Datasheet M41T0 Datasheet (ST)

M41T0
Serial real-time clock
Features
Counters for seconds, minutes, hours, day,
date, month, years, and century
32 KHz crystal oscillator integrating load
Oscillator stop detection monitors clock
operation
Serial interface supports I
(400 kHz protocol)
Low standby current 0.9 µA (typ at 3 V)
2.0 to 5.5 V clock operating voltage
Special software programmable output
Operating temperature of –40 to 85 °C
2
C bus
8
1
SO8
June 2011 Doc ID 9105 Rev 7 1/23
www.st.com
1
Contents M41T0
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 2-wire bus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Bus not busy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Start data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Stop data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Data valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 READ mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 WRITE mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Clock operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Output driver pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Oscillator stop detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Initial power-on defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6 Package mechanical information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2/23 Doc ID 9105 Rev 7
M41T0 List of tables
List of tables
Table 1. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 2. AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3. Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 5. Operating and AC measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 6. Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 7. DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 8. Crystal electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9. SO8 – 8-lead plastic small outline, 150 mils body width, package mechanical data . . . . . 18
Table 10. Carrier tape dimensions for SO8 package (150 mils body width) . . . . . . . . . . . . . . . . . . . . 19
Table 11. Reel dimensions for 12 mm carrier tape - SO8 package (150 mils body width) . . . . . . . . . 20
Table 12. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 13. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Doc ID 9105 Rev 7 3/23
List of figures M41T0
List of figures
Figure 1. Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. SOIC connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. Serial bus data transfer sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 5. Acknowledgement sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 6. Bus timing requirements sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 7. Slave address location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 8. READ mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 9. Alternate READ mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 10. WRITE mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 11. AC testing input/output waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 12. SO8 – 8-lead plastic small outline, 150 mils body width, package mechanical drawing. . . 18
Figure 13. Carrier tape for SO8 package (150 mils body width) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 14. Reel schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4/23 Doc ID 9105 Rev 7
M41T0 Description

1 Description

The M41T0 real-time clock is a low power serial real-time clock with a built-in 32.768 kHz oscillator (external crystal controlled). Eight registers are used for the clock/calendar function and are configured in binary coded decimal (BCD) format. Addresses and data are transferred serially via a two-line bidirectional bus. The built-in address register is incremented automatically after each WRITE or READ data byte.
The M41T0 is supplied in 8-lead plastic small outline package.

Figure 1. Logic diagram

V
CC
OSCI
SCL

Figure 2. SOIC connections

OSCI V
(1)
NF
SS
1. NF pin must be tied to VSS.

Table 1. Signal names

OSCI Oscillator input
OCSO Oscillator output
M41T0
V
SS
1 2 3 4
M41T0
8 7 6 5
AI07029
OSCO
SDA
OUT
AI07028
CC
OUTOSCO SCL SDAV
OUT Output driver (open drain)
SDA Serial data address input / output
SCL Serial clock
(1)
NF
V
CC
V
SS
1. NF pin must be tied to VSS.
No function
Supply voltage
Ground
Doc ID 9105 Rev 7 5/23
Description M41T0

Figure 3. Block diagram

OSCI
OSCO
OSCILLATOR
32.768 kHz
DIVIDER
1 Hz
SECONDS
MINUTES
OUT
V
CC
V
SS
SCL
SDA
SERIAL
BUS
INTERFACE
CONTROL
LOGIC
ADDRESS
REGISTER
CENTURY/HOURS
DAY
DATE
MONTH
YEAR
CONTROL
AI07030
6/23 Doc ID 9105 Rev 7
M41T0 Operation

2 Operation

The M41T0 clock operates as a slave device on the serial bus. Access is obtained by implementing a start condition followed by the correct slave address (D0h). The 8 bytes contained in the device can then be accessed sequentially in the following order:
1. Seconds register
2. Minutes register
3. Century/hours register
4. Day register
5. Date register
6. Month register
7. Years register
8. Control register

