2. High resistance to noise due to high common rejection
voltage (CMR:MIN. 10kV/µs)
3. Mini-flat package
4. Isolation voltage (Viso:2.5kVrms)
5. Recognized by UL, file No. E64380
■ Applications
1. Programmable controllers
2. Facsimiles
3. Telephones
■ Rank Table
Model No.Rank markIc (mA)Conditions
PC3H710NIP
PC3H711NIP
PC3H712NIP
PC3H715NIP
A, B or no mark
A
B
A or B
Model No.Rank markIc (mA)Conditions
PC3Q710NIP
PC3Q711NIP
A or no mark
A
■ Absolute Maximum Ratings
ParameterSymbolRatingUnit
Forward current
*1
Input
Output
*1 Pulse width<=100µs, Duty ratio=0.001
*2 40 to 60%RH, AC for 1 minute, f=60Hz
*3 For 10s
Peak forward current
Reverse voltage
Power dissipation
Collector-emitter voltage
Emitter-collector voltage
Collector current
Collector power dissipation
Total power dissipation
Operating temperature
Storage temperature
*2
Isolation voltage
*3
Soldering temperature
0.5 to 3.5
0.7 to 1.75
1.0 to 2.5
0.7 to 2.5
0.5 to 3.0
1.0 to 2.5
F=0.5mA
I
VCE=5V
a=25°C
T
IF=0.5mA
V
CE=5V
T
a=25°C
(Ta=25°C)
IF
IFM
VR
P15
VCEO
VECO
IC
PC
Ptot
Topr
T
stg
VisokVrms
Tsol
10
200
6
70
6
50
150
170
−30 to +100
−40 to +125
2.5
260
mA
mA
mW
mA
mW
mW
°C
°C
°C
V
V
V
Low Input Current Type
Photocoupler
■ Outline Dimensions
PC3H71xNIP Series
Anode mark
14
±0.25
±0.3
2.6
1.27
±0.05
0.2
7.0
PC3Q71xNIP Series
16
1.27
10.3
±0.25
±0.3
P C 3 Q 7 1
Primary side mark
±0.2
Epoxy resin
2.6
±0.1
0.1
H 7 1
4.4
5.3
+0.2
−0.7
±0.2
±0.3
6°
32
+0.4
0.5
−0.2
9
±0.2
4.4
±0.1
81
0.4
±0.1
0.4
±0.2
2.0
±0.1
0.1
C0.4
(Input side)
±0.05
0.2
0.2mm or more
Internal connection
diagram
43
12
Internal connection
diagram
16141215131011
13524768
9
(Unit : mm)
1
2
3
4
Epoxy resin
7531
AnodeAnode
642
8
Cathode
1311
15
Emitter
141210
16
Collector
±0.3
5.3
0.5
+0.2
7.0
−0.7
AnodeAnode
Cathode
Emitter
Collector
+0.4
−0.2
9
Soldering area
Notice In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet Internet address for Electronic Components Group http://www.sharp.co.jp/ecg/
PC3H71X NIP Series/PC3Q71X NIP Series
■ Electro-optical Characteristics
ParameterSymbol
Forward voltage
Reverse current
InputOutputTransfer characteristics
Terminal capacitance
Collector dark current
Collector-emitter breakdown voltage
Emitter-collector breakdown voltage
Collector
current
PC3H71XNIP Series
PC3Q71
Collector-emitter saturation voltage
Isolation resistance
Floating capacitance
Response time
*1
Common mode rejection voltage
*1 Refer to Fig.1.
XNIP Series
Rise time
Fall time
V
F
IR
Ct
ICEO
BVCEO
BVECO
IC
VCE (sat)
RISO
Cf
tr
tf
CMR
Ta=25°C, RL=470Ω, VCM=1.5kV (peak),
I
F=0mA, VCC=9V, Vnp=100mV
Conditions
I
F=10mA
V
R=4V
V=0, f=1kHz
V
CE=50V, IF=0
I
C=0.1mA, IF=0
I
E=10µA, IF=0
I
F=0.5mA, VCE=5V
F=10mA, IC=1mA
I
DC500V 40 to 60%RH
V=0, f=1MHz
V
CE=2V, IC=2mA, RL=100Ω
Fig.1 Test Circuit for Common Mode Rejection Voltage
V
CM
V
R
L
V
V
np
CM
CC
V
CM :
pulse
=470Ω
R
L
=9V
V
CC
High wave
1) V
capacitance between primary and secondary side.
1)
V
VO
(V
Nearly = dV/dt×Cf×RL)
cp
: Voltage which is generated by displacement current in floating
cp
cp
(dV/d
(Ta=25°C)
MIN.
−
−
−
−
70
6
0.5
−
5×10
−
−
−
10
)
t
TYP.MAX.Unit
1.2
−
30
−
−
−
−
−
10
1×10
11
0.6
4
3
−
1.4
10
250
100
3.5
3.0
0.2
1.0
18
18
V
V
µA
pF
nA
−
−
V
V
mA
V
−
Ω
pF
µs
µs
kV/µs
−
np
Fig.2 Forward Current vs. Ambient
Temperature
10
(mA)
F
5
Forward current I
0
−300255075100125
Ambient temperature Ta (°C)
Fig.3
Diode Power Dissipation vs. Ambient
Temperature
15
10
5
Diode power dissipation P (mW)
0
−300255075100125
Ambient temperature Ta (°C)
Fig.4 Collector Power Dissipation vs.
