltage for an I/O pin
(1)
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
(3)
when 8 pins are sourced at same time
Output low level voltage for an I/O pin
(1)(4)
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
(3)(4)
when 8 pins are sourced at same time
Output low level voltage for an I/O pin
(1)(4)
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
(3)(4)
when 8 pins are sourced at same time
Output low level voltage for an FTf I/O pin in FM+ mode
CMOS port
I
IO
2.7 V < VDD < 3.6 V
TTL port I
IO
2.7 V < V
I
= +20 mA
IO
2.7 V < V
I
IO
2 V < V
I
= +20 mA
IO
2 V < V
= +8 mA
(2)
=+ 8mA
< 3.6 V
DD
< 3.6 V
DD
= +6 mA
< 2.7 V
DD
< 3.6 V
DD
.
VSS
(2)
VDD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
.
V
V
V
V
V
Doc ID 023353 Rev 1 85/119
Electrical characteristics STM32F302xx/STM32F303xx
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 20 and
Ta bl e 4 7, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and V
Table 47. I/O AC characteristics
supply voltage conditions summarized in Ta bl e 1 6.
DD
(1)
OSPEEDRy
[1:0] value
x0
01
11
FM+
configuration
(4)
Symbol Parameter Conditions Min Max Unit
(1)
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
Maximum frequency
Output high to low level fall time
Output low to high level rise time
Maximum frequency
Output high to low level fall time
Output low to high level rise time
Maximum frequency
Output high to low level fall time
Output low to high level rise time
Maximum frequency
Output high to low level fall time
Output low to high level rise time
(2)
(2)
(2)
(2)
CL = 50 pF, V
= 50 pF, V
C
L
CL = 50 pF, V
= 50 pF, V
C
L
CL = 30 pF, V
= 50 pF, VDD = 2.7 V to 3.6 V 30 MHz
C
L
= 50 pF, V
C
L
= 30 pF, V
C
L
= 50 pF, V
C
L
CL = 50 pF, V
= 30 pF, V
C
L
CL = 50 pF, V
CL = 50 pF, V
= 2 V to 3.6 V 2 MHz
DD
= 2 V to 3.6 V
DD
= 2 V to 3.6 V 10 MHz
DD
= 2 V to 3.6 V
DD
= 2.7 V to 3.6 V 50 MHz
DD
= 2 V to 2.7 V 20 MHz
DD
= 2.7 V to 3.6 V 5
DD
= 2.7 V to 3.6 V 8
DD
= 2 V to 2.7 V 12
DD
= 2.7 V to 3.6 V 5
DD
= 2.7 V to 3.6 V 8
DD
= 2 V to 2.7 V 12
DD
125
125
25
25
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
Pulse width of external
-t
EXTIpw
signals detected by the
10 ns
EXTI controller
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0091 reference manual for a description of GPIO Port configuration register.
2. The maximum frequency is defined in Figure 20.
3. Guaranteed by design, not tested in production.
4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F05xxx reference manual RM0091 for a description of FM+ I/O mode configuration.
ns
ns
ns
MHz
ns
86/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
ai14131
10%
90%
50%
t
r(IO)out
OUTPUT
EXTERNAL
ON 50pF
Maximum fr equency is achieved if (tr + tf) 2/3) T and if the duty cycle is (45-55%)
10 %
50%
90%
when loaded by 50pF
T
t
r(IO)out
-36
2
05
.234

6
$$
&ILTER
)NTERNAL2ESET
&
%XTERNAL RESETCIRCUIT

Figure 20. I/O AC characteristics definition

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R
Unless otherwise specified, the parameters given in Ta bl e 4 8 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in
Ta bl e 1 6.
Table 48. NRST pin characteristics
(see Ta bl e 4 5).
PU
Symbol Parameter Conditions Min Typ Max Unit
(1)
V
IL(NRST)
V
IH(NRST)
V
hys(NRST)
R
V
F(NRST)
V
NF(NRST)
PU
NRST Input low level voltage –0.5 0.8
(1)
NRST Input high level voltage 2 VDD+0.5
NRST Schmitt trigger voltage hysteresis
Weak pull-up equivalent resistor
(1)
NRST Input filtered pulse 100 ns
(1)
NRST Input not filtered pulse 300 ns
(2)
V
= V
IN
SS
200 mV
30 40 50 kΩ
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
to the series resistance must be minimum (~10% order).
Figure 21. Recommended NRST pin protection
V
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the V
Table 48. Otherwise the reset will not be taken into account by the device.
Doc ID 023353 Rev 1 87/119
max level specified in
IL(NRST)
Electrical characteristics STM32F302xx/STM32F303xx

