ST STM32F101RF, STM32F101VF, STM32F101ZF, STM32F101RG, STM32F101VG User Manual

...
LQFP144
20 × 2
0 mm
LQFP64
10
× 10 mm
LQFP100
14
× 14 mm
to 1 MB Flash, 15 timers, 1 ADC and 10 communication interfaces
Features
Core: ARM 32-bit Cortex™-M3 CPU with MPU
– 36 MHz maximum frequency,
1.25 DMIPS/MHz (Dhrystone 2.1) performance
– Single-cycle multiplication and hardware
division
Memories
– 768 Kbytes to 1 Mbyte of Flash memory
(dual bank with read-while-write capability) – 80 Kbytes of SRAM – Flexible static memory controller with 4
Chip Select. Supports Compact Flash,
SRAM, PSRAM, NOR and NAND
memories – LCD parallel interface, 8080/6800 modes
Clock, reset and supply management
– 2.0 to 3.6 V application supply and I/Os – POR, PDR, and programmable voltage
detector (PVD) – 4-to-16 MHz crystal oscillator – Internal 8 MHz factory-trimmed RC – Internal 40 kHz RC with calibration
capability – 32 kHz oscillator for RTC with calibration
Low power
– Sleep, Stop and Standby modes –V
1 x 12-bit, 1 µs A/D converters (up to 16
channels) – Conversion range: 0 to 3.6 V – Temperature sensor
2 × 12-bit D/A converters
DMA
– 12-channel DMA controller – Peripherals supported: timers, ADC, DAC,
Up to 112 fast I/O ports
supply for RTC and backup registers
BAT
2
SPIs, I
Cs and USARTs
STM32F101xF
STM32F101xG
Preliminary data
– 51/80/112 I/Os, all mappable on 16
external interrupt vectors and almost all 5 V-tolerant
Debug mode
– Serial wire debug (SWD) & JTAG interfaces – Cortex-M3 Embedded Trace Macrocell™
Up to 15 timers
– Up to ten 16-bit timers, with up to 4
IC/OC/PWM or pulse counters
– 2 × watchdog timers (Independent and
Window) – SysTick timer: a 24-bit downcounter – 2 × 16-bit basic timers to drive the DAC
Up to 10 communication interfaces
– Up to 2 x I – Up to 5 USARTs (ISO 7816 interface, LIN,
IrDA capability, modem control) – Up to 3 SPIs (18 Mbit/s)
CRC calculation unit, 96-bit unique ID
ECOPACK

Table 1. Device summary

Reference Part number
STM32F101xF
STM32F101xG
2
C interfaces (SMBus/PMBus)
®
packages
STM32F101RF STM32F101VF STM32F101ZF
STM32F101RG STM32F101VG STM32F101ZG
November 2010 Doc ID 17143 Rev 2 1/108
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
www.st.com
1
STM32F101xF, STM32F101xG
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 15
2.3.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15
2.3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.6 FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.7 LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.8 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16
2.3.9 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.10 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.11 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.12 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.13 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.14 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.15 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.16 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.17 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 19
2.3.18 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.19 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.20 Universal synchronous/asynchronous receiver transmitters (USARTs) 21
2.3.21 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.22 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.23 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.24 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.25 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.26 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.27 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 38
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 38
5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.10 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.12 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 78
5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.16 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.18 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.19 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Doc ID 17143 Rev 2 3/108
STM32F101xF, STM32F101xG
6.2.2 Evaluating the maximum junction temperature for an application . . . . 105
7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F101xF and STM32F101xG features and peripheral counts . . . . . . . . . . . . . . . . . 11
Table 3. STM32F101xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. STM32F101xF and STM32F101xG timer feature comparison . . . . . . . . . . . . . . . . . . . . . . 19
Table 5. STM32F101xF and STM32F101xG pin definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 6. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 7. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 8. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 9. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 10. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 11. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 12. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 13. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 14. Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 15. Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 16. Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 43
Table 17. Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 43
Table 18. Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 19. Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 47
Table 20. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 21. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 22. Low-speed user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 23. HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 24. LSE oscillator characteristics (f
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
LSE
Table 25. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 26. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 27. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 28. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 29. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 30. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 58
Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 59
Table 33. Asynchronous multiplexed NOR/PSRAM read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 34. Asynchronous multiplexed NOR/PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 35. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 36. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 37. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 38. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 39. Switching characteristics for PC Card/CF read and write cycles . . . . . . . . . . . . . . . . . . . . 73
Table 40. Switching characteristics for NAND Flash read and write cycles . . . . . . . . . . . . . . . . . . . . 76
Table 41. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 42. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 43. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 44. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 45. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 46. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 47. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 48. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 49. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Doc ID 17143 Rev 2 5/108
STM32F101xF, STM32F101xG
Table 50. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 51. I Table 52. SCL frequency (f
2
C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
= 36 MHz, VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
PCLK1
Table 53. STM32F10xxx SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 54. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 55. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 56. R
max for f
AIN
= 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
ADC
Table 57. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 58. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 59. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 60. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 61. LQFP144, 20 x 20 mm, 144-pin thin quad flat package mechanical data . . . . . . . . . . . . 101
Table 62. LQPF100 – 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . 102
Table 63. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package mechanical data . . . . . . . . 103
Table 64. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 65. STM32F101xF and STM32F101xG ordering information scheme . . . . . . . . . . . . . . . . . . 106
6/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG List of figures
List of figures
Figure 1. STM32F101xF and STM32F101xG access line block diagram . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. STM32F101xF and STM32F101xG access line LQFP144 pinout . . . . . . . . . . . . . . . . . . . 23
Figure 4. STM32F101xF and STM32F101xG LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 5. STM32F101xF and STM32F101xG LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 6. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 7. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 8. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 9. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 10. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 11. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 42
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 42
Figure 13. Typical current consumption on V
different V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
BAT
Figure 14. Typical current consumption in Stop mode with regulator in run mode
versus temperature at different V Figure 15. Typical current consumption in Stop mode with regulator in low-power
mode versus temperature at different V Figure 16. Typical current consumption in Standby mode versus temperature at
different V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DD
Figure 17. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 18. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 19. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 20. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 21. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . . 58
Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . . 59
Figure 23. Asynchronous multiplexed NOR/PSRAM read waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 24. Asynchronous multiplexed NOR/PSRAM write waveforms . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 25. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 26. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 27. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 28. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 29. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . . 69
Figure 30. PC Card/CompactFlash controller waveforms for common memory write access . . . . . . . 70
Figure 31. PC Card/CompactFlash controller waveforms for attribute memory read
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 32. PC Card/CompactFlash controller waveforms for attribute memory write
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 33. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . . 72
Figure 34. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . . 73
Figure 35. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 36. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 37. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . . 75
Figure 38. NAND controller waveforms for common memory write access . . . . . . . . . . . . . . . . . . . . . 76
Figure 39. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 40. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
with RTC on vs. temperature at
BAT
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
DD
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DD
Doc ID 17143 Rev 2 7/108
List of figures STM32F101xF, STM32F101xG
Figure 41. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 42. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 43. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 44. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 45. I
Figure 46. SPI timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 47. SPI timing diagram - slave mode and CPHA=1 Figure 48. SPI timing diagram - master mode
2
C bus AC waveforms and measurement circuit
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 49. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 50. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 51. Power supply and reference decoupling (V
not connected to V
REF+
). . . . . . . . . . . . . . 96
DDA
Figure 52. Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . . 97
Figure 53. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 54. LQFP144, 20 x 20 mm, 144-pin thin quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 55. Recommended footprint
Figure 56. LQFP100 – 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . 102
Figure 57. Recommended footprint
Figure 58. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 103
Figure 59. Recommended footprint Figure 60. LQFP64 P
max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
D
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Introduction

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of
the STM32F101xF and STM32F101xG XL-density access line microcontrollers. For more
details on the whole STMicroelectronics STM32F101xx family, please refer to Section 2.2:
Full compatibility throughout the family.
The XL-density STM32F101xx datasheet should be read in conjunction with the
STM32F10xxx reference manual.
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM32F10xxx Flash programming manual.
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical
Reference Manual, available from the www.arm.com website at the following address:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.
Doc ID 17143 Rev 2 9/108
Description STM32F101xF, STM32F101xG

2 Description

The STM32F101xF and STM32F101xG access line family incorporates the high-
performance ARM
®
Cortex™-M3 32-bit RISC core operating at a 36 MHz frequency, high­speed embedded memories (Flash memory up to 1 Mbyte and SRAM of 80 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer one 12-bit ADC, ten general-purpose 16-bit timers, as well as standard and advanced communication interfaces: up to two I
2
Cs, three SPIs and five USARTs.
The STM32F101xx XL-density access line family operates in the –40 to +85 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.
These features make the STM32F101xx XL-density access line microcontroller family suitable for a wide range of applications such as medical and handheld equipment, PC peripherals and gaming, GPS platforms, industrial applications, PLC, printers, scanners alarm systems , power meters, and video intercom.
10/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Description

2.1 Device overview

The STM32F101xx XL-density access line family offers devices in 3 different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.
Figure 1 shows the general block diagram of the device family.

Table 2. STM32F101xF and STM32F101xG features and peripheral counts

Peripherals STM32F101Rx STM32F101Vx STM32F101Zx
Flash memory 768 KB 1 MB 768 KB 1 MB 768 KB 1 MB
SRAM in Kbytes 80 80 80
FSMC No Yes Yes
Timers
General-purpose 10
Basic 2
SPI 3 Communication interfaces
2
C2
I
USART 5
GPIOs 51 80 112
12-bit ADC Number of channels
12-bit DAC Number of channels
2
16
2
16
2 2
CPU frequency 36 MHz
Operating voltage 2.0 to 3.6 V
Operating temperatures
Package LQFP64 LQFP100
1. For the LQFP100 package, only FSMC Bank1 and Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.
Ambient temperature: –40 to +85 °C (see Ta bl e 1 0)
Junction temperature: –40 to +105 °C (see Ta bl e 1 0 )
(1)
LQFP144
2
16
Doc ID 17143 Rev 2 11/108
Description STM32F101xF, STM32F101xG

Figure 1. STM32F101xF and STM32F101xG access line block diagram

TRACECLK TRACED[0:3] as AS
NJTRST
JTDI JTCK/SWCLK JTMS/SWDIO
JTDO as AF
A[25:0] D[15:0]
CLK NOE NWE
NE[4:1]
NBL[1:0]
NWAIT
NL
as AF
112AF
PA[15:0]
PB[15:0]
PC[15:0]
PD[15:0]
PE[15:0]
PF[15:0]
PG[15:0]
2 channels as AF
1 channel as AF
1 channel as AF
MOSI, MISO, SCK, NSS as AF
RX, TX, CTS, RTS as AF
ADC_IN[0:15]
V
REF–
V
REF+
TPIU
Trace/trig
SW/JTAG
MPU
Cortex-M3 CPU
F
: 36 MHz
max
NVIC
GP DMA1
7 channels
GP DMA2
5 channels
EXT.IT WKUP
GPIO port A
GPIO port B
GPIO port C
GPIO port D
GPIO port E
GPIO port F
GPIO port G
TIM9
TIM10
TIM11
SPI1
USART1
Temp. sensor
12-bit ADC
@ V
DDA
ETM
FSMC
IF
Pbus
Dbus
System
Ibus
APB2: Fmax = 24/36 MHz
Trace controller
Bus matrix
AHB2
APB2
SRAM
80 Kbyte
AHB2
APB1
obl
Flash 512 Kbyte
Flash
interface
obl
Flash 512 Kbyte
Flash
interface
Reset & clock control
WWDG
TIM6
TIM7
64 bit
64 bit
@V
RC 8 MHz
RC 40 kHz
PCLK1 PCLK2 HCLK FCLK
PLL
DDA
POR
Reset
Int
= 24/36 MHz
max
APB1: F
V
DD
Volt. reg.
3.3 V to 1.8 V
Supply supervision
POR / PDR
IWDG
Standby
interface
XTAL 32kHz
RTC
AWU
Backup interface
TIM2
TIM12
TIM13
TIM14
USART 2
USART 3
UART4
UART5
12bit DAC1
IFIF IF
12bit DAC 2
@V
@V
DD
Power
@V
DDA
PVD
@V
XTAL OSC 4-16 MHz
V
@
BAT
Backup
reg
TIM3
TIM4
TIM5
SPI2
SPI3
I2C1
I2C2
DDA
DD
V
SS
NRST V
DDA
V
SSA
OSC_IN OSC_OUT
V
=1.8 V to 3.6 V
BAT
OSC32_IN OSC32_OUT
TAMPER-RTC/ ALARM/SECOND OUT
4 channels as AF
4 channels as AF
4 channels as AF
4 channels as AF
2 channels as AF
1 channel as AF
1 channel as AF
RX, TX, CTS, RTS CK, as AF RX, TX, CTS, RT S, CK, as AF
RX,TX as AF
RX,TX as AF
MOSI, MISO SCK, NSS as AF
MOSI, MISO
SCK, NSS as AF
SCL, SDA, SMBA as AF
SCL, SDA, SMBA as AF
DAC_OUT1 as AF
DAC_OUT2 as AF
V
REF+
,
ai15830
1. TA = –40 °C to +85 °C (junction temperature up to 105 °C).
2. AF = alternate function on I/O port pin.
12/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Description
(3%/3#
-(Z
/3#?).
/3#?/54
/3#?).
/3#?/54
,3%/3# K(Z
(3)2#
-(Z
,3)2# K(Z
TOINDEPENDENTWATCHDOG)7$'
0,,
XXX
0,,-5,
(3%(IGHSPEEDEXTERNALCLOCKSIGNALIG
,3%
,3)
(3)
,EGEND
-#/
#LOCK/UTPUT
-AIN
0,,8402%

X
!(" 0RESCALER 

0,,#,+
(3)
(3%
!0"
0RESCALER

!$# 0RESCALER 
!$##,+
0#,+
(#,+
0,,#,+
TO!("BUSCORE MEMORYAND$-!
TO!$#
,3%
,3)
(3)


(3)
(3%
PERIPHERALS
TO!0"
0ERIPHERAL#LOCK
%NABLE
%NABLE
0ERIPHERAL#LOCK
!0"
0RESCALER

0#,+
TO!0"PERIPHERALS
0ERIPHERAL#LOCK
%NABLE
-(ZMAX
-(Z
-(ZMAX
-(ZMAX
TO24#
0,,32#
37
-#/
#33
TO#ORTEX3YSTEMTIMER

#LOCK
%NABLE
393#,+
MAX
24##,+
24#3%,;=
4)-X#,+
)7$'#,+
393#,+
&#,+#ORTEX FREERUNNINGCLOCK
4)-
TO4)- AND
TO&3-#
&3-##,+
0ERIPHERALCLOCK ENABLE
AI
)F!0"PRESCALERX
ELSEX
(IGHSPEEDINTERNALCLOCKSIGNAL
,OWSPEEDEXTERNALCLOCKSIGNAL
,OWSPEEDINTERNALCLOCKSIGNAL
0ERIPHERAL#LOCK %NABLE
4)-X#,+
4)-
TO4)-4)- AND4)-
)F!0"PRESCALERX
ELSEX
&,)4&#,+
TO&LASHPROGRAMMING INTERFACE

Figure 2. Clock tree

1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 36 MHz.
2. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz or 28 MHz.
Doc ID 17143 Rev 2 13/108
Description STM32F101xF, STM32F101xG

2.2 Full compatibility throughout the family

The STM32F101xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F101x4 and STM32F101x6 are identified as low-density devices, the STM32F101x8 and STM32F101xB are referred to as medium-density devices, the STM32F101xC, STM32F101xD, STM32F101xE are referred to as high-density devices, and the STM32F101xF and STM32F101xG are referred to as XL-density devices.
Low-, high-density and XL-density devices are an extension of the STM32F101x8/B medium-density devices, they are specified in the STM32F101x4/6, STM32F101xC/D/E and STM32F101xF/G datasheets, respectively.
Low-density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High-density devices have higher Flash memory and RAM densities, and additional peripherals like FSMC and DAC. XL-density devices bring greater Flash and RAM capacities, and more features, namely an MPU, a higher number of timers and a dual bank Flash memory, while remaining fully compatible with the other members of the family.
The STM32F101x4, STM32F101x6, STM32F101xC, STM32F101xD, STM32F101xE, STM32F101xF and STM32F101xG are a drop-in replacement for the STM32F101x8/B devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.
Moreover, the STM32F101xx access line family is fully compatible with all existing STM32F103xx performance line and STM32F102xx USB access line devices.

Table 3. STM32F101xx family

Pinout
144
100
64
48
36
1. For orderable part numbers that do not show the A internal code after the temperature range code (6), the reference datasheet for electrical characteristics is that of the STM32F101x8/B medium-density devices.
Memory size
Low-density devices Medium-density devices High-density devices XL-density devices
16 KB
Flash
4 KB RAM 6 KB RAM 10 KB RAM 16 KB RAM
32 KB
Flash
(1)
64 KB
Flash
128 KB
Flash
256 KB
Flash
32 KB
RAM
384 KB
Flash
48 KB
RAM
512 KB
Flash
48 KB
RAM
768 KB
80 KB
5 × USARTs 10 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I 1 × ADC, 1 × DAC FSMC (100 and 144 pins), Cortex-M3 with MPU, Dual bank Flash memory
2 × USARTs 2 × 16-bit timers 1 × SPI, 1 × I
2
C
1 × ADC
3 × USARTs 3 × 16-bit timers 2 × SPIs, 2 × I2Cs, 1 × ADC
5 × USARTs 4 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I
2
Cs, 1 × ADC, 1 × DAC FSMC (100 and 144 pins)
Flash
RAM
1 MB
Flash
80 KB
RAM
2
Cs,
14/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Description

2.3 Overview

2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM

The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.
The STM32F101xF and STM32F101xG access line family having an embedded ARM core, is therefore compatible with all ARM tools and software.
Figure 1 shows the general block diagram of the device family.

2.3.2 Memory protection unit

The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.
The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.

2.3.3 Embedded Flash memory

768 Kbytes to 1 Mbyte of embedded Flash are available for storing programs and data. The Flash memory is organized as two banks. The first bank has a size of 512 Kbytes. The second bank is either 256 or 512 Kbytes depending on the device. This gives the device the capability of writing to one bank while executing code from the other bank (read-while-write capability).

