Sharp PC724V Datasheet

High Input Current Type
PC724V
Lead forming type (W type) and taping reel type (P type) are also available. (PC724W/PC724VP)
Photocoupler
PC724V
Features
1. High input current (IF: MAX. 150mA
2. High isolation voltage between input and output (V
: 5 000V
iso rms
)
3. Standard dual-in-line package
4. Recoginzed by UL, file no. E64380
Applications
1. Telephone sets
3. System appliances, measuring instru­ ments
4. Signal transmission between circuits of different potentials and impedances
Outline Dimensions
)
Anode mark
TYP.
0.5
0.9
± 0.5
3.5
± 0.5
3.7
0.5
± 0.2
6
PC724V
123
7.12
± 0.1
1 Anode 2 Cathode 3 NC
5
2.54
± 0.5
1.2
± 0.25
± 0.3
4
± 0.5
± 0.5
6.5
3.35
(
Unit : mm
Internal connection
diagram
65 4
123
± 0.3
7.62
± 0.1
0.26
θ = 0 to 13 ˚
4 Emitter 5 Collector 6 NC
)
θθ
Absolute Maximum Ratings
(
Ta= 25˚C
)
Parameter Symbol Rating Unit
Input
Forward current I
*1
Peak forward current I Reverse voltage V
F
FM
R
150 mA
1A
6V Power dissipation P 230 mW Collector-emitter voltage V
Output
Emitter-collector voltage V Collector current I Collector power dissipation P Total power dissipation P
*2
Isolation voltage V Operating temperature T Storage temperature T
*3
Soldering temperature T
*1 Pulse width<=100µs, Duty ratio : 0.001 *2 40 to 60%RH, AC for 1 minute *3 For 10 seconds
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
CEO
ECO
C
C
tot
iso
opr
stg
sol
35 V
6V
80 mA 160 mW 320 mW
5 000
V
rms
- 25 to + 100 ˚C
- 55 to + 125 ˚C 260 ˚C
PC724V
Electro-optical Characteristics
Parameter Symbol Conditions MIN. TYP. MAX. Unit
Forward voltage V
Input
Peak forward voltage V Reverse current I Terminal capacitance C
Output Collector dark current I
Current tranfer ratio CTR I Collector-emitter saturation voltage
Transfer
charac-
teristics
Isolation resistance R Floating capacitance C Cut-off frequency f
Response time
Rise time Fall time
Fig. 1 Forward Current vs.
Ambient Temperature
200
)
150
mA
(
F
100
FIF
FMIFM
R
t
CEOVCE
V
CE(sat
ISO
f
cVCE
t
r
t
f
(
Ta= 25˚C
= 100mA - 1.4 1.7 V
= 0.5A - - 3.0 V VR=4V - - 10 µA V= 0, f= 1kHz - 30 250 pF
11
-7
-
A
= 20V, IF=0 - - 10
= 100mA, VCE= 2V 20 - 80 %
F
)
IF= 100mA, IC= 1mA - 0.1 0.2 V DC500V, 40 to 60%RH
5x10101x10
V= 0, f= 1MHz - 0.6 1.0 pF
= 5V, IC= 2mA, RL=100, - 3dB
- 100 - kHz VCE= 5V, IC= 2mA - 4 18 µ s RL= 100 -318µs
Fig. 2 Collector Power Dissipation vs.
Ambient Temperature
200
)
160
mW
(
150
C
100
)
Forward current I
0
-25500 25 50 75 100 125 Ambient temperature T
(˚C)
a
Fig. 3 Peak Forward Current vs. Duty Ratio
10 000
5 000
)
2 000
mA
1 000
(
FM
500 200 100
50
20
Peak forward current I
10
-3
10
10
Duty ratio
-2
Pulse width <=100 µs Ta= 25˚C
-1
10
1
50
Collector power dissipation P
0
-25
0 125
25 50 75 100
Ambient temperature T
Fig. 4 Forward Current vs.
Forward Voltage
1 000
500
)
200
mA
(
100
F
50
20 10
Forward current I
5
2 1
0
0.5 1.0 1.5 2.0 2.5 Forward voltage V
(˚C)
a
= 25˚C
T
a
(V)
F
Loading...
+ 2 hidden pages