This ball check valve pump is powered by compressed air and is a 1:1 pressure
ratio design. It alternately pressurizes the inner side of one diaphragm chamber, while
simultaneously exhausting the other inner chamber. This causes the diaphragms, which
are connected by a common rod, to move endwise. Air pressure is applied over the
entire surface of the diaphragm, while liquid is discharged from the opposite side. The
diaphragm operates under a balanced condition during the discharge stroke, which allows the unit to be operated at discharge heads over 200 feet (61 meters) of water head.
Since the diaphragms are connected by a common rod, secured by plates to the
center of the diaphragms, one diaphragm performs the discharge stroke, while the
other is pulled to perform the suction stroke in the opposite chamber.
For maximum diaphragm life, keep the pump as close to the liquid being pumped
as possible. Positive suction head in excess of 10 feet of liquid (3.048 meters) may
require a back pressure regulating device. This will maximize diaphragm life.
Alternate pressuring and exhausting of the diaphragm chamber is performed by
means of an externally mounted, pilot operated, four-way spool type air distribution
valve. When the spool shifts to one end of the valve body, inlet air pressure is applied
to one diaphragm chamber and the other diaphragm chamber exhausts. When the
spool shifts to the opposite end of the valve body, the porting of chambers is reversed.
The air distribution valve spool is moved by an internal pilot valve which alternately
pressurizes one side of the air distribution valve spool, while exhausting the other side.
The pilot valve is shifted at each end of the diaphragm stroke by the diaphragm plate
coming in contact with the end of the pilot valve spool. This pushes it into position for
shifting of the air distribution valve.
The chambers are manifolded together with a suction and discharge check valve
for each chamber, maintaining flow in one direction through the pump.
Model SSB2-A
INSTALLATION & START-UP
Locate the pump as close to the product being pumped as possible, keeping suction
line length and number of fittings to a minimum. Do not reduce line size.
For installations of rigid piping, short flexible sections of hose should be installed
between pump and piping. This reduces vibration and strain to the piping system.
A Warren Rupp Tranquilizer
pulsation in flow.
This pump was tested at the factory prior to shipment and is ready for operation.
It is completely self-priming from a dry start for suction lifts of 20 feet (6.096 meters)
or less. For suction lifts exceeding 20 feet of liquid, fill the chambers with liquid prior
to priming.
®
surge suppressor is recommended to further reduce
AIR SUPPLY
Air supply pressures cannot exceed 125 psi (8.61 bar). Connect the pump air inlet
to an air supply of sufficient capacity and pressure required for desired performance.
When the air line is solid piping, use a short length of flexible hose (not less than 3/4"
[19mm] in diameter) between pump and piping to eliminate strain to pipes. Use of a
Warren Rupp Filter/Regulator in the air line is recommended.
AIR INLET & PRIMING
ssb2dl3sm-REV0614 Model SSB2-A Type 3 Page 1
For start-up, open an air valve approximately 1/2 to 3/4turn. After the unit primes,
an air valve can be opened to increase flow as desired. If opening the valve increases
cycling rate, but does not increase flow rate, cavitation has occurred, and the valve
should be closed slightly.
For the most efficient use of compressed air and the longest diaphragm life, throttle
the air inlet to the lowest cycling rate that does not reduce flow.
AIR EXHAUST
If a diaphragm fails, the pumped liquid or fumes can enter the air end of the pump,
and be exhausted into the atmosphere. When pumping hazardous or toxic materials,
pipe the exhaust to an appropriate area for safe disposition.
This pump can be submerged if materials of construction are compatible with the liquid.
The air exhaust must be piped above the liquid level. Piping used for the air exhaust must
not be smaller than 1" (2.54 cm). Reducing the pipe size will restrict air flow and reduce
pump performance. When the product source is at a higher level than the pump (flooded
suction), pipe the exhaust higher than the product source to prevent siphoning spills.
Freezing or icing of the air exhaust can occur under certain temperature and humidity conditions. Use of a Warren Rupp Air Dryer should eliminate most icing problems.
BETWEEN USES
When used for materials that tend to settle out or transform to solid form, the pump
should be completely flushed after each use, to prevent damage. Product remaining
in the pump between uses could dry out or settle out. This could cause problems with
valves and diaphragms at re-start. In freezing temperatures, the pump must be drained
between uses in all cases.
CHECK VALVE SERVICING
Need for inspection or service is usually indicated by poor priming, unstable cycling,
reduced performance or the pump’s cycling but not pumping.
Inspect the surfaces of both check valve and seat for wear or damage that could
prevent proper sealing. If pump is to prime properly, valves must seat air tight.
DIAPHRAGM SERVICING
Remove the stud nuts (six each side) securing the elbows to the outer
chambers. Remove the eight knobs securing the outer chamber to the inner chamber.
Remove the diaphragm assembly (outer plate, diaphragm, inner plate) by turning the
assembly counterclockwise using a 15/16 (2.38 cm) wrench on the outer plate lugs. To
disassemble the diaphragm assemblies, screw into the inner plates two threaded pins,
place the pins in a vise and turn the outer plate counterclockwise using the 15/16
wrench. The interior components consisting of U-cup seals and sleeve bearings are now
accessible for service.
