Sharp PC3H710NIP, PC3H711NIP, PC3H712NIP, PC3H715NIP, PC3Q710NIP Datasheet

...
PC3H71X NIP Series/PC3Q71X NIP Series
PC3H71X NIP Series PC3Q71X NIP Series
Features
1. Low input current type(IF=0.5mA)
2. High resistance to noise due to high common rejection
voltage (CMR:MIN. 10kV/µs)
3. Mini-flat package
4. Isolation voltage (Viso:2.5kVrms)
5. Recognized by UL, file No. E64380
Applications
1. Programmable controllers
2. Facsimiles
3. Telephones
Rank Table
Model No. Rank mark Ic (mA) Conditions
PC3H710NIP PC3H711NIP PC3H712NIP PC3H715NIP
A, B or no mark
A B
A or B
Model No. Rank mark Ic (mA) Conditions
PC3Q710NIP PC3Q711NIP
A or no mark
A
Absolute Maximum Ratings
Parameter Symbol Rating Unit
Forward current
*1
Input
Output
*1 Pulse width<=100µs, Duty ratio=0.001 *2 40 to 60%RH, AC for 1 minute, f=60Hz *3 For 10s
Peak forward current Reverse voltage Power dissipation Collector-emitter voltage Emitter-collector voltage Collector current Collector power dissipation Total power dissipation Operating temperature Storage temperature
*2
Isolation voltage
*3
Soldering temperature
0.5 to 3.5
0.7 to 1.75
1.0 to 2.5
0.7 to 2.5
0.5 to 3.0
1.0 to 2.5
F=0.5mA
I
VCE=5V
a=25°C
T
IF=0.5mA
V
CE=5V
T
a=25°C
(Ta=25°C)
IF IFM VR
P 15
VCEO VECO
IC
PC
Ptot
Topr
T
stg
Viso kVrms Tsol
10
200
6
70
6
50 150 170
30 to +100
40 to +125
2.5
260
mA mA
mW
mA
mW mW
°C °C
°C
V
V V
Low Input Current Type Photocoupler
Outline Dimensions
PC3H71xNIP Series
Anode mark
1 4
±0.25
±0.3
2.6
1.27
±0.05
0.2
7.0
PC3Q71xNIP Series
16
1.27
10.3
±0.25
±0.3
P C 3 Q 7 1
Primary side mark
±0.2
Epoxy resin
2.6
±0.1
0.1
H 7 1
4.4
5.3
+0.2
0.7
±0.2
±0.3
6°
32
+0.4
0.5
0.2
9
±0.2
4.4
±0.1
81
0.4
±0.1
0.4
±0.2
2.0
±0.1
0.1
C0.4 (Input side)
±0.05
0.2
0.2mm or more
Internal connection diagram
4 3
1 2
Internal connection diagram
16 14 1215 13 1011
1 3 52 4 76 8
9
(Unit : mm)
1 2 3 4
Epoxy resin
7531
AnodeAnode
642
8
Cathode
1311
15
Emitter
141210
16
Collector
±0.3
5.3
0.5
+0.2
7.0
0.7
AnodeAnode Cathode Emitter Collector
+0.4
0.2
9
Soldering area
Notice In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
Internet Internet address for Electronic Components Group http://www.sharp.co.jp/ecg/
PC3H71X NIP Series/PC3Q71X NIP Series
Electro-optical Characteristics
Parameter Symbol Forward voltage Reverse current
InputOutputTransfer characteristics
Terminal capacitance Collector dark current Collector-emitter breakdown voltage Emitter-collector breakdown voltage
Collector current
PC3H71XNIP Series PC3Q71
Collector-emitter saturation voltage Isolation resistance Floating capacitance
Response time
*1
Common mode rejection voltage
*1 Refer to Fig.1.
XNIP Series
Rise time Fall time
V
F
IR Ct
ICEO BVCEO BVECO
IC
VCE (sat)
RISO
Cf tr tf
CMR
Ta=25°C, RL=470Ω, VCM=1.5kV (peak),
I
F=0mA, VCC=9V, Vnp=100mV
Conditions
I
F=10mA
V
R=4V
V=0, f=1kHz
V
CE=50V, IF=0
I
C=0.1mA, IF=0
I
E=10µA, IF=0
I
F=0.5mA, VCE=5V
F=10mA, IC=1mA
I
DC500V 40 to 60%RH
V=0, f=1MHz
V
CE=2V, IC=2mA, RL=100Ω
Fig.1 Test Circuit for Common Mode Rejection Voltage
V
CM
V
R
L
V
V
np
CM
CC
V
CM :
pulse
=470
R
L
=9V
V
CC
High wave
1) V capacitance between primary and secondary side.
1) V
VO
(V
Nearly = dV/dt×Cf×RL)
cp
: Voltage which is generated by displacement current in floating
cp
cp
(dV/d
(Ta=25°C)
MIN.
70
6
0.5
5×10
10
)
t
TYP. MAX. Unit
1.2
30
10
1×10
11
0.6 4 3
1.4 10
250 100
3.5
3.0
0.2
1.0 18 18
V
V
µA
pF
nA
V V
mA
V
pF
µs µs
kV/µs
np
Fig.2 Forward Current vs. Ambient
Temperature
10
(mA)
F
5
Forward current I
0
30 0 25 50 75 100 125
Ambient temperature Ta (°C)
Fig.3
Diode Power Dissipation vs. Ambient Temperature
15
10
5
Diode power dissipation P (mW)
0
30 0 25 50 75 100 125
Ambient temperature Ta (°C)
Fig.4 Collector Power Dissipation vs.