2.3.4 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.
Doc ID 17143 Rev 2 15/108
Description STM32F101xF, STM32F101xG

2.3.5 Embedded SRAM

80 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.3.6 FSMC (flexible static memory controller)

The FSMC is embedded in the STM32F101xF and STM32F101xG access line family. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR and NAND.
Functionality overview:
The three FSMC interrupt lines are ORed in order to be connected to the NVIC
Write FIFO
Code execution from external memory except for NAND Flash and PC Card
The targeted frequency is HCLK/2, so external access is at 18 MHz when HCLK is at
36 MHz

2.3.7 LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost­effective graphic applications using LCD modules with embedded controllers or high­performance solutions using external controllers with dedicated acceleration.

2.3.8 Nested vectored interrupt controller (NVIC)

The STM32F101xF and STM32F101xG access line embeds a nested vectored interrupt controller able to handle up to 60 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3) and 16 priority levels.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.9 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected to the 16 external interrupt lines.
16/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Description

2.3.10 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock is available when necessary (for example with failure of an indirectly used external oscillator).
Several prescalers are used to configure the AHB frequency, the high-speed APB (APB2) domain and the low-speed APB (APB1) domain. The maximum frequency of the AHB and APB domains is 36 MHz. See Figure 2 for details on the clock tree.

2.3.11 Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from user Flash: you have an option to boot from any of two memory banks. By
default, boot from Flash memory bank 1 is selected. You can choose to boot from Flash memory bank 2 by setting a bit in the option bytes.
Boot from system memory
Boot from embedded SRAM
The bootloader is located in system memory. It is used to reprogram the Flash memory by using USART1.

2.3.12 Power supply schemes

V
V
V
For more details on how to connect power pins, refer to Figure 9: Power supply scheme.
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.
DD
Provided externally through V
, V
SSA
= 2.0 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks,
DDA
RCs and PLL (minimum voltage to be applied to V used). V
= 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup
BAT
DDA
and V
registers (through power switch) when V

2.3.13 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the V
DD/VDDA
generated when V than the V message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to
Table 12: Embedded reset and power control block characteristics for the values of
V
POR/PDR
power supply and compares it to the V
DD/VDDA
threshold. The interrupt service routine can then generate a warning
PVD
and V
PVD
pins.
DD
must be connected to VDD and VSS, respectively.
SSA
DD
is below a specified threshold, V
DD
drops below the V
PVD
.
is 2.4 V when the ADC or DAC is
DDA
is not present.
POR/PDR
threshold. An interrupt can be
PVD
, without the need for an
threshold and/or when VDD/V
is higher
DDA
Doc ID 17143 Rev 2 17/108
Description STM32F101xF, STM32F101xG

2.3.14 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.
MR is used in the nominal regulation mode (Run)
LPR is used in the Stop modes.
Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode.

2.3.15 Low-power modes

The STM32F101xF and STM32F101xG access line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.

2.3.16 DMA

The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to­peripheral transfers.
The two DMA controllers support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.
18/108 Doc ID 17143 Rev 2
Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.
DMA can be used with the main peripherals: SPI, I
2
C, USART, general-purpose and basic
timers TIMx, DAC and ADC.
STM32F101xF, STM32F101xG Description

2.3.17 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V
supply when present or through the V
DD
registers used to store 84 bytes of user application data when V
pin. The backup registers are forty-two 16-bit
BAT
power is not present.
DD
They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.
The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.18 Timers and watchdogs

The XL-density STM32F101xx access line devices include up to ten general-purpose timers, two basic timers, two watchdog timers and a SysTick timer.
Table 4: STM32F101xF and STM32F101xG timer feature comparison compares the
features of the general-purpose and basic timers.
Table 4. STM32F101xF and STM32F101xG timer feature comparison
Timer
TIM2, TIM3, TIM4, TIM5
TIM9, TIM12 16-bit Up
TIM10, TIM11, TIM13, TIM14
TIM6, TIM7 16-bit Up
Counter
resolution
16-bit
16-bit Up
Counter
type
Up, down,
up/down
Prescaler factor
Any integer between
1 and 65536
Any integer between
1 and 65536
Any integer between
1 and 65536
Any integer between
1 and 65536
DMA
request
generation
Ye s 4 No
No 2 No
No 1 No
Ye s 0 No
General-purpose timers (TIMx)
There are 10 synchronizable general-purpose timers embedded in the STM32F101xF and STM32F101xG XL-density access line devices (see Ta bl e 4 for differences).
TIM2, TIM3, TIM4, TIM5
There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5) embedded in the STM32F101xF and STM32F101xG access line devices.
These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or
Capture/compare
channels
Complementary
outputs
Doc ID 17143 Rev 2 19/108
Description STM32F101xF, STM32F101xG
one-pulse mode output. This gives up to 16 input captures / output compares / PWMs on the largest packages.
Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.
TIM10, TIM11 and TIM9
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.
TIM13, TIM14 and TIM12
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13 and TIM14 feature one independent channel, whereas TIM12 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source
20/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Description

2.3.19 I²C bus

Up to two I²C bus interfaces can operate in multi-master and slave modes. They support standard and fast modes. They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded. They can be served by DMA and they support SMBus 2.0/PMBus.

2.3.20 Universal synchronous/asynchronous receiver transmitters (USARTs)

The STM32F101xF and STM32F101xG access line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).
These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The five interfaces are able to communicate at speeds of up to 2.25 Mbit/s.
USART1, USART2 and USART3 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller except for UART5.

2.3.21 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.
All SPIs can be served by the DMA controller.

2.3.22 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current­capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

2.3.23 ADC (analog to digital converter)

A 12-bit analog-to-digital converter is embedded into STM32F101xF and STM32F101xG access line devices. It has up to 16 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
Doc ID 17143 Rev 2 21/108
Description STM32F101xF, STM32F101xG
The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

2.3.24 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel
external triggers for conversion
input voltage reference V
Seven DAC trigger inputs are used in the STM32F101xF and STM32F101xG access line family. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.
REF+

2.3.25 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

2.3.26 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.3.27 Embedded Trace Macrocell™

The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F10xxx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.
< 3.6 V. The temperature sensor is internally
DDA
22/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Pinouts and pin descriptions
V
DD_3VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
V
DD_11VSS_11
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
V
DD_10VSS_10
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
PE2
V
DD_2
PE3
V
SS_2
PE4
NC
PE5
PA13
PE6
PA12
VBAT
PA11
PC13-TAMPER-RTC
PA10
PC14-OSC32_IN
PA9
PC15-OSC32_OUT
PA8
PF0
PC9
PF1
PC8
PF2
PC7
PF3
PC6
PF4
V
DD_9
PF5
V
SS_9
V
SS_5
PG8
V
DD_5
PG7
PF6
PG6
PF7
PG5
PF8
PG4
PF9
PG3
PF10
PG2
OSC_IN
PD15
OSC_OUT
PD14
NRST
V
DD_8
PC0
V
SS_8
PC1
PD13
PC2
PD12
PC3
PD11
V
SSA
PD10
V
REF-
PD9
V
REF+
PD8
V
DDA
PB15
PA0-WKUP
PB14
PA1
PB13
PA2
PB12
PA3
V
SS_4
V
DD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS_6
V
DD_6
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
V
SS_7
V
DD_7
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
V
SS_1
V
DD_1
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
109
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
108 107 106 105 104 103 102 101 100
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84
3738394041424344454647484950515253545556575859
60
72
LQFP144
120
119
118
117
116
115
114
113
112
111
110
6162636465666768697071
26 27 28 29 30 31 32 33 34 35 36
83 82 81 80 79 78 77 76 75 74 73
ai14667

3 Pinouts and pin descriptions

Figure 3. STM32F101xF and STM32F101xG access line LQFP144 pinout

Doc ID 17143 Rev 2 23/108
Pinouts and pin descriptions STM32F101xF, STM32F101xG
100
9998979695949392919089888786858483828180797877
76
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
VDD_2 VSS_2 NC PA 1 3 PA 1 2 PA 1 1 PA 1 0 PA 9 PA 8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12
PA 3
VSS_4
VDD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS_1
VDD_1
VDD_3
VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
26272829303132333435363738394041424344454647484950
PE2 PE3 PE4 PE5 PE6
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
VSS_5
VDD_5
OSC_IN
OSC_OUT
NRST
PC0 PC1 PC2 PC3
VSSA
VREF-
VREF+
VDDA
PA 0- W K UP
PA 1 PA 2
ai14391
LQFP100

Figure 4. STM32F101xF and STM32F101xG LQFP100 pinout

24/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Pinouts and pin descriptions
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47 46
45 44 43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2 3
4
5 6
7
8
9
10 11 12
13
14 15
16
V
BAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0-OSC_IN
PD1-OSC_OUT
NRST
PC0 PC1 PC2 PC3
V
SSA
V
DDA
PA 0- W K UP
PA 1 PA 2
V
DD_3
V
SS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA 1 5
PA 14
V
DD_2
V
SS_2
PA 1 3 PA 1 2 PA 1 1 PA 1 0 PA 9 PA 8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12
PA 3
V
SS_4
V
DD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
V
SS_1
V
DD_1
LQFP64
ai14392

Figure 5. STM32F101xF and STM32F101xG LQFP64 pinout

Table 5. STM32F101xF and STM32F101xG pin definitions

Pins
LQFP64
LQFP144
LQFP100
Pin name
(1)
(2)
Typ e
Main
function
(after reset)
I / O level
(3)
Alternate functions
Default Remap
(4)
1 - 1 PE2 I/O FT PE2 TRACECLK / FSMC_A23
2 - 2 PE3 I/O FT PE3 TRACED0 / FSMC_A19
3 - 3 PE4 I/O FT PE4 TRACED1 / FSMC_A20
4 - 4 PE5 I/O FT PE5 TRACED2 / FSMC_A21 TIM9_CH1
5 - 5 PE6 I/O FT PE6 TRACED3 / FSMC_A22 TIM9_CH2
616 V
BAT
7 2 7 PC13-TAMPER-RTC
8 3 8 PC14-OSC32_IN
9 4 9 PC15-OSC32_OUT
SV
(5)
I/O PC13
(5)
I/O PC14
(5)
I/O PC15
BAT
(6)
(6)
(6)
TAMPER-RTC
OSC32_IN
OSC32_OUT
10 - - PF0 I/O FT PF0 FSMC_A0
11 - - PF1 I/O FT PF1 FSMC_A1
12 - - PF2 I/O FT PF2 FSMC_A2
13 - - PF3 I/O FT PF3 FSMC_A3
14 - - PF4 I/O FT PF4 FSMC_A4
15 - - PF5 I/O FT PF5 FSMC_A5
16 - 10 V
17 - 11 V
SS_5
DD_5
SV
SV
SS_5
DD_5
Doc ID 17143 Rev 2 25/108
Pinouts and pin descriptions STM32F101xF, STM32F101xG
Table 5. STM32F101xF and STM32F101xG pin definitions (continued)
Pins
LQFP144
LQFP64
(2)
Pin name
(1)
Typ e
LQFP100
Main
function
(after reset)
I / O level
(3)
Alternate functions
Default Remap
18 - - PF6 I/O PF6 FSMC_NIORD TIM10_CH1
19 - - PF7 I/O PF7 FSMC_NREG TIM11_CH1
20 - - PF8 I/O PF8 FSMC_NIOWR TIM3_CH1
21 - - PF9 I/O PF9 FSMC_CD TIM14_CH1
22 - - PF10 I/O PF10 FSMC_INTR
23 5 12 OSC_IN I OSC_IN
24 6 13 OSC_OUT O OSC_OUT
25 7 14 NRST I/O NRST
26 8 15 PC0 I/O PC0 ADC_IN10
27 9 16 PC1 I/O PC1 ADC_IN11
28 10 17 PC2 I/O PC2 ADC_IN12
29 11 18 PC3 I/O PC3 ADC_IN13
30 12 19 V
31 - 20 V
32 - 21 V
33 13 22 V
SSA
REF-
REF+
DDA
34 14 23 PA0-WKUP I/O PA0
35 15 24 PA1 I/O PA1
36 16 25 PA2 I/O PA2
37 17 26 PA3 I/O PA3
SV
SV
SV
SV
SSA
REF-
REF+
DDA
USART2_RX
WKUP/ USART2_CTS
ADC_IN0 / TIM5_CH1/
TIM2_CH1_ETR
USART2_RTS
ADC_IN1 / TIM5_CH2
TIM2_CH2
USART2_TX
TIM5_CH3 / ADC_IN2/
TIM2_CH3
(7)
(7)
(7)
(7)
/
(7)
(7)
/
/ TIM9_CH1
/ TIM5_CH4/
ADC_IN3 / TIM2_CH4
(7)
(7)
/
TIM9_CH2
38 18 27 V
39 19 28 V
SS_4
DD_4
40 20 29 PA4 I/O PA4
41 21 30 PA5 I/O PA5
42 22 31 PA6 I/O PA6
SV
SV
SS_4
DD_4
SPI1_NSS/ DAC_OUT1 /
ADC_IN4 / USART2_CK
SPI1_SCK / DAC_OUT2 /
ADC_IN5
SPI1_MISO / ADC_IN6 /
TIM3_CH1
(7)
/ TIM13_CH1
(7)
(4)
/
26/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Pinouts and pin descriptions
Table 5. STM32F101xF and STM32F101xG pin definitions (continued)
Pins
Pin name
LQFP64
LQFP144
LQFP100
43 23 32 PA7 I/O PA7
(2)
(1)
Typ e
Main
function
(3)
(after reset)
I / O level
SPI1_MOSI / ADC_IN7 /
TIM3_CH2
44 24 33 PC4 I/O PC4 ADC_IN14
45 25 34 PC5 I/O PC5 ADC_IN15
46 26 35 PB0 I/O PB0 ADC_IN8 / TIM3_CH3
47 27 36 PB1 I/O PB1 ADC_IN9 / TIM3_CH4
48 28 37
PB2 I/O FT PB2/BOOT1
49 - - PF11 I/O FT PF11 FSMC_NIOS16
50 - - PF12 I/O FT PF12 FSMC_A6
51 - - V
52 - - V
SS_6
DD_6
53 - - PF13 I/O
SV
SV
FT
SS_6
DD_6
PF13 FSMC_A7
54 - - PF14 I/O FT PF14 FSMC_A8
55 - - PF15 I/O
FT
PF15 FSMC_A9
56 - - PG0 I/O FT PG0 FSMC_A10
57 - - PG1 I/O
FT
PG1 FSMC_A11
58 - 38 PE7 I/O FT PE7 FSMC_D4
59 - 39 PE8 I/O FT PE8 FSMC_D5
60 - 40 PE9 I/O FT PE9 FSMC_D6
61 - - V
62 - - V
SS_7
DD_7
SV
SV
SS_7
DD_7
63 - 41 PE10 I/O FT PE10 FSMC_D7
64 - 42 PE11 I/O FT PE11 FSMC_D8
65 - 43 PE12 I/O FT PE12 FSMC_D9
66 - 44 PE13 I/O FT PE13 FSMC_D10
67 - 45 PE14 I/O FT PE14 FSMC_D11
68 - 46 PE15 I/O FT PE15 FSMC_D12
69 29 47 PB10 I/O FT PB10 I2C2_SCL / USART3_TX
70 30 48 PB11 I/O FT PB11 I2C2_SDA / USART3_RX
71 31 49 V
72 32 50 V
SS_1
DD_1
73 33 51 PB12 I/O FT PB12
SV
SV
SS_1
DD_1
SPI2_NSS
USART3_CK
Alternate functions
Default Remap
(7)
/ TIM14_CH1
(7)
(7)
(7)
(7)
(7)
/ I2C2_SMBA /
(7)
(4)
TIM2_CH3
TIM2_CH4
Doc ID 17143 Rev 2 27/108
Pinouts and pin descriptions STM32F101xF, STM32F101xG
Table 5. STM32F101xF and STM32F101xG pin definitions (continued)
Pins
LQFP144
LQFP64
Pin name
LQFP100
(2)
(1)
Typ e
Main
function
(after reset)
I / O level
74 34 52 PB13 I/O FT PB13
75 35 53 PB14 I/O FT PB14
(3)
USART3_RTS
Alternate functions
Default Remap
(7)
(7)
(7)
/
(7)
/
/
SPI2_SCK
USART3_CTS
SPI2_MISO
TIM12_CH1
76 36 54 PB15 I/O FT PB15 SPI2_MOSI
(7)
/ TIM12_CH2
77 - 55 PD8 I/O FT PD8 FSMC_D13 USART3_TX
78 - 56 PD9 I/O FT PD9 FSMC_D14 USART3_RX
79 - 57 PD10 I/O FT PD10 FSMC_D15 USART3_CK
80 - 58 PD11 I/O FT PD11 FSMC_A16 USART3_CTS
81 - 59 PD12 I/O FT PD12 FSMC_A17
82 - 60 PD13 I/O FT PD13 FSMC_A18 TIM4_CH2
83 - - V
84 - - V
SS_8
DD_8
SV
SV
SS_8
DD_8
85 - 61 PD14 I/O FT PD14 FSMC_D0 TIM4_CH3
86 - 62 PD15 I/O FT PD15 FSMC_D1 TIM4_CH4
87 - - PG2 I/O FT PG2 FSMC_A12
88 - - PG3 I/O FT PG3 FSMC_A13
89 - - PG4 I/O FT PG4 FSMC_A14
90 - - PG5 I/O FT PG5 FSMC_A15
91 - - PG6 I/O FT PG6 FSMC_INT2
92 - - PG7 I/O FT PG7 FSMC_INT3
93 - - PG8 I/O FT PG8
94 - - V
95 - - V
SS_9
DD_9
SV
SV
SS_9
DD_9
96 37 63 PC6 I/O FT PC6 TIM3_CH1
97 38 64 PC7 I/O FT PC7 TIM3_CH2
98 39 65 PC8 I/O FT PC8 TIM3_CH3
99 40 66 PC9 I/O FT PC9 TIM3_CH4
100 41 67 PA8 I/O FT PA8 USART1_CK / MCO
101 42 68 PA9 I/O FT PA9 USART1_TX
102 43 69 PA10 I/O FT PA10 USART1_RX
(7)
(7)
103 44 70 PA11 I/O FT PA11 USART1_CTS
(4)
TIM4_CH1 /
USART3_RTS
28/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Pinouts and pin descriptions
Table 5. STM32F101xF and STM32F101xG pin definitions (continued)
Pins
LQFP144
LQFP64
Pin name
LQFP100
(2)
(1)
Typ e
Main
function
(3)
(after reset)
I / O level
104 45 71 PA12 I/O FT PA12 USART1_RTS
105 46 72 PA13 I/O FT JTMS-SWDIO
106 - 73 Not connected
107 47 74
108 48 75
109 49 76
110 50 77
111 51 78
112 52 79
113 53 80
114 5 81
115 6 82
116 54 83
117 - 84
118 - 85
119 - 86
120 - -
121 - -
122 - 87
123 - 88
124 - -
125 - -
126 - -
127 - -
128 - -
129 - -
130 - -
131 - -
132 - -
V
SS_2
V
DD_2
PA 1 4 I / O FT
SV
SV
SS_2
DD_2
JTCK-
SWCLK
PA15 I/O FT JTDI SPI3_NSS
PC10 I/O FT PC10 UART4_TX
PC11 I/O FT PC11 UART4_RX
PC12 I/O FT PC12 UART5_TX
PD0 I/O FT OSC_IN
PD1 I/O FT OSC_OUT
(8)
(8)
PD2 I/O FT PD2 TIM3_ETR / UART5_RX
PD3 I/O FT PD3 FSMC_CLK
PD4 I/O FT PD4 FSMC_NOE
PD5 I/O FT PD5 FSMC_NWE
V
SS_10
V
DD_10
SV
SV
SS_10
DD_10
PD6 I/O FT PD6 FSMC_NWAIT
PD7 I/O FT PD7 FSMC_NE1 /
PG9 I/O FT PG9 FSMC_NE2 /
PG10 I/O FT PG10
PG11 I/O FT PG11
FSMC_NCE4_1
FSMC_NCE4_2
PG12 I/O FT PG12 FSMC_NE4
PG13 I/O FT PG13 FSMC_A24
PG14 I/O FT PG14 FSMC_A25
V
SS_11
V
DD_11
SV
SV
SS_11
DD_11
PG15 I/O FT PG15
Alternate functions
Default Remap
FSMC_D2
FSMC_D3
(9)
(9)
FSMC_NCE2 USART2_CK
FSMC_NCE3
FSMC_NE3 /
(4)
TIM2_CH1_ETR/ PA15 /
USART3_TX
USART3_RX
USART3_CK
USART2_CTS
USART2_RTS
USART2_TX
USART2_RX
PA 1 3
PA 1 4
SPI1_NSS
Doc ID 17143 Rev 2 29/108
Pinouts and pin descriptions STM32F101xF, STM32F101xG
Table 5. STM32F101xF and STM32F101xG pin definitions (continued)
Pins
LQFP64
LQFP144
133 55 89
134 56 90
(2)
Pin name
(1)
Typ e
LQFP100
Main
function
(after reset)
I / O level
(3)
PB3 I/O FT JTDO SPI3_SCK
PB4 I/O FT NJTRST SPI3_MISO
Alternate functions
Default Remap
135 57 91 PB5 I/O PB5 I2C1_SMBA/ SPI3_MOSI
136 58 92 PB6 I/O FT PB6 I2C1_SCL / TIM4_CH1
137 59 93 PB7 I/O FT PB7
I2C1_SDA / FSMC_NADV /
TIM4_CH2
(7)
(7)
138 60 94 BOOT0 I BOOT0
139 61 95 PB8 I/O FT PB8 TIM4_CH3
140 62 96 PB9 I/O FT PB9 TIM4_CH4
141 - 97 PE0 I/O FT PE0 TIM4_ETR
(7)
(7)
(7)
/ FSMC_NBL0
142 - 98 PE1 I/O FT PE1 FSMC_NBL1
143 63 99 V
144 64 100 V
SS_3
DD_3
1. I = input, O = output, S = supply.
2. FT = 5 V tolerant.
3. Function availability depends on the chosen device.
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
7. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
8. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and LQFP144 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual
9. For devices delivered in LQFP64 packages, the FSMC function is not available.
SV
SV
SS_3
DD_3
(4)
TIM2_CH2 /
TRACESWO
SPI1_SCK
TIM3_CH1
PB4 /
SPI1_MISO
TIM3_CH2 / SPI1_MOSI
USART1_TX
USART1_RX
I2C1_SCL
I2C1_SDA
PB3
30/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Pinouts and pin descriptions