2.1 2-wire bus characteristics

This bus is intended for communication between different ICs. It consists of two lines: one bidirectional for data signals (SDA) and one for clock signals (SCL). Both the SDA and the SCL lines must be connected to a positive supply voltage via a pull-up resistor.
The following protocol has been defined:
Data transfer may be initiated only when the bus is not busy.
During data transfer, the data line must remain stable whenever the clock line is high.
Changes in the data line while the clock line is high will be interpreted as control signals.
Accordingly, the following bus conditions have been defined:

2.1.1 Bus not busy

Both data and clock lines remain high.

2.1.2 Start data transfer

A change in the state of the data line, from high to low, while the clock is high, defines the START condition.

2.1.3 Stop data transfer

A change in the state of the data line, from low to high, while the clock is high, defines the STOP condition.
Doc ID 9105 Rev 7 7/23
Operation M41T0

2.1.4 Data valid

The state of the data line represents valid data when after a start condition, the data line is stable for the duration of the high period of the clock signal. The data on the line may be changed during the low period of the clock signal. There is one clock pulse per bit of data.
Each data transfer is initiated with a start condition and terminated with a stop condition. The number of data bytes transferred between the start and stop conditions is not limited. The information is transmitted byte-wide and each receiver acknowledges with a ninth bit.
By definition, a device that gives out a message is called “transmitter”, the receiving device that gets the message is called “receiver”. The device that controls the message is called “master”. The devices that are controlled by the master are called “slaves”.

2.1.5 Acknowledge

Each byte of eight bits is followed by one acknowledge bit. this acknowledge bit is a low level put on the bus by the receiver, whereas the master generates an extra acknowledge related clock pulse.
A slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte. Also, a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.
The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is a stable Low during the High period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master receiver must signal an end-of-data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case, the transmitter must leave the data line high to enable the master to generate the STOP condition.
Figure 4. Serial bus data transfer sequence
DATA LINE
STABLE
DATA VALID
CLOCK
DATA
START
CONDITION
CHANGE OF
DATA ALLOWED
STOP
CONDITION
AI00587
8/23 Doc ID 9105 Rev 7
M41T0 Operation
T
Figure 5. Acknowledgement sequence
CLOCK PULSE FOR
ACKNOWLEDGEMENT
SCLK FROM MASTER
START
12 89
DATA OUTPUT BY TRANSMITTER
DATA OUTPUT BY RECEIVER
MSB LSB
Figure 6. Bus timing requirements sequence
SDA
tHD:STAtBUF
tR
SCL
SP
1. P = STOP and S = START
tF
tHIGH
tLOW
tSU:DAT
tHD:DAT
SR
tHD:STA
tSU:STA
AI00601
tSU:S
P
AI00589
Doc ID 9105 Rev 7 9/23
Operation M41T0
Table 2. AC characteristics
Symbol Parameter
(1)
Min Typ Max Unit
f
SCL
t
LOW
t
HIGH
t
t
HD:STA
t
SU:STA
t
SU:DAT
t
HD:DAT
t
SU:STO
t
BUF
1. Valid for ambient operating temperature: TA = –40 to 85 °C; VCC = 2.0 to 5.5 V (except where noted).
2. Transmitter must internally provide a hold time to bridge the undefined region (300 ns max.) of the falling edge of SCL.
SCL clock frequency 0 400 kHz
Clock low period 1.3 µs
Clock high period 600 ns
SDA and SCL rise time 300 ns
R
SDA and SCL fall time 300 ns
t
F
START condition hold time (after this period the first clock pulse is generated)
START condition setup time (only relevant for a repeated start condition)
Data setup time 100 ns
(2)
Data hold time 0 µs
STOP condition setup time 600 ns
Time the bus must be free before a new transmission can start