Ambient Temperature
PC3H71X NIP Series/PC3Q71X NIP Series
Fig.5
Total Power Dissipation vs. Ambient Temperature
200
(mW)
C
150
100
50
Collector power dissipation P
0
30 0 25 50 75 100 125
Ambient temperature Ta (°C)
200
(mW)
tot
170 150
100
50
Total power dissipation P
0
30 0 25 50 75 100 125
Ambient temperature Ta (°C)
Fig.6 Peak Forward Current vs. Duty Ratio Fig.7 Forward Current vs. Forward Voltage
100
10
(mA)
F
Ta=100°C
Ta=75°C
1
Forward current I
0.1
Ta=50°C
0 0.5 1.0 1.5 2.0
Forward voltage V
Ta=25°C Ta=0°C
Ta=−25°C
(V)
F
(mA)
Peak forward current I
FM
2000
1000
500
200
100
Pulse width <=100µs
=25°C
T
a
50
20 10
3
10
2
10
22 2555 5
Duty ratio
1
10
1
Fig.8 Current Transfer Ratio vs. Forward
Current
800
700
600
500
400
300
200
Current transfer ratio CTR (%)
100
0
0.1 1 10 Forward current IF (mA)
PC3H71xNIP Series
VCE=5V
=25°C
T
a
Fig.9 Current Transfer Ratio vs. Forward
Current
600
VCE=5V
=25°C
T
a
500
400
300
200
Current transfer ratio CTR (%)
100
0
0.1 1 10 Forward current IF (mA)
PC3Q71xNIP Series
PC3H71X NIP Series/PC3Q71X NIP Series
Fig.10
Collector Current vs. Collector-emitter Voltage
40
30
(mA)
C
20
Collector current I
10
0
0 2 4 6 8 10
IF=7mA
IF=5mA
Collector-emitter voltage VCE (V)
PC3H71xNIP Series
Ta=25°C
PC (MAX.)
IF=3mA
IF=2mA
IF=1mA
IF=0.5mA
Fig.12 Relative Current Transfer Ratio vs.
Ambient Temperature
150
100
PC3H71xNIP Series
VCE=5V
=0.5mA
I
F
Fig.11
Collector Current vs. Collector-emitter Voltage
40
30
(mA)
C
20
Collector current I
10
0
0 2 4 6 8 10
IF=7mA
IF=5mA
Collector-emitter voltage VCE (V)
PC3Q71xNIP Series
PC (MAX.)
IF=3mA
IF=2mA
IF=1mA
IF=0.5mA
Ta=25°C
Fig.13 Relative Current Transfer Ratio vs.
Ambient Temperature
150
100
PC3Q71xNIP Series
VCE=5V
=0.5mA
I
F
50
Relative current transfer ratio (%)
0
30 1009080706050403020100−10−20
Ambient temperature Ta (°C)
Fig.14 Collector - emitter Saturation Voltage
vs. Ambient Temperature
0.16
(V)
0.14
CE (sat)
0.12
0.10
0.08
0.06
0.04
0.02
Collector-emitter saturation voltage V
0
30 1009080706050403020100−10−20
Ambient temperature Ta (°C)
IF=10mA
=1mA
I
C
50
Relative current transfer ratio (%)
0
30 1009080706050403020100−10−20
Ambient temperature Ta (°C)
Fig.15 Collector Dark Current vs. Ambient
Temperature
5
10
VCE=50V
6
10
(A)
7
CEO
10
8
10
9
10
Collector dark current I
10
10
11
10
30 1009080706050403020100−10−20
Ambient temperature Ta (°C)
PC3H71X NIP Series/PC3Q71X NIP Series
Fig.16 Response Time vs. Load Resistance
1000
VCE=2V
=2mA
I
C
=25°C
T
a
100
t
f
t
d
10
t
t
r
s
Response time (µs)
1
0.1
0.1 1 10 Load resistance R
L
(k)
Fig.18 Test Circuit for Response Time
V
CC
R
L
Output
Input
Output
10%
90%
t
t
d
t
r
s
t
f
Input
R
D
Fig.17
Response Time vs. Load Resistance (Saturation)
1000
Response time (µs)
=5V
V
CC
=16mA
I
F
T
=25°C
a
t
f
100
t
s
10
t
1
0.1 1 10 100
Load resistance R
d
t
r
(k)
L
Fig.19 Voltage Gain vs Frequency
5
VCE=2V
0
5
(dB)
V
RL=10kΩ
10
15
Voltage gain A
I T
=2mA
C
=25°C
a
1k
100
Fig.20 Collector-emitter Saturation Voltage
vs. Forward Current
5
(V)
4
CE (sat)
3
2
1
Collector-emitter saturation voltage V
0
0 2 4 6 8 10
IC=7mA IC=5mA IC=3mA IC=2mA
IC=1mA IC=0.5mA
Forward current IF (mA)
Ta=25°C
20
25
0.1 1 10 100 1000 Frequency f (kHz)
Fig.21 Reflow Soldering
Only one time soldering is recommended within the temperature profile shown below.
230°C
200°C
180°C
25°C
2min
30s
1min
1.5min
1min
Loading...