Table 6. FSMC pin definition

FSMC
Pins
CF CF/IDE
NOR/PSRAM/
SRAM
NOR/PSRAM
Mux
NAND 16 bit
LQFP100
PE2 A23 A23 Yes
PE3 A19 A19 Yes
PE4 A20 A20 Yes
PE5 A21 A21 Yes
PE6 A22 A22 Yes
PF0 A0 A0 A0 -
PF1 A1 A1 A1 -
PF2 A2 A2 A2 -
PF3 A3 A3 -
PF4 A4 A4 -
PF5 A5 A5 -
PF6 NIORD NIORD -
PF7 NREG NREG -
(1)
PF8 NIOWR NIOWR -
PF9 CD CD -
PF10 INTR INTR -
PF11 NIOS16 NIOS16 -
PF12 A6 A6 -
PF13 A7 A7 -
PF14 A8 A8 -
PF15 A9 A9 -
PG0 A10 A10 -
PG1 A11 -
PE7 D4 D4 D4 DA4 D4 Yes
PE8 D5 D5 D5 DA5 D5 Yes
PE9 D6 D6 D6 DA6 D6 Yes
PE10 D7 D7 D7 DA7 D7 Yes
PE11 D8 D8 D8 DA8 D8 Yes
PE12 D9 D9 D9 DA9 D9 Yes
PE13 D10 D10 D10 DA10 D10 Yes
PE14 D11 D11 D11 DA11 D11 Yes
PE15 D12 D12 D12 DA12 D12 Yes
PD8 D13 D13 D13 DA13 D13 Yes
Doc ID 17143 Rev 2 31/108
Pinouts and pin descriptions STM32F101xF, STM32F101xG
Table 6. FSMC pin definition (continued)
FSMC
Pins
CF CF/IDE
NOR/PSRAM/
SRAM
NOR/PSRAM
Mux
NAND 16 bit
LQFP100
PD9 D14 D14 D14 DA14 D14 Yes
PD10 D15 D15 D15 DA15 D15 Yes
PD11 A16 A16 CLE Yes
PD12 A17 A17 ALE Yes
PD13 A18 A18 Yes
PD14 D0 D0 D0 DA0 D0 Yes
PD15 D1 D1 D1 DA1 D1 Yes
PG2 A12 -
PG3 A13 -
PG4 A14 -
PG5 A15 -
PG6 INT2 -
PG7 INT3 -
PD0 D2 D2 D2 DA2 D2 Yes
(1)
PD1 D3 D3 D3 DA3 D3 Yes
PD3 CLK CLK Yes
PD4 NOE NOE NOE NOE NOE Yes
PD5 NWE NWE NWE NWE NWE Yes
PD6 NWAIT NWAIT NWAIT NWAIT NWAIT Yes
PD7 NE1 NE1 NCE2 Yes
PG9 NE2 NE2 NCE3 -
PG10 NCE4_1 NCE4_1 NE3 NE3 -
PG11 NCE4_2 NCE4_2 -
PG12 NE4 NE4 -
PG13 A24 A24 -
PG14 A25 A25 -
PB7 NADV NADV Yes
PE0 NBL0 NBL0 Yes
PE1 NBL1 NBL1 Yes
1. Ports F and G are not available in devices delivered in 100-pin packages.
32/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Memory mapping
512-Mbyte
block 7
Cortex-M3's
internal
peripherals
512-Mbyte
block 6
Not used
512-Mbyte
block 5
FSMC register
512-Mbyte
block 4
FSMC bank3
& bank4
512-Mbyte
block 3
FSMC bank1
& bank2
512-Mbyte
block 2
Peripherals
512-Mbyte
block 1
SRAM
0x0000 0000
0x1FFF FFFF
0x2000 0000
0x3FFF FFFF
0x4000 0000
0x5FFF FFFF
0x6000 0000
0x7FFF FFFF
0x8000 0000
0x9FFF FFFF
0xA000 0000
0xBFFF FFFF
0xC000 0000
0xDFFF FFFF
0xE000 0000
0xFFFF FFFF
512-Mbyte
block 0
Code
Flash memory bank 1
(512 KB)
0x0810 0000 - 0x1FFF DFFF
0x1FFF E000- 0x1FFF F7FF
0x1FFF F800 - 0x1FFF F80F
0x0800 0000 - 0x0807 FFFF
0x0010 0000 - 0x07FF FFFF
0x0000 0000
0x000F FFFF
System memory
Reserved
Reserved
Aliased to Flash or system
memory depending on
BOOT pins
SRAM (80 KB aliased
by bit-banding)
Reserved
0x2000 0000 - 0x2001 3FFF
0x2001 4000
0x3FFF FFFF
TIM2
TIM3
0x4000 0000 - 0x4000 03FF
TIM4
TIM5
TIM6
TIM7
Reserved
0x4000 0400 - 0x4000 07FF
0x4000 0800 - 0x4000 0BFF
0x4000 0C00 - 0x4000 0FFF
0x4000 1000 - 0x4000 13FF
0x4000 1400 - 0x4000 17FF
0x4000 2400 - 0x4000 27FF
RTC
0x4000 2800 - 0x4000 2BFF
WWDG
0x4000 2C00 - 0x4000 2FFF
IWDG
0x4000 3000 - 0x4000 33FF
Reserved
0x4000 3400 - 0x4000 37FF
SPI2
0x4000 3800 - 0x4000 3BFF
SPI3
0x4000 3C00 - 0x4000 3FFF
Reserved
0x4000 4000 - 0x4000 43FF
USART2
0x4000 4400 - 0x4000 47FF
0x4000 4800 - 0x4000 4BFF
USART3
UART4
0x4000 4C00 - 0x4000 4FFF
UART5
0x4000 5000 - 0x4000 53FF
I2C1
0x4000 5400 - 0x4000 57FF
I2C2
0x4000 5800 - 0x4000 5BFF
Reserved
0x4000 5C00 - 0x4000 6BFF
BKP
0x4000 6C00 - 0x4000 6FFF
PWR
0x4000 7000 - 0x4000 73FF
DAC
0x4000 7400 - 0x4000 77FF
Reserved
0x4000 7800 - 0x4000 FFFF
AFIO
0x4001 0000 - 0x4001 03FF
Port A
EXTI
0x4001 0400 - 0x4001 07FF
0x4001 0800 - 0x4001 0BFF
Port B
0x4001 0C00 - 0x4001 0FFF
Port C
0x4001 1000 - 0x4001 13FF
Port D
0x4001 1400 - 0x4001 17FF
Port E
0x4001 1800 - 0x4001 1BFF
Port F
0x4001 1C00 - 0x4001 1FFF
Port G
0x4001 2000 - 0x4001 23FF
ADC1
0x4001 2400 - 0x4001 27FF
0x4001 2800 - 0x4001 2FFF
SPI1
0x4001 3000 - 0x4001 33FF
0x4001 3400 - 0x4001 37FF
USART1
0x4001 3800 - 0x4001 3BFF
TIM10
DMA1
0x4002 0000 - 0x4002 03FF
DMA2
0x4002 0400 - 0x4002 07FF
Reserved
0x4002 0400 - 0x4002 0FFF
RCC
0x4002 1000 - 0x4002 13FF
Reserved
0x4002 1400 - 0x4002 1FFF
Flash interfaces 1 & 2
0x4002 2000 - 0x4002 23FF
FSMC bank 1 NOR/PSRAM 1
0x6000 0000 - 0x63FF FFFF
FSMC bank 1 NOR/PSRAM 2
0x6400 0000 - 0x67FF FFFF
FSMC bank 1 NOR/PSRAM 3
0x6800 0000 - 0x6BFF FFFF
FSMC bank 1 NOR/PSRAM 4
0x6C00 0000 - 0x6FFF FFFF
FSMC bank 2 NAND (NAND1)
0x7000 0000 - 0x7FFF FFFF
FSMC bank 3 NAND (NAND2)
0x8000 0000 - 0x8FFF FFFF
FSMC bank 4 PCCARD
0x9000 0000 - 0x9FFF FFFF
FSMC register
0xA000 0000 - 0xA000 0FFF
Reserved
0xA000 1000 - 0xBFFF FFFF
ai15831
Option Bytes
Reserved
0x4001 5400 - 0x4001 57FF
0x4001 5800 - 0x4001 FFFF
TIM11
Reserved
0x4001 5000 - 0x4001 53FF
Reserved
0x4002 3000 - 0x4002 33FF
0x4002 3400 - 0x5FFF FFFF
Reserved
CRC
Reserved
0x4002 2400 - 0x4002 2FFF
TIM9
0x4001 4C00 - 0x4001 4FFF
Reserved
0x4001 3C00 - 0x4001 4BFF
TIM12
TIM13
TIM14
0x4000 1800 - 0x4000 1BFF
0x4000 1C00 - 0x4000 1FFF
0x4000 2000 - 0x4000 23FF
Flash memory bank 2
(256 KB or 512 KB)
0x0808 0000 - 0x080F FFFF

4 Memory mapping

The memory map is shown in Figure 6.

Figure 6. Memory map

Doc ID 17143 Rev 2 33/108
Electrical characteristics STM32F101xF, STM32F101xG

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3).

5.1.2 Typical values

= 25 °C and TA = TAmax (given by
A
Unless otherwise specified, typical data are based on TA = 25 °C, V 2V V
3.6 V voltage range). They are given only as design guidelines and are not
DD
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 7.
(mean±2).
= 3.3 V (for the
DD
34/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
ai14123
C=50pF
STM32F101 PIN
ai14124
STM32F101 PIN
V
IN
AI
6
$$
!NALO G
2#S0,,

0OWERSWITCH
6
"!4
'0)/S
/54
).
+ERNELLOGIC
#05 $IGITAL
-EMORIES
"ACKUPCIRCUITRY
/3#+24#
"ACKUPREGISTERS
7AKEUPLOGIC
§N& §&
6
2EGULATOR
6
33
6
$$!
6
2%&
6
2%&
6
33!
!$# $!#
,EVELSHIFTER
)/
,OGIC
6
$$
N&
&
6
2%&
N&
&
6
$$

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 8.
Figure 7. Pin loading conditions Figure 8. Pin input voltage

5.1.6 Power supply scheme

Figure 9. Power supply scheme
Caution: In Figure 9, the 4.7 µF capacitor must be connected to V
Doc ID 17143 Rev 2 35/108
DD3
.
Electrical characteristics STM32F101xF, STM32F101xG
ai14126
V
BAT
V
DD
V
DDA
IDD_V
BAT
I
DD

5.1.7 Current consumption measurement

Figure 10. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 7: Voltage characteristics,
Table 8: Current characteristics, and Table 9: Thermal characteristics may cause permanent
damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 7. Voltage characteristics

Symbol Ratings Min Max Unit
VDD V
V
IN
|V
DDx
|V
VSS|
SSX
V
ESD(HBM)
1. All main power (VDD, V supply, in the permitted range.
2. Positive injection is not possible on these I/Os. VIN maximum must always be respected. I never be exceeded. A negative injection is induced by V
3. I
INJ(PIN)
cannot be respected, the injection current must be limited externally to the I injection is induced by V
External main supply voltage (including
SS
V
and VDD)
DDA
Input voltage on five volt tolerant pin
Input voltage on any other pin
| Variations between different V
(1)
(2)
(3)
power pins 50
DD
Variations between all the different ground pins
Electrostatic discharge voltage (human body model)
) and ground (VSS, V
DDA
must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
while a negative injection is induced by VIN<V
IN>VDD
) pins must always be connected to the external power
SSA
IN<VSS
–0.3 4.0
V
0.3 VDD+4 V
SS
VSS 0.3 4.0
50
see Section 5.3.12: Absolute
maximum ratings (electrical
sensitivity)
.
INJ(PIN)
SS
INJ(PIN)
value. A positive
must
V
mV
36/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics

Table 8. Current characteristics

Symbol Ratings Max. Unit
(1)
(1)
(5)
value. A positive
INJ(PIN)
is the absolute sum of the
INJ(PIN)
150
150
-5/+0
± 5
± 25
INJ(PIN)
mA
must
I
VDD
I
VSS
Total current into VDD/V
Total current out of V
SS
power lines (source)
DDA
ground lines (sink)
Output current sunk by any I/O and control pin 25
I
IO
I
INJ(PIN)
I
INJ(PIN)
1. All main power (VDD, V supply, in the permitted range.
2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.18: 12-bit ADC
characteristics.
3. Positive injection is not possible on these I/Os. VIN maximum must always be respected. I never be exceeded. A negative injection is induced by VIN<VSS.
4. I
must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
INJ(PIN)
cannot be respected, the injection current must be limited externally to the I injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS.
5. When several inputs are submitted to a current injection, the maximum I positive and negative injected currents (instantaneous values). These results are based on characterization with I
Output current source by any I/Os and control pin 25
Injected current on five volt tolerant pins
(2)
Injected current on any other pin
(3)
(4)
Total injected current (sum of all I/O and control pins)
) and ground (VSS, V
DDA
maximum current injection on four I/O port pins of the device.
INJ(PIN)
) pins must always be connected to the external power
SSA

Table 9. Thermal characteristics

Symbol Ratings Value Unit
T
STG
T
J
Storage temperature range –65 to +150 °C
Maximum junction temperature 150 °C
Doc ID 17143 Rev 2 37/108
Electrical characteristics STM32F101xF, STM32F101xG