2.2 READ mode

600 ns
600 ns
1.3 µs
In this mode, the master reads the M41T0 slave after setting the slave address (see
Figure 7). Following the WRITE mode control bit (R/W
= 0) and the acknowledge bit, the word address An is written to the on-chip address pointer. Next the START condition and slave address are repeated, followed by the READ mode control bit (R/W
= 1). At this point, the master transmitter becomes the master receiver. The data byte which was addressed will be transmitted and the master receiver will send an acknowledge bit to the slave transmitter. The address pointer is only incremented on reception of an acknowledge bit. The M41T0 slave transmitter will now place the data byte at address A
on the bus. The
n+1
master receiver reads and acknowledges the new byte and the address pointer is incremented to A
n+2
.
This cycle of reading consecutive addresses will continue until the master receiver sends a STOP condition to the slave transmitter.
An alternate READ mode may also be implemented, whereby the master reads the M41T0 slave without first writing to the (volatile) address pointer. The first address that is read is the last one stored in the pointer (see Figure 9 on page 12).
10/23 Doc ID 9105 Rev 7
M41T0 Operation

2.3 WRITE mode

In this mode the master transmitter transmits to the M41T0 slave receiver. Bus protocol is shown in Figure 10 on page 12. Following the START condition and slave address, a logic '0' (R/W
= 0) is placed on the bus and indicates to the addressed device that word address An will follow and is to be written to the on-chip address pointer. The data word to be written to the memory is strobed in next and the internal address pointer is incremented to the next memory location within the RAM on the reception of an acknowledge clock. The M41T0 slave receiver will send an acknowledge clock to the master transmitter after it has received the slave address and again after it has received the word address and each data byte (see
Figure 7).

Figure 7. Slave address location

R/W
START A

Figure 8. READ mode sequence

BUS ACTIVITY: MASTER
SDA LINE
BUS ACTIVITY:
START
S
SLAVE
ADDRESS
R/W
ADDRESS (An)
ACK
DATA n+X
WORD
SLAVE ADDRESS
MSB
S
ACK
STOP
P
0100011
START
SLAVE
ADDRESS
LSB
AI00602
R/W
DATA n DATA n+1
ACK
ACK
ACK
AI00899
NO ACK
Doc ID 9105 Rev 7 11/23
Operation M41T0

Figure 9. Alternate READ mode sequence

BUS ACTIVITY: MASTER
BUS ACTIVITY:
START
S
SLAVE
ADDRESS

Figure 10. WRITE mode sequence

BUS ACTIVITY: MASTER
BUS ACTIVITY:
START
S
SLAVE
ADDRESS
R/W
DATA n DATA n+1 DATA n+X
ACK
R/W
WORD
ADDRESS (An)
ACK
ACK
DATA n DATA n+1 DATA n+X
ACK
ACK
ACK
ACK
STOP
PSDA LINE
NO ACK
AI00895
STOP
PSDA LINE
ACK
AI00591
ACK
12/23 Doc ID 9105 Rev 7
M41T0 Clock operation

3 Clock operation

The M41T0 is driven by a quartz controlled oscillator with a nominal frequency of
32.768 kHz. The accuracy of the real-time clock depends on the frequency of the quartz crystal that is used as the time-base for the RTC. The M41T0 is tested to meet ± 35 ppm with nominal crystal. The eight-byte clock register (see Table 3 on page 14) is used to both set the clock and to read the date and time from the clock, in a binary coded decimal format. Seconds, minutes, and hours are contained within the first three registers. Bits D6 and D7 of clock register 2 (hours register) contain the CENTURY ENABLE bit (CEB) and the CENTURY bit (CB). Setting CEB to a '1' will cause CB to toggle, either from '0' to '1' or from '1' to '0' at the turn of the century (depending upon its initial state). If CEB is set to a '0', CB will not toggle. Bits D0 through D2 of register 3 contain the day (day of week). Registers 4, 5 and 6 contain the date (day of month), month and years. The final register is the control register. Bit D7 of register 0 contains the STOP bit (ST). Setting this bit to a '1' will cause the oscillator to stop. If the device is expected to spend a significant amount of time on the shelf, the oscillator may be stopped to reduce current drain. When reset to a '0' the oscillator restarts within four seconds (typically one second).
The seven clock registers may be read one byte at a time, or in a sequential block. The control register (address location 7) may be accessed independently. Provision has been made to assure that a clock update does not occur while any of the seven clock addresses are being read. If a clock address is being read, an update of the clock registers will be delayed by 250 ms to allow the READ to be completed before the update occurs. This will prevent a transition of data during the READ.
Note: This 250 ms delay affects only the clock register update and does not alter the actual clock
time.