Procedures for reassembling the diaphragms are the reverse of the above. The
diaphragms must be installed with their natural bulge to the outside, toward the outer
diaphragm plate. Install the inner plate with the flat face against the diaphragm.
After all components are in position in a vise and hand tight, tighten with a wrench
to approximately 40 ft. Ibs. (54.23 Newton meters) torque. After both diaphragm
assemblies have been assembled, thread one assembly into the shaft (hold the shaft
near the middle in a vise with soft jaws, to protect the finish). Install this subassembly
into the pump and secure by placing the outer chamber on the end with the diaphragm.
This holds the assembly in place while the opposite side is installed. Torque the last
diaphragm assembly to 30 ft. Ibs. (40.67 Newton meters). This final torquing will lock the
diaphragm assemblies together. Place the remaining outer chamber on the open end
and loosely tighten the bolts. Replace the manifold assemblies to square the flanges
before final tightening of the remaining bolts. Alternating for progressive tightening, the
eight knobs that secure outer chamber to inner chamber.
A NOTE ABOUT AIR VALVE LUBRICATION
The SANDPIPER pump’s pilot valve and main air valve assemblies are designed to
Model SSB2-A Type 3 Page 2 ssb2dl3sm-REV0614
operate WITHOUT lubrication. This is the preferred mode of operation. There may be
instances of personal preference, or poor quality air supplies when lubrication of the
compressed air supply is required. The pump air system will operate with properly lubricated compressed air supplies. Proper lubrication of the compressed air supply would
entail the use of an air line lubricator (available from Warren Rupp) set to deliver one
drop of 10 wt., non-detergent oil for every 20 SCFM of air the pump consumed at its
point of operation. Consult the pump’s published Performance Curve to determine this.
It is important to remember to inspect the sleeve and spool set routinely. It should
move back and forth freely. This is most important when the air supply is lubricated.
If a lubricator is used, oil accumulation will, over time, collect any debris from the
compressed air. This can prevent the pump from operating properly.
Water in the compressed air supply can create problems such as icing or
freezing of the exhaust air causing the pump to cycle erratically, or stop operating. This
can be addressed by using a point of use air dryer (available from Warren Rupp) to
supplement a plant’s air drying equipment. This device will remove excess water from
the compressed air supply and alleviate the icing or freezing problem.
ESADS: EXTERNALLY SERVICEABLE AIR
DISTRIBUTION SYSTEM
Please refer to the exploded view drawing and parts list in the Service Manual
supplied with your pump. If you need replacement or additional copies, contact your
local Warren Rupp Distributor, or the Warren Rupp factory Literature Department at
the number shown below. To receive the correct manual, you must specify the MODEL
and TYPE in formation found on the name plate of the pump.
MODELS WITH 1" SUCTION/DISCHARGE OR LARGER, AND
METAL CENTER SECTIONS
The main air valve sleeve and spool set is located in the valve body mounted on
the pump with four hex head capscrews. The valve body assembly is removed from
the pump by removing these four hex head capscrews.
With the valve body assembly off the pump, access to the sleeve and spool set is
made by removing four hex head capscrews (each end) on the end caps of the valve
body assembly. With the end caps removed, slide the spool back and forth in the
sleeve. The spool is closely sized to the sleeve and must move freely to allow for proper
pump operation. An accumulation of oil, dirt or other contaminants from the pump’s
air supply, or from a failed diaphragm, may prevent the spool from moving freely. This
can cause the spool to stick in a position that prevents the pump from operating. If
this is the case, the sleeve and spool set should be removed from the valve body for
cleaning and further inspection.
Remove the spool from the sleeve. Using an arbor press or bench vise (with an
improvised mandrel), press the sleeve from the valve body. Take care not to damage
the sleeve. At this point, inspect the o-rings on the sleeve for nicks, tears or abrasions.
Damage of this sort could happen during assembly or servicing. A sheared or cut
o-ring can allow the pump’s compressed air supply to leak or bypass within the air
valve assembly, causing the pump to leak compressed air from the pump air exhaust
or not cycle properly. This is most noticeable at pump dead head or high discharge
pressure conditions. Replace any of these o-rings as required or set up a routine,
preventive maintenance schedule to do so on a regular basis. This practice should
include cleaning the spool and sleeve components with a safety solvent or equivalent,
inspecting for signs of wear or damage, and replacing worn components.
To re-install the sleeve and spool set, lightly lubricate the o-rings on the sleeve with
an o-ring assembly lubricant or lightweight oil (such as 10 wt. air line lubricant). Press
the set into the valve body easily, without shearing the o-rings. Re-install one end cap,
gasket and bumper on the valve body. Using the arbor press or bench vise that was
used in disassembly, press the sleeve back into the valve body. You may have to clean
the surfaces of the valve body where the end caps mount. Material may remain from
the old gasket. Old material not cleaned from this area may cause air leakage after
reassembly. Take care that the bumper stays in place allowing the sleeve to press in
all the way.
Re-install the spool, the opposite end cap, gasket and bumper on the valve body.
After inspecting and cleaning the gasket surfaces on the valve body and intermediate,
re-install the valve body on the pump using new gaskets. Tighten the four hex head
ssb2dl3sm-REV0614 Model SSB2-A Type 3 Page 3
Loading...
+ 9 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.