5.3 Operating conditions

5.3.1 General operating conditions

Table 10. General operating conditions
Symbol Parameter Conditions Min Max Unit
f
HCLK
PCLK1
f
PCLK2
V
V
DDA
V
Internal AHB clock frequency 0 36
Internal APB1 clock frequency 0 36
Internal APB2 clock frequency 0 36
Standard operating voltage 2 3.6 V
DD
Analog operating voltage (ADC not used)
(1)
Analog operating voltage
Must be the same potential
(2)
as V
DD
(ADC used)
Backup operating voltage 1.8 3.6 V
BAT
23.6
2.4 3.6
MHzf
LQFP144 666
P
Power dissipation at T
D
85 °C
(3)
=
A
mWLQFP100 434
LQFP64 444
Maximum power dissipation –40 85 °C
T
A Ambient temperature
Low power dissipation
T
J Junction temperature range –40 105 °C
1. When the ADC is used, refer to Table 55: ADC characteristics.
2. It is recommended to power VDD and V between VDD and V
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal
characteristics on page 104).
4. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see
Table 6.2: Thermal characteristics on page 104).
can be tolerated during power-up and operation.
DDA
from the same source. A maximum difference of 300 mV
DDA
(4)
–40 105 °C
V

5.3.2 Operating conditions at power-up / power-down

The parameters given in Tab l e 1 1 are derived from tests performed under the ambient temperature condition summarized in Ta bl e 1 0 .
Table 11. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
VDD rise time rate 0
t
VDD
fall time rate 20
V
DD

5.3.3 Embedded reset and power control block characteristics

The parameters given in Tab l e 1 2 are derived from tests performed under ambient temperature and V
38/108 Doc ID 17143 Rev 2
supply voltage conditions summarized in Tab l e 1 0 .
DD
µs/V
STM32F101xF, STM32F101xG Electrical characteristics
.
Table 12. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
PLS[2:0]=000 (rising edge) 2.1 2.18 2.26 V
PLS[2:0]=000 (falling edge) 2 2.08 2.16 V
PLS[2:0]=001 (rising edge) 2.19 2.28 2.37 V
PLS[2:0]=001 (falling edge) 2.09 2.18 2.27 V
PLS[2:0]=010 (rising edge) 2.28 2.38 2.48 V
PLS[2:0]=010 (falling edge) 2.18 2.28 2.38 V
PLS[2:0]=011 (rising edge) 2.38 2.48 2.58 V
V
PVD
Programmable voltage detector level selection
PLS[2:0]=011 (falling edge) 2.28 2.38 2.48 V
PLS[2:0]=100 (rising edge) 2.47 2.58 2.69 V
PLS[2:0]=100 (falling edge) 2.37 2.48 2.59 V
PLS[2:0]=101 (rising edge) 2.57 2.68 2.79 V
PLS[2:0]=101 (falling edge) 2.47 2.58 2.69 V
PLS[2:0]=110 (rising edge) 2.66 2.78 2.9 V
PLS[2:0]=110 (falling edge) 2.56 2.68 2.8 V
PLS[2:0]=111 (rising edge) 2.76 2.88 3 V
PLS[2:0]=111 (falling edge) 2.66 2.78 2.9 V
(2)
V
PVDhyst
V
POR/PDR
V
PDRhyst
t
RSTTEMPO
1. The product behavior is guaranteed by design down to the minimum V
2. Guaranteed by design, not tested in production.
PVD hysteresis 100 mV
(1)
Power on/power down reset threshold
(2)
PDR hysteresis 40 mV
(2)
Reset temporization 1.5 2.5 3.5 ms
Falling edge
Rising edge 1.84 1.92 2.0 V
POR/PDR
1.8
value.
1.88 1.96 V
Doc ID 17143 Rev 2 39/108
Electrical characteristics STM32F101xF, STM32F101xG

5.3.4 Embedded reference voltage

The parameters given in Tab l e 1 3 are derived from tests performed under ambient temperature and V
Table 13. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
supply voltage conditions summarized in Tab l e 1 0 .
DD
V
REFINT
T
S_vrefint
V
RERINT
T
Coeff
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production.
Internal reference voltage –40 °C < TA < +85 °C 1.16 1.20 1.24 V
ADC sampling time when reading
(1)
the internal reference voltage
Internal reference voltage spread
(2)
over the temperature range
(2)
Temperature coefficient 100

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 10: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.
Maximum current consumption
5.1
17.1
= 3 V ±10 mV 10 mV
V
DD
(2)
µs
ppm/
°C
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at V
All peripherals are disabled except if it is explicitly mentioned
The Flash access time is adjusted to f
wait state from 24 to 36 MHz)
Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled f
The parameters given in Tab l e 1 4 are derived from tests performed under ambient temperature and V
Table 14. Maximum current consumption in Run mode, code with data processing
supply voltage conditions summarized in Tab l e 1 0 .
DD
running from Flash
40/108 Doc ID 17143 Rev 2
Symbol Parameter Conditions f
HCLK
PCLK1
or VSS (no load)
DD
frequency (0 wait state from 0 to 24 MHz, 1
= f
HCLK/2
, f
PCLK2
HCLK
= f
HCLK
Max
= 85 °C
T
A
(1)
Unit
STM32F101xF, STM32F101xG Electrical characteristics
Table 14. Maximum current consumption in Run mode, code with data processing
running from Flash
(1)
Max
Symbol Parameter Conditions f
HCLK
= 85 °C
T
A
Unit
36 MHz 41
(2)
External clock
, all
peripherals enabled
I
DD
Supply current in Run mode
External clock
(2)
, all
peripherals disabled
24 MHz 29
16 MHz 22
8 MHz 12.5
mA
36 MHz 24
24 MHz 17.5
16 MHz 14
8 MHz 8.5
1. Based on characterization, not tested in production.
2. External clock is 8 MHz and PLL is on when f
Table 15. Maximum current consumption in Run mode, code with data processing
HCLK
> 8 MHz.
running from RAM
(1)
Max
Symbol Parameter Conditions f
36 MHz 37
External clock
(2)
, all
peripherals enabled
I
DD
Supply current in Run mode
External clock
(2)
all
peripherals disabled
24 MHz 26.5
16 MHz 19
8 MHz 11.5
36 MHz 20.5
24 MHz 15
16 MHz 11
8 MHz 7.5
HCLK
= 85 °C
T
A
Unit
mA
1. Based on characterization, tested in production at V
2. External clock is 8 MHz and PLL is on when f
HCLK
max, f
DD
> 8 MHz.
HCLK
max.
Doc ID 17143 Rev 2 41/108
Electrical characteristics STM32F101xF, STM32F101xG
0
5
10
15
20
25
30
35
-45257085
8 MHz
16 MHz
24 MHz
36 MHz
0
2
4
6
8
10
12
14
16
18
-45 25 70 85
Consumption
8 MHz
16 MHz
24 MHz 36 MHz
Figure 11. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled
Consumption (mA)
Temperature (°C)
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals disabled
(mA)
Temperat ure (°C)
42/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
Table 16. Maximum current consumption in Sleep mode, code running from Flash
or RAM
(1)
Max
Symbol Parameter Conditions f
36 MHz 27.5
External clock
(2)
all
peripherals enabled
24 MHz 20
16 MHz 15
HCLK
= 85 °C
T
A
Unit
I
DD
Supply current in Sleep mode
External clock
(2)
, all
peripherals disabled
8 MHz 9
36 MHz 6.9
24 MHz 5.9
16 MHz 5.4
8 MHz 4.7
1. Based on characterization, tested in production at V
2. External clock is 8 MHz and PLL is on when f
Table 17. Typical and maximum current consumptions in Stop and Standby modes
HCLK
Symbol Parameter Conditions
max, f
DD
> 8 MHz.
V
max with peripherals enabled.
HCLK
(1)
Typ
V
/ V
DD
= 2.0 V
BAT
/ V
DD
BAT
= 2.4 V
V
DD/VBAT
= 3.3 V
Regulator in Run mode,
I
DD
Supply current in Stop mode
Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)
Regulator in Low-power mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)
Low-speed internal RC oscillator and independent watchdog ON
34.5 35 379
24.5 25 365
33.8
mA
Max
T
=
A
85 °C
Unit
µA
Supply current in Standby mode
Low-speed internal RC oscillator ON, independent watchdog OFF
Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF
I
DD_VBAT
1. Typical values are measured at TA = 25 °C.
2. Based on characterization, not tested in production.
Backup domain supply current
Low-speed oscillator and RTC ON 1.05 1.1 1.4 2
2.8 3.6
1.9 2.1 5
(2)
(2)
Doc ID 17143 Rev 2 43/108
Electrical characteristics STM32F101xF, STM32F101xG
0
0.5
1
1.5
2
2.5
–45 25 85105
Temperature (°C)
Consumption (µA)
1.8 V
2 V
2.4 V
3.3 V
3.6 V
ai17337
0
50
100
150
200
250
300
-45 25 70 85
2.4V
2.7V
3.0V
3.3V
3.6V
Figure 13. Typical current consumption on V
different V
BAT
values
with RTC on vs. temperature at
BAT
Figure 14. Typical current consumption in Stop mode with regulator in run mode
versus temperature at different V
values
DD
Consumption (µA)
Temperature (°C)
44/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
0
50
100
150
200
250
300
-45 25 70 85
2.4V
2.7V
3.0V
3.3V
3.6V
0
0.5
1
1.5
2
2.5
3
3.5
-45257085
2.4V
2.7V
3.0V
3.3V
3.6V
Figure 15. Typical current consumption in Stop mode with regulator in low-power
mode versus temperature at different V
Consumption (µA)
values
DD
Temperature (°C)
Figure 16. Typical current consumption in Standby mode versus temperature at
different V
Consumption (µA)
values
DD
Temperature (°C)
Doc ID 17143 Rev 2 45/108
Electrical characteristics STM32F101xF, STM32F101xG
Typical current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at V
All peripherals are disabled except if it is explicitly mentioned
The Flash access time is adjusted to f
frequency (0 wait state from 0 to 24 MHz, 1
HCLK
wait state from 24 to 36 MHz)
Prefetch is on (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled f
f
/4
PCLK2
When the peripherals are enabled f
PCLK1
PCLK1
= f
= f
HCLK/4
HCLK
The parameters given in Tab l e 1 8 are derived from tests performed under ambient temperature and V
Table 18. Typical current consumption in Run mode, code with data processing
supply voltage conditions summarized in Tab l e 1 0 .
DD
running from Flash
Symbol Parameter Conditions f
HCLK
All peripherals
or VSS (no load)
DD
, f
PCLK2
, f
PCLK2
(1)
Typ
enabled
(2)
= f
= f
HCLK/2
HCLK
, f
ADCCLK
, f
ADCCLK
Typ
= f
(1)
All peripherals
disabled
=
PCLK2
/2
Unit
36 MHz 28.5 18.7
24 MHz 24.1 12.8
16 MHz 14 9.2
8 MHz 7.7 5.4
External
(3)
clock
4 MHz 4.6 3.4
2 MHz 3 2.3
1 MHz 2.2 1.8
500 kHz 1.7 1.5
Supply
I
DD
current in Run mode
125 kHz 1.4 1.3
mA
36 MHz 27.5 17.5
24 MHz 18.9 11.6
Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency
16 MHz 12.2 8.2
8 MHz 7.2 4.8
4 MHz 4 2.7
2 MHz 2.3 1.7
1 MHz 1.5 1.2
500 kHz 1.1 0.9
125 kHz 0.75 0.7
1. Typical values are measures at TA = 25 °C, V
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
3. External clock is 8 MHz and PLL is on when f
DD
HCLK
= 3.3 V.
> 8 MHz.
46/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
Table 19. Typical current consumption in Sleep mode, code running from Flash or
RAM
Symbol Parameter Conditions f
External clock
(3)
Supply
I
DD
current in Sleep mode
Running on High Speed Internal RC (HSI), AHB prescaler used to reduce the frequency
(1)
Typ
HCLK
All peripherals
enabled
(2)
All peripherals
36 MHz 17.7 4
24 MHz 12.2 3.1
16 MHz 8.4 2.3
8 MHz 4.6 1.5
4 MHz 3 1.3
2 MHz 2.15 1.25
1 MHz 1.7 1.2
500 kHz 1.5 1.15
125 kHz 1.35 1.15
36 MHz 17 3.35
24 MHz 11.6 2.3
16 MHz 7.7 1.6
8 MHz 3.9 0.8
4 MHz 2.3 0.7
2 MHz 1.5 0.6
1 MHz 1.1 0.5
(1)
Typ
disabled
Unit
mA
500 kHz 0.9 0.5
125 kHz 0.7 0.5
1. Typical values are measures at TA = 25 °C, V
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
3. External clock is 8 MHz and PLL is on when f
DD
HCLK
= 3.3 V.
> 8 MHz.
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Ta bl e 2 0 . The MCU is placed under the following conditions:
all I/O pins are in input mode with a static value at V
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
ambient operating temperature and V
supply voltage conditions summarized in
DD
Ta bl e 7 .
or VSS (no load)
DD
Doc ID 17143 Rev 2 47/108
Electrical characteristics STM32F101xF, STM32F101xG
Table 20. Peripheral current consumption
Peripheral Typical consumption at 25 °C
TIM2 0.8
TIM3 0.8
TIM4 0.8
TIM5 0.75
TIM6 0.3
TIM7 0.3
TIM12 0.5
TIM13 0.4
TIM14 0.4
(1)
Unit
APB1
SPI2 0.3
SPI3 0.3
USART2 0.35
USART3 0.35
USART4 0.35
USART5 0.35
I2C1 0.3
I2C2 0.3
CAN 0.45
DAC
(2)
1.05
mA
48/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
Table 20. Peripheral current consumption (continued)
(1)
Unit
mA
APB2
Peripheral Typical consumption at 25 °C
GPIOA 0.35
GPIOB 0.4
GPIOC 0.4
GPIOD 0.4
GPIOE 0.4
GPIOF 0.4
GPIOG 0.4
TIM1 1
TIM8 1
TIM9 0.5
TIM10 0.4
TIM11 0.4
ADC1
ADC2
ADC3
(3)
(3)
(3)
1.4
1.4
1.4
SPI1 0.3
USART1 0.6
1. f
2. Specific conditions for DAC: EN1, EN2 bits in the DAC_CR register are set to 1 and the converted value
3. Specific conditions for ADC: f
= 36 MHz, f
HCLK
APB1
= f
HCLK/2
, f
set to 0x800.
in the ADC_CR2 register is set to 1.
HCLK
= f
APB2
= 28 MHz, f

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source
The characteristics given in Tab l e 2 1 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Ta bl e 1 0 .
, default prescaler value for each peripheral.
HCLK
APB1
= f
HCLK/2
, f
APB2
= f
HCLK
, f
ADCCLK
= f
APB2
/2, ADON bit
Doc ID 17143 Rev 2 49/108
Electrical characteristics STM32F101xF, STM32F101xG
Table 21. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
HSE_ext
V
HSEH
V
t
w(HSE)
t
w(HSE)
t
r(HSE)
t
f(HSE)
C
in(HSE)
DuCy
HSEL
I
User external clock source frequency
(1)
OSC_IN input pin high level voltage
OSC_IN input pin low level voltage
OSC_IN high or low time
OSC_IN rise or fall time
OSC_IN input capacitance
Duty cycle 45 55 %
(HSE)
OSC_IN Input leakage current VSS VIN V
L
(1)
(1)
(1)
DD
1825MHz
0.7V
DD
V
SS
16
5pF
V
DD
0.3V
DD
20
±1 µA
1. Guaranteed by design, not tested in production
Low-speed external user clock generated from an external source
The characteristics given in Tab l e 2 2 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Ta bl e 1 0 .
Table 22. Low-speed user external clock characteristics
V
ns
Symbol Parameter Conditions Min Typ Max Unit
f
LSE_ext
V
LSEH
User external clock source frequency
(1)
OSC32_IN input pin high level voltage
0.7V
32.768 1000 kHz
DD
V
DD
V
V
LSEL
t
w(LSE)
t
w(LSE)
t
r(LSE)
t
f(LSE)
C
in(LSE)
DuCy
1. Guaranteed by design, not tested in production.
OSC32_IN input pin low level voltage
(1)
(1)
V
SS
VIN V
OSC32_IN high or low time
OSC32_IN rise or fall time
OSC32_IN input capacitance
Duty cycle 30 70 %
(LSE)
OSC32_IN Input leakage
I
L
current
(1)
DD
V
SS
450
0.3V
DD
ns
50
5pF
±1 µA
50/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
ai14127b
OS C _I N
External clock source
STM32F10xxx
V
HSEH
t
f(HSE)
t
W(HSE)
I
L
90%
10%
T
HSE
t
t
r(HSE)
t
W(HSE)
f
HSE_ext
V
HSEL
ai14140c
OSC32_IN
External clock source
STM32F10xxx
V
LSEH
t
f(LSE)
t
W(LSE)
I
L
90%
10%
T
LSE
t
t
r(LSE)
t
W(LSE)
f
LSE_ext
V
LSEL
Figure 17. High-speed external clock source AC timing diagram
Figure 18. Low-speed external clock source AC timing diagram
Doc ID 17143 Rev 2 51/108
Electrical characteristics STM32F101xF, STM32F101xG
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Ta bl e 2 3. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
Table 23. HSE 4-16 MHz oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
(1)(2)
f
OSC_IN
R
Oscillator frequency 4 8 16 MHz
Feedback resistor 200 k
F
Recommended load capacitance
C
i
versus equivalent serial resistance of the crystal (R
HSE driving current
2
RS = 30 30 pF
(3)
)
S
V
= 3.3 V
DD
VIN = V
with 30 pF
SS
1mA
load
g
t
SU(HSE)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization results, not tested in production.
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
4. t
SU(HSE)
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
Oscillator transconductance Startup 25 mA/V
m
(4)
Startup time VDD is stabilized 2 ms
is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 19). C
and C
L1
are usually the
L2
same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C
and CL2. PCB and MCU pin capacitance must be included (10 pF
L1
can be used as a rough estimate of the combined pin and board capacitance) when sizing C
and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
L1
microcontrollers” available from the ST website www.st.com.
52/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
ai14128b
OSC_OUT
OSC_IN
f
HSE
C
L1
R
F
STM32F10xxx
8 MHz resonator
Resonator with integrated capacitors
Bias
controlled
gain
R
EXT
(1)
C
L2
Figure 19. Typical application with an 8 MHz crystal
1. R
value depends on the crystal characteristics.
EXT
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Ta bl e 2 4. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
Table 24. LSE oscillator characteristics (f
= 32.768 kHz)
LSE
Symbol Parameter Conditions Min Typ Max Unit
R
F
Feedback resistor 5 M
Recommended load capacitance
C
I
2
g
m
t
SU(LSE)
1. Based on characterization, not tested in production.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”.
3. t
SU(LSE)
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
versus equivalent serial resistance of the crystal (R
LSE driving current
)
S
RS = 30 K 15 pF
V
= 3.3 V
DD
VIN = V
SS
Oscillator transconductance 5 µA/V
V
(3)
Startup time
is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
is
DD
stabilized
(1) (2)
TA = 50 °C 1.5
= 25 °C 2.5
T
A
= 10 °C 4
T
A
T
= 0 °C 6
A
= -10 °C 10
T
A
= -20 °C 17
T
A
T
= -30 °C 32
A
= -40 °C 60
T
A
1.4 µA
s
Doc ID 17143 Rev 2 53/108
Electrical characteristics STM32F101xF, STM32F101xG
ai14129b
OSC32_OUT
OSC32_IN
f
LSE
C
L1
R
F
STM32F10xxx
32.768 KHz resonator
Resonator with integrated capacitors
Bias
controlled
gain
C
L2
Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to
15 pF range selected to match the requirements of the crystal or resonator. C
and C
L1
L2,
are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C Load capacitance C C
is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
stray
has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + C
L
and CL2.
L1
stray
where
between 2 pF and 7 pF.
Caution: To avoid exceeding the maximum value of C
to use a resonator with a load capacitance C
L1
L
capacitance of 12.5 pF. Example: if you choose a resonator with a load capacitance of C then C
= CL2 = 8 pF.
L1
Figure 20. Typical application with a 32.768 kHz crystal