6.3.15 Timer characteristics

The parameters given in Tab l e 49 are guaranteed by design.
Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).
Table 49. TIMx
Symbol Parameter Conditions Min Max Unit
(1)
characteristics
1
t
res(TIM)
Timer resolution time
f
f
TIMxCLK
x= 1.8
0
f
EXT
Timer external clock frequency on CH1 to CH4
f
TIMxCLK
f
TIMxCLK
x= 1.8
Res
t
COUNTER
t
MAX_COUNT
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM6, TIM14, TIM15, TIM16 and TIM17 timers.
Table 50. IWDG min/max timeout period at 40 kHz (LSI)
Timer resolution
TIM
16-bit counter clock period
Maximum possible count with 32-bit counter
Prescaler divider PR[2:0] bits
TIMx (except TIM2) 16
TIM2 32
f
f
Min timeout (ms) RL[11:0]=
= 72 MHz 13.9 ns
TIMxCLK
= 144MHz,
6.95 ns
f
TIMxCLK
= 72 MHz 0 36 MHz
= 144MHz,
072MHz
1 65536
= 72 MHz 0.0139 910 µs
TIMxCLK
65536 × 65536
= 72 MHz s
TIMxCLK
(1)
Max timeout (ms) RL[11:0]=
0x000
0xFFF
/2
t
TIMxCLK
MHz
bit
t
TIMxCLK
t
TIMxCLK
/4 0 0.1 409.6
/8 1 0.2 819.2
/16 2 0.4 1638.4
/32 3 0.8 3276.8
/64 4 1.6 6553.6
/128 5 3.2 13107.2
/256 7 6.4 26214.4
1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
88/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
Table 51. WWDG min-max timeout value @72 MHz (PCLK)
Prescaler WDGTB Min timeout value Max timeout value
10 TBD TBD
21 TBD TBD
42 TBD TBD
83 TBD TBD
Doc ID 023353 Rev 1 89/119
Electrical characteristics STM32F302xx/STM32F303xx