Ambient Temperature
PC3H71X NIP Series/PC3Q71X NIP Series
Fig.5
Total Power Dissipation vs. Ambient
Temperature
200
(mW)
C
150
100
50
Collector power dissipation P
0
−300255075100125
Ambient temperature Ta (°C)
200
(mW)
tot
170
150
100
50
Total power dissipation P
0
−300255075100125
Ambient temperature Ta (°C)
Fig.6 Peak Forward Current vs. Duty RatioFig.7 Forward Current vs. Forward Voltage
100
10
(mA)
F
Ta=100°C
Ta=75°C
1
Forward current I
0.1
Ta=50°C
00.51.01.52.0
Forward voltage V
Ta=25°C
Ta=0°C
Ta=−25°C
(V)
F
(mA)
Peak forward current I
FM
2000
1000
500
200
100
Pulse width <=100µs
=25°C
T
a
50
20
10
−3
10
−2
10
2225555
Duty ratio
−1
10
1
Fig.8 Current Transfer Ratio vs. Forward
Current
800
700
600
500
400
300
200
Current transfer ratio CTR (%)
100
0
0.1110
Forward current IF (mA)
PC3H71xNIP Series
VCE=5V
=25°C
T
a
Fig.9 Current Transfer Ratio vs. Forward
Current
600
VCE=5V
=25°C
T
a
500
400
300
200
Current transfer ratio CTR (%)
100
0
0.1110
Forward current IF (mA)
PC3Q71xNIP Series
PC3H71X NIP Series/PC3Q71X NIP Series
Fig.10
Collector Current vs. Collector-emitter
Voltage
40
30
(mA)
C
20
Collector current I
10
0
0246810
IF=7mA
IF=5mA
Collector-emitter voltage VCE (V)
PC3H71xNIP Series
Ta=25°C
PC (MAX.)
IF=3mA
IF=2mA
IF=1mA
IF=0.5mA
Fig.12 Relative Current Transfer Ratio vs.
Ambient Temperature
150
100
PC3H71xNIP Series
VCE=5V
=0.5mA
I
F
Fig.11
Collector Current vs. Collector-emitter
Voltage
40
30
(mA)
C
20
Collector current I
10
0
0246810
IF=7mA
IF=5mA
Collector-emitter voltage VCE (V)
PC3Q71xNIP Series
PC (MAX.)
IF=3mA
IF=2mA
IF=1mA
IF=0.5mA
Ta=25°C
Fig.13 Relative Current Transfer Ratio vs.
Ambient Temperature
150
100
PC3Q71xNIP Series
VCE=5V
=0.5mA
I
F
50
Relative current transfer ratio (%)
0
−301009080706050403020100−10−20
Ambient temperature Ta (°C)
Fig.14 Collector - emitter Saturation Voltage
vs. Ambient Temperature
0.16
(V)
0.14
CE (sat)
0.12
0.10
0.08
0.06
0.04
0.02
Collector-emitter saturation voltage V
0
−301009080706050403020100−10−20
Ambient temperature Ta (°C)
IF=10mA
=1mA
I
C
50
Relative current transfer ratio (%)
0
−301009080706050403020100−10−20
Ambient temperature Ta (°C)
Fig.15 Collector Dark Current vs. Ambient
Temperature
−5
10
VCE=50V
−6
10
(A)
−7
CEO
10
−8
10
−9
10
Collector dark current I
−10
10
−11
10
−301009080706050403020100−10−20
Ambient temperature Ta (°C)
PC3H71X NIP Series/PC3Q71X NIP Series
Fig.16 Response Time vs. Load Resistance
1000
VCE=2V
=2mA
I
C
=25°C
T
a
100
t
f
t
d
10
t
t
r
s
Response time (µs)
1
0.1
0.1110
Load resistance R
L
(kΩ)
Fig.18 Test Circuit for Response Time
V
CC
R
L
Output
Input
Output
10%
90%
t
t
d
t
r
s
t
f
Input
R
D
Fig.17
Response Time vs. Load Resistance
(Saturation)
1000
Response time (µs)
=5V
V
CC
=16mA
I
F
T
=25°C
a
t
f
100
t
s
10
t
1
0.1
110100
Load resistance R
d
t
r
(kΩ)
L
Fig.19 Voltage Gain vs Frequency
5
VCE=2V
0
−5
(dB)
V
RL=10kΩ
−10
−15
Voltage gain A
I
T
=2mA
C
=25°C
a
1kΩ
100Ω
Fig.20 Collector-emitter Saturation Voltage
vs. Forward Current
5
(V)
4
CE (sat)
3
2
1
Collector-emitter saturation voltage V
0
0246810
IC=7mA
IC=5mA
IC=3mA
IC=2mA
IC=1mA
IC=0.5mA
Forward current IF (mA)
Ta=25°C
−20
−25
0.11101001000
Frequency f (kHz)
Fig.21 Reflow Soldering
Only one time soldering is recommended within the temperature
profile shown below.
230°C
200°C
180°C
25°C
2min
30s
1min
1.5min
1min
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.