5.3.7 Internal clock source characteristics

The parameters given in Tab l e 2 5 are derived from tests performed under ambient temperature and V
High-speed internal (HSI) RC oscillator
supply voltage conditions summarized in Tab l e 1 0 .
DD
and CL2 (15 pF) it is strongly recommended
7 pF. Never use a resonator with a load
= 6 pF, and C
L
stray
= 2 pF,
54/108 Doc ID 17143 Rev 2
Table 25. HSI oscillator characteristics
(1)
Symbol Parameter Conditions Min Typ Max Unit
Frequency 8 MHz
Duty cycle 45 55 %
(HSI)
User-trimmed with the RCC_CR
(2)
register
Accuracy of the HSI
HSI
oscillator
Factory­calibrated
HSI oscillator startup
(4)
time
HSI oscillator power
(4)
consumption
= 3.3 V, TA = –40 to 85 °C unless otherwise specified.
TA = –40 to 105 °C –2 2.5 %
= –10 to 85 °C –1.5 2.2 %
T
A
(4)
= 0 to 70 °C –1.3 2 %
T
A
T
= 25 °C –1.1 1.8 %
A
12µs
80 100 µA
DuCy
ACC
t
su(HSI)
I
DD(HSI)
1. V
f
HSI
DD
(3)
1
%
STM32F101xF, STM32F101xG Electrical characteristics
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from
the ST website www.st.com.
3. Guaranteed by design, not tested in production.
4. Based on characterization, not tested in production.
Low-speed internal (LSI) RC oscillator
Table 26. LSI oscillator characteristics
Symbol Parameter Min Typ Max Unit
(2)
f
LSI
t
su(LSI)
I
DD(LSI)
1. V
DD
2. Based on characterization, not tested in production.
3. Guaranteed by design, not tested in production.
Frequency 30 40 60 kHz
(3)
LSI oscillator startup time 85 µs
(3)
LSI oscillator power consumption 0.65 1.2 µA
= 3 V, TA = –40 to 85 °C unless otherwise specified.
(1)
Wakeup time from low-power mode
The wakeup times given in Tab le 2 7 are measured on a wakeup phase with an 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:
Stop or Standby mode: the clock source is the RC oscillator
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under ambient temperature and V
supply
DD
voltage conditions summarized in Tabl e 1 0.
Table 27. Low-power mode wakeup timings
Symbol Parameter Typ Unit
(1)
t
WUSLEEP
t
WUSTOP
t
WUSTDBY
1. The wakeup times are measured from the wakeup event to the point at which the user application code
reads the first instruction.
Wakeup from Sleep mode 1.8 µs
Wakeup from Stop mode (regulator in run mode) 3.6
(1)
Wakeup from Stop mode (regulator in low-power mode) 5.4
(1)
Wakeup from Standby mode 50 µs
µs
Doc ID 17143 Rev 2 55/108
Electrical characteristics STM32F101xF, STM32F101xG

5.3.8 PLL characteristics

The parameters given in Tab l e 2 8 are derived from tests performed under ambient temperature and V
Table 28. PLL characteristics
Symbol Parameter
f
PLL_IN
f
PLL_OUT
t
LOCK
Jitter Cycle-to-cycle jitter 300 ps
1. Based on characterization, not tested in production.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by f
supply voltage conditions summarized in Tab l e 1 0 .
DD
Val ue
(1)
Unit
PLL input clock
(2)
Min
(1)
Typ Max
18.025MHz
PLL input clock duty cycle 40 60 %
PLL multiplier output clock 16 36 MHz
PLL lock time 200 µs
.
PLL_OUT

5.3.9 Memory characteristics

Flash memory
The characteristics are given at TA = –40 to 85 °C unless otherwise specified.
Table 29. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max
t
prog
t
ERASE
t
ME
16-bit programming time TA–40 to +85 °C 40 52.5 70 µs
Page (2 KB) erase time TA –40 to +85 °C 20 40 ms
Mass erase time TA –40 to +85 °C 20 40 ms
Read mode
= 36 MHz with 1
f
HCLK
wait state, V
= 3.3 V
DD
Write mode
= 36 MHz, VDD =
f
HCLK
I
DD
Supply current
3.3 V
Erase mode
= 36 MHz, VDD =
f
HCLK
3.3 V
Power-down mode / Halt,
= 3.0 to 3.6 V
V
DD
V
prog
1. Guaranteed by design, not tested in production.
Programming voltage 2 3.6 V
(1)
Unit
28 mA
7mA
5mA
50 µA
56/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
Table 30. Flash memory endurance and data retention
Val ue
Symbol Parameter Conditions
Min
(1)
Unit
N
t
RET
END
Endurance TA = –40 °C to 85 °C
Data retention
1. Based on characterization, not tested in production.
2. Cycling performed over the whole temperature range.

5.3.10 FSMC characteristics

Asynchronous waveforms and timings
Figure 21 through Figure 24 represent asynchronous waveforms and Tab le 3 1 through Ta bl e 3 4 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
AddressSetupTime = 0
AddressHoldTime = 1
DataSetupTime = 1
T
= 85 °C, 1 kcycle
A
= 55 °C, 10 kcycle
T
A
(2)
(2)
10
30
20
kcycles
Years
Doc ID 17143 Rev 2 57/108
Electrical characteristics STM32F101xF, STM32F101xG
$ATA
&3-#?.%
&3-#?.",;=
&3-#?$;=
T
V",?.%
T
H$ATA?.%
&3-#?./%
!DDRESS
&3-#?!;=
T
V!?.%
&3-#?.7%
T
SU$ATA?.%
T
W.%
-36
W./%
T
T
V./%?.%
T
H.%?./%
T
H$ATA?./%
T
H!?./%
T
H",?./%
T
SU$ATA?./%
&3-#?.!$6