6.3.16 Communications interfaces

I2C interface characteristics
Unless otherwise specified, the parameters given in Ta bl e 5 2 are derived from tests performed under ambient temperature, f summarized in Ta bl e 1 6.
2
The I
C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open­drain. When configured as open-drain, the PMOS connected between the I/O pin and V disabled, but is still present.
2
The I
C characteristics are described in Ta b le 5 2 . Refer also to Section 6.3.13: I/O port
characteristics
and SCL)
Table 52. I2C characteristics
Symbol Parameter
for more details on the input/output alternate function characteristics (SDA
.
(1)
Standard mode Fast mode Fast Mode Plus
Min Max Min Max Min Max
frequency and VDD supply voltage conditions
PCLK1
DD
Unit
is
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA)
t
r(SCL)
t
f(SDA)
t
f(SCL)
t
h(STA)
t
su(STA)
t
su(STO)
t
w(STO:STA)
C
The I2C characteristics are the requirements from I2C bus specification rev03. They are guaranteed by design when
1. I2Cx_TIMING register is correctly programmed (Refer to reference manual). These characteristics are not tested in production.
The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.
2.
The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region
3. of the falling edge of SCL.
SCL clock low time 4.7 1.3 0.5
SCL clock high time 4.0 0.6 0.26
SDA setup time 250 100 50
SDA data hold time 0 3450
(2)
(3)
0
900
(2)
0450
SDA and SCL rise time 1000 300 120
SDA and SCL fall time 300 300 120
Start condition hold time 4.0 0.6 0.26
Repeated Start condition setup time
4.7 0.6 0.26
Stop condition setup time 4.0 0.6 0.26 μs
Stop to Start condition time (bus free)
Capacitive load for each bus
b
line
4.7 1.3 0.5 μs
400 400 550 pF
µs
ns
µs
Table 53. I2C analog filter characteristics
(1)
Symbol Parameter Min Max Unit
t
SP
Pulse width of spikes that are suppressed by the analog filter
90/119 Doc ID 023353 Rev 1
50 260 ns
STM32F302xx/STM32F303xx Electrical characteristics
-36
34!24
3$ !
Ω
)#BUS
2
Ω
6
$$
6
$$
-#5
3$!
3#,
T
F3$!
T
R3$!
3#,
T
H34!
T
W3#,(
T
W3#,,
T
SU3$!
T
R3#,
T
F3#,
T
H3$!
3 4!242%0%!4%$
34!24
T
SU34!
T
SU34/
34/0
T
W34/34!
2
1. Guaranteed by design, not tested in production.
Figure 22. I2C bus AC waveforms and measurement circuit
Measurement points are done at CMOS levels: 0.3V
1.
and 0.7VDD.
DD
Doc ID 023353 Rev 1 91/119
Electrical characteristics STM32F302xx/STM32F303xx
SPI/I2S characteristics
Unless otherwise specified, the parameters given in Ta bl e 5 4 for SPI or in Ta bl e 5 5 for I2S are derived from tests performed under ambient temperature, f supply voltage conditions summarized in Ta b le 1 6.
frequency and VDD
PCLKx
Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I
Table 54. SPI characteristics
Symbol Parameter Conditions Min Max Unit
f
SCK
1/t
c(SCK)
t
r(SCK)
t
f(SCK)
DuCy(SCK)
t
su(NSS)
t
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
t
h(MI)
t
h(SI)
(1)(2)
t
a(SO)
t
dis(SO)
t
v(SO)
t
v(MO)
t
h(SO)
t
h(MO)
1. Data based on characterization results, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z
SPI clock frequency
SPI clock rise and fall time
SPI slave input clock duty cycle
(1)
NSS setup time Slave mode TBD TBD
(1)
NSS hold time Slave mode TBD TBD
(1)
SCK high and low time
(1)
(1)
Data input setup time
(1)
(1)
Data input hold time
(1)
Data output access time Slave mode, f
(1)(3)
Data output disable time Slave mode TBD TBD
(1)
Data output valid time Slave mode (after enable edge) TBD TBD
(1)
Data output valid time Master mode (after enable edge) TBD TBD
(1)