3.1 Output driver pin

The OUT pin is an output driver that reflects the contents of D7 of the control register. In other words, when D7 of location 7 is a '0' then the OUT pin will be driven low.
Note: The OUT pin is open drain which requires an external pull-up resistor.

3.2 Oscillator stop detection

If the oscillator fail (OF) bit is internally set to a '1,' this indicates that the oscillator has either stopped, or was stopped for some period of time and can be used to judge the validity of the clock and date data. This bit will be set to '1' any time the oscillator stops. The following conditions can cause the OF bit to be set:
The first time power is applied (defaults to a '1' on power-up).
The voltage present on V
The ST bit is set to '1.'
External interference or removal of the crystal.
This bit will remain set to '1' until written to logic '0.'
is insufficient to support oscillation.
CC
The oscillator must start and have run for at least 4 seconds before attempting to reset the OF bit to '0.' This function operates both under normal power and in battery backup.
Doc ID 9105 Rev 7 13/23
Clock operation M41T0

3.3 Initial power-on defaults

Upon initial application of power to the device, the OUT bit and OF bit will be set to a '1,' while the ST bit will be set to '0.' All other register bits will initially power-on in a random state.

Table 3. Register map

(1)
Data
Address
D7 D6 D5 D4 D3 D2 D1 D0
Function/range
BCD format
0 ST 10 seconds Seconds Seconds 00-59
1 OF 10 minutes Minutes Minutes 00-59
2CEB
(2)
CB 10 hours Hours Century/hours 0-1/00-23
3 X X X X X Day Day 01-07
4 X X 10 date Date Date 01-31
5 X X X 10 M. Month Month 01-12
6 10 years Years Year 00-99
7 OUT 0 X X X X X X Control
1. Keys:
ST = STOP bit OUT = Output level X = Don’t care 0 = Must be set to '0.' CEB = Century enable bit CB = Century bit OF = Oscillator fail bit
2. When CEB is set to '1', CB toggles from '0' to '1' or from '1' to '0' at the turn of the century (dependent upon
the initial value set). When CEB is set to '0', CB does not toggle.
14/23 Doc ID 9105 Rev 7
M41T0 Maximum ratings

4 Maximum ratings

Stressing the device above the rating listed in the absolute maximum ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Absolute maximum ratings

Symbol Parameter Value Unit
T
STG
V
CC
T
SLD
V
IO
I
O
P
1. Reflow at peak temperature of 260 °C (total thermal budget not to exceed 245 °C for greater than 30 seconds).
Storage temperature (VCC off, oscillator off) –55 to 125 °C
Supply voltage –0.3 to 7 V
(1)
Lead solder temperature for 10 seconds 260 °C
Input or output voltages –0.3 to VCC + 0.3 V
Output current 20 mA
Power dissipation 1 W
D
Doc ID 9105 Rev 7 15/23
DC and AC parameters M41T0

5 DC and AC parameters

This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the measurement conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters.