T
V.!$6?.%
T
W.!$6
Figure 21. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings
Symbol Parameter Min Max Unit
t
w(NE)
t
v(NOE_NE)
t
w(NOE)
t
h(NE_NOE)
t
v(A_NE)
t
h(A_NOE)
t
v(BL_NE)
t
h(BL_NOE)
t
su(Data_NE)
t
su(Data_NOE)
t
h(Data_NOE)
t
h(Data_NE)
58/108 Doc ID 17143 Rev 2
FSMC_NE low time 5T
FSMC_NEx low to FSMC_NOE low 0.5 1.5 ns
FSMC_NOE low time 5T
FSMC_NOE high to FSMC_NE high hold time –1.5 ns
FSMC_NEx low to FSMC_A valid 7 ns
Address hold time after FSMC_NOE high 0.1 ns
FSMC_NEx low to FSMC_BL valid 0 ns
FSMC_BL hold time after FSMC_NOE high 0 ns
Data to FSMC_NEx high setup time 2T
Data to FSMC_NOEx high setup time 2T
Data hold time after FSMC_NOE high 0 ns
Data hold time after FSMC_NEx high 0 ns
– 1.5 5T
HCLK
– 1.5 5T
HCLK
+ 25 ns
HCLK
+ 25 ns
HCLK
HCLK
HCLK
(1) (2)
+ 2 ns
+ 1.5 ns
STM32F101xF, STM32F101xG Electrical characteristics
Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings
(1) (2)
Symbol Parameter Min Max Unit
t
v(NADV_NE)
t
w(NADV)
1. CL = 15 pF.
2. Preliminary values.
FSMC_NEx low to FSMC_NADV low 5 ns
FSMC_NADV low time T
+ 1.5 ns
HCLK
Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
t
w(NE)
FSMC_NEx
FSMC_NOE
Address
NBL
t
w(NWE)
t
t
h(Data_NWE)
t
h(A_NWE)
h(BL_NWE)
Data
t
h(NE_NWE)
FSMC_NWE
FSMC_A[25:0]
FSMC_NBL[1:0]
FSMC_D[15:0]
FSMC_NADV
t
v(NWE_NE)
t
v(A_NE)
t
v(BL_NE)
t
v(Data_NE)
t
v(NADV_NE)
t
(1)
w(NADV)
ai14990
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings
(1)(2)
Symbol Parameter Min Max Unit
t
w(NE)
t
v(NWE_NE)
t
w(NWE)
t
h(NE_NWE)
t
v(A_NE)
t
h(A_NWE)
t
v(BL_NE)
t
h(BL_NWE)
t
v(Data_NE)
t
h(Data_NWE)
FSMC_NE low time 3T
FSMC_NEx low to FSMC_NWE low T
FSMC_NWE low time T
FSMC_NWE high to FSMC_NE high hold time T
FSMC_NEx low to FSMC_A valid 7.5 ns
Address hold time after FSMC_NWE high T
FSMC_NEx low to FSMC_BL valid 1.5 ns
FSMC_BL hold time after FSMC_NWE high T
FSMC_NEx low to Data valid T
Data hold time after FSMC_NWE high T
– 1 3T
HCLK
– 0.5 T
HCLK
– 0.5 T
HCLK
HCLK
HCLK
– 0.5 ns
HCLK
HCLK
HCLK
HCLK
HCLK
HCLK
+ 2 ns
+ 1.5 ns
+ 1.5 ns
ns
ns
+ 7 ns
ns
Doc ID 17143 Rev 2 59/108
Electrical characteristics STM32F101xF, STM32F101xG
NBL
Data
FSMC_NBL[1:0]
FSMC_
AD[15:0]
t
v(BL_NE)
t
h(Data_NE)
Address
FSMC_A[25:16]
t
v(A_NE)
FSMC_NWE
t
v(A_NE)
ai14892b
Address
FSMC_NADV
t
v(NADV_NE)
t
w(NADV)
t
su(Data_NE)
t
h(AD_NADV)
FSMC_NE
FSMC_NOE
t
w(NE)
t
w(NOE)
t
v(NOE_NE)
t
h(NE_NOE)
t
h(A_NOE)
t
h(BL_NOE)
t
su(Data_NOE)
t
h(Data_NOE)
Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings
Symbol Parameter Min Max Unit
t
v(NADV_NE)
t
w(NADV)
1. CL = 15 pF.
2. Preliminary values.
FSMC_NEx low to FSMC_NADV low 5.5 ns
FSMC_NADV low time T
+ 1.5 ns
HCLK
Figure 23. Asynchronous multiplexed NOR/PSRAM read waveforms
(1)(2)
Table 33. Asynchronous multiplexed NOR/PSRAM read timings
Symbol Parameter Min Max Unit
t
60/108 Doc ID 17143 Rev 2
w(NE)
t
v(NOE_NE)
t
w(NOE)
t
h(NE_NOE)
t
v(A_NE)
t
v(NADV_NE)
t
w(NADV)
t
h(AD_NADV)
t
h(A_NOE)
FSMC_NE low time 7T
FSMC_NEx low to FSMC_NOE low 3T
FSMC_NOE low time 4T
FSMC_NOE high to FSMC_NE high hold time –1 ns
FSMC_NEx low to FSMC_A valid 0 ns
FSMC_NEx low to FSMC_NADV low 3 5 ns
FSMC_NADV low time T
FSMC_AD (address) valid hold time after FSMC_NADV high
Address hold time after FSMC_NOE high T
HCLK
T
HCLK
HCLK
HCLK
HCLK
HCLK
–1.5 T
(1)(2)
– 2 7T
– 0.5 3T
– 1 4T
HCLK
HCLK
HCLK
HCLK
+ 2 ns
+ 1.5 ns
+ 2 ns
+ 1.5 ns
ns
ns
STM32F101xF, STM32F101xG Electrical characteristics
Table 33. Asynchronous multiplexed NOR/PSRAM read timings
(1)(2)
(continued)
Symbol Parameter Min Max Unit
t
h(BL_NOE)
t
v(BL_NE)
t
su(Data_NE)
t
su(Data_NOE)
t
h(Data_NE)
t
h(Data_NOE)
1. CL = 15 pF.
2. Preliminary values.
FSMC_BL hold time after FSMC_NOE high 0 ns
FSMC_NEx low to FSMC_BL valid 0 ns
Data to FSMC_NEx high setup time 2T
Data to FSMC_NOE high setup time 2T
+ 24 ns
HCLK
+ 25 ns
HCLK
Data hold time after FSMC_NEx high 0 ns
Data hold time after FSMC_NOE high 0 ns
Doc ID 17143 Rev 2 61/108
Electrical characteristics STM32F101xF, STM32F101xG
NBL
Data
FSMC_NEx
FSMC_NBL[1:0]
FSMC_
AD[15:0]
t
v(BL_NE)
t
h(Data_NWE)
FSMC_NOE
Address
FSMC_A[25:16]
t
v(A_NE)
t
w(NWE)
FSMC_NWE
t
v(NWE_NE)
t
h(NE_NWE)
t
h(A_NWE)
t
h(BL_NWE)
t
v(A_NE)
t
w(NE)
ai14891B
Address
FSMC_NADV
t
v(NADV_NE)
t
w(NADV)
t
v(Data_NADV)
t
h(AD_NADV)
Figure 24. Asynchronous multiplexed NOR/PSRAM write waveforms
62/108 Doc ID 17143 Rev 2
Table 34. Asynchronous multiplexed NOR/PSRAM write timings
(1)(2)
Symbol Parameter Min Max Unit
t
w(NE)
t
v(NWE_NE)
t
w(NWE)
t
h(NE_NWE)
t
v(A_NE)
t
v(NADV_NE)
t
w(NADV)
t
h(AD_NADV)
t
h(A_NWE)
t
v(BL_NE)
t
h(BL_NWE)
t
v(Data_NADV)
t
h(Data_NWE)
1. C
= 15 pF.
L
2. Preliminary values.
FSMC_NE low time 5T
FSMC_NEx low to FSMC_NWE low 2T
FSMC_NWE low time 2T
FSMC_NWE high to FSMC_NE high hold time T
FSMC_NEx low to FSMC_A valid 7 ns
FSMC_NEx low to FSMC_NADV low 3 5 ns
FSMC_NADV low time T
FSMC_AD (address) valid hold time after FSMC_NADV high
Address hold time after FSMC_NWE high 4T
FSMC_NEx low to FSMC_BL valid 1.6 ns
FSMC_BL hold time after FSMC_NWE high T
FSMC_NADV high to Data valid T
Data hold time after FSMC_NWE high T
T
– 1 5T
HCLK
HCLK
– 1 2T
HCLK
– 1 ns
HCLK
– 1 T
HCLK
– 3 ns
HCLK
HCLK
– 1.5 ns
HCLK
– 5 ns
HCLK
2T
HCLK
HCLK
HCLK
HCLK
HCLK
+ 2 ns
+ 1 ns
+ 2 ns
+ 1 ns
+ 1.5 ns
ns
STM32F101xF, STM32F101xG Electrical characteristics
Synchronous waveforms and timings
Figure 25 through Figure 28 represent synchronous waveforms and Ta bl e 3 6 through Ta bl e 3 8 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
BurstAccessMode = FSMC_BurstAccessMode_Enable;
MemoryType = FSMC_MemoryType_CRAM;
WriteBurst = FSMC_WriteBurst_Enable;
CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual)
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
Figure 25. Synchronous multiplexed NOR/PSRAM read timings
t
w(CLK)
FSMC_CLK
FSMC_NEx
t
d(CLKL-NADVL)
FSMC_NADV
FSMC_A[25:16]
FSMC_NOE
t
d(CLKL-ADIV)
t
d(CLKL-ADV)
FSMC_AD[15:0]
FSMC_NWAIT
(WAITCFG = 1b, WAITPOL + 0b)
FSMC_NWAIT
(WAITCFG = 0b, WAITPOL + 0b)
t
w(CLK)
Data latency = 1
t
d(CLKL-NExL)
t
d(CLKL-NADVH)
t
d(CLKL-AV)
t
d(CLKL-NOEL)
t
su(ADV-CLKH)
t
su(ADV-CLKH)
t
d(CLKH-NExH)
t
d(CLKH-NOEH)
t
h(CLKH-ADV)
AD[15:0] D1 D2
t
su(NWAITV-CLKH)
t
su(NWAITV-CLKH)
t
su(NWAITV-CLKH)
t
h(CLKH-NWAITV)
t
h(CLKH-NWAITV)
BUSTURN = 0
t
d(CLKH-AIV)
t
h(CLKH-ADV)
t
h(CLKH-NWAITV)
ai14893e
Doc ID 17143 Rev 2 63/108
Electrical characteristics STM32F101xF, STM32F101xG
Table 35. Synchronous multiplexed NOR/PSRAM read timings
(1)(2)
Symbol Parameter Min Max Unit
t
w(CLK)
t
d(CLKL-NExL)
t
d(CLKH-NExH)
t
d(CLKL-NADVL)
t
d(CLKL-NADVH)
t
d(CLKL-AV)
t
d(CLKH-AIV)
t
d(CLKL-NOEL)
t
d(CLKH-NOEH)
t
d(CLKL-ADV)
t
d(CLKL-ADIV)
t
su(ADV-CLKH)
t
h(CLKH-ADV)
t
su(NWAITV-CLKH)
t
h(CLKH-NWAITV)
= 15 pF.
1. C
L
2. Preliminary values.
FSMC_CLK period 27.7 ns
FSMC_CLK low to FSMC_NEx low (x = 0...2) 1.5 ns
FSMC_CLK high to FSMC_NEx high (x = 0...2) T
+ 2 ns
HCLK
FSMC_CLK low to FSMC_NADV low 4 ns
FSMC_CLK low to FSMC_NADV high 5 ns
FSMC_CLK low to FSMC_Ax valid (x = 16...25) 0 ns
FSMC_CLK high to FSMC_Ax invalid (x = 16...25) T
FSMC_CLK low to FSMC_NOE low T
FSMC_CLK high to FSMC_NOE high T
+ 2 ns
HCLK
HCLK
+ 0.5 ns
HCLK
FSMC_CLK low to FSMC_AD[15:0] valid 12 ns
FSMC_CLK low to FSMC_AD[15:0] invalid 0 ns
FSMC_A/D[15:0] valid data before FSMC_CLK high
FSMC_A/D[15:0] valid data after FSMC_CLK high T
6 ns
– 10 ns
HCLK
FSMC_NWAIT valid before FSMC_CLK high 8 ns
FSMC_NWAIT valid after FSMC_CLK high 2 ns
+1 ns
64/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
FSMC_CLK
FSMC_NEx
FSMC_NADV
FSMC_A[25:16]
FSMC_NWE
FSMC_AD[15:0]
AD[15:0] D1 D2
FSMC_NWAIT
(WAITCFG = 0b, WAITPOL + 0b)
t
w(CLK)
t
w(CLK)
Data latency = 1
BUSTURN = 0
t
d(CLKL-NExL)
t
d(CLKH-NExH)
t
d(CLKL-NADVL)
t
d(CLKL-AV)
t
d(CLKL-NADVH)
t
d(CLKH-AIV)
t
d(CLKH-NWEH)
t
d(CLKL-NWEL)
t
d(CLKL-NBLH)
t
d(CLKL-ADV)
t
d(CLKL-ADIV)
t
d(CLKL-Data)
t
su(NWAITV-CLKH)
t
h(CLKH-NWAITV)
ai14992d
t
d(CLKL-Data)
FSMC_NBL
Figure 26. Synchronous multiplexed PSRAM write timings
Doc ID 17143 Rev 2 65/108
Electrical characteristics STM32F101xF, STM32F101xG
Table 36. Synchronous multiplexed PSRAM write timings
(1)(2)
Symbol Parameter Min Max Unit
t
w(CLK)
t
d(CLKL-NExL)
t
d(CLKH-NExH)
t
d(CLKL-NADVL)
t
d(CLKL-NADVH)
t
d(CLKL-AV)
t
d(CLKH-AIV)
t
d(CLKL-NWEL)
t
d(CLKH-NWEH)
t
d(CLKL-ADV)
t
d(CLKL-ADIV)
t
d(CLKL-Data)
t
su(NWAITV-CLKH)
t
h(CLKH-NWAITV)
t
d(CLKL-NBLH)
1. C
= 15 pF.
L
2. Preliminary values.
FSMC_CLK period 27.7 ns
FSMC_CLK low to FSMC_Nex low (x = 0...2) 2 ns
FSMC_CLK high to FSMC_NEx high (x = 0...2) T
+ 2 ns
HCLK
FSMC_CLK low to FSMC_NADV low 4 ns
FSMC_CLK low to FSMC_NADV high 5 ns
FSMC_CLK low to FSMC_Ax valid (x = 16...25) 0 ns
FSMC_CLK high to FSMC_Ax invalid (x = 16...25) TCK + 2 ns
FSMC_CLK low to FSMC_NWE low 1 ns
FSMC_CLK high to FSMC_NWE high T
+1 ns
HCLK
FSMC_CLK low to FSMC_AD[15:0] valid 12 ns
FSMC_CLK low to FSMC_AD[15:0] invalid 3 ns
FSMC_A/D[15:0] valid after FSMC_CLK low 6 ns
FSMC_NWAIT valid before FSMC_CLK high 7 ns
FSMC_NWAIT valid after FSMC_CLK high 2 ns
FSMC_CLK low to FSMC_NBL high 1 ns
66/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
FSMC_CLK
FSMC_NEx
FSMC_A[25:0]
FSMC_NOE
FSMC_D[15:0]
D1 D2
FSMC_NWAIT
(WAITCFG = 1b, WAITPOL + 0b)
FSMC_NWAIT
(WAITCFG = 0b, WAITPOL + 0b)
t
w(CLK)
t
w(CLK)
Data latency = 1
BUSTURN = 0
t
d(CLKL-NExL)
t
d(CLKH-NExH)
t
d(CLKL-AV)
t
d(CLKH-AIV)
t
d(CLKL-NOEL)
t
d(CLKH-NOEH)
t
su(DV-CLKH)
t
h(CLKH-DV)
t
su(DV-CLKH)
t
h(CLKH-DV)
t
su(NWAITV-CLKH)
t
h(CLKH-NWAITV)
t
su(NWAITV-CLKH)
t
h(CLKH-NWAITV)
t
su(NWAITV-CLKH)
t
h(CLKH-NWAITV)
ai14894d
FSMC_NADV
t
d(CLKL-NADVL)
t
d(CLKL-NADVH)
Figure 27. Synchronous non-multiplexed NOR/PSRAM read timings
Table 37. Synchronous non-multiplexed NOR/PSRAM read timings
Symbol Parameter Min Max Unit
t
w(CLK)
t
d(CLKL-NExL)
t
d(CLKH-NExH)
t
d(CLKL-NADVL)
t
d(CLKL-NADVH)
t
d(CLKL-AV)
t
d(CLKH-AIV)
t
d(CLKL-NOEL)
t
d(CLKH-NOEH)
t
su(DV-CLKH)
t
h(CLKH-DV)
t
su(NWAITV-CLKH)
t
h(CLKH-NWAITV)
1. C
= 15 pF.
L
2. Preliminary values.
FSMC_CLK period 27.7 ns
FSMC_CLK low to FSMC_NEx low (x = 0...2) 1.5 ns
FSMC_CLK high to FSMC_NEx high (x = 0...2) T
HCLK
FSMC_CLK low to FSMC_NADV low 4 ns
FSMC_CLK low to FSMC_NADV high 5 ns
FSMC_CLK low to FSMC_Ax valid (x = 0...25) 0 ns
FSMC_CLK high to FSMC_Ax invalid (x = 0...25) T
HCLK
FSMC_CLK low to FSMC_NOE low T
FSMC_CLK high to FSMC_NOE high T
HCLK
FSMC_D[15:0] valid data before FSMC_CLK high 6.5 ns
FSMC_D[15:0] valid data after FSMC_CLK high 7 ns
FSMC_NWAIT valid before FSMC_SMCLK high 7 ns
FSMC_NWAIT valid after FSMC_CLK high 2 ns
Doc ID 17143 Rev 2 67/108
(1)(2)
+ 2 ns
+ 4 ns
+ 1.5 ns
HCLK
+ 1.5 ns
Electrical characteristics STM32F101xF, STM32F101xG
Figure 28. Synchronous non-multiplexed PSRAM write timings
BUSTURN = 0
FSMC_CLK
t
w(CLK)
t
w(CLK)
t
d(CLKL-NExL)
Data latency = 1
t
d(CLKH-NExH)
FSMC_NEx
t
d(CLKL-NADVL)
t
d(CLKL-NADVH)
FSMC_NADV
t
d(CLKL-AV)
t
d(CLKH-AIV)
FSMC_A[25:0]
t
d(CLKL-NWEL)
t
d(CLKH-NWEH)
FSMC_NWE
t
d(CLKL-Data)
FSMC_D[15:0]
t
d(CLKL-Data)
D1 D2
FSMC_NWAIT
(WAITCFG = 0b, WAITPOL + 0b)
t
su(NWAITV-CLKH)
t
d(CLKL-NBLH)
t
h(CLKH-NWAITV)
FSMC_NBL
Table 38. Synchronous non-multiplexed PSRAM write timings
(1)(2)
Symbol Parameter Min Max Unit
ai14993e
t
w(CLK)
t
d(CLKL-NExL)
t
d(CLKH-NExH)
t
d(CLKL-NADVL)
t
d(CLKL-NADVH)
t
d(CLKL-AV)
t
d(CLKH-AIV)
t
d(CLKL-NWEL)
t
d(CLKH-NWEH)
t
d(CLKL-Data)
t
su(NWAITV-CLKH)
t
h(CLKH-NWAITV)
t
d(CLKL-NBLH)
1. C
= 15 pF.
L
FSMC_CLK period 27.7 ns
FSMC_CLK low to FSMC_NEx low (x = 0...2) 2 ns
FSMC_CLK high to FSMC_NEx high (x = 0...2) T
FSMC_CLK low to FSMC_NADV low 4 ns
FSMC_CLK low to FSMC_NADV high 5 ns
FSMC_CLK low to FSMC_Ax valid (x = 16...25) 0 ns
FSMC_CLK high to FSMC_Ax invalid (x = 16...25) TCK + 2 ns
FSMC_CLK low to FSMC_NWE low 1 ns
FSMC_CLK high to FSMC_NWE high T
FSMC_D[15:0] valid data after FSMC_CLK low 6 ns
FSMC_NWAIT valid before FSMC_CLK high 7 ns
FSMC_NWAIT valid after FSMC_CLK high 2 ns
FSMC_CLK low to FSMC_NBL high 1 ns
2. Preliminary values.
68/108 Doc ID 17143 Rev 2
+ 2 ns
HCLK
+ 1 ns
HCLK
STM32F101xF, STM32F101xG Electrical characteristics
PC Card/CompactFlash controller waveforms and timings
Figure 29 through Figure 34 represent synchronous waveforms and Ta bl e 3 9 provides the
corresponding timings. The results shown in this table are obtained with the following FSMC configuration:
COM.FSMC_SetupTime = 0x04;
COM.FSMC_WaitSetupTime = 0x07;
COM.FSMC_HoldSetupTime = 0x04;
COM.FSMC_HiZSetupTime = 0x00;
ATT.FSMC_SetupTime = 0x04;
ATT.FSMC_WaitSetupTime = 0x07;
ATT.FSMC_HoldSetupTime = 0x04;
ATT.FSMC_HiZSetupTime = 0x00;
IO.FSMC_SetupTime = 0x04;
IO.FSMC_WaitSetupTime = 0x07;
IO.FSMC_HoldSetupTime = 0x04;
IO.FSMC_HiZSetupTime = 0x00;
TCLRSetupTime = 0;
TARSetupTime = 0;
Figure 29. PC Card/CompactFlash controller waveforms for common memory read
access
FSMC_NCE4_2
FSMC_NCE4_1
FSMC_A[10:0]
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
FSMC_NWE
FSMC_N
FSMC_D[15:0]
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.
(1)
t
d(NCE4_1-NOE)
OE
t
v(NCEx-A)
t
d(NREG-NCEx)
t
d(NIORD-NCEx)
t
w(NOE)
t
su(D-NOE)
t
h(NCEx-AI)
t
h(NCEx-NREG)
t
h(NCEx-NIORD)
t
h(NCEx-
NIOWR
t
h(NOE-D)
)
ai14895b
Doc ID 17143 Rev 2 69/108
Electrical characteristics STM32F101xF, STM32F101xG
t
d(NCE4_1-NWE)
t
w(NWE)
t
h(NWE-D)
t
v(NCE4_1-A)
t
d(NREG-NCE4_1)
t
d(NIORD-NCE4_1)
t
h(NCE4_1-AI)
MEMxHIZ =1
t
v(NWE-D)
t
h(NCE4_1-NREG)
t
h(NCE4_1-NIORD)
t
h(NCE4_1-NIOWR)
ai14896b
FSMC_NWE
FSMC_N
OE
FSMC_D[15:0]
FSMC_A[10:0]
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
t
d(NWE-NCE4_1)
t
d(D-NWE)
FSMC_NCE4_2
High
Figure 30. PC Card/CompactFlash controller waveforms for common memory write
access
70/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
t
d(NCE4_1-NOE)
t
w(NOE)
t
su(D-NOE)
t
h(NOE-D)
t
v(NCE4_1-A)
t
h(NCE4_1-AI)
t
d(NREG-NCE4_1)
t
h(NCE4_1-NREG)
ai14897b
FSMC_NWE
FSMC_NOE
FSMC_D[15:0]
(1)
FSMC_A[10:0]
FSMC_NCE4_2
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
t
d(NOE-NCE4_1)
High
Figure 31. PC Card/CompactFlash controller waveforms for attribute memory read
access
1. Only data bits 0...7 are read (bits 8...15 are disregarded).
Doc ID 17143 Rev 2 71/108
Electrical characteristics STM32F101xF, STM32F101xG
Figure 32. PC Card/CompactFlash controller waveforms for attribute memory write
access
FSMC_NCE4_1
FSMC_NCE4_2
High
t
v(NCE4_1-A)
t
h(NCE4_1-AI)
FSMC_A[10:0]
FSMC_NIOWR
FSMC_NIORD
t
d(NREG-NCE4_1)
t
h(NCE4_1-NREG)
FSMC_NREG
t
d(NCE4_1-NWE)
t
w(NWE)
FSMC_NWE
t
d(NWE-NCE4_1)
FSMC_NOE
t
v(NWE-D)
FSMC_D[7:0](1)
ai14898b
1. Only data bits 0...7 are driven (bits 8...15 remains HiZ).
Figure 33. PC Card/CompactFlash controller waveforms for I/O space read access
FSMC_NCE4_1
FSMC_NCE4_2
t
v(NCEx-A)
FSMC_A[10:0]
FSMC_NREG
FSMC_NWE
FSMC_NOE
FSMC_NIOWR
t
d(NIORD-NCE4_1)
FSMC_NIORD
FSMC_D[15:0]
72/108 Doc ID 17143 Rev 2
t
su(D-NIORD)
t
h(NCE4_1-AI)
t
w(NIORD)
t
d(NIORD-D)
ai14899B
STM32F101xF, STM32F101xG Electrical characteristics
t
d(NCE4_1-NIOWR)
t
w(NIOWR)
t
v(NCEx-A)
t
h(NCE4_1-AI)
t
h(NIOWR-D)
ATTxHIZ =1
t
v(NIOWR-D)
ai14900b
FSMC_NWE
FSMC_NOE
FSMC_D[15:0]
FSMC_A[10:0]
FSMC_NCE4_2
FSMC_NCE4_1
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
Figure 34. PC Card/CompactFlash controller waveforms for I/O space write access
Table 39. Switching characteristics for PC Card/CF read and write cycles
(1)(2)
Symbol Parameter Min Max Unit
FSMC_NCEx low (x = 4_1/4_2) to FSMC_Ay valid (y =
t
v(NCEx-A)
t
v(NCE4_1-A)
0...10) FSMC_NCE4_1 low (x = 4_1/4_2) to FSMC_Ay valid (y =
0 ns
0...10)
FSMC_NCEx high (x = 4_1/4_2) to FSMC_Ax invalid (x =
t
h(NCEx-AI)
t
h(NCE4_1-AI)
0...10) FSMC_NCE4_1 high (x = 4_1/4_2) to FSMC_Ax invalid (x
2.5 ns
= 0...10)
t
d(NREG-NCEx)
t
d(NREG-NCE4_1)
t
h(NCEx-NREG)
t
h(NCE4_1-NREG)
t
d(NCE4_1-NOE)
t
w(NOE)
t
d(NOE-NCE4_1
t
su(D-NOE)
t
h(NOE-D)
t
w(NWE)
t
d(NWE-NCE4_1)
t
d(NCE4_1-NWE)
t
v(NWE-D)
t
h(NWE-D)
FSMC_NCEx low to FSMC_NREG valid FSMC_NCE4_1 low to FSMC_NREG valid
FSMC_NCEx high to FSMC_NREG invalid FSMC_NCE4_1 high to FSMC_NREG invalid
T
HCLK
FSMC_NCE4_1 low to FSMC_NOE low 5T
FSMC_NOE low width 8T
FSMC_NOE high to FSMC_NCE4_1 high 5T
HCLK
HCLK
+ 3 ns
5 ns
HCLK
–1.5 8T
HCLK
+ 2 ns
FSMC_D[15:0] valid data before FSMC_NOE high 25 ns
FSMC_D[15:0] valid data after FSMC_NOE high 15 ns
FSMC_NWE low width 8T
FSMC_NWE high to FSMC_NCE4_1 high 5T
FSMC_NCE4_1 low to FSMC_NWE low 5T
– 1 8T
HCLK
+ 2 ns
HCLK
HCLK
HCLK
FSMC_NWE low to FSMC_D[15:0] valid 0 ns
FSMC_NWE high to FSMC_D[15:0] invalid 11T
Doc ID 17143 Rev 2 73/108
HCLK
+ 2 ns
+ 1 ns
+ 2 ns
+ 1.5 ns
ns
Electrical characteristics STM32F101xF, STM32F101xG
Table 39. Switching characteristics for PC Card/CF read and write cycles
(1)(2)
(continued)
Symbol Parameter Min Max Unit
t
d(D-NWE)
t
w(NIOWR)
t
v(NIOWR-D)
t
h(NIOWR-D)
t
d(NCE4_1-NIOWR)
t
h(NCEx-NIOWR)
t
h(NCE4_1-NIOWR)
t
d(NIORD-NCEx)
t
d(NIORD-NCE4_1)
t
h(NCEx-NIORD)
t
h(NCE4_1-NIORD)
t
su(D-NIORD)
t
d(NIORD-D)
t
w(NIORD)
1. CL = 15 pF.
2. Preliminary values.
FSMC_D[15:0] valid before FSMC_NWE high 13T
FSMC_NIOWR low width 8T
FSMC_NIOWR low to FSMC_D[15:0] valid 5T
FSMC_NIOWR high to FSMC_D[15:0] invalid 11T
FSMC_NCE4_1 low to FSMC_NIOWR valid 5T
FSMC_NCEx high to FSMC_NIOWR invalid FSMC_NCE4_1 high to FSMC_NIOWR invalid
FSMC_NCEx low to FSMC_NIORD valid FSMC_NCE4_1 low to FSMC_NIORD valid
FSMC_NCEx high to FSMC_NIORD invalid FSMC_NCE4_1 high to FSMC_NIORD invalid
5T
5T
HCLK
+ 3 ns
HCLK
HCLK
HCLK
HCLK
– 5 ns
HCLK
5T
HCLK
– 5 ns
HCLK
FSMC_D[15:0] valid before FSMC_NIORD high 4.5 ns
FSMC_D[15:0] valid after FSMC_NIORD high 9 ns
FSMC_NIORD low width 8T
+ 2 ns
HCLK
+1 ns
+3ns ns
+ 2.5 ns
ns
ns
NAND controller waveforms and timings
Figure 35 through Figure 38 represent synchronous waveforms and Ta bl e 4 0 provides the
corresponding timings. The results shown in this table are obtained with the following FSMC configuration:
COM.FSMC_SetupTime = 0x01;
COM.FSMC_WaitSetupTime = 0x03;
COM.FSMC_HoldSetupTime = 0x02;
COM.FSMC_HiZSetupTime = 0x01;
ATT.FSMC_SetupTime = 0x01;
ATT.FSMC_WaitSetupTime = 0x03;
ATT.FSMC_HoldSetupTime = 0x02;
ATT.FSMC_HiZSetupTime = 0x01;
Bank = FSMC_Bank_NAND;
MemoryDataWidth = FSMC_MemoryDataWidth_16b;
ECC = FSMC_ECC_Enable;
ECCPageSize = FSMC_ECCPageSize_512Bytes;
TCLRSetupTime = 0;
TARSetupTime = 0;
74/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
FSMC_NWE
FSMC_NOE (NRE)
FSMC_D[15:0]
t
su(D-NOE)
t
h(NOE-D)
ai14901b
ALE (FSMC_A17) CLE (FSMC_A16)
FSMC_NCEx
Low
t
d(ALE-NOE)th(NOE-ALE)
t
h(NWE-D)
t
v(NWE-D)
ai14902b
FSMC_NWE
FSMC_NOE (NRE)
FSMC_D[15:0]
ALE (FSMC_A17) CLE (FSMC_A16)
FSMC_NCEx
Low
t
d(ALE-NWE)th(NWE-ALE)
Figure 35. NAND controller waveforms for read access
Figure 36. NAND controller waveforms for write access
Figure 37. NAND controller waveforms for common memory read access
FSMC_NCEx
ALE (FSMC_A17) CLE (FSMC_A16)
FSMC_NWE
FSMC_N
FSMC_D[15:0]
Low
OE
t
d(ALE-NOE)
t
w(NOE)
t
su(D-NOE)
t
h(NOE-ALE)
t
h(NOE-D)
Doc ID 17143 Rev 2 75/108
ai14912b
Electrical characteristics STM32F101xF, STM32F101xG
t
w(NWE)
t
h(NWE-D)
t
v(NWE-D)
ai14913b
FSMC_NWE
FSMC_N
OE
FSMC_D[15:0]
t
d(D-NWE)
ALE (FSMC_A17) CLE (FSMC_A16)
FSMC_NCEx
Low
t
d(ALE-NOE)
t
h(NOE-ALE)
Figure 38. NAND controller waveforms for common memory write access
Table 40. Switching characteristics for NAND Flash read and write cycles
(1)
Symbol Parameter Min Max Unit
(2)
t
d(D-NWE)
t
w(NOE)
t
su(D-NOE)
t
h(NOE-D)
t
w(NWE)
t
v(NWE-D)
t
h(NWE-D)
t
d(ALE-NWE)
t
h(NWE-ALE)
t
d(ALE-NOE)
t
h(NOE-ALE)
= 15 pF.
1. C
L
(2)
(2)
FSMC_D[15:0] valid before FSMC_NWE high 6T
FSMC_NOE low width 4T
FSMC_D[15:0] valid data before FSMC_NOE
(2)
high
(2)
FSMC_D[15:0] valid data after FSMC_NOE high 7 ns
FSMC_NWE low width 4T
(2)
FSMC_NWE low to FSMC_D[15:0] valid 0 ns
(2)
FSMC_NWE high to FSMC_D[15:0] invalid 10T
(3)
FSMC_ALE valid before FSMC_NWE low 3T
(3)
FSMC_NWE high to FSMC_ALE invalid 3T
(3)
FSMC_ALE valid before FSMC_NOE low 3T
(3)
FSMC_NWE high to FSMC_ALE invalid 3T
2. Preliminary values.
3. Guaranteed by design, not tested in production.
+ 12 ns
HCLK
HCLK
– 1.5 4T
HCLK
+ 1.5 ns
25 ns
– 1 4T
HCLK
+ 4 ns
HCLK
+ 4.5 ns
HCLK
+ 4.5 ns
HCLK
HCLK
HCLK
HCLK
+ 2.5 ns
+ 1.5 ns
+ 2 ns
76/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics

5.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (Electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is
SS
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Tab l e 41 . They are based on the EMS levels and classes defined in application note AN1709.
Table 41. EMS characteristics
Symbol Parameter Conditions Level/Class
DD
and
3.3 V, LQFP144,
V
V
V
FESD
EFTB
Voltage limits to be applied on any I/O pin to induce a functional disturbance
Fast transient voltage burst limits to be applied through 100 pF on VDD and V
SS
pins to induce a functional disturbance
DD
TA +25 °C, f
HCLK
36 MHz
conforms to IEC 61000-4-2
VDD3.3 V, LQFP144, TA +25 °C, f
HCLK
36 MHz
conforms to IEC 61000-4-4
2B
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).
Doc ID 17143 Rev 2 77/108
Electrical characteristics STM32F101xF, STM32F101xG
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.
Table 42. EMI characteristics
Symbol Parameter Conditions
Monitored
frequency band
0.1 MHz to 30 MHz 8
3.3 V, TA 25 °C,
V
DD
S
EMI
Peak level
LQFP144 package compliant with IEC 61967-2
130 MHz to 1 GHz 26
SAE EMI Level 4 -

5.3.12 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.
Table 43. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum value
Max vs. [f
8/36 MHz
HSE/fHCLK
]
Unit
dBµV30 MHz to 130 MHz 27
(1)
Unit
V
ESD(HBM)
V
ESD(CDM)
1. Based on characterization results, not tested in production.
Electrostatic discharge voltage (human body model)
Electrostatic discharge voltage (charge device model)
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78 IC latch-up standard.
78/108 Doc ID 17143 Rev 2
Table 44. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class T
A
TA +25 °C, conforming to JESD22-A114
TA +25 °C, conforming to JESD22-C101
2 2000
II 500
+85 °C conforming to JESD78A II level A
V
STM32F101xF, STM32F101xG Electrical characteristics

5.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below VSS or above V operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).
The test results are given in Tab l e 45
Table 45. I/O current injection susceptibility
Symbol Description
(for standard, 3 V-capable I/O pins) should be avoided during normal product
DD
Functional susceptibility
Negative injection
Positive
injection
Unit
I
INJ
Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13
Injected current on all FT pins -5 +0
-0 +0
mA
Injected current on any other pin -5 +5
Doc ID 17143 Rev 2 79/108
Electrical characteristics STM32F101xF, STM32F101xG

5.3.14 I/O port characteristics

General input/output characteristics
Unless otherwise specified, the parameters given in Ta bl e 4 6 are derived from tests performed under the conditions summarized in Tab l e 10 . All I/Os are CMOS and TTL compliant.
Table 46. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
Standard IO input low level voltage
V
IL
IO FT
(1)
voltage
Standard IO input high level voltage
V
IH
IO FT
(1)
voltage
input low level
input high level
–0.3 0.28*(V
–0.3 0.32*(V
0.41*(V
> 2 V
V
DD
V
2 V 5.2
DD
0.42*(V
-2 V)+1.3 V VDD+0.3 V
DD
-2 V)+1 V
DD
-2 V)+0.8 V V
DD
-2V)+0.75 V V
DD
5.5
Standard IO Schmitt trigger voltage
hys
hysteresis
V
IO FT Schmitt trigger voltage hysteresis
Input leakage current
I
lkg
(2)
(2)
V
(4)
VIN V
SS
Standard I/Os
= 5 V
V
IN
DD
I/O FT
R
R
C
1. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.5 the internal pull-up/pull-down resistors must be
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
3. With a minimum of 100 mV.
4. Leakage could be higher than max. if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
Weak pull-up equivalent
PU
PD
IO
(5)
resistor
Weak pull-down equivalent resistor
(5)
I/O pin capacitance 5 pF
V
V
IN
SS
V
V
IN
DD
disabled.
PMOS/NMOS contribution
to the series resistance is minimum (~10% order).
200 mV
DD
(3)
5% V
1
3
30 40 50 k
30 40 50 k
V
mV
µA
All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 39 and Figure 40 for standard I/Os, and in Figure 41 and Figure 42 for 5 V tolerant I/Os.
80/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
AIB
6$$6



)NPUTRANGE
NOTGUARANTEED


6
)(
6
$$


#-/3STANDARDREQUIREMENT6
)(
6
$$

6)(6),6
#-/3STANDARDREQUIREMENT6
),
6
$$







7
),MAX
7
)(MIN
6
$$

6
),
AI

)NPUTRANGE
NOTGUARANTEED
6)(6),6






44,REQUIREMENTS 6)(6
6
)(
6
$$

6
),
6
$$

44,REQUIREMENTS 6),6
6$$6
7
),MAX
7
)(MIN
Figure 39. Standard I/O input characteristics - CMOS port
Figure 40. Standard I/O input characteristics - TTL port
Doc ID 17143 Rev 2 81/108
Electrical characteristics STM32F101xF, STM32F101xG
6$$


#-/3STANDARDREQUIREMENTS6
)(
6
$$
#-/3STANDARDREQUIRMENT6
),
6
$$





 
 
 
6)(6),6
6$$6
)NPUTRANGE
NOTGUARANTEED
AIB
6
)(
6
$$

6
),
6
$$




NOTGUARANTEED
)NPUTRANGE


44,REQUIREMENT6)(6
6
)(
6
$$

6
),
6
$$

44,REQUIREMENTS6),6
6)(6),6
6$$6
7
),MAX
7
)(MIN
AI
Figure 41. 5 V tolerant I/O input characteristics - CMOS port
Figure 42. 5 V tolerant I/O input characteristics - TTL port
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V
In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2:
The sum of the currents sourced by all the I/Os on V
consumption of the MCU sourced on V I
(see Ta bl e 8 ).
VDD
The sum of the currents sunk by all the I/Os on V
consumption of the MCU sunk on V I
(see Ta bl e 8 ).
VSS
82/108 Doc ID 17143 Rev 2
OL/VOH
SS
).
plus the maximum Run
cannot exceed the absolute maximum rating
DD,
DD,
plus the maximum Run
SS
cannot exceed the absolute maximum rating
STM32F101xF, STM32F101xG Electrical characteristics
Output voltage levels
Unless otherwise specified, the parameters given in Ta bl e 4 7 are derived from tests performed under ambient temperature and V
Ta bl e 1 0 . All I/Os are CMOS and TTL compliant.
Table 47. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
Output Low level voltage for an I/O pin
(1)
V
OL
when 8 pins are sunk at the same time
Output High level voltage for an I/O pin
(3)
V
OH
when 8 pins are sourced at the same time
Output low level voltage for an I/O pin
(1)
V
OL
when 8 pins are sunk at the same time
Output high level voltage for an I/O pin
(3)
V
OH
when 8 pins are sourced at the same time
Output low level voltage for an I/O pin
(1)
V
OL
when 8 pins are sunk at the same time
Output high level voltage for an I/O pin
(3)
V
OH
V
V
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 8
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
4. Based on characterization data, not tested in production.
when 8 pins are sourced at the same time
Output low level voltage for an I/O pin
(1)
OL
when 8 pins are sunk at the same time
Output high level voltage for an I/O pin
(3)
OH
when 8 pins are sourced at the same time
and the sum of I
Table 8 and the sum of I
(I/O ports and control pins) must not exceed I
IO
(I/O ports and control pins) must not exceed I
IO
supply voltage conditions summarized in
DD
CMOS port
= +8 mA,
I
IO
(2)
,
2.7 V < VDD < 3.6 V
TTL port
I
IO
2.7 V < V
I
= +20 mA
IO
(2)
= +8 mA
< 3.6 V
DD
(4)
2.7 V < VDD < 3.6 V
= +6 mA
I
IO
(4)
2 V < VDD < 2.7 V
.
VSS
.
VDD
VDD–0.4
2.4
VDD–1.3
V
–0.4
DD
0.4
0.4
1.3
0.4
V
V
V
V
Doc ID 17143 Rev 2 83/108
Electrical characteristics STM32F101xF, STM32F101xG
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 43 and
Ta bl e 4 8 , respectively.
Unless otherwise specified, the parameters given in Ta bl e 4 8 are derived from tests performed under ambient temperature and V
Ta bl e 1 0 .
Table 48. I/O AC characteristics
MODEx [1:0] bit value
10
01
11
Symbol Parameter Conditions Max Unit
(1)
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
F
max(IO)out
t
f(IO)out
t
r(IO)out
Maximum frequency
Output high to low level fall time
Output low to high level rise time
Maximum frequency
Output high to low level fall time
Output low to high level rise time
Maximum Frequency
Output high to low level fall time
Output low to high level rise time
Pulse width of external
-t
EXTIpw
signals detected by the EXTI controller
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a
description of GPIO Port configuration register.
2. The maximum frequency is defined in Figure 43.
3. Guaranteed by design, not tested in production.
(1)
(2)
(2)
(2)
supply voltage conditions summarized in
DD
CL = 50 pF, V
= 2 V to 3.6 V 2 MHz
DD
125
= 50 pF, V
C
L
= 2 V to 3.6 V
DD
125
CL= 50 pF, V
= 50 pF, V
C
L
CL= 30 pF, V
= 50 pF, V
C
L
C
= 50 pF, V
L
CL = 30 pF, V
= 50 pF, V
C
L
CL = 50 pF, VDD = 2 V to 2.7 V 12
C
= 30 pF, V
L
CL = 50 pF, V
CL = 50 pF, V
= 2 V to 3.6 V 10 MHz
DD
(3)
25
= 2 V to 3.6 V
DD
= 2.7 V to 3.6 V 50 MHz
DD
= 2.7 V to 3.6 V 30 MHz
DD
= 2 V to 2.7 V 20 MHz
DD
= 2.7 V to 3.6 V 5
DD
= 2.7 V to 3.6 V 8
DD
= 2.7 V to 3.6 V 5
DD
= 2.7 V to 3.6 V 8
DD
= 2 V to 2.7 V 12
DD
25
(3)
(3)
(3)
(3)
(3)
(3)
(3)
10 ns
(3)
ns
(3)
ns
ns
84/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
ai14131
10%
90%
50%
t
r(IO)out
OUTPUT
EXTERNAL
ON 50pF
Maximum fr equency is achieved if (tr + tf) 2/3) T and if the duty cycle is (45-55%)
10 %
50%
90%
when loaded by 50pF
T
t
r(IO)out
AIC
34-&XXX
2
05
.234

6
$$
&ILTER
)NTERNAL2ESET
&
%XTERNAL RESETCIRCUIT

Figure 43. I/O AC characteristics definition

5.3.15 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R
Unless otherwise specified, the parameters given in Ta bl e 4 9 are derived from tests performed under ambient temperature and V
Ta bl e 1 0 .
Table 49. NRST pin characteristics
(see Ta bl e 4 6 ).
PU
supply voltage conditions summarized in
DD
Symbol Parameter Conditions Min Typ Max Unit
V
IL(NRST)
V
IH(NRST)
V
V
V
NF(NRST)
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
(1)
NRST Input low level voltage –0.5 0.8
(1)
NRST Input high level voltage 2 VDD+0.5
hys(NRST)
R
PU
F(NRST)
the series resistance must be minimum
NRST Schmitt trigger voltage hysteresis
Weak pull-up equivalent resistor
(1)
NRST Input filtered pulse 100 ns
(1)
NRST Input not filtered pulse 300 ns
(~10% order).
(2)
200 mV
V
IN
V
SS
30 40 50 k
Figure 44. Recommended NRST pin protection
V
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the V
Table 49. Otherwise the reset will not be taken into account by the device.
Doc ID 17143 Rev 2 85/108
max level specified in
IL(NRST)
Electrical characteristics STM32F101xF, STM32F101xG

5.3.16 TIM timer characteristics

The parameters given in Tab l e 5 0 are guaranteed by design.
Refer to Section 5.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).
Table 50. TIMx
Symbol Parameter Conditions Min Max Unit
(1)
characteristics
t
res(TIM)
f
EXT
Res
Timer resolution time
Timer external clock frequency on CH1 to CH4
Timer resolution 16 bit
TIM
16-bit counter clock period
t
COUNTER
when internal clock is selected
t
MAX_COUNT
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.
Maximum possible count

5.3.17 Communications interfaces

I2C interface characteristics
Unless otherwise specified, the parameters given in Ta bl e 5 1 are derived from tests performed under ambient temperature, f summarized in Ta bl e 1 0 .
The STM32F101xC, STM32F101xD and STM32F101xESTM32F101xF and STM32F101xG access line I protocol with the following restrictions: t “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V
2
The I
characteristics
and SCL)
2
C interface meets the requirements of the standard I2C communication
is disabled, but is still present.
DD
C characteristics are described in Ta b le 5 1 . Refer also to
for more details on the input/output alternate function characteristics (SDA
.
1
f
0
f
TIMxCLK
TIMxCLK
= 36 MHz
= 36 MHz
27.8 ns
f
TIMxCLK
/2
018MHz
1 65536
f
TIMxCLK
= 36 MHz
0.0278 1820 µs
65536 × 65536
f
= 36 MHz
TIMxCLK
frequency and VDD supply voltage conditions
PCLK1
119.2 s
t
TIMxCLK
MHz
t
TIMxCLK
t
TIMxCLK
he I/O pins SDA and SCL are mapped to are not
Section 5.3.14: I/O port
86/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
Table 51. I2C characteristics
Symbol Parameter
Standard mode I
2C(1)
Fast mode I2C
Min Max Min Max
(1)(2)
Unit
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA)
t
r(SCL)
t
f(SDA)
t
f(SCL)
t
h(STA)
t
su(STA)
t
su(STO)
t
w(STO:STA)
C
Guaranteed by design, not tested in production.
1.
2. f
PCLK1
to achieve the fast mode I2C frequencies and it must be a multiple of 10 MHz in order to reach the I2C fast mode maximum clock speed of 400 kHz.
The maximum hold time of the Start condition has only to be met if the interface does not stretch the low
3.
period of SCL signal.
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
4.
undefined region of the falling edge of SCL.
SCL clock low time 4.7 1.3
SCL clock high time 4.0 0.6
SDA setup time 250 100
SDA data hold time 0
(3)
SDA and SCL rise time 1000 20+0.1C
(4)
0
900
300
b
SDA and SCL fall time 300 300
Start condition hold time 4.0 0.6
Repeated Start condition setup time
4.7 0.6
Stop condition setup time 4.0 0.6 µs
Stop to Start condition time (bus free)
Capacitive load for each bus line 400 400 pF
b
must be higher than 2 MHz to achieve standard mode I2C frequencies. It must be higher than 4 MHz
4.7 1.3 µs
µs
(3)
ns
µs
Doc ID 17143 Rev 2 87/108
Electrical characteristics STM32F101xF, STM32F101xG
AIC
34!24
3$ !