Data output hold time
(1)
Master mode TBD TBD
Slave mode TBD TBD
Capacitive load: C = 30 pF TBD TBD ns
Slave mode TBD TBD %
Master mode, f presc = 4
= 36 MHz,
PCLK
TBD TBD
Master mode TBD TBD
Slave mode TBD TBD
Master mode TBD TBD
Slave mode TBD TBD
= 20 MHz TBD TBD
PCLK
Slave mode (after enable edge) TBD TBD
Master mode (after enable edge) TBD TBD
2
S).
MHz
ns
92/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
ai14134c
SCK Input
CPHA=0
MOSI
INPUT
MISO
OUT PUT
CPHA=0
MS B O U T
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT PUT
CPHA=1
MS B O U T
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
NSS input
Figure 23. SPI timing diagram - slave mode and CPHA = 0
Figure 24. SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are done at CMOS levels: 0.3V
and 0.7V
DD
DD
.
(1)
Doc ID 023353 Rev 1 93/119
Electrical characteristics STM32F302xx/STM32F303xx
AI6
3#+/UTPUT
#0(!
-/3)
/54054
-)3/
).0 5 4
#0(!
-3").
- 3"/54
")4).
,3"/54
,3").
#0/,
#0/,
" ) 4/54
.33INPUT
T
C3#+
T
W3#+(
T
W3#+,
T
R3#+
T
F3#+
T
H-)
(IGH
3#+/UTPUT
#0(!
#0(!
#0/,
#0/,
T
SU-)
T
V-/
T
H-/
Figure 25. SPI timing diagram - master mode
(1)
1. Measurement points are done at CMOS levels: 0.3V
and 0.7V
DD
DD
.
94/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
Table 55. I2S characteristics
Symbol Parameter Conditions Min Max Unit
DuCy(SCK)
f
CK
1/t
c(CK)
t
r(CK)
t
f(CK)
(1)
t
v(WS)
(1)
t
h(WS)
(1)
t
su(WS)
(1)
t
h(WS)
(1)
t
w(CKH)
(1)
t
w(CKL)
t
su(SD_MR)
t
su(SD_SR)
t
h(SD_MR)
t
h(SD_SR)
t
v(SD_ST)
t
h(SD_ST)
t
v(SD_MT)
I2S slave input clock duty cycle
I2S clock frequency
Slave mode TBD TBD %
Master mode (data: 16 bits, Audio frequency = 48 kHz)
TBD TBD
Slave mode TBD TBD
I2S clock rise and fall time Capacitive load CL=50pF TBD TBD
WS valid time Master mode TBD TBD
WS hold time Master mode TBD TBD
WS setup time Slave mode TBD TBD
WS hold time Slave mode TBD TBD
CK high and low time
(1)
Data input setup time Master receiver TBD TBD
(1)
Data input setup time Slave receiver TBD TBD
(1)(2)
Data input hold time
(1)(2)
(1)(2)
Data output valid time
(1)
Data output hold time
(1)(2)
Data output valid time
Master f frequency = 48 kHz
Master receiver TBD TBD
Slave receiver TBD TBD
Slave transmitter (after enable edge)
Slave transmitter (after enable edge)
Master transmitter (after enable edge)
= 16 MHz, audio
PCLK
TBD TBD
TBD TBD
TBD TBD
TBD TBD
TBD TBD
MHz
ns
(1)
t
h(SD_MT)
1. Data based on design simulation and/or characterization results, not tested in production.
2. Depends on f
Data output hold time
. For example, if f
PCLK
=8 MHz, then T
PCLK
Master transmitter (after enable edge)
PCLK
= 1/f
PLCLK
=125 ns.
Doc ID 023353 Rev 1 95/119
TBD TBD
Electrical characteristics STM32F302xx/STM32F303xx
CK Input
CPOL = 0
CPOL = 1
t
c(CK)
WS input
SD
transmit
SD
receive
t
w(CKH)
t
w(CKL)
t
su(WS)
t
v(SD_ST)
t
h(SD_ST)
t
h(WS)
t
su(SD_SR)
t
h(SD_SR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14881b
LSB receive
(2)
LSB transmit
(2)
CK output
CPOL = 0
CPOL = 1
t
c(CK)
WS output
SD
receive
SD
transmit
t
w(CKH)
t
w(CKL)
t
su(SD_MR)
t
v(SD_MT)
t
h(SD_MT)
t
h(WS)
t
h(SD_MR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14884b
t
f(CK)
t
r(CK)
t
v(WS)
LSB receive
(2)
LSB transmit
(2)
(1)
Figure 26. I2S slave timing diagram (Philips protocol)
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.
Figure 27. I2S master timing diagram (Philips protocol)
1. Data based on characterization results, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.
96/119 Doc ID 023353 Rev 1
(1)
STM32F302xx/STM32F303xx Electrical characteristics