Table 5. Operating and AC measurement conditions

Parameter M41T0 Unit
(1)
Supply voltage (V
Ambient operating temperature (T
Load capacitance (C
) 2.0 to 5.5 V
CC
) –40 to 85 °C
A
) 100 pF
L
Input rise and fall times 5ns
Input pulse voltages 0.2VCC to 0.8V
Input and output timing ref. voltages 0.3V
1. Output Hi-Z is defined as the point where data is no longer driven.
to 0.7V
CC
CC
CC
V
V

Figure 11. AC testing input/output waveform

0.8V
CC
0.2V
CC

Table 6. Capacitance

Symbol Parameter
C
IN
C
OUT
t
LP
1. Effective capacitance measured with power supply at 5 V; sampled only, not 100% tested
2. At 25 °C, f = 1 MHz.
3. Outputs deselected.
Input capacitance (SCL) 7 pF
(3)
Output capacitance (SDA, OUT) 10 pF
Low-pass filter input time constant (SDA and SCL) 50 ns
(1)(2)
0.7V
CC
0.3V
CC
AI02568
Min Max Unit
16/23 Doc ID 9105 Rev 7
M41T0 DC and AC parameters

Table 7. DC characteristics

Sym Parameter Test condition
I
LI
I
LO
Input leakage current 0V ≤ VIN V
Output leakage current 0V ≤ V
OUT
V
CC
CC
(1)
Min Typ Max Unit
3.0 V 35 55 µA
I
Supply current Frequency (SCL) = 400 kHz
I
CC2
CC1
(2)
Supply current (standby)
Input low voltage –0.3 0.3 V
V
IL
Input high voltage 0.7 V
V
IH
All inputs = V
Frequency (SCL) = 0 Hz
– 0.2 V
CC
5.5 V 130 200 µA
3.0 V 0.9 1.2 µA
5.5 V 31 µA
CC
Output low voltage IOL = 3 mA 0.4 V
V
OL
Output low voltage (open drain)
1. Valid for ambient operating temperature: TA = –40 to 85 °C; VCC = 2.0 to 5.5 V (except where noted).
2. At 25 °C.

Table 8. Crystal electrical characteristics

Symbol Parameter
(1)(2)
IOL = 10 mA 0.4 V
Min Typ Max Unit
±1 µA
±1 µA
CC
VCC + 0.3 V
V
f
O
R
C
1. These values are externally supplied. STMicroelectronics recommends the KDS DT-38: 1TA/1TC252E127, Tuning Fork Type (thru-hole) or the DMX-26S: 1TJS125FH2A212, (SMD) quartz crystal for industrial temperature operations. KDS can be contacted at kouhou@kdsj.co.jp or http://www.kdsj.co.jp for further information on this crystal type.
2. Load capacitors are integrated within the M41T0. Circuit board layout considerations for the 32.768 kHz crystal of minimum trace lengths and isolation from RF generating signals should be taken into account.
= 40 kΩ when VCC 2.5 V.
3. R
S
Resonant frequency 32.768 kHz
Series resistance 60
S
Load capacitance 12.5 pF
L
(3)
kΩ
Doc ID 9105 Rev 7 17/23
Package mechanical information M41T0

6 Package mechanical information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
Figure 12. SO8 – 8-lead plastic small outline, 150 mils body width, package
mechanical drawing
h x 45°
A2
b
e
D
8
1
1. Drawing is not to scale.
E1
A
ccc
E
A1
L
L1
c
0.25 mm
GAUGE PLANE
k
SO-A
Table 9. SO8 – 8-lead plastic small outline, 150 mils body width, package
mechanical data
millimeters inches
Symbol
Typ Min Max Typ Min Max
A1.750.069
A1 0.10 0.25 0.004 0.010
A2 1.25 0.049
b 0.28 0.48 0.011 0.019
c 0.17 0.23 0.007 0.009
ccc 0.10 0.004
D 4.90 4.80 5.00 0.193 0.189 0.197
E 6.00 5.80 6.20 0.236 0.228 0.244
E1 3.90 3.80 4.00 0.154 0.150 0.157
e1.27– –0.050– –
h 0.25 0.50 0.010 0.020
k 0°8° 0°8°
L 0.40 1.27 0.016 0.050
L1 1.04 0.041
18/23 Doc ID 9105 Rev 7
M41T0 Package mechanical information