K
)£#BUS
K

6
$$
6
$$
34-&XXX
3$!
3#,
T
F3$!
T
R3$!
3#,
T
H34!
T
W3#,(
T
W3#,,
T
SU3$!
T
R3#,
T
F3#,
T
H3$!
3 4!242%0%!4%$
34!24
T
SU34!
T
SU34/
34/0
T
SU34/34!
Figure 45. I2C bus AC waveforms and measurement circuit
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7V
Table 52. SCL frequency (f
f
SCL
= 36 MHz, VDD = 3.3 V)
PCLK1
(kHz)
400 0x801E
DD
.
(1)(2)
I2C_CCR value
(1)
R
= 4.7 k
P
300 0x8028
200 0x803C
100 0x00B4
50 0x0168
20 0x0384
= External pull-up resistance, f
1. R
P
2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the
tolerance on the achieved speed 2%. These variations depend on the accuracy of the external components used to design the application.
88/108 Doc ID 17143 Rev 2
SCL
= I2C speed,
STM32F101xF, STM32F101xG Electrical characteristics
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 53Table 54 are derived from tests performed under ambient temperature, f summarized in Ta bl e 1 0 . Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 53. STM32F10xxx SPI characteristics
Symbol Parameter Conditions Min Max Unit
frequency and VDD supply voltage conditions
PCLKx
f
SCK
1/t
c(SCK)
t
r(SCK)
t
f(SCK)
t
su(NSS)
t
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
SPI clock frequency
SPI clock rise and fall time
(1)
NSS setup time Slave mode 4t
(1)
NSS hold time Slave mode 73
(1)
SCK high and low
(1)
time
(1)
Data input setup
(1)
time
Master mode 10
Slave mode 10
Capacitive load: C = 30 pF 8
PCLK
Master mode, f presc = 4
= 36 MHz,
PCLK
50 60
Master mode - SPI1 3
Master mode - SPI2 5
MHz
Slave mode 4
(1)
t
h(MI)
t
h(SI)
t
a(SO)
t
dis(SO)
t
v(SO)
t
v(MO)
t
h(SO)
t
h(MO)
Data input hold time
(1)
Data output access
(1)(2)
time
Data output disable
(1)(3)
time
Data output valid
(1)
time
Data output valid
(1)
time
(1)
Data output hold
(1)
time
1. Based on characterization, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z
Master mode - SPI1 4
Master mode - SPI2 6
Slave mode 5
Slave mode, f presc = 4
Slave mode, f
= 36 MHz,
PCLK
= 20 MHz 4t
PCLK
055
PCLK
Slave mode 10
Slave mode (after enable edge) 25
Master mode (after enable edge) 6
Slave mode (after enable edge) 25
Master mode (after enable edge) 6
ns
Doc ID 17143 Rev 2 89/108
Electrical characteristics STM32F101xF, STM32F101xG
Table 54. SPI characteristics
(1)
Symbol Parameter Conditions Min Max Unit
f
SCK
1/t
c(SCK)
t
r(SCK)
t
f(SCK)
DuCy(SCK)
t
su(NSS)
t
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
t
h(MI)
t
h(SI)
(2)(3)
t
a(SO)
t
dis(SO)
t
v(SO)
t
v(MO)
t
h(SO)
t
h(MO)
SPI clock frequency
SPI clock rise and fall time
SPI slave input clock duty cycle
(2)
NSS setup time Slave mode 4t
(2)
NSS hold time Slave mode 2t
(2)
SCK high and low time
(2)
(2)
Data input setup time
(2)
(2)
Data input hold time
(2)
Data output access time Slave mode, f
(2)(4)
Data output disable time Slave mode 2 10
(2)(1)
Data output valid time Slave mode (after enable edge) 25
(2)(1)
Data output valid time Master mode (after enable edge) 5
(2)
Data output hold time
(2)
1. Remapped SPI1 characteristics to be determined.
2. Based on characterization, not tested in production.
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z
Master mode 18
Slave mode 18
Capacitive load: C = 30 pF 8 ns
Slave mode 30 70 %
PCLK
PCLK
Master mode, f presc = 4
= 36 MHz,
PCLK
50 60
Master mode 5
Slave mode 5
Master mode 5
Slave mode 4
= 20 MHz 0 3t
PCLK
PCLK
Slave mode (after enable edge) 15
Master mode (after enable edge) 2
MHz
ns
90/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
ai14134c
SCK Input
CPHA=0
MOSI
INPUT
MISO
OUT PUT
CPHA=0
MS B O U T
MSB IN
BI T6 O UT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT PUT
CPHA=1
MS B O U T
MSB IN
BI T6 O UT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
NSS input
Figure 46. SPI timing diagram - slave mode and CPHA=0
Figure 47. SPI timing diagram - slave mode and CPHA=1
1. Measurement points are done at CMOS levels: 0.3V
and 0.7V
DD
DD
.
(1)
Doc ID 17143 Rev 2 91/108
Electrical characteristics STM32F101xF, STM32F101xG
ai14136
SCK Input
CPHA=0
MOSI
OUTUT
MISO
INP U T
CPHA=0
MSBIN
M SB OUT
BIT6 IN
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
t
c(SCK)
t
w(SCKH)
t
w(SCKL)
t
r(SCK)
t
f(SCK)
t
h(MI)
High
SCK Input
CPHA=1
CPHA=1
CPOL=0
CPOL=1
t
su(MI)
t
v(MO)
t
h(MO)
Figure 48. SPI timing diagram - master mode
(1)
1. Measurement points are done at CMOS levels: 0.3V
and 0.7V
DD
DD
.

5.3.18 12-bit ADC characteristics

Unless otherwise specified, the parameters given in Ta bl e 5 5 are preliminary values derived from tests performed under ambient temperature, f conditions summarized in Ta bl e 1 0.
Note: It is recommended to perform a calibration after each power-up.
PCLK2
frequency and V
supply voltage
DDA
92/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
R
AIN
T
S
f
ADCCADC
2
N2+
ln
------------------------------------------------------------- - R
ADC
Table 55. ADC characteristics
Symbol Parameter Conditions Min Typ
Max Unit
V
V
I
VREF
f
f
f
TRIG
V
R
AIN
Power supply 2.4 3.6 V
DDA
Positive reference voltage 2.4 V
REF+
Current on the V
REF
input
pin
ADC clock frequency 0.6 14 MHz
ADC
(2)
Sampling rate 0.05 1 MHz
S
f
= 14 MHz 823 kHz
(2)
External trigger frequency
Conversion voltage range
AIN
(2)
External input impedance
ADC
(3)
See Equation
1 and Ta bl e 5 6
0 (V
SSA
tied to ground)
for details
(2)
R
ADC
C
ADC
t
CAL
t
t
t
STAB
t
CONV
lat
latr
t
Sampling switch resistance 1 k
Internal sample and hold
(2)
capacitor
f
= 14 MHz 5.9 µs
(2)
Calibration time
Injection trigger conversion
(2)
ADC
= 14 MHz 0.214 µs
f
ADC
latency
= 14 MHz 0.143 µs
f
Regular trigger conversion
(2)
ADC
latency
f
= 14 MHz 0.107 17.1 µs
(2)
Sampling time
S
(2)
Power-up time 0 0 1 µs
Total conversion time
(2)
(including sampling time)
ADC
1.5 239.5 1/f
f
= 14 MHz 1 18 µs
ADC
14 to 252 (t successive approximation)
1. Preliminary values.
2. Guaranteed by design, not tested in production.
3. V
4. For external triggers, a delay of 1/f
can be internally connected to V
REF+
the package. Refer to Section 3: Pinouts and pin descriptions for further details.
and V
DDA
must be added to the latency specified in Table 55.
PCLK2
can be internally connected to V
REF-
(1)
160
or V
REF-
83 1/f
for sampling +12.5 for
S
SSA
DDA
(1)
220
µA
17 1/f
V
REF+
50 k
8pF
(4)
(4)
1/f
1/f
3
2
1/f
, depending on
V
ADC
V
ADC
ADC
ADC
ADC
ADC
Equation 1: R
max formula:
AIN
Doc ID 17143 Rev 2 93/108
Electrical characteristics STM32F101xF, STM32F101xG
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 56. R
max for f
AIN
= 14 MHz
ADC
Ts (cycles) tS (µs) R
1.5 0.11 0.4
7.5 0.54 5.9
13.5 0.96 11.4
28.5 2.04 25.2
41.5 2.96 37.2
55.5 3.96 50
71.5 5.11 NA
239.5 17.1 NA
1. Guaranteed by design, not tested in production.
(1)
max (k)
AIN
Table 57. ADC accuracy - limited test conditions
Symbol Parameter Test conditions Typ Max
ET Total unadjusted error
EO Offset error ±1 ±1.5
EG Gain error ±0.5 ±1.5
ED Differential linearity error ±0.7 ±1
EL Integral linearity error ±0.8 ±1.5
f
= 28 MHz,
PCLK2
f
= 14 MHz, R
ADC
= 3 V to 3.6 V, TA = 25 °C
V
DDA
Measurements made after ADC calibration
= V
V
REF+
DDA
(1)(2)
< 10 k,
AIN
(3)
±1.3 ±2
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I affect the ADC accuracy.
INJ(PIN)
and I
in Section 5.3.14 does not
INJ(PIN)
3. Preliminary values.
Unit
LSB
94/108 Doc ID 17143 Rev 2
STM32F101xF, STM32F101xG Electrical characteristics
E
O
E
G
1LSB
IDEAL
(1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line
E
T
=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
E
O
=Offset Error: deviation between the first actual
transition and the first ideal one.
E
G
=Gain Error: deviation between the last ideal
transition and the last actual one.
E
D
=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
E
L
=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.
4095
4094
4093
5
4
3
2
1
0
7
6
1234567
4093 4094 4095 4096
(1)
(2)
E
T
E
D
E
L
(3)
V
DDA
V
SSA
ai14395b
V
REF+
4096
(or depending on package)]
V
DDA
4096
[1LSB
IDEAL =
Table 58. ADC accuracy
Symbol Parameter Test conditions Typ Max
ET Total unadjusted error
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1 ±2
(1) (2)(3)
f
= 28 MHz,
PCLK2
= 14 MHz, R
f
ADC
V
= 2.4 V to 3.6 V
DDA
< 10 k,
AIN
Measurements made after ADC calibration
±2 ±5
(4)
Unit
LSB
EL Integral linearity error ±1.5 ±3
1. ADC DC accuracy values are measured after internal calibration.
2. Better performance could be achieved in restricted V
3. ADC accuracy vs. negative injection current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I affect the ADC accuracy.
, frequency, V
DD
INJ(PIN)
and temperature ranges.
REF
and I
in Section 5.3.14 does not
INJ(PIN)
4. Preliminary values.
Figure 49. ADC accuracy characteristics
Doc ID 17143 Rev 2 95/108
Electrical characteristics STM32F101xF, STM32F101xG
ai14139d
STM32F10xxx
V
DD
AINx
IL±1 µA
0.6 V
V
T
R
AIN
(1)
C
parasitic
V
AIN
0.6 V
V
T
R
ADC
(1)
C
ADC
(1)
12-bit
converter
Sample and hold ADC converter
Figure 50. Typical connection diagram using the ADC
1. Refer to Table 55 for the values of R
2. C
represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
parasitic
pad capacitance (roughly 7 pF). A high C this, f
should be reduced.
ADC
AIN
, R
parasitic
ADC
and C
ADC
.
value will downgrade conversion accuracy. To remedy
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 51 or Figure 52, depending on whether V ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 51. Power supply and reference decoupling (V
1 µF // 10 nF
is connected to V
REF+
1 µF // 10 nF
or not. The 10 nF capacitors should be
DDA
not connected to V
REF+
STM32F10xxx
V
REF+
V
DDA
V
SSA/VREF-
DDA
)
1. V
96/108 Doc ID 17143 Rev 2
REF+
and V
inputs are available only on 100-pin packages.
REF-
ai14380b
STM32F101xF, STM32F101xG Electrical characteristics
Figure 52. Power supply and reference decoupling (V
1 µF // 10 nF
1. V
REF+
and V
inputs are available only on 100-pin packages.
REF-

5.3.19 DAC electrical specifications

Table 59. DAC characteristics
Symbol Parameter Min Typ Max
(1)
connected to V
REF+
STM32F10xxx
V
REF+/VDDA
V
REF–/VSSA
ai14381b
Unit Comments
DDA
)
V
DDA
V
REF+
V
SSA
(2)
R
LOAD
(2)
R
O
(2)
C
LOAD
DAC_OUT
(2)
min
DAC_OUT
(2)
max
DAC_OUT
(2)
min
DAC_OUT
(2)
max
Analog supply voltage 2.4 3.6 V
Reference supply voltage 2.4 3.6 V
Ground 0 0 V
Resistive load with buffer ON 5 k
Impedance output with buffer OFF
15 k
Capacitive load 50 pF
Lower DAC_OUT voltage with buffer ON
Higher DAC_OUT voltage with buffer ON
Lower DAC_OUT voltage with buffer OFF
Higher DAC_OUT voltage with buffer OFF
0.2 V
– 0.2 V
V
DDA
0.5 mV
– 1LSB V
V
REF+
must always be below
V
REF+
V
DDA
When the buffer is OFF, the minimum resistive load between DAC_OUT and V
SS
to
have a 1% accuracy is 1.5 M
Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at
= 3.6 V and (0x155) and
V
REF+
(0xEAB) at V
REF+
= 2.4 V.
It gives the maximum output excursion of the DAC.
Doc ID 17143 Rev 2 97/108
Electrical characteristics STM32F101xF, STM32F101xG
Table 59. DAC characteristics (continued)
Symbol Parameter Min Typ Max
(1)
Unit Comments
I
DDVREF+
I
DDA
(3)
DNL
(3)
INL
(3)
Offset
Gain error
t
SETTLING
(3)
Update rate
t
WAKEUP
(3)
DAC DC current consumption in quiescent mode (Standby
220 µA
mode)
380 µA
DAC DC current consumption in quiescent mode (Standby mode)
Differential non linearity
480 µA
±0.5 LSB
Difference between two consecutive code-1LSB)
Integral non linearity (difference between measured value at
±2 LSB
±1 LSB
Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)
±4 LSB
±10 mV
Offset error (difference between measured
value at Code (0x800) and the ideal value = V
REF+
/2)
±3 LSB
±12 LSB
(3)
Gain error ±0.5 %
Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when
34 µsC
DAC_OUT reaches final value ±1LSB
Max frequency for a correct DAC_OUT change when small
(3)
variation in the input code (from
1MS/sC
code i to i+1LSB)
Wakeup time from off state (Setting the ENx bit in the DAC
6.5 10 µs
Control register)
With no load, worst code (0xF1C) at V
REF+
= 3.6 V in terms of DC consumption on the inputs.
With no load, middle code (0x800) on the inputs.
With no load, worst code (0xF1C) at V
REF+
= 3.6 V in terms of DC consumption on the inputs.
Given for the DAC in 10-bit configuration.
Given for the DAC in 12-bit configuration.
Given for the DAC in 10-bit configuration.
Given for the DAC in 12-bit configuration.
Given for the DAC in 12-bit configuration.
Given for the DAC in 10-bit at
= 3.6 V.
V
REF+
Given for the DAC in 12-bit at V
= 3.6 V.
REF+
Given for the DAC in 12bit configuration.
C
LOAD
LOAD
LOAD
50 pF, R
50 pF, R
50 pF, R
LOAD
LOAD
LOAD
5k
5k
5k
input code between lowest and highest possible ones.
Power supply rejection ratio (to
PSRR+
1. Preliminary values.
2. Guaranteed by design, not tested in production.
3. Preliminary values.
(2)
V
) (static DC measurement
DDA
98/108 Doc ID 17143 Rev 2
–67 –40 dB No R
LOAD
, C
LOAD
= 50 pF
STM32F101xF, STM32F101xG Electrical characteristics
R
LOAD
C
LOAD
Buffered/Non-buffered DAC
DACx_OUT
Buffer(1)
12-bit digital to analog converter
ai17157
Figure 53. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

5.3.20 Temperature sensor characteristics

Table 60. TS characteristics
Symbol Parameter Min Typ Max Unit
(1)
T
L
Avg_Slope
(1)
V
25
(2)
t
START
T
S_temp
1. Preliminary values.
2. Guaranteed by design, not tested in production.
3. Shortest sampling time can be determined in the application by multiple iterations.
V
linearity with temperature
SENSE
(1)
Average slope 4.0 4.3 4.6 mV/°C
1 2
Voltage at 25°C 1.34 1.43 1.52 V
Startup time 4 10 µs
ADC sampling time when reading the
(3)(2)
temperature
17.1 µs
°C
Doc ID 17143 Rev 2 99/108
Package characteristics STM32F101xF, STM32F101xG

6 Package characteristics

6.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
100/108 Doc ID 17143 Rev 2
Loading...