6.3.17 ADC characteristics

Table 56. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
V
DDA
f
ADC
f
S
f
TRIG
V
AIN
R
AIN
R
ADC
C
ADC
t
CAL
t
latr
t
S
TADCVREG
_STUP
t
CONV
1. Data guaranteed by design
Analog supply voltage for ADC ON
23.6V
ADC clock frequency TBD 72 MHz
(1)
Sampling rate
(1)
External trigger frequency
Resolution = 12 bits,
Fast Channel
Resolution = 10 bits,
Fast Channel
Resolution = 8 bits,
Fast Channel
Resolution = 6 bits,
Fast Channel
f
= 72MHz TBD kHz
ADC
TBD 5.14
TBD 6
TBD 7.2
TBD 9
Conversion voltage range 0 V
(1)
External input impedance TBD TBD kΩ
(1)
Sampling switch resistance TBD TBD kΩ
Internal sample and hold
(1)
capacitor
(1)
Calibration time
TBD TBD pF
TBD TBD µs
TBD TBD 1/f
(1)
Trigger conversion latency
TBD TBD µs
TBD TBD 1/f
f
= 72MHz 0.021 8.35 µs
(1)
Sampling time
ADC
1.5 601.5 1/f
ADC Voltage Regulator
(1)
Start-up time.
Total conversion time
(1)
(including sampling time)
Resolution = 12bits
Resolution = 12bits
TBD TBD TBD 10 µs
= 72MHz
f
ADC
0.19 3.5 µs
14 to 252 (t
for sampling +12.5 for
S
successive approximation)
TBD 1/f
DDA
MSPS
ADC
V
ADC
ADC
ADC
1/f
ADC
Doc ID 023353 Rev 1 97/119
Electrical characteristics STM32F302xx/STM32F303xx
Table 57. Minimum sampling time to be respected for fast and slow channels
Resolution
12-bit
Minimum sampling
R
AIN
(K Ohm)
time (ns)
Fast
channels
Slow
channels
01217
Resolution
R
AIN
(K Ohm)
07 11
Minimum sampling
time (ns)
Fast
channels
Slow
channels
0.05 16 21 0.05 10 14
0.1 20 25 0.1 13 16
0.2 27 33 0.2 18 22
0.5 52 58 0.5 35 38
19499 1 6366
8-bit
5 430 435 5 285 289
10 849 854 10 563 567
20 1690 1690 20 1120 1120
50 4190 4200 50 2780 2790
100 8350 8350 100 5550 5550
09 14
05 8
0.05 13 17 0.05 7 10
0.1 16 21 0.1 9 12
0.2 23 27 0.2 13 16
10-bit
0.5 43 48 0.5 26 28
17883 1 4749
6-bit
5 358 362 5 213 216
10 706 710 10 421 423
20 1400 1410 20 836 839
50 3490 3490 50 2080 2080
100 6950 6950 100 4150 4150
98/119 Doc ID 023353 Rev 1
STM32F302xx/STM32F303xx Electrical characteristics
E
O
E
G
1LSB
IDEAL
(1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line
E
T
=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
E
O
=Offset Error: deviation between the first actual
transition and the first ideal one.
E
G
=Gain Error: deviation between the last ideal
transition and the last actual one.
E
D
=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
E
L
=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.
4095
4094
4093
5
4
3
2
1
0
7
6
12345 67
4093 4094 4095 4096
(1)
(2)
E
T
E
D
E
L
(3)
V
DDA
V
SSA
-36
1LSB
IDEAL

V
DDA
Table 58. ADC accuracy
(1)(2) (3)
Symbol Parameter Test conditions Typ Max
ET Total unadjusted error
EO Offset error TBD TBD
EG Gain error TBD TBD
ED Differential linearity error TBD TBD
EL Integral linearity error TBD TBD
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I affect the ADC accuracy.
3. Better performance may be achieved in restricted V
4. Data based on characterization results, not tested in production.
Figure 28. ADC accuracy characteristics
TBD
and ΣI
INJ(PIN)
, frequency and temperature ranges.
DDA
in Section 6.3.13 does not
INJ(PIN)
(4)
TBD TBD
Doc ID 023353 Rev 1 99/119
Electrical characteristics STM32F302xx/STM32F303xx
-36
6
$$
!).X
),!
6
6
4
2
!).

#
PARASITIC
6
!).
6
6
4
2
!$#

BIT
CONVERTER
#
!$#

3AMPLEANDHOLD!$# CONVERTER
Figure 29. Typical connection diagram using the ADC
1. Refer to Tab l e 5 6 for the values of R
2. C pad capacitance (roughly 7 pF). A high C this, f
represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
parasitic
should be reduced.
ADC
AIN
, R
parasitic
ADC
and C
ADC
.
value will downgrade conversion accuracy. To remedy
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 10. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.
100/119 Doc ID 023353 Rev 1
Loading...