Figure 13. Carrier tape for SO8 package (150 mils body width)

P
D
T
A
TOP COVER
TAPE
K
0
0
CENTER LINES OF CAVITY
P
2
B
0
0
P
1
E
F
W
USER DIRECTION OF FEED

Table 10. Carrier tape dimensions for SO8 package (150 mils body width)

Package W D E P
1.50
+0.10/
–0.00
1.75
±0.10
4.00
±0.10
SO8
12.00 ±0.30
P
0
2.00
±0.10
FA0B
2
5.50
±0.05
6.50
±0.10
0
5.30
±0.10
K
0
2.20
±0.10
±0.10
P
8.00
1
±0.05
AM03073v1
TUnit
0.30 mm 2500
Bulk
Qty
Doc ID 9105 Rev 7 19/23
Package mechanical information M41T0

Figure 14. Reel schematic

T
40mm min.
Access hole
At slot location
B
D
C
A
Tape slot
Full ra dius
In core for
Tape s tart
2.5mm min.width
N
G measured
At hub
AM04928v1

Table 11. Reel dimensions for 12 mm carrier tape - SO8 package (150 mils body width)

A
(max)
330 mm
(13-inch)
B
(min)
1.5 mm
C
13 mm
± 0.2 mm
D
(min)
N
(min)
20.2 mm 60 mm
G
12.4 mm
+ 2/–0 mm
T
(max)
18.4 mm
Note: The dimensions given in Tab le 1 1 incorporate tolerances that cover all variations on critical
parameters.
20/23 Doc ID 9105 Rev 7
M41T0 Part numbering

7 Part numbering

Table 12. Ordering information scheme

Example: M41T 0 M 6 F
Device type
M41T
Supply voltage and write protect voltage
= 2.0 to 5.5 V
0: V
CC
Package
M = SO8 (150 mils width)
Temperature range
6 = –40 to 85 °C
Shipping method
E = ECOPACK
F = ECOPACK
®
package, tubes
®
package , tape & reel
For a list of additional options (e.g., speed, package) or for further information on any aspect of this device, please contact the ST sales office nearest to you.
Doc ID 9105 Rev 7 21/23
Revision history M41T0

8 Revision history

Table 13. Document revision history

Date Revision Changes
Feb-2003 1.0 First issue
18-Feb-2003 1.1
01-Apr-2003 1.2 Fix package outline and data (Features, Figure 12, Ta b l e 1 2 )
10-Apr-2003 1.3 Revert to previous package (Features, Figure 12, Ta bl e 1 2 )
30-Oct-2003 1.4 Remove footnote (Ta bl e 4 )
30-Jun-2004 2.0
23-Jul-2004 3.0 Content corrected from M41T80 to M41T0.
22-Aug-2006 4
04-Apr-2007 5
13-May-2008 6 Updated Figure 12, Ta b l e 4 .
09-Jun-2011 7
Add Pb-free information (Ta b le 4 , Ta bl e 1 2 ); update package information (Features, Figure 12; Ta bl e 1 2 )
Shipping method options updated and Note 1 removed from Table 12:
Ordering information scheme. Datasheet put in new template.
Changed document to new template; amalgamated diagrams in
Features; updated Package mechanical data in Section 6: Package mechanical information; Ta b le 1 2 ecopack compliant; small text
changes for entire document
Updated packaging information that only SO8 package available (cover page and Table 12: Ordering information scheme).
®
Updated Features, ECOPACK
information; added Figure 13, 14, Ta b le 1 0 , 11.
text in Section 6: Package mechanical
22/23 Doc ID 9105 Rev 7
M41T0
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 9105 23/23
Loading...